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Abstract. Applying advances in machine learning with neural networks
to structured data, such as graphs, is an area under active research. We
implement a practical application using convolutional neural networks for a
real-world classification task and evaluate its performance. After generating
change-coupling graphs from publicly available software projects, we train a
classifier differentiating them from slightly perturbed instances and randomly
generated ones, to estimate how ’realistic’ a certain change-coupling graph is.

1. Introduction
In recent years, neural networks have had impressive successes across many different
machine learning tasks, most notably in areas of image processing, natural language
processing, and artificial intelligence. Consequently, there are efforts to apply them to
other types of data, such as graphs.

Here, we implement a classifier based on convolutional neural networks for a real-world
problem. In particular, we consider a certain type of graph, called change-coupling graph,
that represents dependencies between files in a repository of a software project.

Our classifier tries to differentiate between graphs based on real repositories and ones
that are corrupted or generated from scratch. In this manner we try to build a measure
of ‘realisticness’, to be able to estimate how close to reality a graph is.

The motivation for this comes from the SimSE project [2]. SimSE tries, amongst other
things, to predict the development of a software project with an agent-based simulation.
In doing so, change-coupling graphs are generated, with the explicit goal of them being
as realistic as possible. Our work is intended to function as a verifier, measuring how
well this goal has been achieved. It should be noted, however, that our development was
entirely independent of the SimSE project and at no point have we incorporated data
generated by their simulation.
This work is structured as follows: Section 2 describes how we go about building our

dataset, and gives a precise definition of our problem. Our neural network is presented
in section 3. We then discuss the results we achieve on our dataset in section 4. Section
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Figure 1: The different stages of transformations between the raw and training data. The
labels indicate which part of our software is responsible for that step.

5 goes into the details of our implementation, giving both the general structure and
the various algorithms and optimisation that were used. Finally, section 6 discusses our
results and possible improvements and extensions.

2. Generating training data
A large portion of our work was focused on building a set of training data, the process of
which we will describe in this section. Figure 1 gives a general overview of the different
stages the data goes through until it is finally used as an input to the neural network.

First, the metadata of Git repositories is downloaded and stored in a compact format.
We then parse this data to produce a number of change-coupling graphs, which are once
again stored on disk. Finally, the training data is generated, adding randomly generated
graphs to produce additional negative examples.

2.1. Downloading Git repository metadata
To properly train the neural network, a large dataset of graphs derived from real
software projects is needed. To this end, the website GitHub 1 provides public access to
an enormous number of repositories, including many important projects under active
development and in widespread use (e.g. the Linux kernel).
We developed the program alarm, which can download metadata from GitHub and

store it in an efficiently readable format. This data will then be processed further by the
other part of our software, schaf.

Repositories on GitHub are managed with Git, a version control software. Git organises
data as a number of objects with different types, with each object being identified by a
SHA-1 hash of its contents. For us, the relevant objects are commits, trees and blobs.
A commit object stores information about a single commit, such as its parents and
an associated tree. A tree describes the contents of a directory at some point in time,

1https://github.com/
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by listing all subdirectories (which are themselves trees) and files (which are blobs).
References to other objects are always stored via their SHA-1 hash. In particular, blobs
are identified by a hash of their contents, which therefore changes precisely when their
contents change.
Hence, we only need to consider commits and trees when storing the metadata to

generate change-coupling graphs. Changes in the contents of a file can be detected by its
SHA-1 hash, without needing to consult the contents of a blob.

Git utilises a well-defined and documented protocol to communicate between a client
and a server hosting a repository. There are different protocols for access over a local
filesystem, HTTP, SSH or a dedicated Git daemon. GitHub provides both HTTP and
SSH access.
To implement a more efficient transfer of data, we do not use Git to download the

repositories. Instead, we implement Git’s HTTP-based protocol ourselves. This enables
a small optimisation with regards to network usage, as we can pretend to already have
downloaded the contents of some files. The server may then opt to exclude these files
while sending data.

More importantly, we parse the data on the fly, disregarding all objects except for
trees and commits. Those we store on disk, in a compact format that includes multiple
repositories in a single file. Additionally, we build an index to enable efficient access to
any repository.

2.2. Change-coupling graphs
The objects of our analysis are change-coupling graphs, which are defined in terms of
software projects. Broadly speaking, we take the set of all files as nodes and assign weight
to an edge corresponding to the number of commits in which both adjacent nodes were
changed simultaneously. We will now make that definition more precise.

Repositories consist of a set of files, containing blocks of binary data, called blobs. (We
do not concern ourselves with the meaning of this data.) Files are organised via the use
of directories, each of which is a set of files and directories it contains. Looking at files
and directories via the ‘is contained in’ relation we get a directed rooted tree, with a root
node that always is a directory.
In a software project, each commit is associated with such a tree, representing the

state of each file and directory at the time the commit was made, and a number of parent
commits, which the current commit is based on. Usually, a commit has exactly one
parent.
Let us first consider commits for which this is the case. Here, we compile a list of

changes based on the two trees associated with the commit and its parent. All files which
are present in both trees, and have the same blob (i.e. contain the same data) we call
unchanged. We then compile the set of changed files, so the set of all files which are not
unchanged. (Typically there are only a few changes per commit.)
It is possible for a commit to have no parents (this is necessarily true for the first

commit), or to have multiple (when merging multiple commits into a single one); com-
puting a set of changes does not make sense in either case. Practically speaking, commits
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Figure 2: Example of change-coupling graphs. (a) Graph based on a real repository2

(b) Randomly generated graph

without a parent are very rare (usually just the initial commit). Merges (commits with
multiple parents) do happen from time to time. They generally do not make substantial
changes, but rather merge accumulated changes from two sources. Hence, we ignore all
commits that do not have exactly one parent.
We now have a set of changed files Ci for each commit i with exactly one parent.

Then we define V := ⋃
Ci our set of nodes, E := V 2 \ {(v, v) : v ∈ V } our set of edges,

G = (V,E) an undirected simple graph, and c : E → N, c(v, w) := |{i : v, w ∈ Ci}| the
edge weights, each weight being the number of commits in which both files were changed.

In our implementation, edges with weight 0 are omitted to save memory. Many graphs
only have a fraction of the maximum number of edges, which makes the memory savings
quite substantial.
Figure 2a shows an example of a change-coupling graph based on real data. It is

immediately visible that the graph is well connected, but it also exhibits distinctive
structural properties, like the clustering of nodes.

2.3. Training data for the neural network
Our network takes n receptive fields of size m as input. In terms of our change-coupling
graph G = (V,E), we need to find n subgraphs of size m, such that each subgraph has
high locality. (An edge with higher weight is considered shorter.)

For simplicity, we define the locality of any subgraph G′ = (V ′, E′) ⊆ G as the sum of
its edge weights, so C(G′) := ∑

e∈E′ c(e).
We choose the first node of each subgraph simply by chance, with each node being

equally likely. Finding a neighbourhood with optimal locality is NP-complete (prove by
reducing Clique), so initially we relied on a simple, greedy heuristic: We would always

2The repository can be found at https://github.com/mikechambers/as3corelib.
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choose the node that maximises the locality w.r.t. the current subgraph. So given a
subgraph G′ = (V ′, E′) ⊆ G, we have

v′ := arg max
v∈V \V ′

∑
w∈V ′

c(v, w)

Then we add v′ to our subgraph. This procedure is repeated until either |G′| = m or
no node v′ with positive value can be found. In the latter case, all outgoing edges of our
subgraph G′ have weight 0.

However, this heuristic tends to yield very similar neighbourhoods, which do not achieve
a good coverage of the whole graph. The main problem is that it would deterministically
move towards a few well-connected nodes, which most resulting subgraphs then include.
The starting node provides too little variance to offset this tendency.

So we modified our heuristic to work probabilistically. Each potential node v′ is
weighted by

w(v′) :=
( ∑

w∈V ′

c(v, w)− 1
)2

This function was chosen empirically, based on the fact that it is cheap to calculate
and gives good results on our dataset.

Once we have found a set of neighbourhoods, we then normalise the edge weights based
on empirical data.

We divide each weight in a graph by the maximum weight beforehand, mapping them to
[0, 1]. After sampling the distribution of edge weights over a large number of real graphs,
we approximated it in closed form. This yields the following cumulative distribution
function:

FW (w) := Pr(W ≤ w) = c1 log(c2w + c3)
with W the edge weight and c1, c2, c3 being constants. (Their values can be found in
table 1.) Consequently, our normalised weights are

ĉ : E → [−1, 1], ĉ(e) := 2F (c(e))− 1 ∀e ∈ E

Once the edge weights are normalised, we generate the full adjacency matrix for the
neighbourhood. Let V ′ =: {v1, ..., vm} denote the nodes in the neighbourhood. Then the
adjacency matrix is given by

0 ĉ(v1, v2) · · · ĉ(v1, vm)
ĉ(v2, v1) 0 · · · ĉ(v2, vm)

...
... . . . ...

ĉ(vm, v1) ĉ(vm, v2) · · · 0


Note that this matrix is symmetric and the diagonal is always zero. Those redundancies

could easily be eliminated by discarding everything but the upper half. We did not
explore this option, as it would somewhat increase the complexity of our implementation,
and this was neither a performance bottleneck nor does it influence the neural network
(it just results in some superfluous parameters in the first layer).
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Table 1: The different numerical approximations used for normalising and generating
training data, with W,X, Y, Z denoting edge weight, node count, commit count and
commit size, respectively. Φ̂ denotes the cumulative distribution function of the normal
distribution truncated to [0, 1].

Function c1 c2 c3

FW (w) = c1 log(c2w + c3) 0.2326 64.54 1.193
FX(x) = 1− (c1x+ c2x

2 + c3x
3)− 1

2 0.01604 6.048 · 10−6 9.667 · 10−10

F−1
X (p) = c1 log(1 + c2(1− p)−2) 2566 0.01869
FY (y) = 1− c1y

c2 0.7548 -1.149
FZ|W (z;w) = c1

(
1− Φ̂−1(z;FW (w), c2)

)c2 − c1 582.1 0.2096 0.7807

Besides the instances based on real graphs, we generate two kinds of negative examples:
Instances based on graphs which are generated from scratch (called random instances),
and ones from graphs where the edge weights have been changed by a small, random
amount.
For the latter ones, we add an amount to a 1

16 fraction of the edges. This amount is
equal to 8 + Y , with Pr(Y = k) = 2−(k+1), for k ∈ N0.

To generate graphs randomly, we created closed form approximations for the number
of nodes, the number of commits, and the size of each commit. The distribution of the
number of commits is based on the number of nodes. The precise distributions are shown
in Table 1.

Generating a graph is then done by simply sampling from these distributions. We first
sample the number of nodes and use that to generate the number of commits. For each
of those commits we create a commit size and take that many nodes randomly.
This creates graphs which have similar statistical properties as real change-coupling

graphs but do not exhibit their typical structure. Illustrating this, figure 2b shows a
sample random graph. While the distribution of edge weights is similar, the graph does
not show any relationships between groups of nodes.

3. Classifying graphs with Convolutional Neural Networks
Machine learning on structured data represented in the form of graphs faces the problem
of choosing an appropriate representation. While graphs are highly structured and admit
a measure of locality, this structure cannot easily be embedded spatially. Furthermore, the
size of graphs may vary immensely. To feasibly process large graphs, efficient algorithms
are required.
There are different approaches to these problems, revolving around various methods

to ’squash’ the graph into a more convenient representation, e.g. a real-valued vector.
Examples include identifying important substructures [15], quantifying similarities with
graph kernels [13], or using learned representations via recurrent neural networks [9].
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Figure 3: A convolutional layer applied to a one-dimensional input. Note that the function
applied to each triple is the same.

We make use of the technique described in [8]. Initially, a sequence of nodes is chosen,
the length of which is fixed. We then generate a neighbourhood for each of those nodes,
which is a group of nodes preserving locality as much as possible. These neighbourhoods
are also of constant size. For details on how they are generated, please refer to section 2.3.

3.1. Structure of the neural network
Our neural network is based on convolutional neural networks (CNNs), which are based
on concepts proposed in [4]. These have been used to great effect in many different areas,
for example in image classification [6], drug discovery [14], and board games like Go and
Chess [10,11].
CNNs revolve around applying a filter sequentially to a grid of input data (see figure

3). The moving window of input is called receptive field. This cannot be applied directly
to graphs, as they cannot be embedded into a grid without losing a significant amount of
structure.
Instead we generate receptive fields by considering local neighbourhoods and move

the filter to another random node in each iteration. Consequently, the locality of the
receptive fields w.r.t. each other is not preserved. Stacking another convolutional layer on
top of the first one would thus not be meaningful.

As there are only a constant number of receptive fields, we cannot consider the whole
graph in a single input step. However, it is possible to run the network multiple times
over different sections of a large graph, and aggregate the results.

Figure 4 shows the structure of the neural network. We have one convolution consisting
of two layers, which is followed by two fully-connected layers. There is a single, scalar
output.
We use tanh as nonlinearity in all layers, except the last one. There, the logistic

function is used instead, normalising the value to be a probability. The functions applied
in each hidden layer can thus be written down as follows:

f : Ri × Rj,i × Rj → Rj , f(x,W, b) = tanh(Wx+ b)

f ′ : Ri × R1,i × R→ R, f ′(x,W, b) = 1
1 + e−(W x+b)

Here, x is a vector of inputs to the layer, W is a matrix of weights and b is a vector of
biases.
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Figure 4: The layout of the neural network. Sizes of the different layers are not represen-
tative of the sizes used during training.

We train our network by minimising the mean cross-entropy loss of a batch of instances.
So our cost function is defined as

E(p) := 1
N
H

(
y + 1

2 , ŷ

)
Here N is the batch size, y ∈ {−1, 1}N the correct labels and ŷ ∈ (0, 1)N the output of
the NN. p is the vector of parameters, so all weights and biases. H is the cross-entropy.

H(y, ŷ) := −
(
y log ŷ + (1− y)(1− log ŷ)

)
3.2. Training the NN
We split our top100 dataset into both training and testing data, such that about 10% of
instances are used for the latter. For cross-validation of our hyperparameter choices we
use the small dataset. The datasets are described in section 5.2.
To initialise the weights we use random values drawn from the normal distribution
N (0, σ2), with σ = 0.05. The biases are set to 0.
We train the neural network using stochastic gradient descent [3]. We shuffle the

instances in the training data and group them into batches. For each batch, we compute
the average loss and update the parameters based on their gradient multiplied by the
learning rate. After each epoch (a traversal of the whole training data) we re-shuffle the
instances and start anew.
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3.3. Additional techniques
In addition to the basic layout presented in the previous two sections, we apply additional
techniques to improve training speed and reduce overfitting.
First, we employ a simple exponential learning rate decay. In the earlier stages of

training, it is more beneficial to use a higher learning rate, to enable the network to
improve quickly. Later on, however, it is more about fine-tuning the parameters, and
a high learning rate prevents the NN from improving. While there are many different
ways to choose an appropriate learning rate, we elected to focus on simplicity: After a
set number of epochs, we halve the training rate.
Then, we have dropout [12]. Essentially, dropout means that in each training step a

number of neurons are ’dropped’ from the NN, i.e. their output is set to 0. The probability
of a single neuron not being dropped is a fixed constant d ∈ (0, 1]. (A value of d = 1
would disable dropout.) Common values of d are in the range [0.5, 1], with 0.5 being a
robust choice across different contexts.

More precisely, we modify our function f in the following way (� denotes component-
wise vector multiplication):

f ′(x,W, b) := 1
d

(f(x,W, b)� v)

where the components of v ∈ Rj are sampled independently from B(d) (the Bernoulli
distribution with success probability d). This is done for all layers except the output
layer.
Scaling inversely with d is done to preserve the expected output of each layer, which

is relevant when evaluating the neural network. For testing and validation dropout is
disabled by setting d to 1 and having all neurons participate.

The last technique is l2 regularisation [7], which modifies the cost function by adding
the squared l2 norm of the vector of parameters, scaled to the number of parameters, to
the cost function:

E′(p) := E(p) + γ|p|22
γ is a constant that determines the strength of regularisation.
l2 regularisation encourages the NN to have small weights, which allows it to better

generalise from training data and prevents overfitting.

3.4. Hyperparameter optimisation
As usual, the behaviour of our NN is influenced by a number of hyperparameters, which
are listed in table 2. To determine the optimal values of those, we employed random
search. In each iteration, we sample a set of hyperparameters uniformly from manually
chosen intervals, and then train a neural network for a set amount of wall-clock time.
The parameters concerning the size and count of the receptive fields determine how

the inputs to the neural network are structured, and so are used when generating the
training data. This means that changing them would require a full rebuild of the training
data, and so it is not feasible for us to search them in this manner. As we observed
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Table 2: Hyperparameters of the NN, as well as their values used for the final network
and the range considered for the random search.

Name Value Range Description

receptive field nodes 12 - Number of nodes per receptive field
receptive field count 32 - Number of receptive fields
batch size 170 [64, 256] Number of instances per batch
learning rate 0.25 [0.03, 0.27] Learning rate initially used for training
learning rate decay 70 [10, 120] Number of epochs after which the learning

rate is halved
layer a1 size 55 [2, 128] Size of the first convolutional layer
layer a2 size 65 [2, 128] Size of the second convolutional layer
layer b1 size 120 [2, 128] Size of the first fully-connected layer
layer b2 size 120 [2, 128] Size of the second fully-connected layer
dropout 0.7 [0.5, 1.0] Probability of a neuron not being dropped

during a training iteration
l2 regularisation 0 [0, 50] Factor controlling the strength of l2 regu-

larisation

a significant improvement by using a larger number of inputs when exploring different
choices, we fixed them at their current values, which still allow us to fit the training data
into main memory.

Some parameters have simple scaling dependencies amongst each. For example, dropout
reduces the expected number of neurons that are active in any given layer during training.
To compensate, we scale the sizes of those layers by 1

d .

4. Results

Table 3: Specifications of our training
environment.

CPU Intel i5-6600K
GPU Nvidia GeForce GTX 1080
OS Ubuntu 17.10

We ran out calculations locally on a single GPU.
The specifications of our system are reproduced
in table 3.
Our set of training data consisted of 131072

instances, amounting to 2.3 GiB of data. The
instances were split evenly between positive and
negative instances, the latter of which are also
split evenly between randomly generated (’ran-
dom’) and slightly modified real instances (’per-
turbed’).

First, we determined a suitable range of values for each of the hyperparameters. They
are shown in table 2. Then we searched for a good set of values by employing the random
search described in the previous section. We ran each iteration for 1 minute which
corresponds to about 60-90 epochs, depending on the size of the NN.
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Figure 5: Results of the hyperparameter search, projected onto the different hyperparam-
eters. Y-axis is mean squared error on testing data, lower values indicate better results.
Sizes of the layers are before scaling them to the dropout value. The worst 3% of results
are omitted from the scatter plot. (They are still included for the smoothed curve.)

The results of the random search are shown in figure 5. We note that most parameters
did not influence the performance of our NN strongly and there is a large amount of
noise.

• Higher learning rates seem to improve the performance, although this may be an
artefact of the short time of each iteration.

• As higher values of learning rate decay essentially turn that functionality off (a
single set of parameters runs for about 60-90 epochs), using learning rate decay
has a small positive impact.

• We only see a strong effect of the size of the first three layers, a1, a2 and b1.

• Dropout does not improve our performance much, at least in the time frame
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Figure 6: Performance of the NN during training. Time is given in epochs. (a) Cross-
entropy loss on the training and test datasets. (b) Percentage of misclassified instances,
split by type of instance.

measured by our random search. However, it is needed when training for longer
periods of time.

• l2 regularisation does not seem to provide a benefit.

Our final choice of hyperparameters is shown in table 2. To reduce overfitting, which
occurs when training for longer periods of time, we set the dropout to 0.7, whereas the
values for the other layers are more or less unchanged based on the search results.

During training we observe consistently better loss on the testing data than the training
data (figure 6), likely due to using dropout. (Note that dropout is turned off during
testing.) In particular, we do not see overfitting.
Table 4 shows the results of our final NN, both on the testing data and the separate

small dataset. We can see that our neural network does quite well on positive instances,
and has almost no errors on random instances. The perturbed instances are more difficult,
with about a third being misclassified.

Curiously, we achieve better results on the small dataset than the testing data. This
is a strong indicator that our network did not overfit, and the performance was not due
to choosing the right hyperparameters for the dataset. To explain the improvement,
we speculate that the repositories in the small dataset have less variance: The top100
dataset incorporates the same number of repositories for each of the 49 most popular
programming languages, in contrast to the small dataset that is biased towards more
popular languages. Hence top100 might include a wider range of repositories.
The fact that our NN correctly identifies our randomly generated instances without

difficulty indicates that it does not rely on general statistical properties of the graphs, but
rather considers their structure. Alternatively, it could mean that our random generation
is not very good.

3Note that the random instances of both datasets were generated in exactly the same manner. Any
differences are by chance alone.
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Table 4: Results of the final NN. ‘top100 test’ refers to the part of the top100 dataset
that was used as test data. Precision is the fraction of classifications that were correct,
recall is the fraction of positive instances that were correctly labelled as positive and F1
score is their harmonic average.

Measure top100 test small

number of instances 13090 131070
mean cross-entropy loss 0.2465 0.1888
false negatives 0.0590 (337/5714) 0.0236 (1324/56125)
false positives 0.1483 (1094/7376) 0.1330 (9968/74945)
misclassified positive 0.0509 (337/6619) 0.0200 (1324/66301)
misclassified random3 0.0059 (19/3200) 0.0036 (114/31904)
misclassified perturbed 0.3286 (1075/3271) 0.2998 (9854/32865)
precision 0.8517 0.8670
recall 0.9491 0.9800
F1 score 0.8977 0.9201

5. Implementation details
Our implementation is split into two parts: alarm and schaf. The former is responsible
only for downloading the repository metadata and organising it into files, while the latter
generates the change-coupling graphs, the training data, and trains and runs the NN.

5.1. alarm – Application for Lazily Acquiring Repository Metadata
alarm is a script written in Python 3. It is organised as a single file, with 1091 LOC
(excluding comments and blanks). We chose Python as it is easy to include libraries for
various functionalities (e.g. sending HTTP requests, gzip compression) and downloading
repositories is constrained mostly on network bandwidth. The source code is publicly
available on GitHub4.
It uses GitHub’s API to search through their list of repositories. We implemented

Git’s smart HTTP protocol, which negotiates the files that have to be sent and organises
the file transfer. The data consists of Git objects, so alarm contains functionality to
parse this format, including the delta encoding used to compress similar files. This was
all implemented in Python, with no use of existing Git libraries.

Git’s metadata (as was described in section 2.1) is stored. The format is basically the
same as the one used for the transfer of data (Git packfiles), with some small modifications
to be able to start writing before having received all the objects. On disk, the repositories
are grouped into large files, each containing about a hundred repositories. This facilitates
compression, as multiple small repositories are compressed together.

We maintain an index of all repositories and their locations in the storage files. When

4https://github.com/suyjuris/alarm
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searching for a repository we are able to skip ahead in the file. In particular, when
downloading repositories from different sources we can safely ignore those that were
already downloaded, and collect them when exporting into graphs.

The grouping of repositories on disk is thus mostly transparent. To be able to selectively
export certain types of repositories each repository can be assigned a number of tags.
Those are also stored in the index and can be modified without touching the actual
stored data.
Originally, we tried to also generate the graphs in alarm, as the code to read Git’s

objects is already there. However, we quickly ran into performance problems on some
of our larger graphs, both due to running out of memory and low throughput. So we
moved that part over to schaf and just generate ’jobfiles’ from alarm. Those describe
precisely which repositories to include and in which files they are located.

5.2. Repository search
In this section we describe our criteria that determine which repositories are downloaded.
For the top100 dataset we include the 49 most popular programming languages on

GitHub, based on the number of active repositories5 (see table 5). Then we query the
GitHub API for the Top100 repositories for each language based on the number of stars.
More specifically, we request a page of 100 results, sorted by stars.

The small dataset is a bit more involved. Here, we query for repositories in a range of
sizes, so ones between 1000 and 10000 KiB. Those we sort by the number of stars. We
query for pages each containing 100 results. When then page limit is reached, we filter to
only include repositories below a certain number of stars, which is the value of the last
result.

5http://githut.info/

Table 5: The programming languages used in our top100 dataset.

1. JavaScript 14. Go 27. Puppet 40. Scheme
2. Java 15. Perl 28. Rust 41. Dart
3. Python 16. CoffeeScript 29. PowerShell 42. Common Lisp
4. CSS 17. TeX 30. Erlang 43. Julia
5. PHP 18. Swift 31. Visual Basic 44. F#
6. Ruby 19. Scala 32. Processing 45. Elixir
7. C++ 20. Emacs Lisp 33. Assembly 46. FORTRAN
8. C 21. Haskell 34. TypeScript 47. Haxe
9. Shell 22. Lua 35. XSLT 48. Racket
10. C# 23. Clojure 36. ActionScript 49. Logos
11. Objective-C 24. Matlab 37. ASP
12. R 25. Arduino 38. OCaml
13. VimL 26. Groovy 39. D

14

http://githut.info/


Some repositories are empty, or not available for other reasons, so we ignore them.
Also, repositories which yield graphs that are too large to store in memory are skipped,
although that only happens later during graph generation.

5.3. schaf – Statistical Commit History Analysis Framework
schaf is our main application, responsible for the generation of graphs and training
data, as well as training and executing the neural network. It is written in C++, mainly
for reasons of performance and the benefits of static type checking. The source code is
publicly available on GitHub6.
As shown in table 6, the main parts of our program are general purpose utilities and

data structures. However, much of those has been taken from previous projects and was
only adapted for use in schaf.
Development was done on Ubuntu Linux 17.107, using g++ 7.2.0 as compiler8. Addi-

tional tools include gdb9 for debugging, the sampling profiler of gperftools10 and GNU
Emacs 11 for actually writing the code.
In terms of libraries, we use LZ412 and zlib13 for compression, xxHash14 for hashing,

and Steve Reid’s SHA-1 implementation15 when parsing Git objects. We use the Tensor-
Flow framework for our neural network [1]. TensorFlow and zlib are the only external
dependencies.
We will now give an overview of schaf, beginning with the general structure of the

application. Then, we describe in detail the three main modes of operation: Generating
change-coupling graphs from repository metadata, creating training data for the NN,
and training and running the NN. Finally, we close with a discussion of techniques used
for debugging and visualisation during development.

5.4. General structure of schaf

Our style of programming is focused on simplicity and performance. Consequently, we
do not use many of the features of C++, such as exceptions or inheritance hierarchies.
Instead, we employ a data-oriented view, abstracting functionality based on the data
processing that is done, whereas the representation of data is not hidden. This is reflected
in our architecture.
Our first important abstraction is the reader for the Git objects representing the

metadata of repositories which alarm outputs. It takes a file as input and produces a
stream of metadata, which is a list of Git objects.

6https://github.com/suyjuris/schaf
7https://www.ubuntu.com/
8https://gcc.gnu.org/
9https://www.gnu.org/software/gdb/

10https://github.com/gperftools/gperftools
11https://www.gnu.org/software/emacs/
12http://www.lz4.org/
13https://zlib.net/
14http://www.xxhash.com/
15https://github.com/clibs/sha1
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Table 6: Lines of code for different parts of schaf. All counts exclude comments and
blanks.

Description LOC

General utilities and debugging 1638
Data structures and memory management 1369
Neural network and training data creation 1290
Generation of change-coupling graphs 925
Git object parsing 526
Command-line interface 481
Operating system interaction 278

Total 6507

The component responsible for graphs then takes that stream of data and writes the
graphs into a file. Reading the graphs from a file is another abstraction, once again
taking a file as input, and giving the graphs as output. Additionally, it supports the
generation of random graphs.
This is used by the component responsible for the NN to create the training data

and, more importantly, to provide an abstraction for the neural network. This includes
low-level operations on the state of a single network (e.g. processing a single batch in
training, or saving the parameters to a file), and high-level functions mapping directly to
the user interface (which is a simple command-line interface).
We do not need to interact much with the operating system, apart from querying

wall-clock time and retrieving stack traces when crashing. The specifics are handled by
our platform layer, but it is only a few hundred lines.

5.5. Generating change-coupling graphs
Algorithm 1 shows the general process of generating a change-coupling graph. To be able
to process large graphs in a reasonable time frame, we applied several optimisations.
First, all the file paths in the graph are represented using 64-bit hashes16. For paths

we only need the operations of appending elements and of comparing for equality, both
of which can easily be implemented on an integer value with only a vanishing probability
of falsely comparing two different paths as equal. (A repository with 106 files, which is
ten times as large as the largest one in our dataset, would have a probability of 10−8 of
two files colliding for a random hash function.)

We keep the contents of all directories sorted, so we can determine the set of changes
by a recursive algorithm, iterating over the two directories simultaneously.
To build the graph we use a hash table, more specifically the sparsehash library

originally developed at Google17. We use their dense_hash_map, which is implemented
16We use specialisations of xxHash.
17https://github.com/sparsehash/sparsehash
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Algorithm 1 Generating a change-coupling graph
Input set of commits
Output change-coupling graph
Initialise empty graph G = (V,E), with weights c : E → N, c = 0
for all c ∈ commits do

changed := files changed in c
V := V ∪ changed
for all v, w ∈ changed, v < w do

c(v, w) := c(v, w) + 1
end for

end for
return (G, c)

using an open addressing scheme and quadratic probing.
We map the 64-bit hashes of files to indices so that our nodes are always a set
{0, ..., |V | − 1}. As 32-bit are sufficient to represent those (again, our largest graph has
only 105 nodes), edges are just 64-bit integers made up of two nodes. In particular, this
makes our innermost loop quite simple:

std::sort(changed_nodes.begin(), changed_nodes.end());
for (int i = 0; i < changed_nodes.size(); ++i) {

uint64_t node_i = changed_nodes[i] << 32;
for (int j = 0; j < i; ++j) {

uint64_t node_j = changed_nodes[j];
edge_weights[node_i | node_j] += 1;

}
}

Apart from reading the data (which is limited by the speed of gzip decompression),
this loop dominates the execution time, especially on repositories with large commits.
We also gained significant speed-ups by choosing a custom hash-function for the hash
table, which exploits the special structure of the edges and can be evaluated cheaply18.

The important part goes as follows:

val = (val ^ (val >> 30)) * 0xbf58476d1ce4e5b9ull;
val = val ^ (val >> 31);

As some graphs are too large to keep in memory (change-coupling graphs use memory
quadratic w.r.t. the commit size), we skip graphs having more than 5 · 107 edges.
After having assembled the edges in a hash table, we pack the graph into a more

compact format which is suitable for serialisation. The format is a simple binary one,
which stores the adjacency lists of all nodes contiguously. For each node there is an offset
into this array. An example is shown in figure 7.
18It is based on splitmix64, see http://xorshift.di.unimi.it/splitmix64.c.
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offset offset node val node val node val

Figure 7: Example illustrating the layout used for storing our graphs. Here, the first
node has two adjacent edges, which are stored beginning at its offset, and until the offset
of the following node.

Algorithm 2 Converting from a hash table of edges into our graph storage format
Input Hashtable H : E → N
Output Graph in storage format
A, edges := arrays of size 2|E|
for all ((v, w), c) ∈ H, with i = 1, ..., |E| do

A[2i] := (v, w, c)
A[2i+ 1] := (w, v, c)

end for
Sort A lexicographically
for all (v, w, c) ∈ A, with i = 1, ..., |A| do

edges[i] = (w, c)
end for
offsets := array of size |V |
for all i = 1, ..., |V | do

offsets[i] = min{j = 1, ..., |A| : A[j] = (i, ∗, ∗)}
end for
return (offsets, edges)

Algorithm 2 gives a high-level overview of how we convert our hash table of edges into
this storage format. Crucially, it requires only iterating over the hash table once, reading
its contents in arbitrary order. This can be done very efficiently, due to the hash table
being implemented using an open-addressing scheme.
Sorting the array is the bottleneck here, so we implemented a specialised LSB radix

sort. This fits well to our problem, as the array’s elements consist of only two 32-bit
integers and one 32-bit weight that does not influence the sorting. (So we are basically
sorting 64-bit integers.) Consequently, our radix sort outperforms std::sort by a large
margin.
Our radix sort considers 64-bit integers, using the bytes as digits. As we know that

each edge is included twice, we only need to count the first four bytes, since the counts
for the next four will be the same. After counting, there are 8 passes over the data, one
for each byte, which copy the data between two arrays.
When the data is sorted, algorithm 2 copies it once again, omitting the first edge. It

also sets the offsets. In our actual implementation, both of these steps are integrated
into the last pass of our radix sort at no cost.

As we know the number of nodes beforehand, we implement an additional optimisation
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for the (extremely) common case of |V | < 216. Here, each node only needs two of its four
bytes, so we can safely skip half of our LSB sorting passes.

Finally, the graph has to be stored. We apply LZ4 compression, as it is very fast both
in encoding and decoding, at the cost of compression ratio. We compress the graph
in memory and then write the bytes to disk. (Our in-memory representation is chosen
carefully so that it can be serialised simply by copying the bytes.)
To generate random instances for the NN we use the same process and just generate

the set of commits used as input to algorithm 1. Those graphs are not stored on disk,
but rather generated on-the-fly when creating training data.

5.6. Creating training data for the neural network
Creating training data involves three types of instances: positive (unchanged real data),
perturbed (real data with slightly modified edge weights) and random (randomly generated
graphs with similar statistical properties). They are all generated in a similar manner.

As was described in section 2.3, we need n neighbourhoods of size m. Algorithm 3 gives
the general structure of our implementation. Note that we always have f(x) = (x− 1)2.
When implementing algorithm 3 we use a hash table to efficiently represent the non-

zero entries of γ. To speed up checking whether a node is not in X, we use a bloom
filter with parameter k = 1: We have an array of l = 8192 bits, and a hash function
h : V → {1, ..., l}. Whenever we add a node v to X, we set the bit h(v) to 1. So if for a
node w ∈ V the bit h(w) is not set, we know that it is not in X and can skip the more
expensive check of iterating through X.

Algorithm 3 Creating a local neighbourhood from a graph

Input Graph G = (V,E) with weights c : E → R≥0
Input Weighting function f : R≥0 → R≥0
Output Set of nodes of size m
Initialise node weights γ : V → R≥0, γ = 0
Choose node v ∈ V at random
X := {v}
while |X| < n, δ+(X) 6= ∅ do

for all w ∈ δ+(v) \X do
γ(w) := γ(w) + c(v, w)

end for
Choose v′ from V \X at random, weighted by f ◦ γ
X := X ∪ {v′}
v := v′

end while
return X
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For the random instances we generate a graph as described in the previous section,
so no modifications are required. When creating perturbed instances, we map our edge
weights c using the following function:

uint32_t perturb(uint64_t v, uint64_t w, uint32_t weight) {
uint64_t edge = std::min(v, w) << 32 | std::max(v, w);
edge = (edge ^ (edge >> 30)) * 0xbf58476d1ce4e5b9ull;
edge = (edge ^ (edge >> 27)) * 0x94d049bb133111ebull;
edge = edge ^ (edge >> 31);
if ((edge & 0xff) < 16) {

return weight + __builtin_clz((edge >> 8) | 1);
} else {

return weight;
}

}

This uses a hash function19 to generate a random value based on the edge (v, w). Then,
we check whether the last byte is in the range [0, 15], which is true with probability 1

16 .
__builtin_clz counts the number of leading zeros in the binary representation of a
non-zero number, it is provided by g++. We know the first 8 bits of its argument are
zero, and after that there each bit is 0 with probability 1

2 .

5.7. Training the neural network
To perform the calculations necessary for the NN we use TensorFlow [1]. Note that we
are not using TensorFlow’s Python API, but the less commonly used C++ API. Some
functionality (such as gradients of some specific functions) is not yet available from C++,
and some convenience features of Python do not exist, but it is certainly usable.

TensorFlow works as follows: The application specifies a graph representing computa-
tions on tensors. There are some conveniences provided, such as special functions like
the SoftmaxCrossEntropyWithLogits function and automatic generation of gradients.
Others we have to build by hand, for example dropout. The gradient generation of some
functions was not yet implemented in the C++ API, so we had to add them manually in
our code.
As linking C++ libraries built in other compilers is immensely difficult unless one is

very careful about the types of features that are used, we have to link against a locally
compiled TensorFlow.

Our set of training data fits comfortably into main memory (it is about 2 GiB large).
As our model is quite simple, copying the data around has to be done efficiently to not
become a bottleneck.
There are three main operations on our dataset that we have to support: Grouping

the instances into batches of a certain size, shuffling all instances, and reading the data
of one particular batch.

19Once again splitmix64.
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We combine the first and second of these into a shuffle operation that reads the data
from one location and shuffles it into another. Note that grouping the instances into
batches is not free, as the features of all instances in a batch have to be contiguous in
memory. (The same for their labels.)
Our shuffle is not in place, which enables us to run it concurrently when training the

network. After both the epoch and the shuffle are finished, the original training data
and the temporary copy containing the result of the shuffle are swapped.

We have to provide TensorFlow with the data for each batch. Originally we were using
std::memcpy, but that turned out to be a bottleneck during training. Instead, we now
initialise the tensors directly from our memory, by providing a custom allocator that
simply returns a pointer to the appropriate memory region. This requires us to keep our
data aligned, which is also taken care of by our shuffle.

5.8. Debugging and visualisation
The parts of our application that execute under our control (in particular all of generating
change-coupling graphs and training data) were developed using traditional printf-
style debugging and gdb in rare cases of memory corruption. Our program is mostly
deterministic, so we did not have any problems in reproducing errors. Also, our debug
builds make use of bounds-checking, which further reduces the chances of invalid memory
accesses.
When optimising procedures, is it often helpful to look at the distribution of certain

values (e.g. the length of a list to be sorted) when deciding which algorithms to use. We
implemented the P 2 algorithm for generating quantiles of arbitrary data without storing
the values [5]. This enables us to view (approximate) distributions of arbitrary values
efficiently.

Debugging large calculations is difficult because there is a lot of data involved. This is
especially true when using a framework such as TensorFlow, which makes it difficult to
access intermediate results of calculations. Luckily, we did not encounter any bugs in
TensorFlow itself.

The TensorBoard tool, which is part of TensorFlow, was very helpful both in debugging
problems with our NN and in understanding its performance. It shows graphs of scalar
values and histograms of tensors that we output during training. For example, we can see
how the outputs of our NN are distributed over time. Additionally, it shows the graph of
computations that we provide, which helps to make sure that our program is working
correctly.

We also use gnuplot20 to plot distributions, sometimes combined with Python scripts
to preprocess the data.

20http://www.gnuplot.info
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6. Discussion and future work
We feel that there are many interesting possibilities that we could not consider based on
the limited scope of this work.
First, the definition of change-coupling graphs could be modified to better reflect

real-world development practices. For example, modifying the edge weight increase to
be dependent on the commit size (i.e. having the total increase be constant) could help
to differentiate between important and unimportant relations. For example, a commit
that changes the line endings for all files in the repository would currently contribute
significantly to the total edge weights, but it does not indicate an interesting relationship.
Also, commits above a certain size could be ignored, to improve performance.

When creating the instances for the training data, we choose roots for the local
neighbourhoods randomly. Maybe it would improve the performance of the NN to
incorporate more of the structure of the graph into this choice.
Our NN has no problems telling apart random from real instances. While this does

indicate that it does not rely on simple statistical heuristics, it could also mean that our
random instances are missing important surface-level features, and that an improved
generation would force the NN to learn more about the underlying structure.

Additionally, our perturbation is very basic. More varied changes (e.g. removing edges,
adjusting the weight multiplicatively, or adding perturbation based on generated commits)
could also improve the structural understanding of the NN.
Related to this, it could be interesting to gain insight into the way the NN operates.

While this is notoriously difficult in general, simple visualisations such as marking
influential areas of a graph are quite possible.
The layout of our network is quite fixed; while we are able to vary the sizes of layers

we cannot programmatically add new ones, which would make it possible to find better
layouts more easily.
In a similar vein, we did not consider different nonlinearities to use, and there is,

of course, a multitude of variations on how exactly to train neural networks that may
improve the performance.
An interesting possibility regarding different NN structures would be to train the

network to recover corrupted input data. The output of the network would then have the
same structure as the input, and the difference in values could quantify how corrupted—or
‘unrealistic’—the inputs are. Additionally, one would immediately have a measure of
‘unrealisticness’ for different areas of the graph and suggestions on how to improve them.
However, we think that this would require more effort in choosing the input representation,
such that the network is able to make structural changes when constructing its output.

7. Conclusion
We implemented an application for classifying change-coupling graphs based on real
repositories to estimate how ’realistic’ such a graph is. This includes both the gathering
of metadata from real repositories, generating the respective change-coupling graphs,
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creating instances of training data for the NN, and training and running the NN.
We managed to achieve good results on our dataset, and are able to correctly classify

real and random instances with high confidence.
Our chosen environment of C++ as a programming language, together with TensorFlow

for computing the NN, was very suitable for our task. We were able to optimise our
program in the necessary areas to get to a good level of performance.
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A. German Summary / Deutsche Zusammenfassung
Machine Learning mit neuronalen Netzen hat in letzter Zeit viele beeindruckende Erfolge
erzielen können, u.a. in visueller Mustererkennung, Verarbeitung natürlicher Sprache und
künstlicher Intelligenz. Infolgedessen gibt es Bemühungen, neuronale Netze auf andere
Daten, z.B. Graphen, anzuwenden.

In dieser Arbeit beschäftige ich mich mit einem Klassifizierungsproblem auf Graphen
und implementiere eine Lösung mithilfe eines Convolutional Neural Networks. Es geht
speziell um eine bestimmte Klasse von Graphen, Change-Coupling Graphen, die die
Abhängigkeiten zwischen Dateien in dem Repository eines Softwareprojektes darstellen.

Das Problem besteht daraus einzuschätzen, wie ‘realistisch’ ein bestimmter Change-
Coupling Graph ist. Hierfür generiere ich Graphen basierend auf einem Datensatz an
realen Repositories und füge sowohl veränderte Versionen von echten Graphen als auch
zufällig generierte Graphen hinzu. Mein Klassifizierer wird dann darauf trainiert, diese
von den echten Graphen zu unterscheiden.

Diese Arbeit ist motiviert durch das SimSE Projekt, das u. a. versucht die Entwicklung
eines Softwareprojektes über eine agentenbasierte Simulation vorherzusagen. Hierbei
werden Change-Coupling Graphen generiert, die möglichst realistisch sein sollen, damit
die Simulation aussagekräftig ist.
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Meine Arbeit soll messen, inwieweit dieses Ziel erreicht wurde. Dabei ist aber anzumer-
ken, dass die Entwicklung meines Programms komplett unabhängig zum SimSE Projekt
verlief, und dass ich zu keinem Zeitpunkt Daten, die von der Simulation generiert wurden,
verwendete.

Um den Klassifizierer zu trainieren, habe ich einen Datensatz erstellt, basierend auf
den Metadaten echter Repositories. Dafür wurde eine Anwendung in Python entwickelt,
die das Git-Protokoll implementiert und darüber Metadaten in ein kompaktes Format
speichert.
Aus diesen werden anschließend die Change-Coupling Graphen generiert, in einem

anderen Programm, das ich in C++ implementiert habe. Dieses ist außerdem zuständig
für das Erstellen der Trainingsdaten, also insbesondere das Abwandeln von bestehenden
Graphen und das Generieren von neuen Graphen, welche als Negativbeispiele verwendet
werden.

Dasselbe Programm ist für das Trainieren und Ausführen des neuronalen Netzes
zuständig. Hierfür werden übliche Techniken verwendet (wie etwa Stochastic Gradient
Descent, Dropout, l2 Regularisation und Learning Rate Decay).

Die Güte des erstellten neuronalen Netzes wurde evaluiert, sowohl anhand der Validie-
rungsdaten als auch anhand eines zweiten, unabhängigen Datensatzes. Mein Klassifizierer
hat eine Fehlerrate von 5,09% (resp. 2,00%) auf realen Instanzen, 32,86% (resp. 29,98%)
auf abgewandelten Instanzen und 0,38% auf zufällig generierten Instanzen.
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