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Abstract. We show that interactive protocols between a prover and a
verifier, a well-known tool of complexity theory, can be used in practice to
certify the correctness of automated reasoning tools.

Theoretically, interactive protocols exist for all PSPACE problems. The
verifier of a protocol checks the prover’s answer to a problem instance in
probabilistic polynomial time, with polynomially many bits of communication,
and with exponentially small probability of error. (The prover may need
exponential time.) Existing interactive protocols are not used in practice
because their provers use naive algorithms, inefficient even for small instances,
that are incompatible with practical implementations of automated reasoning.

We bridge the gap between theory and practice by means of an interactive
protocol whose prover uses BDDs. We consider the problem of counting
the number of assignments to a QBF instance (#CP), which has a natural
BDD-based algorithm. We give an interactive protocol for #CP whose prover
is implemented on top of an extended BDD library. The prover has only a
linear overhead in computation time over the natural algorithm.

We have implemented our protocol in blic, a certifying tool for #CP.
Experiments on standard QBF benchmarks show that blic is competitive
with state-of-the-art QBF-solvers. The run time of the verifier is negligible.
While loss of absolute certainty can be concerning, the error probability in
our experiments is at most 10−10 and reduces to 10−10k by repeating the
verification k times.
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1. Introduction
Automated reasoning tools often underlie our assertions about the correctness of critical
hardware and software components. In recent years, the scope and scalability of these
techniques have grown significantly.

Automated reasoning tools are not immune to bugs. If we are to trust their verdict, it is
important that they provide evidence of their correct behaviour. A substantial amount of
research has gone into proof-producing automated reasoning tools [15, 22, 21, 13, 4]. These
works define a notion of “correctness certificate” suitable for the reasoning problem at
hand, and adapt the reasoning engine to produce independently checkable certificates. For
example, SAT solvers produce either a satisfying assignment or a proof of unsatisfiability
in some proof system, e.g. resolution (see [15] for a survey). Extending such certificates
beyond boolean SAT is an active area of current research [4, 17, 23, 28, 3].

In the worst case, the size of certificates grows exponentially in the size of the input,
even for boolean unsatisfiability (unless NP = coNP). If users have limited computational
or communication resources, transferring and checking large certificates becomes a burden.
Large certificates are not just a theoretical curiosity. In practice, resolution proofs for
complex SAT problems may run to petabytes [14]. Ideally, we would prefer “small”
certificates (polynomial in the size of the input) which can be checked independently in
polynomial time.

The IP = PSPACE theorem proves that certification with polynomial verification
time is possible for any problem in PSPACE, provided one trades off absolute certainty
for certainty with high probability [26]. The complexity class IP consists of those
languages for which there is a polynomial-round, complete and sound interactive protocol
[12, 2, 19, 1]—a sequence of interactions between a (computationally unbounded) prover
and a (computationally bounded) verifier after which the verifier decides whether the
prover correctly performed a computation. The protocol is complete if, whenever an input
belongs to the language, there is an honest prover who can convince a polynomial-time
randomised verifier in a polynomial number of rounds. The protocol is sound if, whenever
an input does not belong to the language, the Verifier will reject the input with high
probability — no matter what certificates are provided to the Verifier. That is, a “Prover"
cannot fool the certification process.

Since every language in PSPACE has an interactive protocol, there are interactive pro-
tocols for UNSAT, QBF, counting QBF, safety verification of concurrent state machines,
etc. Observe that the prover of a protocol may perform exponential time computations
(which is unavoidable unless P = PSPACE), but the verifier only requires polynomial
time in the original input.

If interactive protocols provide a foundation for small and efficiently verifiable certifi-
cates (at least for problems in PSPACE), why are they not in widespread practice? We
believe the reason to be the following: for asymptotic complexity purposes, it suffices
to use honest provers with best-case exponential complexity that naively enumerate all
possibilities. Such provers are incompatible with automated reasoning tools, which use
more sophisticated data structures and heuristics to scale to real-world examples. So we
need to make practical algorithms for automated reasoning efficiently certifying. We call
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an algorithm efficiently certifying if, in addition to computing the output, it can execute
the steps of an honest prover in an interactive protocol with only polynomial overhead
over its running time.

In this paper, we show that algorithms using reduced ordered binary decision diagrams
(henceforth called BDDs) [9] can be made efficiently certifying. We consider #CP, the
problem of computing the number of satisfying assignments of a circuit with partial
evaluation (CP). Besides boolean nodes, a CP contains partial evaluation nodes π[x:=false]
(resp., π[x:=true]) that take a boolean predicate as input, say φ, and output the result
of setting x to false (resp., true) in φ. #CP generalises SAT, QBF, and counting SAT
(#SAT), and has a natural algorithm using BDDs: Compute BDDs for each node of the
circuit in topological order, and count the accepting paths of the final BDD.

The theoretical part of the paper proceeds in two steps. First, we present CPCertify,
a complete and sound interactive protocol for #CP. CPCertify is similar to the
SumCheck protocol [19]. It involves encoding boolean formulas as polynomials over
a finite field. The prover is responsible for producing certain polynomials from the
original circuit and evaluating them at points of the field chosen by the verifier. These
polynomials are either multilinear (all exponents are at most 1) or quadratic (at most 2).

Second, we show that an honest prover in CPCertify can be implemented on top
of a suitably extended BDD library. The run times of the certifying BDD algorithms
are only a constant overhead over the computation time without certification—they
depend linearly on the total number of nodes of the intermediate BDDs computed by the
prover to solve the #CP instance. We use two key insights. The first is an encoding of
multilinear polynomials as BDDs; we show that the intermediate BDDs represent all the
multilinear polynomials a prover needs during the run of CPCertify. The second shows
that the quadratic polynomials correspond to intermediate steps during the computation
of the intermediate BDDs. We extend BDDs with additional “book-keeping” nodes that
allow the prover to also compute the quadratic polynomials while solving the problem.
So computing the polynomials required by CPCertify has zero additional cost; the
only overhead is the cost of evaluating the polynomials at the field points chosen by the
verifier.

We have implemented a certifying #CP solver based on our extended BDD library.
Our experiments show that the solver is competitive with state-of-the-art non-certifying
QBF solvers, and can outperform certifying QBF solvers based on BDDs. The number of
bytes exchanged between the prover and the verifier are an order of magnitude smaller,
and Verifier’s run time several orders of magnitude smaller, than current encodings of
QBF proofs, while bounding the error probability to below 10−10. Thus, our results
open the way for practically efficient, probabilistic certification of automated reasoning
problems using interactive protocols.
Additional Related Work. Proof systems for SAT and QBF remain an active area
of research—both in theoretical proof complexity and in practical tool development.
Jussila, Sinz, and Biere [16, 27] showed how to extract extended resolution proofs from
BDD operations. This is the basis for proof-producing SAT and QBF solvers based
on BDDs [8, 7, 6]. As in our work, the proof uses intermediate nodes produced in the
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construction of the BDD operations. We focus on interactive certification instead of
extended resolution proofs, which can be exponentially larger than the input formula.

Recently, Luo et al. [20] consider the problem of providing zero-knowledge proofs of
unsatisfiability, a motivation similar but not equal to ours. Their techniques require the
verifier to work in time polynomial in the proof, which can be exponentially bigger than
the input formula. In contrast, the verifier of CPCertify runs in polynomial time in
the input. Since any language in PSPACE has a zero knowledge proof [5], our protocol
can in principle be made zero knowledge. Whether that system scales in practice is left
for future work.

2. Preliminaries
The Class IP. An interactive protocol between a Prover and a Verifier consists of a
sequence of interactions in which a Verifier asks questions to a Prover, receives responses
to the questions, and must ultimately decide if a common input x belongs to a language.
The computational power of the Prover is unbounded but the Verifier is a randomised,
polynomial-time algorithm.

Formally, let P, V denote (deterministic) Turing machines.
We say that (r;m1, ...,m2k) is a k-round interaction, with r,m1, ...,m2k ∈ {0, 1}∗, if

mi+1 = V (r,m1, ...,mi) for even i and mi+1 = P (m1, ...,mi) for odd i. We think of
r as an additional sequence of bits given to Verifier V that is chosen randomly. The
output out(P, V )(x, r, k) is defined as m2k, where (r;m1, ...,m2k) is the unique k-round
interaction with m1 = x.

A language L belongs to IP if there exist some V, PH and polynomials p1, p2, p3, s.t.
V (r, x,m2, ...,mi) runs in time p1(|x|) for all r, x,m2, ...,mi, and, for each x and an
r ∈ {0, 1}p2(|x|) chosen uniformly at random:

1. (Completeness) x ∈ L implies out(PH , V )(x, r, p3(|x|)) = 1 with probability 1, and
2. (Soundness) x /∈ L implies that for all P we have out(P, V )(x, r, p3(|x|)) = 1 with

probability at most 2−|x|.
Intuitively, in an interactive protocol, a computationally unbounded Prover interacts

with a randomised polynomial-time Verifier for k rounds. In each round, Verifier sends
probabilistic “challenges” to Prover, based on the input and the answers to prior challenges,
and receives answers from Prover. At the end of k rounds, Verifier decides to accept
or reject the input. The completeness property ensures that if the input belongs to the
language L, then there is an “honest” Prover PH who can always convince Verifier that
indeed x ∈ L. If the input does not belong to the language, then the soundness property
ensures that Verifier rejects the input with high probability no matter how a (dishonest)
Prover tries to convince them.

It is known that IP = PSPACE [19, 26], that is, every language in PSPACE has a
polynomial-round interactive protocol. The proof exhibits an interactive protocol for the
language QBF of true quantified boolean formulae; in particular, the honest Prover is a
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polynomial space, exponential time algorithm that uses a truth table representation of
the formula to implement the protocol.
Polynomials. Interactive protocols make extensive use of polynomials over some prime
finite field F.

Let X be a finite set of variables. We use x, y, z, ... for variables and p, q, ... for
polynomials. When we write a polynomial explicitly, we write it in brackets, e.g.
[3xy − z2]. We write 1 and 0 for the polynomials [1] and [0], respectively. We use the
following operations on polynomials:

• Sum, difference, and product. Denoted p+ q, p− q, p · q, and defined as usual. For
example, [3xy − z2] + [z2 + yz] = [3xy + yz] and [x+ y] · [x− y] = [x2 − y2].

• Partial evaluation. Denoted π[x:=a] p, it returns the result of setting variable x to
the field element a in the polynomial p, e.g. π[x:=5][3xy − z2] = [15y − z2].

• Degree reduction. Denoted δx p. It reduces the degree of x in all monomials of the
polynomial to 1. For example, δx[x3y + 3x2 + 7z2] = [xy + 3x+ 7z2].

A (partial) assignment is a (partial) mapping σ : X → F. We write Πσ p for
π[x1:=σ(x1)]...π[xk:=σ(xk)] p, where x1, ..., xk are the variables for which σ is defined. Addi-
tionally, we call σ binary if σ(x) ∈ {0, 1} for each x ∈ X.
Binary and multilinear polynomials. A polynomial is multilinear in x if the degree of
x in p is 0 or 1. A polynomial is multilinear if it is multilinear in all its variables. For
example, [xy − y2] is multilinear in x but not in y, and [3xy − 2zy] is multilinear. A
polynomial p is binary if Πσ p ∈ {0,1} for every binary assignment σ. Two polynomials
p, q are binary equivalent, denoted p ≡b q, if Πσ p = Πσ q for every binary assignment σ.
(Note that non-binary polynomials can be binary equivalent.)

3. Circuits with Partial Evaluation
We introduce circuits with partial evaluation (CP), a compact representation of quantified
boolean formulae, and formulate #CP, the problem of counting the number of satisfying
assignments of a CP. #CP generalises QBF, the satisfiability problem for quantified
boolean formulas. Figure 1 shows an example of a CP. Informally, it is a directed acyclic
graph whose nodes are labelled with variables, boolean operators, or partial evaluation
operators π[x:=b]. Intuitively, π[x:=b]φ sets the variable x to the truth value b in the
formula φ. In this way, each node of a circuit stands for a boolean function, and the
complete circuit stands for the boolean function of the root. Figure 1 shows the formulae
represented by each node.

Definition 1. Let X denote a finite set of variables and S ⊆ X. A circuit with partial
evaluation and variables in S (S-CP) has the form

• true, false, or x, where x ∈ S,
• ¬φ, φ ∧ ψ, or φ ∨ ψ, where φ, ψ are S-CPs, or
• π[y:=b] φ, where y ∈ X \ S, b ∈ {true, false}, and φ is an (S ∪ {y})-CP.
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The set of free variables of a S-CP φ is free(φ) := S. The children of a CP are inductively
defined as follows: true, false, and x have no children; the children of φ ∧ ψ and φ ∨ ψ
are φ and ψ; and the only child of ¬φ and π[y:=b] φ is φ. The set of descendants of φ is
the smallest set M containing φ and all children of every element of M . The size of φ is
|φ| := |M |.

∧ ¬x

[1 − x+ x2 − x+ x2 − x3]
= [1 − 2x+ 2x2 − x3]

π[y:=true]

true
[1 −x+x2]

π[y:=false] ¬x
[1 − x]

∨¬x ∨ y [1 −x+xy−xy+x2y]
= [1 − x+ x2y]

∧¬¬x
[1 − x]

x ∧ y

[xy]
xx[x] y y [y]

Figure 1: A CP (Section 3), the boolean func-
tions represented by each node (in boxes),
and the arithmetisation of the formulae (Sec-
tion 4.1).

We represent a CP φ as a directed
acyclic graph. The nodes of the graph
are the descendants of φ. A CP φ encodes
a boolean predicate Pφ, which maps assign-
ments σ : free(φ) → {false, true} to a truth
value Pφ(σ) ∈ {false, true}. It does so in
the obvious manner, e.g., Px(σ) := σ(x),
Pφ∧ψ(σ) := Pφ(σ) ∧ Pψ(σ), etc. We use
π[x:=b] as partial evaluation operator, so
Pπ[x:=b]φ(σ) := Pφ(σ ∪ {x 7→ b}). Intu-
itively, π[x:=b] φ replaces each occurrence of
x in φ by b. An assignment σ satisfies φ
if Pφ(σ) = true. We define the macros

∀xφ := π[x:=0] φ ∧ π[x:=1] φ

∃xφ := π[x:=0] φ ∨ π[x:=1] φ

Figure 1 shows a CP for the quantified
boolean formula ∀y(¬x ∨ (x ∧ y)).

We consider the following problem:

#CP Input CP φ.
Output The number of satisfying assignments of φ.

Given a quantified boolean formula, we can use the macros for quantifiers to construct
in linear time an equivalent CP, i.e., a CP with the same satisfying assignments. Similarly,
#SAT instances can also be reduced to #CP.
Structure of the rest of the paper. In Section 4, we give an interactive protocol for
#CP called CPCertify. In Section 5, we implement an honest Prover for CPCertify
on top of an extended BDD-based algorithm for #CP. The prover runs in time polynomial
in the size of the largest BDD for any of the subcircuits of the initial circuit. Together,
these results yield our main result, Theorem 1, showing that any BDD-based algorithm
can be modified to run an interactive protocol with small polynomial overhead. Finally,
Section 6 presents empirical results.

4. An Interactive Protocol for #CP
In this section we describe an interactive protocol for #CP, following the SumCheck
protocol of [19]. Section 4.1 introduces arithmetisation, a technique to transform #CP
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into an equivalent problem about polynomials. Section 4.2 shows how to transform #CP
into an equivalent problem about evaluating polynomials of low degree. Finally, Section
4.3 presents an interactive protocol for this problem.

4.1. Arithmetisation
We define a mapping [[·]] that assigns to each CP φ a polynomial [[φ]] over the variables
free(φ), called the arithmetisation of φ:

• [[true]] := 1; [[false]] := 0; [[x]] := [x] for every x ∈ X; and [[¬φ]] := 1 − [[φ]];
• [[φ ∧ ψ]] := [[φ]] · [[ψ]]; and [[φ ∨ ψ]] := [[φ]] + [[ψ]] − [[φ]] · [[ψ]];
• [[π[x:=b] φ]] := π[x:=[[b]]][[φ]], with x ∈ free(φ), b ∈ {true, false}.
Figure 1 also shows the polynomials corresponding to the nodes of the CP.
Let F be a fixed prime finite field. Given an arbitrary truth assignment σ : X →

{true, false}, let σ : X → F be the binary assignment given by σ(x) = 1 if σ(x) = true
and σ(x) = 0 if σ(x) = false, where 0 and 1 denote the additive and multiplicative
identities in F. The mapping [[·]] is defined to satisfy the following property, whose proof
is immediate:

Proposition 1. Let φ be an S-CP encoding some boolean predicate Pφ. Then Pφ(σ) =
Πσ [[φ]] for every truth assignment σ to S.

So, intuitively, the polynomial [[φ]] is a conservative extension of the predicate Pφ: It
returns the same values for all binary assignments. Accordingly, in the rest of the paper
we abuse language and write σ instead of σ for the binary assignment corresponding to
the truth assignment σ.

Observe that #CP can be reformulated as follows: given a CP φ, compute the number
of binary assignments σ s.t. Πσ[[φ]] = 1.

4.2. Degree Reduction
Given a CP φ, its associated polynomial can have degree exponential in the height of φ.
Since we are ultimately interested in evaluating polynomials over binary assignments, and
since x2 = x for x ∈ {0, 1}, we can convert polynomials to low degree without changing
their behaviour on binary assignments.

For this, we use a degree-reduction operator δx for every variable x. The operator δxp
reduces the exponent of all powers of x in p to 1. For example, δx[x2y+3xy2 −2x3y2 +4] =
[xy + 3xy2 − 2xy2 + 4]. Observe that δxp ≡b p. Instead of working on the input CP
directly, we first convert it into a circuit with partial evaluation and degree reduction by
inserting degree-reduction operators after binary operations. This ensures all intermediate
polynomials obtained by arithmetisation have low degree.

Definition 2. A circuit with partial evaluation and degree reduction over the set S of
variables (S-CPD) is defined in the same manner as an S-CP, extended as follows:
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• if φ is an S-CPD and x ∈ S, then δxφ is an S-CPD,
• [[δxφ]] := δx[[φ]], and
• φ is the only child of δxφ.

For an S-CPD φ we define free(φ), |φ|, children, descendants, and the graphical repre-
sentation as for S-CPs.

δx

δy

∧

π[y:=true] π[y:=false]

δx

δy

∨

δx

δy

∧

¬

yx [y][x]

[1 − x] [xy]

[xy]

[xy]

[1 − x+ x2y]

[1 − x+ x2y]

[1 − x+ xy]
[1]

[1 − x]

[1 − x]

[1 − x]

[1 − x]

Figure 2: CPD and polynomials
for the CP of Figure 1.

We convert a CP φ into a CPD conv(φ) by adding a
degree-reduction operator for each free variable before
any binary operation.

Definition 3. Given a CP φ with free(φ) = {x1, ..., xk},
its associated CPD conv(φ) is inductively defined as
follows:

• conv(false) = false, conv(true) := true,
• conv(¬ψ) := ¬ conv(ψ),
• conv(π[x:=b] ψ) := π[x:=b] conv(ψ), and
• conv(ψ1 ⊛ ψ2) := δx1 ...δxk

(conv(ψ1) ⊛ conv(ψ2)),
for ⊛ ∈ {∨,∧}.

Figure 2 shows the CPD conv(φ) for the CP φ of
Figure 1, together with the polynomials corresponding
to each node.

We collect some basic properties of CPDs:

Lemma 1. Let φ be a CP.
(a) [[conv(φ)]] is a binary multilinear polynomial and

[[conv(φ)]] ≡b [[φ]].
(b) For every descendant ψ of conv(φ), [[ψ]] has max-

imum degree 2.

CPDs have another useful property. Recall that given
a CP φ we are interested in its number of satisfying assignments. The next lemma shows
that this number can be computed by evaluating the polynomial [[conv(φ)]] on a single
input.

Lemma 2. A CP φ with n free variables has m < |F| satisfying assignments iff
Πσ[[conv(φ)]] = m · 2−n, where σ is the assignment satisfying σ(x) := 2−1 in the field F
for every variable x.1

1Any prime field F with |F| > 2 has an element c such that 2c = 1.
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4.3. CPCertify: An Interactive Protocol for #CP
We describe an interactive protocol, called CPCertify, for a CP φ with n free variables.
Let X denote the variables used in φ. Prover and Verifier fix a finite field with at least
m+ 1 elements, where m is an upper bound on the number of assignments (e.g. m = 2n).
Prover tries to convince the Verifier that Πσ[[conv(φ)]] = K for some K ∈ F.

In the protocol, Verifier challenges Prover to compute polynomials of the form Πσ([[ψ]]),
where ψ is a node of the CPD conv(φ) and σ : free(ψ) → F is a (non-binary!) assignment;
we call the expression Πσ[[conv(ψ)]] a challenge. Observe that all assignments are chosen
by Verifier. Prover answers with some k ∈ F. We call the expression Πσ[[conv(ψ)]] = k a
claim, or the answer to the challenge Πσ[[conv(ψ)]].

CPCertify consists of an initialisation and a number of rounds, one for each descen-
dant of conv(φ). Rounds are executed in topological order, starting at the root, i.e. at
conv(φ) itself. The structure of a round for a node ψ of conv(φ) depends on whether ψ
is an internal node (including the root), or a leaf.

At each point, Verifier keeps track of a set C of claims that must be checked.
Initialisation. Verifier sends Prover the challenge Πσ[[conv(φ)]], where σ(x) := 2−1 for
every x ∈ free(φ). Prover returns the claim Πσ[[conv(φ)]] = K for some K ∈ F. (By
Lemma 2, this amounts to claiming that φ has K · 2n satisfying assignments.) Verifier
initialises C := {Πσ[[conv(φ)]] = K}.
Round for an internal node. A round for an internal node ψ runs as follows:

(a) Verifier collects all claims {Πσi
[[ψ]] = ki}mi=1 in C relating to ψ, with assignments

σ1, ..., σm : free(ψ) → F and k1, ..., km ∈ F. (Initially ψ = conv(φ) and the only
claim is Πσ[[conv(φ)]] = K.)

(b) If m > 1, Verifier interacts with Prover to compute a unique claim Πσ[[ψ]] = k
such that very likely2 the claim is true only if all claims {Πσi

[[ψ]] = ki}mi=1 are true.
For this, Verifier sends a number of challenges, and checks that the answers are
consistent with the prior claims. Based on these answers, Verifier then derives new
claims. (See “Description of step (b)” below.)

(c) Verifier interacts with Prover to compute a claim Πσ′ [[ψ′]] = k′ for each child ψ′ of
ψ. This is similar to (b): if Πσ[[ψ]] ̸= k, i.e. the unique claim from (b) does not
hold, then very likely one of the resulting claims will be wrong. Depending on the
type of ψ, the claims are computed based on the answers of Prover to challenges
sent by Verifier. (See “Description of step (c)” below.)

(d) In total, Verifier removed the claims {Πσi
[[ψ]] = ki}mi=1 from C, and replaced them

by one claim Πσ′ [[ψ′]] = k′ for each child ψ′ of ψ.
Observe that, since a node ψ can be a child of several nodes, Verifier may collect multiple
claims for ψ, one for each parent node.
Round for a leaf. If ψ is a leaf, then ψ = x for a variable x, or ψ ∈ {true, false}.
Verifier removes all claims {Πσi

[[ψ]] = ki}mi=1 from C, computes the values ci := Πσi
[[ψ]],

and rejects if ki ̸= ci for any i.
2The precise bound on the failure probability will be given in Proposition 2.
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Observe that if all claims made by Prover about leaves are true, then very likely
Prover’s initial claim is also true.
Description of step (b). Let {Πσi

[[ψ]] = ki}mi=1 be the claims in C relating to node ψ.
Verifier and Prover conduct step (b) as follows:
(b.1) While there exists x ∈ X s.t. σ1(x), ..., σm(x) are not pairwise equal:

(b.1.1) For every i ∈ {1, ...,m}, let σ′
i denote the partial assignment which is

undefined on x and otherwise matches σi. Verifier sends the challenges
{Πσ′

i
[[ψ]]}mi=1 to Prover. Prover answers with claims {Πσ′

i
[[ψ]] = pi}mi=1. Note

that p1, ..., pm are univariate polynomials with free variable x.
(b.1.2) Verifier checks whether ki = π[x:=σi(x)] pi holds for each i. If not, Verifier

rejects. Otherwise, Verifier picks r ∈ F uniformly at random and updates
σi(x) := r and ki := π[x:=r]pi for every i ∈ {1, ...,m}.

(b.2) If after exiting the loop the values k1, ..., km are not pairwise equal, Verifier rejects.
Otherwise (that is, if k1 = k2 = · · · = km), the set C now contains a unique claim
Πσ[[ψ]] = k relating to ψ.

Example 1. Consider the case in which X = {x}, and Prover has made two claims,
Πσ1 [[ψ]] = k1 and Πσ2 [[ψ]] = k2 with σ1(x) = 1 and σ2(x) = 2. In step (b.1.1) we have
σ′

1 = σ′
2 (both are the empty assignment), and so Verifier sends the challenge [[ψ]] to

Prover twice, who answers with claims [[ψ]] = p1 and [[ψ]] = p2. In step (b.1.2) Verifier
checks that p1(1) = k1 and p2(2) = k2 hold, picks a random number r, and updates
σ1(x) := σ2(x) := r and k1 := p1(r), k2 := p2(r). Now the condition of the while loop
fails, so Verifier moves to (b.2) and checks k1 = k2.

Description of step (c). Let Πσ[[ψ]] = k be the claim computed by Verifier in step
(b). Verifier removes this claim from C and replaces it by claims about the children of ψ,
depending on the structure of ψ:
(c.1) If ψ = ψ1 ⊛ ψ2, for a ⊛ ∈ {∨,∧}, then Verifier sends Prover challenges Πσ[[ψi]]

for i ∈ {1, 2}, and Prover sends claims Πσ[[ψi]] = ki back. Verifier checks the
consistency condition k = π[x:=k1]π[y:=k2][[x⊛ y]], rejecting if it does not hold. If the
condition holds, the claim Πσ[[ψi]] = ki is added to C, to be checked in the round
for ψi.

(c.2) If ψ = ¬ψ′, then Verifier adds the claim Πσ[[ψ′]] = 1 − k to ψ′.
(c.3) If ψ = π[x:=b] ψ

′, Verifier sets σ′ := σ ∪ {x 7→ b} and adds the claim Πσ′ [[ψ′]] = k to
C.

(c.4) If ψ = δxψ
′, then Verifier sends Prover the challenge Πσ′ [[ψ′]], where σ′ denotes

the partial assignment which is undefined on x and otherwise matches σ. Prover
returns the claim p := Πσ′ [[ψ′]]. Observe that p is a univariate polynomial over x.
Verifier checks the consistency condition π[x:=σ(x)]δx p = k, rejecting if it does not
hold. If it holds, Verifier picks an r ∈ F uniformly at random, conducts the updates
σ(x) := r and k := π[x:=r] p, and adds Πσ[[ψ′]] = k to the set of claims about ψ′.
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This concludes the description of the interactive protocol. We now show CPCertify
is complete and sound.

Proposition 2 (CPCertify is complete and sound). Let φ be a CP with n free variables.
Let Πσ[[conv(φ)]] = K be the claim initially sent by Prover to Verifier. If the claim is
true, then Prover has a strategy to make Verifier accept. If not, for every Prover, Verifier
accepts with probability at most 4n|φ|/|F|.

If the original claim is correct, Prover can answer every challenge truthfully and all
claims pass all of Verifier’s checks. So Verifier accepts. If the claim is not correct, we
proceed round by round. We bound the probability that the Verifier is tricked in a single
step to at most 2/|F| using the Schwartz-Zippel Lemma. We then bound the number of
such steps to 2n|φ| and use a union bound.

5. A BDD-based Prover
We assume familiarity with reduced ordered binary decision diagrams (BDDs) [9]. We
use BDDs over X = {x1, ..., xn}. We fix the variable order x1 < x2 < ... < xn, i.e. the
root node would decide based on the value of xn.

Definition 4. BDDs are defined inductively as follows:
• ⟨true⟩ and ⟨false⟩ are BDDs of level 0;
• if u ̸= v are BDDs of level ℓu, ℓv and i > ℓu, ℓv, then ⟨xi, u, v⟩ is a BDD of level i;
• we identify ⟨xi, u, u⟩ and u, for a BDD u of level ℓi and i > ℓu.

The level of a BDD w is denoted ℓ(w). The set of descendants of w is the smallest set
S with w ∈ S and u, v ∈ S for all ⟨x, u, v⟩ ∈ S. The size |w| of w is the number of its
descendants.

The arithmetisation of a BDD w is the polynomial [[w]] defined as follows: [[⟨true⟩]] := 1,
[[⟨false⟩]] := 0 and [[⟨x, u, v⟩]] := [1 − x] · [[u]] + [x] · [[v]].

Figure 3 shows a BDD for the boolean function φ(x, y, z) = (x ∧ y ∧ ¬z) ∨ (¬x ∧ y ∧
z) ∨ (x ∧ ¬y ∧ z) and the arithmetisation of each node.
BDDSolver: A BDD-based Algorithm for #CP. An instance φ of #CP can be
solved using BDDs. Starting at the leaves of φ, we iteratively compute a BDD for each
node ψ of the circuit encoding the boolean predicate Pψ. At the end of this procedure
we obtain a BDD for Pφ. The number of satisfying assignments of ψ is the number of
accepting paths of the BDD, which can be computed in linear time in the size of the
BDD.

For a node ψ = ψ1 ⊛ ψ2, given BDDs representing the predicates Pφ1 and Pφ2 , we
compute a BDD for the predicate Pφ := Pφ1 ⊛ Pφ2 , using the Apply⊛ operator on BDDs.
We name this algorithm for solving #CP “BDDSolver.”

11



x
[xy + yz+
zx− 3xyz]

y[y + z
−2yz]

y [yz]

z[1 − z] z [z]

true[1]

Figure 3: A BDD and its arith-
metisation. For ⟨x, u, v⟩, we de-
note the link from x to v with
a solid edge and x to u with a
dotted edge. We omit links to
⟨false⟩.

From BDDSolver to CPCertify. Our goal is to
modify BDDSolver to play the role of an honest
Prover in CPCertify with minimal overhead. In
CPCertify, Prover repeatedly performs the same
task: evaluate polynomials of the form Πσ[[ψ]], where
ψ is a descendant of the CPD conv(φ), and σ assigns
values to all free variables of ψ except possibly one.
Therefore, the polynomials have at most one free vari-
able and, as we have seen, degree at most 2.

Before defining the concepts precisely, we give a
brief overview of this section.

• First (Proposition 3), we show that BDDs cor-
respond to binary multilinear polynomials. In
particular, BDDs allow for efficient evaluation
of the polynomial. As argued in Lemma 1(a),
for every descendant ψ of φ, the CPD conv(ψ)
(which is a descendant of conv(φ)) evaluates to
a multilinear polynomial. In particular, Prover can use standard BDD algorithms
to calculate the corresponding polynomials Πσ[[ψ]] for all descendants ψ of conv(φ)
that are neither binary operators nor degree reductions.

• Second (the rest of the section), we prove a surprising connection: the intermediate
results obtained while executing the BDD algorithms (with slight adaptations)
correspond precisely to the remaining descendants of conv(φ).

The following proposition proves that BDDs represent exactly the binary multilinear
polynomials.

Proposition 3. (a) For a BDD w, [[w]] is a binary multilinear polynomial.
(b) For a binary multilinear polynomial p there is a unique BDD w s.t. p = [[w]].

5.1. Extended BDDs
During the execution of CPCertify for a given CPD conv(φ), Prover sends to Verifier
claims of the form Πσ[[ψ]], where ψ is a descendant of conv(φ), and σ : X → F is a
partial assignment. While all polynomials computed by CPCertify are binary, not all
are multilinear: some polynomials have degree 2. For these polynomials, we introduce
extended BDDs (eBDDs) and give eBDD-based algorithms for the following two tasks:

1. Compute an eBDD representing [[ψ]] for every node ψ of conv(φ).
2. Given an eBDD for [[ψ]] and a partial assignment σ, compute Πσ[[ψ]].

Computing eBDDs for CPDs: Informal introduction. Consider a CP φ and its
associated CPD conv(φ). Each node of φ induces a chain of nodes in conv(φ), consisting
of degree-reduction nodes δx1 , ..., δxn , followed by the node itself (see Figure 4). Given
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BDDs u and v for the children of the node in the CP, we can compute a BDD for the
node itself using a well-known BDD algorithm Apply⊛(u, v) parametric in the boolean
operation ⊛ labelling the node [9]. Our goal is to transform Apply⊛ into an algorithm
that computes eBDDs for all nodes in the chain, i.e. eBDDs for all the polynomials
p0, p1, ..., pn of Figure 4.

⊛ p0

δxn p1 = δxnp0

...
δx1 pn = δx1· · · δxnp0

u v
Figure 4: A node of a CP (⊛) gets
a chain of degree reduction nodes in
the associated CPD.

Roughly speaking, Apply⊛(u, v) recursively com-
putes BDDs w0 = Apply⊛(u0, v0) and w1 =
Apply⊛(u1, v1), where ub and vb are the b-children
of u and v, and then returns the BDD with w0 and
w1 as 0- and 1-child, respectively.3

Most importantly, we modify Apply⊛ to run in
breadth-first order. Figure 5 shows a graphical
representation of a run of Apply∨(u, v), where u
and v are the two BDD nodes labelled by x. Square
nodes represent pending calls to Apply⊛. Initially
there is only one square call Apply∨(u, v) (Figure 5,
top left). Apply∨ calls itself recursively for u0, v0
and u1, v1 (Figure 5, top right). Each of the two
calls splits again into two; however, the first three
are identical (Figure 5, bottom left), and so reduce
to two. These two calls can now be resolved directly;
they return nodes true and false, respectively. At
this point, the children of Apply⊛(u, v) become ⟨y, true, true⟩ = true, and ⟨y, true, false⟩,
which exists already as well (Figure 5, bottom right).

We look at the diagrams of Figure 5 not as a visualisation aid, but as graphs with
two kinds of nodes: standard BDD nodes, represented as circles, and product nodes,
represented as squares. We call them extended BDDs. Each node of an extended BDD
is assigned a polynomial in the expected way: the polynomial [[u]] of a standard BDD
node u with variable x is x · [[u1]] + (1 − x) · [[u0]], the polynomial [[v]] of a square ∧-node
v is [[v0]] · [[v1]], etc. In this way we assign to each eBDD a polynomial. In particular, we
obtain the intermediate polynomials p0, p1, p2, p3 of the figure, one for each level in the
recursion. In the rest of the section we show that these are precisely the polynomials
p0, p1, ..., pn of Figure 4.

Thus, in order to compute eBDDs for all nodes of a CPD conv(φ), it suffices to compute
BDDs for all nodes of the CP φ. Since we need to do this anyway to solve #CP, the
polynomial certification does not incur any overhead.
Extended BDDs. As for BDDs, we define eBDDs over X = {x1, ..., xn} with the
variable order x1 < x2 < ... < xn.

Definition 5. Let ⊛ be a binary boolean operator. The set of eBDDs (for ⊛) is inductively
defined as follows:

3In fact, this is only true when u and v are nodes at the same level and Apply⊛(u0, v0) ̸= Apply⊛(u1, v1),
but at this point we only want to convey some intuition.
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∨

p0 = x+ y − xy − x2y − xy2 + 2x2y2

Apply∨(u, v)
x x

u v

y y

true

x

∨ ∨

p1 = x+ y − 2xy + xy2 = δxp0

Apply∨(u, v)

x x

u v

y y

true

x

y y

∨ ∨
p2 = x+ y − xy = δyδxp0

Apply∨(u, v)
x x

u v

y y

true

x

p3 = x+ y − xy = δyδxp0

Apply∨(u, v)

Figure 5: Run of Apply∨(u, v), but with recursive calls evaluated in breadth-first order.
All missing edges go to node false.

• every BDD is also an eBDD of the same level;
• if u, v are BDDs (not eBDDs!), then ⟨u⊛ v⟩ is an eBDD of level l where l :=

max{ℓ(u), ℓ(v)}; we call eBDDs of this form product nodes;
• if u ̸= v are eBDDs and i > ℓ(u), ℓ(v), then ⟨xi, u, v⟩ is an eBDD of level i;
• we identify ⟨xi, u, u⟩ and u for an eBDD u and i > ℓ(u).

The set of descendants of an eBDD w is the smallest set S with w ∈ S and u, v ∈ S
for all ⟨u⊛ v⟩ , ⟨x, u, v⟩ ∈ S The size of w is its number of descendants. For u, v ∈
{⟨true⟩ , ⟨false⟩} we identify ⟨u⊛ v⟩ with ⟨true⟩ or ⟨false⟩ according to the result of ⊛, e.g.
⟨⟨true⟩ ∨ ⟨false⟩⟩ = ⟨true⟩, as true ∨ false = true. The arithmetisation of an eBDD for
a boolean operator ⊛ ∈ {∧,∨} is defined as for BDDs, with the extensions [[⟨u ∧ v⟩]] =
[[u]] · [[v]] and [[⟨u ∨ v⟩]] = [[u]] + [[v]] − [[u]] · [[v]].

Example 2. The diagrams in Figure 5 are eBDDs for ⊛ := ∨. Nodes of the form
⟨x, u, v⟩ and ⟨u ∨ v⟩ are represented as circles and squares, respectively. Consider the
top-left diagram. Abbreviating x ⊕ y := (x ∧ ¬y) ∨ (¬x ∧ y) we get [[Apply∨(u, v)]] =
[[(x⊕ y) ∧ (x ∧ y)]] = [[x⊕ y]] · [[x ∧ y]] = (x(1 − y) + (1 − x) · y − xy(1 − x)(1 − y)) · xy,
which is the polynomial p0 shown in the figure.

5.1.1. Computing eBDDs for CPDs.

Given a node of a CP corresponding to a binary operator ⊛, Prover has to compute
polynomials p0, δx1p0, ..., δxn ...δx1p0 corresponding to the nodes of the CPD shown on
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ComputeEBDD(w)
Input: eBDD w
Output: sequence w0, ..., wn of eBDDs
w0 := w; output w0
for i = 0, · · · , ℓ(w) − 1 do
wi+1 := wi
for every node ⟨u⊛ v⟩ of wi

at level n− i do
for b ∈ {0, 1} do
ub := π[xn−i:=b] u
vb := π[xn−i:=b] v
tb := ⟨ub ⊛ vb⟩

wi+1 := wi+1 [ ⟨u⊛ v⟩ / ⟨xn−i, t0, t1⟩ ]
output wi+1

EvaluateEBDD(w, σ) =: Eσ(w)
Input: eBDD w; assignment σ : X → F
Output: Πσ[[w]]
if P (w) is defined return P (w)
if w ∈ {⟨true⟩ , ⟨false⟩} return [[w]]
if w = ⟨u ∧ v⟩
P (w) := Eσ(u) · Eσ(v)

if w = ⟨u ∨ v⟩
P (w) := Eσ(u) + Eσ(v) − Eσ(u)Eσ(v)

if w = ⟨x, u, v⟩ and σ(x) undefined
P (w) := [1 − x] · Eσ(u) + [x] · Eσ(v)

if w = ⟨x, u, v⟩ and σ(x) = s ∈ F
P (w) := [1 − s] · Eσ(u) + [s] · Eσ(v)

return P (w)

Table 1: On the left: Algorithm computing eBDDs for the sequence [[w]], δxn [[w]],
δxn−1δxn [[w]], ..., δx1 · · · δxn [[w]] of polynomials. On the right: Recursive algorithm to
evaluate the polynomial represented by an eBDD at a given partial assignment. P (w) is
a mapping used to memoize the polynomials returned by recursive calls.

the right. We show that Prover can compute these polynomials by representing them as
eBDDs. Table 1 describes an algorithm that gets as input an eBDD w of level n, and
outputs a sequence w0, w1, ..., wn+1 of eBDDs such that w0 = w; [[wi+1]] = δxn−i

[[wi]] for
every 0 ≤ i ≤ ℓ(w) − 1; and wn+1 is a BDD. Interpreted as sequence of eBDDs, Figure 5
shows a run of this algorithm.

Notation. Given an eBDD w and eBDDs u, v such that ℓ(u) ≥ ℓ(v), we let w[u/v] denote
the result of replacing u by v in w. For an eBDD w = ⟨xi, w0, w1⟩ and b ∈ {0, 1} we define
π[xi:=b]w := wb, and for j > i we set π[xj :=b]w := w. (Note that [[π[xj :=b]w]] = π[xj :=b][[w]]
holds for any j where it is defined.)

Proposition 4. Let ψ1, ψ2 denote CPs and u1, u2 BDDs with [[ui]] = [[ψi]], i ∈ {1, 2}. Let
w := ⟨u1 ⊛ u2⟩ denote an eBDD. Then ComputeEBDD(w) satisfies [[w0]] = [[ψ1 ⊛ ψ2]]
and [[wi+1]] = δxn−i

[[wi]] for every 0 ≤ i ≤ n − 1; moreover, wn is a BDD with wn =
Apply⊛(u1, u2). Finally, the algorithm runs in time O(T ), where T ∈ O(|u1| · |u2|) is the
time taken by Apply⊛(u1, u2).

Evaluating polynomials represented as eBDDs. Recall that Prover must evaluate
expressions of the form Πσ[[ψ]] for some CPD ψ, where σ assigns values to all variables
of ψ except for possibly one. We give an algorithm to evaluate arbitrary expressions
Πσ[[w]], where w is an eBDD, and show that if there is at most one free variable then
the algorithm takes linear time in the size of ψ. The algorithm is shown on the right of
Table 1. It has the standard structure of BDD procedures: It recurs on the structure of
the eBDD, memoizing the result of recursive calls so that the algorithm is called at most
once with a given input.
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Proposition 5. Let w denote an eBDD, σ : X → F a partial assignment, and k the
number of variables assigned by σ. Then EvaluateEBDD evaluates the polynomial
Πσ[[w]] in time O

(
poly(2n−k) · |w|

)
.

5.2. Efficient Certification
In the CPCertify algorithm, Prover must (a) compute polynomials for all nodes of
the CPD, and (b) evaluate them on assignments chosen by Verifier. In the last section
we have seen that ComputeEBDD (for binary operations of the CP), combined with
standard BDD algorithms (for all other operations), yields eBDDs representing all these
polynomials—at no additional overhead, compared to a BDD-based implementation.
This covers part (a). Regarding (b), recall that all polynomials computed in (a) have at
most one variable. Therefore, using EvaluateEBDD we can evaluate a polynomial in
linear time in the size of the eBDD representing it.

The Verifier CPCertify is implemented in a straightforward manner. As the algorithm
runs in polynomial size w.r.t. the CP (and not the computed BDDs, which may be
exponentially larger), incurring overhead is less of a concern.

Theorem 1 (Main Result). If BDDSolver solves an instance φ of #CP with n
variables in time T , with T > n|φ|, then

(a) Prover computes eBDDs for all nodes of conv(φ) in time O(T ),
(b) Prover responds to Verifier’s challenges in time O(nT ), and
(c) Verifier executes CPCertify in time O(n2|φ|), with failure probability at most

4n|φ|/|F|.

As presented above, EvaluateEBDD incurs a factor-of-n overhead, as every node of
the CPD must be evaluated. In our implementation, we use a caching strategy to reduce
the complexity of Theorem 1(b) to O(T ).

Note that the bounds above assume a uniform cost model. In particular, operations
on BDD nodes and finite field arithmetic are assumed to be O(1). This is a reasonable
assumption, as for a constant failure probability log |F| ≈ log n. Hence the finite field
remains small. (It is possible to verify the number of assignments even if it exceeds |F|,
see below.)

5.3. Implementation concerns
We list a number of points that are not described in detail in this paper, but need to be
considered for an efficient implementation.
Finite field arithmetic. It is not necessary to use large finite fields. In particular, one
can avoid the overhead of arbitrarily sized integers. For our implementation we fix the
finite field F := Zp, with p = 261 − 1 (the largest Mersenne prime to fit in 64 bits).
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Incremental eBDD representation. Algorithm ComputeEBDD computes a sequence
of eBDDs. These must not be stored explicitly, otherwise one incurs a space-overhead.
Instead, we only store the last eBDD as well as the differences between each subsequent
element of the sequence. To evaluate the eBDDs, we then revert to a previous state by
applying the differences appropriately.
Evaluation order. It simplifies the implementation if Prover only needs to evaluate
nodes of the CPD in some (fixed) topological order. CPCertify can easily be adapted
to guarantee this, by picking the next node appropriately in each iteration, and by
evaluating only one child of a binary operator ψ1 ⊛ ψ2. The value of the other child can
then be derived by solving a linear equation.
Efficient evaluation. As stated in Theorem 1, using EvaluateEBDD Prover needs
Ω(nT ) time to respond to Verifier’s challenges. In our implementation we instead use
a caching strategy that reduces this time to O(T ). Essentially, we exploit the special
structure of conv(φ): Verifier sends a sequence of challenges

Πσ0δx1 ...δxnw, Πσ1δx2 ...δxnw, ..., Πσnw

where assignments σi and σi+1 differ only in variables xi and xi+1. The corresponding
eBDDs likewise change only at levels i and i+1. We cache the linear coefficients of eBDD
nodes that contribute to the arithmetisation of the root top-down, and the arithmetised
values of nodes bottom up. As a result, only levels i, i+ 1 need to be updated.
Large numbers of assignments. If the number of satisfying assignments of a CP
exceeds |F|, Verifier would not be able to verify the count accurately. Instead of choosing
|F| ≥ 2n, which incurs a significant overhead, Verifier can query the precise number of
assignments, and then choose |F| randomly. This introduces another possibility of failure,
but (roughly speaking) it suffices to double log |F| for the additional failure probability to
match the existing one. Our implementation does not currently support this technique.

6. Evaluation
We have implemented an eBDD library, blic (BDD Library with Interactive Certification) 4,
that is a stand-in replacement for BDDs but additionally performs the role of Prover in
the CPCertify protocol. We have also implemented a client that executes the protocol
as Verifier. The eBDD library is about 900 lines of C++ code and the CPCertify
protocol is about 400 lines. We have built a prototype certifying QBF solver in blic,
totalling about 2600 lines of code. We aim to answer the following questions in our
evaluation:

RQ1. Is a QBF solver with CPCertify-based certification competitive? If so, how
high is the overhead of implementing CPCertify on top of the BDD operations?

RQ2. What is the amount of communication for Prover and Verifier in executing the
CPCertify protocol, what is the time requirement for Verifier, and how do these

4https://gitlab.lrz.de/i7/blic
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Figure 6: (a) Time taken on instances (dashed lines are y = 100x and y = 0.01x), (b) Cost
of generating a certificate over computing the solution, (c) Time to verify the certificate,
(d) Size of certificates

numbers compare to proof sizes and proof checking times for certificates based on
resolution and other proof systems?

RQ1: Performance of blic. We compare blic with CAQE, DepQBF, and PGBDDQ,
three state-of-the-art QBF solvers. CAQE [28, 10] does not provide any certificates in its
most recent version. DepQBF [18, 11] is a certifying QBF solver. PGBDDQ [7, 24] is an
independent implementation of a BDD-based QBF solver. Both DepQBF and PGBDDQ
provide specialised checkers for their certificates, though PGBDDQ can also proofs in
standard QRAT format. Note that PGBDDQ is written in Python and generates proofs
in an ASCII-based format, incurring overhead compared to the other tools.

We take 172 QBF instances (all unsatisfiable) from the Crafted Instances track of the
QBF Evaluation 2022.5 The Prenex CNF track of the QBF competition is not evaluated

5CAQE and DepQBF were the winner and runner-up in this category. The configuration we used differs
from the competition, as described in Appendix H.
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Instance Solve time (s) Certificate (MiB) Verifier time (s)
n result blic PGBDDQ blic PGBDDQ blic qchecker

10 sat 0.03 3.67 1.20 8.48 0.01 3.80
10 unsat 0.03 3.66 1.20 8.45 0.01 3.83
15 sat 0.13 18.07 4.12 44.25 0.02 18.45
15 unsat 0.13 18.14 4.11 44.20 0.02 18.55
20 sat 0.54 82.92 11.59 198.54 0.07 80.28
20 unsat 0.53 83.02 11.64 198.76 0.06 79.05
25 sat 1.56 261.16 23.94 566.95 0.14 238.99
25 unsat 1.55 261.25 23.86 565.36 0.15 237.94
40 sat 25.22 4863.71 132.43 7464.96 0.95 5141.08
40 unsat 25.25 4827.06 132.67 7467.84 0.99 5463.54

Table 2: Comparison of certificate generation, bytes exchanged between prover and verifier,
and time taken to verify the certificate on a set of QBF benchmarks from [7]. “Solve time”
is time taken to solve the instance and to generate a certificate (seconds), “Certificate” is
the size of proof encoding for PGBDDQ, and bytes exchanged by CPCertify for blic,
and “Verifier time” is time to verify the certificate (Verifier’s run time for blic and time
taken by qchecker).

here. It features instances with a large number of variables. BDD-based solvers perform
poorly under these circumstances without additional optimisations. Our overall goal
is not to propose a new approach for solving QBF, but rather to certify a BDD-based
approach, so we wanted to focus on cases where the existing BDD-based approaches are
practical.

We ran each benchmark with a 10 minute timeout; all tools other than CAQE were
run with certificate production. All times were obtained on a machine with an Intel
Xeon E7-8857 CPU and 1.58 TiB RAM6 running Linux. See Appendix H for a detailed
description. blic solved 96 out of 172 benchmarks, CAQE solved 98, DepQBF solved 87,
and PGBDDQ solved 91. Figure 6(a) shows the run times of blic compared to the other
tools. The plot indicates that blic is competitive on these instances, with a few cases,
mostly from the Lonsing family of benchmarks, where blic is slower than DepQBF by an
order of magnitude. Figure 6(b) shows the overhead of certification: for each benchmark
(that finishes within a 10min timeout), we plot the ratio of the time to compute the
answer to the time it takes to run Prover in CPCertify. The dotted regression line
shows CPCertify has a 2.8× overhead over computing BDDs. For this set of examples,
the error probability never exceeds 10−8.9 (10−11.6 when Lonsing examples are excluded);
running the verifier k times reduces it to 10−8.9k.
RQ2: Communication Cost of Certification and Verifier Time. We explore RQ2
by comparing the number of bytes exchanged between Prover and Verifier and the time
needed for Verifier to execute CPCertify with the number of bytes in an QBF proof

6blic uses at most 60 GiB on the shown benchmarks, 5 GiB when excluding timeouts.
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and the time required to verify the proof produced by DepQBF and PGBDDQ, for which
we use QRPcheck [23, 25] and qchecker [7, 24], respectively. Note that the latter is written
in Python.

We show that the overhead of certification is low. Figure 6(c) shows the run time of
Verifier—this is generally negligible for blic, except for the Lonsing and KBKF families,
which have a large number of variables, but very small BDDs. Figure 6(d) shows the
total number of bytes exchanged between Prover and Verifier in blic against the size of
the proofs generated by PGBDDQ and DepQBF. For large instances, the number of bytes
exchanged in blic is significantly smaller than the size of the proofs. The exception are
again the Lonsing and KBKNF families of instances. For both plots, the dotted line
results from a log-linear regression.

In addition to the Crafted Instances, we compare against PGBDDQ on a challenging
family of benchmarks used in the PGBDDQ paper (matching the parameters of [7,
Table 3]); these are QBF encodings of a linear domino placing game.7 Our results are
summarised in Table 2. The upper bound on Verifier error is 10−9.22. We show that blic
outperforms PGBDDQ both in overall cost of computing the answer and the certificates
as well as in the number of bytes communicated and the time used by Verifier.

Our results indicate that giving up absolute certainty through interactive protocols
can lead to an order of magnitude smaller communication cost and several orders of
magnitude smaller checking costs for the verifier.

7. Conclusion
We have presented a solver that combines BDDs with an interactive protocol. blic can be
seen as a self-certifying BDD library able to certify the correctness of arbitrary sequences
of BDD operations. In order to trust the result, a user must only trust the verifier (a
straightforward program that poses challenges to the prover). We have shown that blic
(including certification time) is competitive with other solvers, and Verifier’s time and
error probabilities are negligible.

Our results show that IP = PSPACE can become an important result not only in theory
but also in the practice of automatic verification. From this perspective, our paper is a
first step towards practical certification based on interactive protocols. While we have
focused on BDDs, we can ask the more general question: which practical automated
reasoning algorithms can be made efficiently certifying? For example, whether there is an
interactive protocol and an efficient certifying version of modern SAT solving algorithms
is an interesting open challenge.
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Lemma 3. Let p1, p2, q1, q2 denote polynomials with pi ≡b qi for i ∈ {1, 2}. Then
p1 + p2 ≡b q1 + q2, p1 · p2 ≡b q1 · q2, and π[x:=r]p1 ≡b π[x:=r]q1 for r ∈ {0, 1}.

Proof. Let σ denote an arbitrary binary assignment. Then

Πσ(p1 + p2) = Πσp1 + Πσp2 = Πσq1 + Πσq2 = Πσ(q1 + q2)
Πσ(p1 · p2) = Πσp1 · Πσp2 = Πσq1 · Πσq2 = Πσ(q1 · q2)
Πσπ[x:=r]p1 = π[x:=r]Πσp1 = π[x:=r]Πσq1 = Πσπ[x:=r]q1

Lemma 1. Let φ be a CP.
(a) [[conv(φ)]] is a binary multilinear polynomial and [[conv(φ)]] ≡b [[φ]].
(b) For every descendant ψ of conv(φ), [[ψ]] has maximum degree 2.

Proof. Part (a). We proceed by structural induction on φ, to show [[conv(φ)]] ≡b [[φ]].
• The base case φ ∈ {true, false} is trivial.
• Let φ = ¬ψ. By hypothesis, [[conv(ψ)]] ≡b [[ψ]]. Now we have

[[conv(¬ψ)]] = [[¬ conv(ψ)]] = 1 − [[conv(ψ)]] (∗)
≡b 1 − [[ψ]] = [[φ]]

At (∗) we use both the induction hypothesis and Lemma 3. We use (∗) for the
other cases as well, with the same meaning.

• Let φ = π[x:=a]ψ.

[[conv(π[x:=a]ψ)]] = π[x:=[[a]]][[conv(ψ)]] (∗)
≡b π[x:=a][[ψ]] = [[φ]]

• Let φ = ψ1 ∧ ψ2. We use δxp ≡b p for any polynomial p and variable x.

[[conv(ψ1 ∧ ψ2)]] = [[δx1 ...δxk
(conv(ψ1) ∧ conv(ψ2))]]

≡b [[conv(ψ1) ∧ conv(ψ2)]] = [[conv(ψ1)]] · [[conv(ψ2)]]
(∗)
≡b [[ψ1]] · [[ψ2]]

= [[ψ1 ∧ ψ2]] = [[φ]]

• For φ = ψ1 ∨ ψ2 the argument is analogous.
It remains to show that [[conv(φ)]] is multilinear. Again, we do a structural induction.

The base case φ ∈ {true, false} is again trivial. The other cases all follow from the
observation that, given multilinear polynomials p, q over variables x1, ..., xk, variable x
and a ∈ {true, false}, all of 1 − p, π[x:=a]p, δx1 ...δxk

(p · q), and δx1 ...δxk
(p+ q − p · q) are

multilinear.
Part (b). If there is a descendant ψ′ of φ, s.t. conv(ψ′) = ψ, then the statement follows
from part (a), as [[ψ]] is multilinear. This leaves two cases. First, if ψ = ψ1 ⊛ ψ2, then
ψi = conv(ψ′

i) for i ∈ {1, 2} by construction. Therefore, [[ψi]] is multilinear. So if ⊛ = ∧
we get [[ψ]] = [[ψ1]] · [[ψ2]], which has maximum degree 2. Analogously for ⊛ = ∨.

Second, we have the case ψ = δxψ1. By induction, we find that ψ1 has maximum
degree 2, which cannot be increased by δx.
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B. Proof of Lemma 2
Lemma 2. A CP φ with n free variables has m < |F| satisfying assignments iff
Πσ[[conv(φ)]] = m · 2−n, where σ is the assignment satisfying σ(x) := 2−1 in the field F
for every variable x.8

Proof. Let X = {x1, ..., xn} := free(φ), and let S := {σ | σ : X → {0, 1}} be the set of
binary assignments on X. We also set p := [[conv(φ)]]. Then

m
(1)=

∑
σ∈S

Πσ[[φ]] (2)=
∑
σ∈S

Πσp

where (1) uses Proposition 1 and m < |F|, and (2) uses [[φ]] ≡b p = [[conv(φ)]] (Lemma 1).
We now introduce the notation Σxp := π[x:=0]p+π[x:=1]p for x ∈ X. Using this notation,

we rewrite above equation.

m = Σx1Σx2 · · · Σxnp (∗)

Crucially, we can now use the fact that p is multilinear (again Lemma 1), to derive

p = δxp = [1 − x] · π[x:=0]p+ [x] · π[x:=1]p

for any x ∈ X. Setting x to 1/2 yields

π[x:=1/2]p = π[x:=1/2]
(
[1 − x] · π[x:=0]p+ [x] · π[x:=1]p

)
= (π[x:=0]p+ π[x:=1]p)/2 = Σxp/2

In other words, Σxp = 2 · π[x:=1/2]p. By plugging this into (∗) we get m = 2nΠσp, where
σ(x) := 1/2 for x ∈ X, as desired.

C. Proof of Proposition 2
The core of the argument in Proposition 2 uses the Schwartz-Zippel Lemma, of which we
only need a very simple version.

Lemma 4 (Schwartz-Zippel Lemma). Let p1, p2 be distinct univariate polynomials over
F of degree at most d ≥ 0. Let r be selected uniformly at random from F. The probability
that p1(r) = p2(r) holds is at most d/|F|.

Proof. Since p1 ̸= p2 the polynomial p := p1 − p2 is not the zero polynomial and has
degree at most d. Therefore p has at most d zeros, and so the probability of p(r) = 0 is
at most d/|F|.

Now we move on to the proof.
8Any prime field F with |F| > 2 has an element c such that 2c = 1.
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Proposition 2 (CPCertify is complete and sound). Let φ be a CP with n free variables.
Let Πσ[[conv(φ)]] = K be the claim initially sent by Prover to Verifier. If the claim is
true, then Prover has a strategy to make Verifier accept. If not, for every Prover, Verifier
accepts with probability at most 4n|φ|/|F|.

Proof. If the claim is true, Prover can always answer every challenge posed by Verifier
truthfully. True claims pass all the checks conducted by Verifier, and so Verifier accepts.

Assume now the claim is false. We show that Verifier accepts with probability at most
4n|φ|/|F|.

First, we consider the contents of C, the set of claims yet to be checked, after each
step of the protocol. This gives rise to a sequence C0, C1, ...Cl, where C0 contains only
the initial claim. In particular, we consider each iteration of step (b.1) separately, so
executing the loop s times adds s elements to the sequence.

As (by assumption) the initial claim is false, C0 contains a false claim. For the moment,
assume that Verifier accepts. They therefore must complete all rounds without rejecting.
As the nodes are processed in topological order (every node is processed before its
descendants), eventually C must become empty: an inner node ψ replaces all claims
about itself with claims about its children, and each leaf node ψ removes all claims about
itself.

So Cl = ∅ contains only true claims and thus there must be an i, s.t. Ci contains one
false claim, but Ci+1 contains only true claims. For any such i, we say that Prover tricks
Verifier in step i. In other words: if Verifier accepts, it was tricked at some point.

We will now show that at each step, Verifier is tricked either with probability 0 or
probability at most 2/|F|, and the latter case occurs at most 2n|φ| times. By union
bound, this implies the stated bound.

First, we show that Verifier can only be tricked in an iteration of step (b.1), or in
step (c.4). Steps (a) and (b.2) do not modify C. The arguments for steps (c.1-c.3) are
analogous, so we only present (c.1) with ⊛ = ∧ here. Let Πσ[[ψ]] = k be the claim to be
checked. We have

Πσ[[ψ]] = Πσ[[ψ1 ∧ ψ2]] = Πσ([[ψ1]] · [[ψ2]]) = Πσ[[ψ1]] · Πσ[[ψ2]]

So Πσ[[ψ]] = k is equivalent to Πσ[[ψ1]] = k1 ∧ Πσ[[ψ2]] = k2 ∧ k1k2 = k. In other
words, if Πσ[[ψ]] ̸= k, then either k1k2 ≠ k and Verifier rejects immediately (note
π[x:=k1]π[y:=k2][[x ∧ y]] = k1k2), or one of the two claims added to C is false.

For step (c.4) we get

Πσ[[ψ]] = π[x:=σ(x)]Πσ′ [[δxψ′]] = π[x:=σ(x)]Πσ′δx[[ψ′]] = π[x:=σ(x)]δxΠσ′ [[ψ′]]

so Πσ[[ψ]] = k is equivalent to Πσ′ [[ψ′]] = p∧π[x:=σ(x)]δxp = k. Conversely, if the claim does
not hold we get either π[x:=σ(x)]δxp ≠ k and Verifier rejects immediately, or Πσ′ [[ψ′]] ̸= p.
Note that p is a univariate polynomial with degree at most 2 (Lemma 1b), not a constant

— Verifier cannot simply add the claim Πσ′ [[ψ′]] = p to C. However, by Lemma 4,
Πσ′ [[ψ′]] ̸= p implies that π[x:=r]Πσ′ [[ψ′]] = π[x:=r]p holds with probability at most 2/|F|.
Otherwise, the claim added to C is false and Verifier is not tricked.
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Step (b.1) remains. We remark that, though unintuitive, the probability that Verifier
is tricked does not increase with m, the number of claims to be merged. If all claims
{Πσi

[[ψ]] = ki}mi=1 are true, then clearly Verifier cannot be tricked in this step. So fix an
i s.t. Πσi

[[ψ]] ̸= ki. Similar to step (c.4) above we get that either π[x:=σi(x)] pi ̸= ki and
Verifier rejects, or Πσ′

i
[[ψ]] ̸= pi. In the latter case, π[x:=r]Πσ′

i
[[ψ]] = π[x:=r]pi again holds

with probability at most 2/|F|.
To conclude the proof, we argue that steps (b.1) and (c.4) occur at most 2n|φ| times

in total. Step (c.4) occurs at most |conv(φ)| ≤ n|φ| times. For (b.1) we note that it is
executed at most n times for each node with more than one parent. The conversion of
φ to a CPD does not increase the number of such nodes, so it also occurs at most n|φ|
times.

D. Proof of Proposition 3
Proposition 3. (a) For a BDD w, [[w]] is a binary multilinear polynomial.

(b) For a binary multilinear polynomial p there is a unique BDD w s.t. p = [[w]].

Proof. Part (a). We proceed by induction, and show that a BDD w with i := ℓ(w)
is multilinear in x1, ..., xi and does not depend on xi+1, ..., xn. The base case i = 0 is
trivial. For the induction step, let w = ⟨xi, u, v⟩. We have [[w]] = [1 − xi] · [[u]] + [xi] · [[v]].
By induction hypothesis, [[u]], [[v]] are multilinear in x1, ..., xi−1 and do not depend on
xi, ..., xn. The claim follow immediately.

It remains to argue that [[w]] is binary, for a BDD w. We again proceed by induction
on ℓ(w). For w ∈ {⟨false⟩ , ⟨true⟩}, this is clear, so let w = ⟨x, u, v⟩ and let σ denote a
binary assignment. We get

Πσ[[w]] = Πσ

(
[1 − xi] · [[u]] + [xi] · [[v]]

)
= [1 − σ(xi)] · Πσ[[u]] + [σ(xi)] · Πσ[[v]] ∈ {Πσ[[u]],Πσ[[v]]}

The last step uses σ(xi) ∈ {0, 1}. By induction hypothesis, both Πσ[[u]] and Πσ[[v]] are 0
or 1, and the claim follows.
Part (b). Before we prove this part, we remark that the statement follows from two
well-known facts: multilinear polynomials are uniquely determined by the values they
take on binary assignments, and BDDs uniquely represent arbitrary boolean functions.
Here, however, we give an elementary proof.

We show that such a w exists if p is a polynomial over variables x1, ..., xi, for all
0 ≤ i ≤ n. We proceed by induction on i. For i = 0 we have p ∈ {0,1} and choose the
appropriate w ∈ {⟨false⟩ , ⟨true⟩}. For i > 0, let pb := π[xi:=b]p, for b ∈ {0, 1}, and let wb
denote a BDD for pb.

We have p = [1 − xi] · p0 + [xi] · p1. If p0 = p1, then p = p0 does not depend on xi, so
p = [[w0]]. Otherwise, with w := ⟨xi, w0, w1⟩ we have [[w]] = [1 − xi] · [[w0]] + [xi] · [[w1]] = p.

It remains to show that w is unique. We will do this by proving that [[u]] ̸= [[v]] for all
BDDs u ̸= v. Assume the contrary, and choose a counterexample u ̸= v s.t. [[u]] = [[v]]
and ℓ(u) + ℓ(v) is minimal. Wlog. we assume ℓ(u) ≤ ℓ(v) =: i.
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First, we consider the case that ℓ(u) < i. Then v = ⟨xi, v0, v1⟩ and we get [[u]] =
π[xi:=b][[u]] = π[xi:=b][[v]] = [[vb]] for b ∈ {0, 1}. Due to v0 ̸= v1 (else v would not be a
BDD) we find a b with u ̸= vb, but [[u]] = [[vb]]. This contradicts minimality of the
counterexample.

Second, we have the case ℓ(u) = ℓ(v) = i. Clearly, i > 0, so v = ⟨xi, v0, v1⟩ and
u = ⟨xi, u0, u1⟩. Due to v ̸= u there is a b ∈ {0, 1} with vb ̸= ub. But we get
[[vb]] = π[xi:=b][[v]] = π[xi:=b][[u]] = [[ub]], so again a smaller counterexample exists.

E. Proof of Proposition 4
Proposition 4. Let ψ1, ψ2 denote CPs and u1, u2 BDDs with [[ui]] = [[ψi]], i ∈ {1, 2}. Let
w := ⟨u1 ⊛ u2⟩ denote an eBDD. Then ComputeEBDD(w) satisfies [[w0]] = [[ψ1 ⊛ ψ2]]
and [[wi+1]] = δxn−i

[[wi]] for every 0 ≤ i ≤ n − 1; moreover, wn is a BDD with wn =
Apply⊛(u1, u2). Finally, the algorithm runs in time O(T ), where T ∈ O(|u1| · |u2|) is the
time taken by Apply⊛(u1, u2).

The proof will take up the remainder of this section.
For the time bound, observe that EvaluateEBDD performs the same operations

as Apply⊛, but with a breadth-first traversal of the BDD, instead of a depth-first one.
Clearly, this does not increase the time complexity.

The bound T ∈ O(|u1| · |u2|) is a well-known bound for Apply⊛, it relies on there being
at most |u1| · |u2| recursive calls, as each call corresponds to a pair of BDD nodes (and
identical calls are memoised). Naturally, the same bound holds for EvaluateEBDD,
where the number of created product nodes is bounded by |u1| · |u2|. Each of these
product nodes is operated on once, by replacing it with a BDD nodes.

Now we move to showing correctness, which will follow from Lemmata 9 and 10. We
start with a basic property of the degree reduction operator.

Lemma 5. Let p denote a polynomial and x a variable. Then we have δxp = [1 − x] ·
π[x:=0]p+ [x] · π[x:=1]p.

Proof. We write p as p = p0 + [x] · p1 + ...+ [xk] · pk for polynomials p0, ..., pk which do
not depend on x. We get

[1 − x] · π[x:=0]p+ [x] · π[x:=1]p = [1 − x] · p0 + [x] · (p0 + p1 + ...+ pk)
= p0 + [x] · (p1 + ...+ pk) = δxp

We first show that the innermost loop of ComputeEBDD computes a degree reduction.

Lemma 6. Let ⟨u⊛ v⟩ be a product eBDD, and let s := ⟨xn−i, t0, t1⟩ be the eBDD
computed by the innermost loop of ComputeEBDD (Table 1, left). Then [[s]] =
δxn−i

[[⟨u⊛ v⟩]].
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Proof. For ⊛ = ∧ and b ∈ {0, 1} we get

[[tb]] = [[⟨ub ∧ vb⟩]] = [[ub]] · [[vb]] = [[π[xn−i:=b]u]] · [[π[xn−i:=b]v]]
= π[xn−i:=b][[u]] · π[xn−i:=b][[v]] = π[xn−i:=b]

(
[[u]] · [[v]]

)
= π[xn−i:=b][[⟨u ∧ v⟩]]

Analogously, one can derive [[tb]] = π[xn−i:=b][[⟨u⊛ v⟩]] for ⊛ = ∨ as well. Finally:

[[s]] = [1 − xn−i] · [[t0]] + [xn−i] · [[t1]]
= [1 − xn−i] · π[xn−i:=0][[⟨u⊛ v⟩]] + [xn−i] · π[xn−i:=1][[⟨u⊛ v⟩]]
= δxn−i

[[⟨u⊛ v⟩]]

The last step uses Lemma 5.

Now we show some simple invariants of the algorithms.

Lemma 7. wi only has product nodes at levels 1, ..., n− i.

Proof. For w0 the statement holds vacuously. Assume the statement holds for wi. The
algorithm computes wi+1 by replacing each product node ⟨u⊛ v⟩ of wi at level n − i
with a non-product node ⟨xn−i, t0, t1⟩. So wi+1 has no product nodes at level n− i.

Lemma 8. [[wi]] is multilinear in all of xn−i+1, ..., xn.

Proof. We prove that for every level j ∈ {1, ..., n} and every node v of wi at level j
the polynomial [[v]] is a multilinear polynomial over the variables xn−i+1, ..., xn. We
proceed by induction on j. The case j = 0 is trivial. For the inductive step, consider
two cases. If v is a product node, then j ≤ n− i by Lemma 7. By Definition 5, [[v]] is a
polynomial over x1, ..., xj . So [[v]] does not depend on xn−i+1, ..., xn, and in particular [[v]]
is multilinear in them. If v is not a product node, then v = ⟨xj, v0, v1⟩ for nodes v0, v1
and [[v]] = [1 − xj ] · [[v0]] + [xj ] · [[v1]] (Definition 4). Again by Definition 4 [[v0]], [[v1]] do not
depend on xj, and by induction hypothesis, they are multilinear in xn−i+1, ..., xn. So [[v]]
is multilinear in xn−i+1, ..., xn as well.

Lemma 9. [[wi+1]] = δxn−i
[[wi]].

Proof. For any node v of wi, let v∗ denote the corresponding node in wi+1. More precisely,
let u1, v1, ..., ul, vl denote the sequence of replaced nodes, i.e. wi+1 = wi[u1/v1] · · · [ul/vl].
Then v∗ := v[u1/v1] · · · [ul/vl]. So if v is a product node at level n − i, v∗ denotes the
BDD node that replaces it, and for the other nodes, v∗ and v are the same node, except
that some descendant of v have been replaced by new nodes. Note that w∗

i = wi+1, and
that ⟨x, v0, v1⟩∗ = ⟨x, v∗

0, v
∗
1⟩.

We prove the stronger claim that [[v∗]] = δxn−i
[[v]] for every descendant v of wi+1. We

proceed by induction. For the two leaves true and false the statement clearly holds. For
the induction step, we consider two cases.

• v is a product node. If ℓ(v) < n− i, then v∗ = v. By Lemma 8, [[v]] is multilinear
in xn−i, and so [[v∗]] = δxn−i

[[v]] = [[v]]. If ℓ(v) = n− i, then [[v∗]] = δxn−i
[[v]] follows

from Lemma 6.
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• v = ⟨x, v0, v1⟩. As noted above, we have v∗ = ⟨x, v∗
0, v

∗
1⟩, so

δxn−i
[[v]] (1)= δxn−i

(
[1 − x] · [[v0]] + [x] · [[v1]]

)
(2)= [1 − x] · δxn−i

[[v0]] + [x] · δxn−i
[[v1]]

(3)= [1 − x] · [[v∗
0]] + [x] · δxn−i

[[v∗
1]] (4)= [[v∗]]

where (1) expands the arithmetisation, (2) uses that either x ̸= xn−i, or [[vb]] does
not depend on xn−i and δxn−i

[[v0]] = [[v0]], for b ∈ {0, 1}, (3) uses the induction
hypothesis, and (4) folds the arithmetisation back.

Lemma 10. wn is a BDD and wn = Apply⊛(u1, u2).

Proof. By Lemma 7, wn has no product nodes. By Definition 5, an eBDD without
product nodes is a BDD. Moreover,

[[Apply⊛(u1, u2)]] ≡b [[ψ1 ⊛ ψ2]] = [[w0]] ≡b δxn [[w0]] = [[w1]] ≡b ... ≡b [[wn]]

By Proposition 3a, both [[Apply⊛(u1, u2)]] and [[wn]] are multilinear polynomials. It is
well-known that two multilinear polynomials that coincide on all binary inputs must be
equal, so we get [[Apply⊛(u1, u2)]] = [[wn]], and by Proposition 3b, Apply⊛(u1, u2) = wn

F. Proof of Proposition 5
Proposition 5. Let w denote an eBDD, σ : X → F a partial assignment, and k the
number of variables assigned by σ. Then EvaluateEBDD evaluates the polynomial
Πσ[[w]] in time O

(
poly(2n−k) · |w|

)
.

Proof. The algorithm memoises the computed polynomials for each node, so the total
number of calls is in O(|w|). In each call, a constant number of operations on polynomials
are performed. For any eBDD w, the polynomial [[w]] has maximum degree at most 2.
(This follows immediately from Definition 5: a product node can only have two BDDs as
children, not eBDDs.) A polynomial with n− k free variables and maximum degree at
most 2 can be represented using 3n−k coefficients (one for each monomial), and operations
can be performed efficiently on this representation.

G. Proof of Theorem 1
Theorem 1 (Main Result). If BDDSolver solves an instance φ of #CP with n
variables in time T , with T > n|φ|, then

(a) Prover computes eBDDs for all nodes of conv(φ) in time O(T ),

30



(b) Prover responds to Verifier’s challenges in time O(nT ), and
(c) Verifier executes CPCertify in time O(n2|φ|), with failure probability at most

4n|φ|/|F|.

Proof. Part (a). This follows immediately from Proposition 4.
Part (b). Let S denote the set of descendants of conv(φ), and set

Sbdd := {conv(ψ) : ψ descendant of φ} ⊆ S

to the descendants that correspond to BDDs (and not eBDDs). Note |Sbdd| = |φ| and
|S| ≤ n|φ|. Additionally, let Bψ denote the eBDD representing ψ ∈ S, computed by
ComputeEBDD. Note that Bψ is a BDD if ψ ∈ Sbdd, and (as BDDs are unique, see
Proposition 3) those necessarily match the BDDs computed by BDDSolver. We thus
observe ∑

ψ∈Sbdd |Bψ| ≤ T .
For the eBDD ψ ∈ S \ Sbdd, each node also appears in the computation of Com-

puteEBDD. In the sum ∑
ψ∈S|Bψ|, however, a node is counted up to n times, so we get∑

ψ∈S|Bψ| ≤ nT .
As shown in Proposition 5, responding to one challenge takes time linear in |w|, where

w is the evaluated eBDD. Step (b.1.1) of CPCertify sends at most n challenges for
each node in Sbdd, which are evaluated in time linear in ∑

ψ∈Sbdd nf |Bψ| ≤ nT . Step (c)
sends a challenge for each node in S, which take at most ∑

ψ∈S|Bψ| ≤ nT time.
Part (c). As argued for part (b), Verifier sends at most n|φ| challenges. The challenge
consist of one partial assignment, which has size at most n. The failure probability
follows from Proposition 2.

H. Evaluation – Detailed Description
H.1. Instances
We used the instances from the crafted instances track of the QBF Evaluation 2022 (http:
//www.qbflib.org/QBFEVAL_20_DATASET.zip). These are re-used from the QBF
Evaluation 2020. It should be noted that these instances are all unsatisfiable. (Instances
in QDIMACS format are specified so that the outermost quantifier is existential.)

We also use the linear domino placement game used for evaluating PGBDDQ [7]. They
can be obtained at https://github.com/rebryant/pgbddq-artifact. We reproduce the
parameters of [7, Table 3]. On these instances we run only PGBDDQ and our tool, which
are both BDD-based, and we allow both to use the provided variable ordering, which
improves performance significantly.

H.2. Tools
The following four tools were compared:
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tool language version link
CAQE Rust 8b646df https://github.com/ltentrup/caqe
DepQBF C 2ad3995 https://github.com/lonsing/depqbf
PGBDDQ Python d5cbc96 https://github.com/rebryant/pgbdd
qchecker Python d5cbc96 https://github.com/rebryant/pgbdd
QRPcheck C 1.0.3 http://fmv.jku.at/qrpcheck/
blic (ours) C++ bd3d298 https://gitlab.lrz.de/i7/blic

All solvers were run without a preprocessor, limiting their performance. In the QBF
Evaluation 2022, CAQE combined with the preprocessor Bloqqer achieved first place in the
crafted instances track. For comparison, we ran our tool and CAQE on the preprocessed
instances: Bloqqer solves 97 of 172 by itself, of the remaining 74 instances our tool solves
34, while CAQE solves 50 (timeout of 10min).

We ran DepQBF with certificate generation enabled. More precisely, we used flags
–trace=bqrp –dep-man=simple –no-lazy-qpup –no-dynamic-nenofex
–no-qbce-dynamic –no-trivial-falsity –no-trivial-truth

These flags disable features that are not supported in conjunction with certificate
generation. This reduces the performance of DepQBF: in its default configuration it can
solve 104 of 172 instances (compared to 87 when certification was enabled).

To verify certificates generated by PGBDDQ we use the tool qchecker, which is part of
PGBDDQ. It is specialised for the certificates PGBDDQ generates.

H.3. Time Measurement
Times are measured in the calling process. These times exceed self-reported times by
about 1-2ms. Running our tool repeatedly on one (arbitrarily chosen) instance yields an
average run-to-run deviation of 11ms, maximum deviation of 34ms (compared to a total
running time of 3.08s).

To measure the time taken by our tool for Verifier and Prover parts of CPCertify, it
is necessary to measure the contributions of each round of the interactive protocol. As
the protocol is executed within a single process, these data are collected internally in our
tool.

H.3.1. Comparison with results in [7].

As we use the same instances and configuration of PGBDDQ, we can compare the times
we obtained with the times in [7, Table 3] to verify that we can reproduce their numbers.

Our results match their results relatively closely. Our times are between 15% and 29%
slower for 10 ≤ N ≤ 25, and 45 − 49% slower for N = 45, with one outlier at 58% (a
subsequent run was 54% slower, making it unlikely that the issue is intermittent). This
can likely be accounted for by the faster (in terms of single-thread performance) Intel
Core i7-7700K processor used in [7], and differences in main memory.

32

https://github.com/ltentrup/caqe
https://github.com/lonsing/depqbf
https://github.com/rebryant/pgbdd
https://github.com/rebryant/pgbdd
http://fmv.jku.at/qrpcheck/
https://gitlab.lrz.de/i7/blic

	Introduction
	Preliminaries
	Circuits with Partial Evaluation
	An Interactive Protocol for #CP
	Arithmetisation
	Degree Reduction
	CPCertify: An Interactive Protocol for #CP

	A BDD-based Prover
	Extended BDDs
	Computing eBDDs for CPDs.

	Efficient Certification
	Implementation concerns

	Evaluation
	Conclusion
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Theorem 1
	Evaluation – Detailed Description
	Instances
	Tools
	Time Measurement
	Comparison with results in BryantH21qbf.



