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Population protocols are a model of distributed computation in which finite-
state agents interact randomly in pairs. A protocol decides for any initial
configuration whether it satisfies a fixed property, specified as a predicate on
the set of configurations. The state complexity of a predicate is the smallest
number of states of any population protocol deciding that predicate. For
threshold predicates φ(x) ⇔ x ≥ k, with k constant, it is known to be in
Ω(log log k) ∩ O(log k). We close this remaining gap by showing that it is
Θ(log log k), i.e. we construct protocols with O(n) states deciding x ≥ k with
k ≥ 22n . This matches the known bound if the model is extended with leaders.
Moreover, our construction is the first that is not 1-aware, making it robust
against noisy initialisation.

1. Introduction
Population protocols are a distributed model of computation where a large number
of indistinguishable finite-state agents interact randomly in pairs. The goal of the
computation is to decide whether an initial configuration satisfies a given property. The
model was introduced in 2004 by Angluin et al. [4, 5] to model mobile sensor networks
with limited computational capabilities (see e.g. [27, 21]). It is also closely related to the
model of chemical reaction networks, in which agents, representing discrete molecules,
interact stochastically [17].

A protocol is a finite set of transition rules according to which agents interact, but it
can be executed on an infinite family of initial configurations. Agents decide collectively
whether the initial configuration fulfils some (global) property. This is done by stable
consensus; each agent holds an opinion about the output and may freely change it, but
eventually all agents agree.

An example of a property decidable by population protocols is majority: initially all
agents are in one of two states, x and y, and they try to decide whether x has at least as
many agents as y. This property may be expressed by the predicate φ(x, y) ⇔ x ≥ y.

1



In a seminal paper, Angluin et al. [7] proved that the predicates that can be decided
by population protocols correspond precisely to the properties expressible in Presburger
arithmetic, the first-order theory of addition.
Time complexity. To execute a population protocol, the scheduler picks two agents
uniformly at random and executes a pairwise transition on these agents. These two
agents interact and may change states. The number of agents does not change during
the computation, it will be denoted m throughout this paper.

The scheduler repeats this process until a stable consensus has emerged. By counting
the expected number of transitions for inputs of a certain size, one can define the time
complexity of a protocol.1 For example, there exist protocols deciding the majority
predicate from above in O(m2) interactions [6, 19].

In the area of time complexity, several strong results have been obtained. A general
construction is given in [5], which can decide any predicate expressible in Presburger
arithmetic within O(m2 log m) interactions. Population protocols are often extended with
a leader — an auxiliary agent not part of the input, which can assist the computation.
It is known that this does not increase the expressive power of the model, i.e. it can still
decide precisely the predicates expressible in Presburger Arithmetic. However, [6] gives a
general construction that runs within O(m polylog m) interactions. Together with the
Ω(m2/ polylog m) lower bound for leaderless protocols shown in [1] it follows that leaders
enable protocols to be faster.
Space complexity. However, even without allowing the state space to grow, many
of the above constructions need a large number of states. We estimate, for example,
that the protocols of [6] needs tens of thousands of states. This is a major obstacle
to implementing these protocols in chemical reactions, as every state corresponds to
a chemical compound. If equipped with digital storage, the number of bits an agent
needs to store its state corresponds to the logarithm of the number of states — not as
prohibitive, but still something that is desirable to minimise.

We thus consider the space-complexity, the minimal number of states necessary for a
population protocol solving a given problem. There are two major lines of inquiry into
this direction:

• The first considers a family of protocols for a fixed predicate (usually the majority
predicate), where each protocol is specialised for a population size m.

• The second also considers a family of protocols, but each decides a different predicate
(for all population sizes m).

Growing state-space. In the original model (which is also the model of this paper),
the set of states is fixed, and the same protocol can be used for an arbitrary number of
agents. Relaxing this requirement has opened up a fruitful line of research; here, the
number of states depends on m (e.g. O(log m) states, or even O(log log m) states). In
this model, faster protocols can be achieved [3, 25, 26].

1More commonly, one considers parallel time, the number of transitions divided by the number of
agents.
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It has also led to the development of space-efficient, fast protocols, which stabilise
within O(m polylog m) interactions (i.e. polylogarithmic parallel time), using a state-
space that grows only slowly with the number of agents, e.g. O(polylog m) states [1, 12,
2, 10, 9, 11, 20]. These protocols have focused on the majority predicate.

Moreover, lower bounds and results on time-space tradeoffs have been developed in
this model [1, 2].

Predicate size. The above results focus on giving fast protocols for specific, fixed
tasks. However, there is a second factor influencing the size of protocols: the predicate
that the protocol decides. This is perhaps clearest in the case of flock-of-bird predicates
φk(x) ⇔ x ≥ k, for k ∈ N. Intuitively, a protocol for x ≥ k decides whether the number
of agents participating in the computation is at least k. Clearly, the number of states
necessary to decide φk increases with k.

A simple protocol (close to the construction of [5]) for φk uses states {0, ..., k} and
transitions

i, j 7→ i + j, 0 for i + j < k i, j 7→ k, k for i + j ≥ k

In the context of chemical reactions, this protocols is clearly insufficient. Each agent is a
molecule, so k ≈ 1023, but one cannot synthesise 1023 different compounds.

Flock-of-bird predicates are a natural choice for investigating space complexity and
prior research has analysed the construction of succinct protocols for these predicates.
This question is also of theoretical interest, as it relates to the expressiveness of population
protocols (cf the Busy Beaver function) and is linked to fundamental problems in the
theory of Petri nets.

The original construction given above was improved by Blondin, Esparza and Jaax [14]
to Θ(log k) states. Perhaps surprisingly, they show that extending the model with a
leader enables Θ(log log k) states. A constant-factor improvement for the former bound
was later given in [22]. We remark that the Θ(log log k) result is not a construction for
arbitrary flock-of-bird predicates, it only produces protocols for some infinite family of
thresholds.

Very recently a number of lower bounds have been shown as well. Czerner and
Esparza [18] proved that every ordinary population protocol for x ≥ k must use
Ω(log log log k) states, while a protocol with leaders needs Ω(ack−1 k) states, where
ack is an Ackermann-type function. A (yet unpublished) result by Czerner, Esparza and
Leroux improves the bound in the leaderless case to Ω(log log k). The first elementary
bound for the case with leaders was given by Leroux [23], showing that a Ω(log log k)
bound holds here as well. At this point, the bounds are tight for the case with leaders,
while an exponential gap remains for the leaderless case. These results are summarised
in Table 1.

Finally, there have also been results on the space complexity of arbitrary predicates.
Blondin et al. [13] give a general construction, and thus extend (in some sense) the
Θ(log k) bound to the whole of Presburger arithmetic. This result was very recently
improved by Czerner et al. [19], giving a construction that is both succinct and fast, i.e.
runs within O(m2) interactions.
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Table 1: Prior results on the state complexity of flock-of-bird predicates φ(x) ⇔ x ≥ k,
for k ∈ N. Upper bounds need only hold for infinitely many k.

year result type ordinary with leaders
2018 Blondin, Esparza, Jaax [14] construction O(log k) O(log log k)
2021 Czerner, Esparza [18] impossibility Ω(log log log k) Ω(ack−1 k)
2021 Czerner, Esparza, Leroux impossibility Ω(log log k)
2022 Leroux [23] impossibility Ω(log log k)
2022 this paper construction O(log log k)

2. Main result
We construct population protocols (without leaders) for an infinite family of flock-of-bird
predicates x ≥ k, proving an O(log log k) upper bound on their state complexity. This
closes the last remaining gap.

As for previous results in this area, our result is not a construction for arbitrary
thresholds k, only for an infinite family of them. Indeed, a O(log log k) bound for the
former can be shown impossible by a simple counting argument [14]. Our result, therefore,
is easier to formally state by fixing the number of states n and specifying the largest
threshold k that can be decided by a protocol with n states.

Theorem 1. For every n ∈ N there is a population protocol with O(n) states deciding
the predicate φ(x) ⇔ x ≥ k for some k ≥ 22n.

The result is surprising, as the prevailing opinion tended towards the existing construc-
tions being optimal.2 It also shows that leaders do not provide an advantage in terms of
space-complexity (as opposed to time-complexity, where they are known to be faster).

Our construction also evades a conditional impossibility result by [14], which gives a
Ω(log k) lower bound for leaderless 1-aware protocols. (Essentially, protocols where some
agent knows at some point that the threshold has been exceeded.) Our protocol only
accepts provisionally and continues to check that no invariant has been violated, making
it (to the extend of our knowledge) the first construction that is not 1-aware.

As a corollary, this makes our construction the first to be robust against certain types
of noise, in particular the addition of agents. This is related to research on self-stabilising
population protocols [8, 16, 15] – our protocols are not quite self-stabilising, however.
We discuss this in Appendix A.
Overview. We build on the technique of Lipton [24]. Implementing this technique
requires the use of recursive procedure calls; our first contribution are population programs,

2In particular, the technique to show the Ω(log log k) lower bound could also be used for a Ω(log k)
bound. The Ω(log log k) bound is due to a reliance on Rackoff’s theorem, a general result for Petri
nets. It was hoped that the special structure of population protocols could be exploited instead.
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a model in which population protocols can be constructed by writing structured programs,
in Section 4.

Implementing the technique of [24] in our model, however, is not straightforward.
We are only able to convert population programs to population protocols by relaxing
requirements on the input representation. In fact, in our model the initial values of all
registers are chosen by an adversary. The construction, therefore, must be robust against
undesirable inputs. Our second contribution therefore is extending the original technique
by adding error-checking routines. These provide some weak invariants, and we take
care to ensure that our subroutines fail gracefully under error conditions that we cannot
exclude. A high level overview of both the original technique as well as our error-checking
strategy is given in Section 5. We give a detailed description with proofs of correctness
in Section 6.

To get population protocols, we need to convert our population programs. We split this
into two parts. First, we lower population programs to an assembly-like programming
language using standard techniques; we refer to these as population machines. In a second
step we construct population protocols to simulate arbitrary population machines. To
implement the control state, we need a unique agent that can coordinate the computation.
Of course, we do not have a leader; instead, we perform a leader election. This does not
work perfectly, leading to the weak guarantees provided by population programs. This
conversion is described in Section 7.

To start out, Section 3 introduces the necessary mathematical notation and formally
defines population protocols as well as the notion of stable computation.

3. Preliminaries
Multisets. We assume 0 ∈ N. For a finite set Q we write NQ to denote the set of
multisets containing elements in Q. For such a multiset C ∈ NQ, we use |C| := ∑

q∈Q C(q)
to denote the total number of elements in C. Given two multisets C, C ′ ∈ NQ we
write C ≤ C ′ if C(q) ≤ C ′(q) for all q ∈ Q, and we write C + C ′ and C − C ′ for the
componentwise sum and difference (the latter only if C ≥ C ′). Abusing notation slightly,
we use an element q ∈ Q to represent the multiset C containing exactly q, i.e. C(q) = 1
and C(r) = 0 for r ̸= q.
Population protocols. A population protocol is a tuple PP = (Q, δ, I, O), where

• Q is a finite set of states,
• δ ⊆ Q4 is a set of transitions,
• I ⊆ Q is a set of input states, and
• O ⊆ Q is a set of accepting states.

We write transitions as (q, r 7→ q′, r′), for q, r, q′, r′ ∈ Q. A configuration of PP is a
multiset C ∈ NQ with |C| > 0. A configuration C is initial if C(q) = 0 for q /∈ I (one
might also say C ∈ NI instead). It has output true if C(q) = 0 for q /∈ O, and output
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procedure Main
OF := false
while ¬Test(4) do

Clean
OF := true
while ¬Test(7) do

Clean
OF := false
while true do

Clean

procedure Test(i)
for j = 1, ..., i do

if maybe x > 0 then
x 7→ y

else
return false

return true

procedure Clean
if maybe z > 0 then

restart
swap x, y
while maybe y > 0 do

y 7→ x

Figure 1: A population program for φ(x) ⇔ 4 ≤ x ≤ 7 using registers x, y, z.

false if C(q) = 0 for q ∈ O. For two configurations C, C ′ we write C → C ′ if C = C ′ or if
there is a transition (q, r 7→ q′, r′) ∈ δ s.t. C ≥ q + r and C ′ = C − q − r + q′ + r′.
Stable computation. We are going to give a general definition of stable computation,
so that we can later reuse it for population programs and population machines. Let
C denote a set of configurations and → a left-total binary relation on C (i.e. for every
C ∈ C there is a C ′ ∈ C with C → C ′). Further, we assume some notion of output, i.e.
some configurations have an output b ∈ {true, false} (but not necessarily all).

A sequence τ = (Ci)i∈N with Ci ∈ C is a run if Ci → Ci+1 for all i ∈ N. We say that τ
stabilises to b, for b ∈ {true, false}, if there is an i s.t. Cj has output b for every j ≥ i. A
run τ is fair if every C ∈ C where Ci → C holds for infinitely many i appears infinitely
often in Ci.

Turning back to population protocols, let φ : NI → {true, false} denote a predicate.
We say that PP decides φ, if every fair run starting at an initial configuration C ∈ NI

stabilises to φ(C).
As is usual, we use the notion of fairness instead of defining a stochastic process, as

the former is easier to reason about. Additionally, if one considers only the predicate
decided by a protocol (and not, say, its time complexity) the two coincide.

4. Population Programs
We introduce the model of population programs, which allows us to specify population
protocols using structured programs. An example is shown in Figure 1; it is explained at
the end of the section.

Formally, we say that a population program is a tuple P = (Q, Proc), where Q is
a finite set of registers and Proc is a list of procedures. Each procedure has a name
and consists of (possibly nested) while-loops, if-statements and instructions. These are
described in detail below.
Primitives. Each register x ∈ Q can take values in N. However, only three operations
on these registers are supported.
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The move instruction (x 7→ y), for x, y ∈ Q, decreases the value of x by one, and
increases the value of y by one. We also say that it moves one unit from x to y. If x is
empty, i.e. its value is zero, the programs hangs and makes no further progress.

The second operation is the nondeterministic nonzero check (maybe x > 0), for x ∈ Q.
Briefly, it nondeterministically returns either false or whether x > 0. In other words, if it
does return true, it certifies that x is nonzero. If it returns false, however, no information
has been gained. We consider only fair runs, so if x is indeed nonzero the check must
return true eventually if called infinitely often.

Finally, we allow for swaps between registers, i.e. (swap x, y) for x, y ∈ Q. A swap
exchanges the values of the two registers. This primitive is not necessary, but it simplifies
the implementation.
Loops and branches. Both while-loops and if-statements function as one would expect.
We allow for simple boolean formulae in their arguments, but limit ourselves to at most
a single binary operator (with any number of negations). This ensures that a single
instruction can encode only a constant amount of information.

We also use for-loops. These, however, are just a macro and expand into multiple
copies of their body. For example, in the program in Figure 1 the for-loop in Test
expands into i copies of the contained if-statement.
Procedures. Our model allows for a very limited kind of recursion. Procedures have
no arguments, but we may have parametrised copies of a procedure. The program in
Figure 1, for example, has four procedures: Main, Clean, Test(4), and Test(7).

Procedure calls must be acyclic. It is thus not possible for a procedure to call itself,
and the size of the call stack remains bounded. We remark that it is possible to inline
every procedure call (apart from the small detail that our model has no consideration for
storing intermediate boolean values). The main reason to make use of recursion at all is
succinctness: if our program contains too many instructions, the resulting population
protocol has too many states.

We do allow procedures to return a single boolean value, and procedure calls can be
used as expressions in conditions of while- or if-statements.
Output flag. There is an output flag, which can be modified only via the instructions
OF := true and OF := false. (These are special instructions; it is not possible to assign
values to registers.) The output flag determines the output of the computation.
Size. The size of P is defined as |Q| + L + S, where L is the number of instructions
and S is the swap-size. The latter is defined as the number of pairs (x, y) ∈ Q2 for which
it is syntactically possible for x to swap with y via any sequence of swaps. Unfortunately,
without restrictions we would convert swaps to population protocols with a quadratic
blow-up in states, so we introduce this technical notion to quantify the overhead.
Initialisation and restarts. The only guarantee on the initial configuration is that
execution starts at Main. In particular, all registers may have arbitrary values.

There is one final kind of instruction: restart. As the name suggests, it restarts the
computation. It does so by nondeterministically picking any initial configuration s.t. the
sum of all registers does not change.
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Configurations and Computation. A configuration of P is a tuple D = (C, OF , σ),
where C ∈ NQ is the register configuration, OF ∈ {true, false} is the value of the output
flag, and σ is the stack of called procedures. Such a configuration is initial if σ = (Main)
and it has output OF . For two configurations D, D′ we write D → D′ if D can move to
D′ after executing one instruction.

Using the notions of stable computation defined in Section 3, we say that P decides
a predicate φ(x), for k ∈ N, if every run started at an initial configuration (C, OF , σ)
stabilises to φ(|C|).

Note that this definition limits population programs to decide only unary predicates.
Notation When analysing population programs it often suffices to consider only the
register configuration. Let C, C ′ ∈ NQ, b ∈ {false, true} and let f ∈ Proc denote a
procedure. We consider the possible outcomes when executing f in a configuration with
registers C. Note that the program is nondeterministic, so multiple outcomes are possible.
If f may return b with register configuration C ′, we write C, f → C ′, b. For procedures
not returning a value, we use C, f → C ′ instead. If f may initiate a restart, we write
C, f → restart. If f may hang or not terminate, we write C, f → ⊥. Finally, we define
post(C, f) := {S : C, f → S}.
Example. An example is provided in Figure 1. The illustrated population program
decides the predicate φ(x) ⇔ 4 ≤ x ≤ 7. It uses multiple procedures: Main is run
initially and decides the predicate, Test(i) tries to move i units from x to y and reports
whether it succeeded, and Clean checks whether z is empty and moves some number
of units from y to x. If Clean detects an agent in z, it restarts the computation. As
every run calls Clean infinitely often, this serves to reject initial configurations where z
is nonzero; eventually the protocol will be restarted with z = 0.

This program is only an example, and some simplifications are possible. E.g. the
instruction (swap x, y) in Clean is superfluous; additionally, instead of checking z > 0
one could omit that register entirely.

5. High-level Overview
In this section we want to give an intuitive explanation of our result. As mentioned, we
use the technique of Lipton [24] to count to 22n using 4n registers. We will give a brief
explanation of the original technique in Section 5.1.

A straightforward application of the above technique only works if some guarantees
are provided for the initial configuration (e.g. that the 4n registers used are empty, while
an additional register holds all input agents). Sadly, no such guarantees are given in
our model. Instead, we have to deal with adversarial initialisation, i.e. the notion that
registers hold arbitrary values in the initial configuration. Section 5.2 describes the
problems that arise, as well as our strategies for dealing with them.
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5.1. Double-exponential counting
The biggest limitation of population programs (as for population protocols in general)
is their inability to detect absence of agents. This is reflected in the (maybe x > 0)
primitive; it may return true and thereby certify that x is nonzero, but it may always
return false, regardless of whether x = 0 actually holds.

However, if we have two registers x, x and ensure that the invariant x + x = k holds,
for some fixed k ∈ N, then x = 0 is equivalent to x ≥ k. Crucially, it is possible to certify
the latter property; if we have a procedure for checking x ≥ k, we can run both checks
(x > 0 and x ≥ k) in a loop until one of them succeeds. Therefore, we may treat x as
k-bounded register with deterministic zero-checks.

This seems to present a chicken-and-egg problem: to implement this register we require
a procedure for x ≥ k, but checking such a threshold is already the overall goal of the
program. However, using this idea we can implement a bootstrapping sequence. For
small k, e.g. k = 2, one can easily implement the required x ≥ k check. We use that as
subroutine for two k-bounded registers, x and y. Using the deterministic zero-checks, x
and y can together simulate a single k2-bounded register with deterministic zero-check;
this then leads to a procedure for checking z ≥ k2 (for some other register z).

To summarise, we have n levels of registers, with four registers xi, yi, xi, yi on each
level i ∈ {1, ..., n}. For each level we have a constant Ni ∈ N and ensure that xi + xi =
yi + yi = Ni holds. These constants grow by repeated squaring, so e.g. N1 = 2 and
Ni+1 = N2

i . Clearly, Nn = 22n . (Our actual construction uses slightly different Ni.)
We have not yet broached the topic of initialising these counter s.t. the necessary

invariants hold. Under assumptions on the input configuration this can easily be done
by adapting the procedure for checking z ≥ k2, given two k-bounded registers x, y, to
instead move k2 units into z. However, we cannot make such assumptions in our model,
and must instead check whether the initial configuration is adequate. At that point,
initialisation is superfluous; we might as well require the initial configuration to have the
registers already initialised.

5.2. Error detection
As we cannot rely on the existence of leaders, our model provides only weak guarantees.
In particular, we must deal with adversarial initialisation, meaning that the initial
configuration can assign arbitrary values to any register. This is not limited to a
designated set of initial registers; all registers used in the computation are affected.

Let us first discuss how the above construction behaves if its invariants are violated.
As above, let x, x denote registers for which we want to keep the invariant x + x = k,
for some k ∈ N. If instead x + x > k, the zero check is still guaranteed to terminate,
as either x > 0 or x ≥ k must hold. However, it might erroneously return that x = 0
when it is not. The procedure we use to combine two k-bounded counter to simulate
a k2-bounded one exhibits erratic behaviour under these circumstances; when we try
to use it to count to k2 we might instead only count to some lower value k′ < k2, even
k′ ∈ O(k). This leads us to the case of x + x < k; here we can never detect x = 0 and
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will instead run into an infinite loop.
The latter case is more problematic, as detecting it would require detecting absence.

For the former, we can ensure that we check x + x ≥ k + 1 infinitely often; if x + x > k,
this check will eventually return true and we can initiate a restart. While we cannot
detect the latter case, we can exclude it: we issue a single check x+x ≥ k in the beginning.
If it fails, we restart immediately.
A simplified model. Of course, the full picture is more complicated, as we have many
levels of registers that rely on each other. We will now consider a simplified model to
explain the main ideas.

In our simplified model there is only a single register xi per level i ∈ {1, ..., n} as well as
one “level n + 1” register R. For i ∈ {1, ..., n} we are given subroutines Check(xi ≥ Ni)
and Check(xi > Ni) which we use to check thresholds; however, they are only guaranteed
to work if x1 = N1, x2 = N2, ..., xi−1 = Ni−1 hold.

Our goal is to decide the threshold predicate m ≥ ∑
i Ni, where m := ∑

i xi + R is the
total number of agents. For each possible value of m we pick one initial configuration
Cm and design our procedure s.t.

• every configuration different from Cm will cause a restart, and
• if started on Cm it is possible that we enter a state from which we cannot restart.

The structure of Cm is simple: we pick the largest i s.t. we can set xj := Nj for j ≤ i
and put the remaining units into xi+1 (or R, if i = n). The procedure works as follows:

1. We nondeterministically guess i ∈ {1, ..., n}.
2. We run Check(xj ≥ Nj) for all j ∈ {1, ..., i}. If one of these checks fails, we

restart.
3. According to i = n we set the output flag to true or false.
4. To verify that we are in Cm, we check the following infinitely often. For j ∈ {1, ..., i}

we run Check(xj > Nj) and restart if it succeeds. If i < n we also restart if
Check(xi+1 ≥ Ni+1) or one of xi+2, ..., xn, R is nonempty.

Clearly, when started in Cm and i is guessed correctly, it is possible for step 2 to
succeed, and it is impossible for step 4 to restart. If i is too large, step 2 cannot work,
and if i is too small step 4 will detect xi+1 ≥ Ni+1. So the procedure will restart until
the right i is guessed and step 4 is reached.

Consider an initial configuration C ̸= Cm, |C| = m. There are two cases: either there
is a k with C(xk) < Cm(xk), or some k has C(xk) > Cm(xk). Pick a minimal such k.

In the former case, step 2 can only pass if i < k, but then one of xi+2, ..., xn, R is
nonempty and step 4 will eventually restart.

The latter case is more problematic. Step 2 can pass regardless of i (for i > k the
precondition of Check is not met). In step 4, either i < k and then xi+1 ≥ Ni+1 or
one of xi+2, ..., xn, R is nonempty, or i ≥ k and one the checks Check(xj > Nj) will
eventually restart, for j = k.

This would be what we are looking for, but note that we implicitly made assumptions
about the behaviour of Check when called without its precondition being met. We
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need two things: all calls to Check terminate and they do not change the values of any
register. The second is easy to ensure, as our algorithms will later only move agents
between registers of the same level. The former is more difficult; it runs into the problem
discussed above, where a zero-check might not terminate if the invariant of its register is
violated. In this simplified model it corresponds to the case xi < Ni.

Here the crucial insight is that Check(xi ≥ Ni) and Check(xi > Ni) are only called
if (x1, ..., xi−1) ≥lex (N1, ..., Ni−1), where ≥lex denotes lexicographical ordering. So if the
precondition is violated, there must be a j < i with (x1, ..., xj−1) = (N1, ..., Nj−1) and
xj > Nj . This can be detected within the execution of Check by calling itself recursively.
Using this technique, we can implement Check in a way that avoids infinite loops as
long as the weaker precondition (x1, ..., xi−1) ≥lex (N1, ..., Ni−1) holds.

Our actual construction follows the above closely; of course, instead of a single register
per level we have four, making the necessary invariants more complicated. Additional
issues arise when implementing Check, as registers cannot be detected erroneous while
in use. Certain subroutines must hence take care to ensure termination, even when the
registers they use are not working properly.

6. A Succinct Population Program
We now present the details of our construction and prove its correctness. The goal is to
show the following theorem.

Theorem 2. Let n ∈ N. There exists a population program deciding φ(x) ⇔ x ≥ k with
size O(n), for some k ≥ 22n−1.

For the remainder of this section, we construct a population program P = (Q, Proc).
We use registers Q := Q1 ∪ ... ∪ Qn ∪ {R}, where Qi := {xi, yi, xi, yi} are level i registers
and R is a level n + 1 register. For convenience, we identify x with x for any register x.

As explained in the previous section, xi and xi are supposed to sum to a constant Ni,
which we define via N1 := 1 and Ni+1 := (Ni + 1)2.

First, we introduce the necessary formal definitions to precisely state the guarantees
of each procedure. Before we move onto the individual procedures we then give brief
summaries of each as well as the logical structure of the correctness proof.
Definitions. Let C ∈ NQ and i ∈ {1, ..., n}. We say that C is

• i-proper, if C(xi) = C(yi) = 0 and C(xi) = C(yi) = Ni for i ∈ {1, ..., n}
• weakly i-proper, if C is (i − 1)-proper and C(x) + C(x) = Ni for x ∈ {xi, yi}
• i-low, if C is (i − 1)-proper, not i-proper, and C(x) = 0 and C(x) ≤ Ni for all

x ∈ {xi, yi}
• i-high, if C is (i− 1)-proper, not i-proper, and C(x) + C(x) ≥ Ni for all x ∈ {xi, yi}
• i-empty, if C(x) = 0 for all x ∈ Qi ∪ ... ∪ Qn ∪ {R}
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A procedure f is i-robust if for all i-high C we have C, f ̸→ ⊥ and C, f → C ′, b (or
C, f → C ′) implies that C ′ is i-high as well. Note that C, f → restart is allowed. Finally,
f is robust if it is i-robust for i ∈ {1, ..., n}.

We set ctrx,y(C) := C(x) · (Ni + 1) + C(y) to the value of the two-digit, base Ni + 1
counter using x and y as digits, where C ∈ NQ, i ∈ {1, ..., n} and x ∈ {xi, xi}, y ∈ {yi, yi}.

As a general remark, we sometimes use the slightly unusual notation {x : α}, where α
is independent of x. This denotes either {x}, if α, or ∅ otherwise.

Let us give some brief intuition. Most routines require i-proper registers to work
correctly, while weakly i-proper configurations are intermediate configurations appearing
while the counters are in use. Configurations deviating from the above can be either
i-high or i-low (roughly). We can exclude the latter so that it is not problematic, but
procedures must provide guarantees when run on i-high configurations, specified by the
notion of robustness as well as procedure-specific guarantees.
Summary. We use the following procedures.

• Main. Computation starts by executing this procedure, and Main ultimately
decides the predicate φ(x) ⇔ x ≥ 2 ∑n

i=1 Ni. Similar to the simplified model
in Section 5.2, depending on the number of agents m a small number of initial
configurations are considered “good” and may stabilise to the correct output
(otherwise they restart), while all other configurations always cause a restart. More
precisely, a configuration is good if it is i-low and (i + 1)-empty for some i, or if it
is n-proper.

• CheckEmpty. This is a simple helper procedure that checks whether a configura-
tion is i-empty and initiates a restart otherwise.

• CheckProper. Similar to the previous subroutine, this checks whether a configu-
ration is i-proper or i-low.

• Large. It checks whether a register x ∈ Qi is at least Ni. If so, it may return true
(but also false), and otherwise it always returns false. As a side-effect, if it returns
true it exchanges the units of x − Ni and x. This can be used to test for x > Ni by
checking whether x is empty afterwards. Of course, if the invariant x + x = Ni is
met, Large cannot have an effect.

• Zero. Using Large, this procedure implements a deterministic zero-check on a
register x ∈ Qi (as long as the invariant x + x = Ni holds).

• IncrPair. As described in Section 5.1, we use two level i registers (which are Ni

bounded) to simulate a Ni+1-bounded register. This procedure implements the
increment operation for the simulated register.

Logical structure. The above procedures (except for Main) are instantiated for each
level and call each other recursively. Population programs allow only acyclic procedure
calls, so the correctness proofs can proceed inductively and rely on the correctness of all
called procedures. To be formally precise, we must note that the proofs of the following
lemmata do not prove the associated lemma independently of the others. They only
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prove part of the induction step, and only if all proofs work do the statements of the
lemmata follow.

6.1. CheckEmpty and CheckProper
We start with the two simplest procedures. CheckEmpty is supposed to determine
whether a configuration is i-empty, which can easily be done by checking whether the
relevant registers are nonempty.

Lemma 3. Let C ∈ NQ, i ∈ {1, ..., n+1}. Then post(C, CheckEmpty(i)) = {C} ∪ S,
where S = ∅ if C is i-empty and S = {restart} otherwise. Moreover, CheckEmpty(i)
is robust.

Proof. Clearly, CheckEmpty cannot affect any register, and restarts only if one of the
registers Qi ∪ ... ∪ Qn ∪ {R} is nonzero. Robustness follows immediately.

The procedure CheckProper is used to ensure that the current configuration is not
i-high. If it is, it may initiate a restart. We remark that calls to CheckProper(0) have
no effect and can simply be omitted.

Lemma 4. Let C ∈ NQ, i ∈ {1, ..., n}. Then
(a) post(C, CheckProper(i)) = {C} if C is i-proper or i-low,
(b) C, CheckProper(i) → restart if C is j-high, for some j ∈ {1, ..., i},
(c) C, CheckProper(i) → restart if C is (i − 1)-proper and C(x) > 0 ∨ C(x) > Ni,

for some x ∈ {xi, yi}, and
(d) CheckProper(i) is robust.

Proof. (a) By induction, the recursive call in line 2 must return with C. As C is weakly
i-proper, line 6 has no effect (Lemma 7a) and neither line 5 nor line 8 is executed.

(b) The case j < i is covered inductively, otherwise it follows directly from (c).
(c) If C(x) > 0, line 5 may execute a restart. If C(x) > Ni, we use Lemma 7b to derive

that x may be nonzero at line 7. If x = yi, we must also note that Lemma 7b ensures

Algorithm CheckEmpty. Verify that registers are empty.
Parameter: i ∈ {1, ..., n + 1}
Effect: If i-empty, do nothing, else it may restart

1: procedure CheckEmpty(i) [for i ≤ n]
2: CheckEmpty(i + 1)
3: for x ∈ Qi do
4: if maybe x > 0 then
5: restart
6: procedure CheckEmpty(i) [for i = n + 1]
7: if maybe R > 0 then
8: restart

13



Algorithm CheckProper. Verify that registers are proper.
Parameter: i ∈ {1, ..., n}
Effect: If i-proper or i-low, do nothing, else it may restart.

1: procedure CheckProper(i)
2: CheckProper(i − 1)
3: for x ∈ {xi, yi} do
4: if maybe x > 0 then
5: restart
6: Large(x)
7: if maybe x > 0 then
8: restart

that the first iteration of the for-loop either restarts or terminates without affecting x
and x.

(d) Let C be a j-high configuration, for some j. If j > i then we need only invoke
property (a). Otherwise, we use that CheckProper and Large are robust (Lemma 7c
and induction), so their execution terminates and does not affect whether the configuration
is j-high.

6.2. Zero
This procedure implements a deterministic zero check, as long as the register configuration
is weakly i-proper. To ensure robustness, CheckProper is called within the loop.

Lemma 5. Let i ∈ {1, ..., n}, x ∈ {xi, xi, yi, yi}, C, C ′ ∈ NQ. Then
(a) post(C, Zero(x)) = {(C, C(x) = 0)} if C is weakly i-proper,
(b) post(C, Zero(x)) = {(C, false) : C(x) > 0} ∪ {(C ′, true) : C(x) ≥ Ni)} if C is

(i − 1)-proper and C(x) + C(x) ≥ Ni, where C ′(x) = C(x) + Ni, C ′(x) = C(x) − Ni

and C ′(z) = C(z) for z /∈ {x, x}
(c) C, Zero(x) → C ′, false implies C ′(x) > 0, for all C ′, and
(d) Zero(x) is robust.

Proof. (a) This follows immediately from (b): if C(x) + C(x) = Ni then C(x) = 0 is
equivalent to C(x) ≥ Ni, and C ′ = C (assuming C(x) ≥ Ni).

(b) As C is (i − 1)-proper, the call to CheckProper has no effect (Lemma 4a).
Further, Large has no effect as long as it returns false (Lemma 7b). Hence, for all
iterations of the loop, registers start in C. Line 5, therefore, may execute iff C(x) > 0.
Again due to Lemma 7b, line 7 can execute iff C(x) ≥ Ni, and if so, registers are according
to C ′. Finally, either C(x) > 0 or C(x) ≥ Ni holds, so eventually line 5 or line 7 will
return the correct result due to fairness and the procedure terminates.

(c) This follows from the observation that false can only be returned in line 5.
(d) Let C be j-high. If j > i we can invoke property (a). For j = i we use (b), noting

that C ′ is still i-high. Otherwise, we use that CheckProper and Large are robust
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Algorithm Zero. Check whether a register is 0.
Parameter: x ∈ {xi, xi, yi, yi}
Output: whether x = 0

1: procedure Zero(x)
2: while true do
3: CheckProper(i − 1)
4: if maybe x > 0 then
5: return false
6: if Large(x) then
7: return true

Algorithm IncrPair. Decrement a two-digit, base β := Ni + 1 register
Parameter: x ∈ {xi, xi}, y ∈ {yi, yi}
Effect: βx + y (mod β2) decreases by one

1: procedure IncrPair(x, y)
2: if Zero(y) then
3: swap y, y

4: if Zero(x) then
5: swap x, x
6: else
7: x 7→ x
8: else
9: y 7→ y

and do not affect whether the register configuration is j-high. Finally, we know that
line 3 is eventually going to restart (Lemma 4b and fairness), so the loop cannot repeat
infinitely often.

6.3. IncrPair
This is a helper procedure to increment the “virtual”, Ni+1-bounded counter simulated
by x and y. It works by first incrementing the second digit, i.e. y. If an overflow occurs,
x is incremented as well. It is also be used to decrement the counter, by running it on x
and y.

Property (b) of the following lemma is interesting; it states that IncrPair is “reversible”
in some sense, under only the weak assumption that the configuration is i-high (or
i-proper). We need this property later to show that Large is robust.

Regarding property (c) we remark that, contrary to the other procedures, IncrPair
is not j-robust for all j, but only j ≤ i. This is simply due to the fact that it is designed
to change the value of level i registers; if executed on an i-proper configuration it results
only in a weakly i-proper configuration.

Lemma 6. Let i ∈ {1, ..., n}, x ∈ {xi, xi}, y ∈ {yi, yi}, C, C ′ ∈ NQ. Then
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(a) post(C, IncrPair(x, y)) = {C ′} if C is weakly i-proper, where C ′ is the unique
weakly i-proper multiset with ctrx,y(C ′) = ctrx,y(C) + 1 (mod Ni+1) and C ′(w) =
C(w) for w /∈ {xi, xi, yi, yi},

(b) C, IncrPair(x, y) → C ′ implies both C ′, IncrPair(x, y) → C and C ′(z) = C(z)
for z /∈ Qi, if C is (i − 1)-proper and C(w) + C(w) ≥ Ni for w ∈ {xi, yi}, and

(c) IncrPair(x, y) is j-robust, for j ≤ i.

Proof. (a) If C is weakly i-proper, the calls to Zero work deterministically and the
registers x and y are adjusted according to the specification: line 2 checks whether y
(the least significant digit) is Ni. If not, it is incremented. Otherwise, it overflows; y
is set to 0 and x is incremented, checking whether it overflows as well. Finally, note
Ni+1 = (Ni + 1)2.

(b) The property C ′(z) = C(z) for z /∈ Qi follows immediate from Lemma 5b. In
particular, lines 4-7 only affect the values of x and x, while lines 2,3 and 9 only affect y
and y. We now consider executing IncrPair twice, first with arguments x, y, then with
x, y. We start with registers C, and argue that it is possible for the second execution
to take the same branches (in lines 2 and 4) as the first. Afterwards we derive that the
registers again have values C.

Consider line 2. If the branch is not taken, Zero had no effect. After y 7→ y in line 9,
clearly C ′(y) > 0. In the second execution, line 2 runs Zero(y) (recall that the second
execution has different arguments). This may now return false and the same branch is
taken.

If the branch in line 2 is taken, after line 3 registers y, y have been changed. More
precisely, Ni units have been moved from y to y. Lines 4-7 do not affect y, y, so C ′(y) ≥ Ni.
In the second execution, the call Zero(y) may then return true.

The argument for the branch in line 4 is analogous. Finally, we argue that, if the same
branches are taken, the second execution undoes the changes of the first. Briefly, if the
branch in line 2 is not taken, only line 9 changes any registers. Clearly, executing y 7→ y
and then y 7→ y has no effect. If it is taken, the combined effect of lines 2 and 3 is moving
Ni units from y to y, which are then moved back in the second execution. Again the
situation for lines 4-7 is analogous.

(c) Let C be j-high, for j ≤ i. As Zero is robust, it does not affect whether the
register configuration is j-high and either terminates or restarts. Lines 3,5,7 and 9, if
executed, also do not affect j-highness. Finally, there is no loop and Lemma 5c implies
that lines 7 and 9 cannot hang, so IncrPair either terminates or restarts.

6.4. Large
This is the last of the subroutines, and the most involved one. The goal is to determine
whether x ≥ Ni, by using the registers of level i − 1 to simulate a “virtual” Ni-bounded
register. To ensure that the procedure is robust, we have opted for a “random” walk,
which nondeterministically moves either up or down. More concretely, at each step either
x is found nonempty, one unit is moved to x and the virtual register is incremented, or
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Algorithm Large. Nondeterministically check whether a register is maximal.
Parameter: x ∈ {xi, xi, yi, yi}, x ̸= y
Output: if x ≥ Ni return true and swap units of x − Ni and x; or return false

1: procedure Large(x) [for i = 1]
2: if maybe x > 0 then
3: x 7→ x
4: swap x, x
5: return true
6: else
7: return false

8: procedure Large(x) [for i > 1]
9: if ¬Zero(xi−1) ∨ ¬Zero(yi−1) then

10: restart
11: while true do
12: CheckProper(i − 2)
13: if maybe x > 0 then
14: x 7→ x
15: IncrPair(xi−1, yi−1)
16: if Zero(xi−1)∧Zero(yi−1) then
17: swap x, x
18: return true
19: else
20: if Zero(xi−1)∧Zero(yi−1) then
21: return false
22: if maybe x > 0 then
23: x 7→ x
24: IncrPair(xi−1, yi−1)

conversely x is nonempty, one unit moved to x, and the virtual register decremented. If
the virtual register reaches 0 from above, Large had no effect and returns false. Once
the virtual register overflows, a total of Ni units have been moved. These are put back
into x by swapping x and x and true is returned.

In the previous section we have shown that IncrPair is in some sense reversible even
under weak assumptions. This property will ensure that the random walk terminates in
that case, as it can always retrace its prior steps to go back to its starting point.

Lemma 7. Let i ∈ {1, ..., n}, x ∈ {xi, xi, yi, yi}, and C ∈ NQ. Then
(a) post(C, Large(x)) = {(C, false), (C, C(x) ≥ Ni)} if C is weakly i-proper,
(b) post(C, Large(x)) = {(C, false)} ∪ {(C ′, true) : C(x) ≥ Ni} if C is (i − 1)-proper,

with C ′(x) = C(x) + Ni, C ′(x) = C(x) − Ni and C ′(z) = C(z) for z /∈ {x, x}, and
(c) Large(x) is robust.

Proof. (a) Follows directly from (b); if C(x) ≥ Ni and C is weakly i-proper, then
C(x) = Ni and C(x) = 0, which implies C ′ = C.

(b) The case i = 1 is trivial. Assume i > 1. The registers will remain in a weakly
(i − 1)-proper configuration; lines 14, 17 and 23 do not affect this, and neither do the calls
to IncrPair (Lemma 6a), to CheckProper (Lemma 4a), nor to Zero (Lemma 5a).
As the registers are weakly (i − 1)-proper, the calls to Zero work as intended and
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deterministically check whether the register is zero (again, Lemma 5a). In particular,
using C(xi−1) = C(yi−1) = 0 we find that line 10 cannot execute. Additionally, since
the registers remain weakly (i − 1)-proper and thus (i − 2)-proper, line 12 has no effect
(Lemma 4a).

We consider the register simulated by IncrPair; for convenience we introduce the
shorthand ctr := ctrxi−1,yi−1 . As C was (i − 1)-proper, ctr(C) = 0. This counter is only
modified by the calls to IncrPair, as specified by Lemma 6a. Line 15 increments the
counter, and line 24 decrements it. Line 15 may overflow the counter, but then the
branch in line 16 will immediately be taken. Line 24 can only execute of the check in
line 20 fails, so it cannot underflow the counter.

As the counter neither over- nor underflows, for any register configuration C∗ the
procedure reaches at the beginning of the loop in line 12, ctr(C∗) correspond to units
moved from x to x via lines 14 and 23.

We now show C, Large(x) → C, false and, if C(x) ≥ Ni, C, Large(x) → C ′, true.
For the former, we even show the stronger property that C, false can be returned from
any iteration of the loop. Let C∗ denote some configuration reached at line 12. From
now on, we never take the branch in line 13. If ctr(C∗) = 0, then we claim C∗(z) = C(z)
for all z. If z has level at most i − 2 this follows from C∗ being weakly (i − 1)-proper. If
z has level i − 1, we use ctr(C∗) = 0 = ctr(C). For z at level i or above, note that only
registers x and x can be modified by the procedure, but ctr(C∗) = 0 ensures that no
units have moved between them. Using C∗ = C we now see that the branch in line 20
can be taken and we return false with registers C.

If ctr(C∗) > 0, then the branch in line 20 cannot be taken. Using C∗(x) ≥ ctr(C∗) > 0,
we can take the branch in line 22. In the next iteration of the loop we have decreased ctr
by one; the property then follows from induction. We remark that this also shows that
the procedure always terminates.

We now prove C, Large(x) → C ′, true, assuming C(x) ≥ Ni. Here, it is possible to
take the branch in line 13 Ni times and we do. Afterwards, the counter overflows and
line 18 returns true. As before, the only registers that may have changed relative to C
are x and x. We moved Ni units from x to x, swapping them then results in C ′.

Finally, we need to show that the above two cases cover all possibilities. We already
argued that the procedure always terminates and no restart can occur. If we return in
line 18, the counter was overflowed and Ni units have been moved, resulting in C ′. If we
return in line 21, changes to x and x have cancelled out, and we are in C.

(c) Let C be a j-high configuration, for some j. If j ≥ i we need only refer to (b),
noting that C ′ is still j-high. For j < i we can rely on CheckProper, Zero and
IncrPair being j-robust (lemmata 4d, 5d and 6c). In particular, they do not affect
whether the register configuration is j-high. Neither do lines 14, 17 or 23, so the registers
stay j-high. Additionally, this yields that the calls to these procedures terminate or
restart.

It remains to argue that the loop terminates. If j ≤ i − 2 this is ensured by Check-
Proper (Lemma 4b), so we are left with j = i−1. In this case the call to CheckProper
in line 12 has no effect and we shall ignore it. Further, note that the calls to Zero and
IncrPair can only change a register z if z or z is one of their arguments (lemmata 5b
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and 6b).
Let C denote the set of j-high configurations. For D, D′ ∈ C we write D ∼ D′ if

one iteration of the loop (i.e. executing lines 12-24 in sequence), starting with registers
according to D, may end with registers in D′ (without returning). We now claim that
∼ is symmetric. To see that this claim suffices, let C∗ denote the register configuration
after line 9. Using Lemma 5b, C∗(xi−1), C∗(yi−1) ≥ Ni hold. Our claim then implies
that the loop can go back to C∗ after any number of iterations. Eventually, it will do so
due to fairness. Then, it may take the else branch in line 19. Using Lemma 5b again,
line 21 may execute and the procedure returns.

We now show the claim. Fix D, D′ with D ∼ D′. There are now two cases: either D′

results from D by executing lines 14-16, or lines 20-24. We now need to argue that D
may result if the loop starts with D′. Consider the first case. The else branch in line 19
may always be taken, so it suffices that lines 20-24 may undo the effects of lines 14-16
from earlier. Due to line 14, D′(x) > 0, and the branch in line 22 may be taken. Using
Lemma 5b, lines 16 and 20 may cancel out, Lemma 6b implies that lines 15 and 24 may
cancel, and lines 14 and 23 undo each other as well.

The argument for the second case is analogous. There, line 23 ensures that we can
subsequently take the branch in line 13, and the lines cancel in the same manner.

6.5. Main
Finally, we put things together to arrive at the complete program. The implementation
is very close to the steps described in Section 5.2 in the simplified model, but instead of
guessing an i we iterate through the possibilities.

As mentioned before, Main considers a small set of initial configurations “good” and
may stabilise. All other configurations lead to a restart. The following lemma formalises
this property.

Lemma 8. Let C ∈ NQ. Then Main, started with register configuration C, can only
restart or stabilise. Additionally,

(a) it may stabilise to false if C is j-low and (j + 1)-empty, for some j ∈ {1, ..., n},

Algorithm Main. Decide whether there are at least 2 ∑
i Ni agents.

1: procedure Main
2: OF := false
3: for i = 1, ..., n do
4: while ¬Large(xi) ∨ ¬Large(yi) do
5: CheckProper(i)
6: CheckEmpty(i + 1)
7: OF := true
8: while true do
9: CheckProper(n)
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(b) it may stabilise to true if C is n-proper, and
(c) it always restarts otherwise.

Proof. The output register OF is only changed by lines 2 and 7. (This can easily be
checked syntactically; no called procedure uses OF .) So either the execution restarts; or
one of the two loops in lines 4 and 8 does not terminate and the computation stabilises.

Before moving to claims (a-c), we argue that, if C is i-proper, the i-th iteration of
the for-loop in line 3 may terminates without effect, otherwise it restarts. Here, we use
Lemma 7a to derive that line 4 has no effect and that the loop condition may be false;
due to fairness the loop terminates eventually. Line 5 has no effect as well (Lemma 4a),
and line 6 either restarts or does nothing (Lemma 3).

(a) C is (j − 1)-proper, so, as argued above, iterations i ∈ {1, ..., j − 1} of the for-loop
may terminate without changing a register, and they restart otherwise. In iteration i = j
the while-loop in line 4 cannot terminate, and lines 5-6 have no effect and cannot initiate
a restart, so the computation stabilises to false.

(b) Now all n iterations of the for-loop in line 3 may terminate without effect (or
restart, otherwise). If they do, we enter the second while-loop, in line 8, and stabilise to
true.

(c) Let j ∈ {1, ..., n} be maximal s.t. C is j − 1-proper. (Such a j always exists.) As
argued before, the first j − 1 iterations of the for-loop cannot change any registers. There
are the following cases.

Case 1, C(x) < Ni for some x ∈ {xi, yi}. Iteration i = j cannot terminate, as Large(x)
will always return false. As C is not i-low, we have C(y) > 0 or C(y) > Ni for some
y ∈ {xi, yi}. Using Lemma 4c, we then find that line 5 may restart. Due to fairness, this
happens eventually.

Case 2, C is j-high. As Large, CheckProper and CheckEmpty are robust (lem-
mata 7c, 4d and 3), the register configuration will remain j-high. Assuming that no restart
occurs we know that the subsequent computation would execute CheckProper(k) in-
finitely often, for some k ≥ j. (This occurs either in line 5, or line 9.) However, Lemma 4b
guarantees that these calls may restart, so a restart will happen eventually due to fairness.

Note that the above case distinction is exhaustive, as C cannot be j-proper (either j
would not be maximal, or C would be n-proper).

We conclude this section by arguing that the overall population program is correct
and fulfils the stated bounds.

Theorem 2. Let n ∈ N. There exists a population program deciding φ(x) ⇔ x ≥ k with
size O(n), for some k ≥ 22n−1.

Proof. We define k := 2 ∑n
i=1 Ni. (Recall that Ni+1 = (Ni + 1)2 and N1 = 1, implying

k ≥ 22n .)
Let m ∈ N and let C := {C ∈ NQ : |C| = m} denote the configurations where registers

sum to i. It suffices to show that C contains a “good” configuration; i.e. an n-proper
configuration iff m ≥ k, or a j-low and (j + 1)-empty configuration for some j ∈ {1, .., n}
iff m < k. If these hold, Lemma 8 guarantees that every run starting with another kind
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of configuration eventually restarts. By fairness, at some point the computation restarts
with a good configuration and stabilises to the correct output.

It remains to argue that the above claim holds. If m ≥ k, we note that superfluous units
can be left in register R, keeping the configuration n-proper; conversely, any n-proper
configuration C clearly has |C| ≥ k. Otherwise, a good configuration can have at most
k − 1 agents. To construct such a configuration, let j be maximal s.t. 2 ∑j−1

i=1 Ni ≤ m.
(We remark that j ∈ {1, ..., n}, due to m < k.) We now start with a (j − 1)-proper and
j-empty configuration C, and distribute the remaining m − |C| ≤ 2Nj units evenly across
xj and yj. The resulting configuration is j-low and (j + 1)-empty.

Regarding the size bound, note that we have 4n + 1 registers. We also have O(n)
instructions: Main has O(n) instructions and exists only once, while every other
procedure has constant length and is instantiated O(n) times. The swap-size is O(n) as
well, as only registers x and x are swapped, for x ∈ ⋃

i Qi.

7. Converting Population Programs into Protocols
In the previous section we have shown that succinct population programs for the flock-
of-birds predicate exist. We must now justify our model and prove that we can convert
population programs into population protocols, keeping the number of states low. We
do this in two steps; first we introduce population machines, which are a low-level
representation of population programs, then we convert these into population protocols.

Population machines are introduced in Section 7.1, they serve to provide a simplified
model. Converting population programs into machines is straightforward and uses
standard techniques, similar to how one would convert a structured program to use only
goto-statements. We will describe this in Section 7.2. The conversion to population
protocols is then described in Section 7.3, resulting in the following statement:

Theorem 9. If a population program deciding φ with size n exists, then there is a
population protocol deciding φ′(x) ⇔ φ(x − i) ∧ x ≥ i with O(n) states, for an i ∈ O(n).

Proof. This will follow from propositions 10 and 11, which are proved in the following
two sections.

We remark that φ′ is still a flock-of-bird predicate if φ is, and the constant has even
increased.

7.1. Formal Model
Definition 1. A population machine is a tuple A = (Q, F, F , I), where Q is a finite
set of registers, F a finite set of pointers, F = (Fi)i∈F a list of pointer domains, each
of which is a finite set, and I = (I1, ..., IL) is a sequence of instructions, with L ∈ N.
Additionally, OF , CF , IP ∈ F , FOF = FCF = {false, true} and FIP = {1, .., L}. For
x ∈ Q ∪ {□} we also require Vx ∈ F , and x ∈ FVx ⊆ Q

Let x, y ∈ Q, x ̸= y, X, Y ∈ F , l ∈ {1, ..., L} and f : FY → FX . There are three types
of instructions: Ii = (x 7→ y), Ii = (maybe x > 0), or Ii = (X := f(Y )).
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The size of A is |Q| + |F | + ∑
X∈F |FX | + |I|.

A population machine has a number of registers, as usual, and a number of pointers.
While each register can take any value in N, a pointer is associated with a finite set
of values it may assume. There are three special pointers: the output flag OF , which
we have already seen in population programs and is used to indicate the result of the
computation, the condition flag CF used to implement branches, and the instruction
pointer IP, storing the index of the next instruction to execute. To implement swap
instructions we use a register map; the pointer Vx, for a register x ∈ Q, stores the register
x is actually referring to. (V□ is a temporary register for swapping.) The model allows
for arbitrary additional pointers, we will use a one per procedure to store the return
address.

There are only three kinds of instructions: (x 7→ y) and (maybe x > 0) are present in
population programs as well and have the same meaning here. (With the slight caveat
that x and y are first transformed according to the register map.) The third, (X := f(Y ))
is a general-purpose instruction for pointers. It can change IP and will be used to
implement control flow constructs. We now define the semantics.

Definition 2. A configuration is a map C with C(x) ∈ N for x ∈ Q and C(X) ∈ FX

for X ∈ F . The output of C is C(OF). A configuration C is initial if C(IP) = 1 and
C(Vx) = x for x ∈ Q. For two configurations C, C ′ we write C → C ′ if

• IC(IP) = (x 7→ y), C ′(IP) = C(IP) + 1, C ′(C(Vx)) = C(C(Vx)) − 1, C ′(C(Vy)) =
C(C(Vy)) − 1 and C ′(z) = C(z) for z /∈ {IP, C(Vx), C(Vy)},

• IC(IP) = (maybe x > 0), C ′(IP) = C(IP) + 1, C ′(CF) ∈ {false, C(C(Vx)) > 0}
and C ′(z) = C(z) for z /∈ {IP, CF},

• IC(IP) = (X := f(Y )), X ≠ IP, C ′(IP) = C(IP) + 1, C ′(X) = f(C(Y )) and
C ′(z) = C(z) for z /∈ {IP, X}, or

• IC(IP) = (IP := f(Y )), C ′(IP) = f(C(Y )) and C ′(z) = C(z) for z /∈ {IP}.
To make the → relation left-total, we also define C → C if there is no C ′ ̸= C with
C → C ′.

The above definition allows for the computation to “hang” in certain situations, e.g.
when executing x 7→ y while x is 0. If this happens, the computation enters an infinite
loop and makes no progress.

We use the general definitions of stable computation from Section 3. We say that A
decides a predicate φ(x) if every fair run starting at an initial configuration C stabilises
to φ(∑

q∈Q C(q)).

7.2. From Population Programs to Machines
Population machines do not have high-level constructs such as loops or procedures, but
these can be implemented as macros using standard techniques. Let P = (Q, Proc)
denote a population program, we convert it to a population machine A = (Q, F, F , I).
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If and while. Our model allows for direct manipulation of the instruction pointer. We
use this to implement both conditional and unconditional jumps. To evaluate branches,
we use the CF pointer to store the intermediate boolean results. An example is given in
Figure 2. For more complicated boolean formulae one needs multiple jumps, but since
we limited population programs to binary expressions (with optional negations) we only
need a constant number of instructions for each branch.

Recall also that for-loops are only a macro in population programs, so we do not have
to implement them here.

while ¬(maybe x > 0) do
x 7→ y

...
⇝

1: maybe x > 0

2: IP :=
5 if CF

1 else
3: x 7→ y
4: IP := 1
5: ...

Figure 2: Implementation of a while-loop.

Procedure calls. In a population program, procedures only have bounded recur-
sion. More precisely, the directed graph of calls is acyclic. Recall also that pro-
cedures do not take arguments, instead the parameters specify a family of proce-
dures. To take an example from Section 6, CheckProper is not a procedure, but
CheckProper(1), ..., CheckProper(n) are. Hence our implementation only needs to
deal with returning from a procedure, jumping to the correct instruction and propagating
the return value.

For the former, we use a pointer P for each procedure P ∈ Proc. This pointer has
domain FP ⊆ {1, ..., L}. Calling a procedure involves setting this pointer to the address
the procedure should return to, before jumping to the first instruction of the procedure.
To propagate return values, we store them in CF . A simple example is shown in Figure 3.
While FP := {1, ..., L} would work, we limit FP to contain only the necessary elements
(i.e. one per call of P ) to reduce the size of the resulting machine.

The population program is specified to start by executing Main, so we insert a call to
it as the first instruction followed by an infinite loop in case Main returns.

AddTwo
...
procedure AddTwo

x 7→ y
x 7→ y
return true

⇝

1: AddTwo := 3
2: IP := 4
3: ...
4: x 7→ y
5: x 7→ y
6: CF := true
7: IP := AddTwo

Figure 3: Implementation of a procedure.
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Swaps. Most of the heavy lifting is in the definition of the machine model (and the
later conversion to population protocols). To implement (swap x, y) we replace it by
the instructions (V□ := Vx; Vx := Vy; Vy := V□), which adjust the register map. Similar
to procedure calls, we prune FVx to contain only necessary elements to reduce size; the
sum ∑

x∈Q|FVx | then matches to the swap-size introduced in Section 4.
Restarts. A restart changes registers arbitrarily and then continues execution at the
beginning. We first transform the population program so that it does the first part by
itself, as sketched in Figure 4. Afterwards, a restart is simply IP := 1. (One could reset
the register map by executing Vx := x for x ∈ Q, but this is not necessary as it is always
a permutation.)

restart
... ⇝

1: Restart
2: ...
3: procedure Restart
4: for (y, z) ∈ Q × {x} ∪ {x} × Q do
5: while maybe y > 0 do
6: y 7→ z

7: restart

Figure 4: Implementing restarts. As an intermediate step, restarts are replaced by a
helper procedure that moves to a new configuration before restarting. Here
x ∈ Q is arbitrary.

To summarise the above, we end up with the following proposition.

Proposition 10. Let k ∈ N. If a population program deciding φ with size λ exists, then
there is a population machine deciding φ with size O(λ).

Proof. Recall that the size of a population program is λ = n + L + S, where n is the
number of registers, L the number of instructions, and S the swap-size.

Our conversion has exactly n registers. We create a pointer for each register and
each procedure, so the number of pointers is O(n + L). As the pointer domains of the
procedure pointers correspond to the call-sites of the respective procedures, the total
size of these domains is O(L). The total size of the domains of the register pointers
corresponds to the swap-size, so it is O(S). The domains of the three special pointers
OF , CF and IP have size O(L).

To estimate the number of instructions note that all primitives, except for restart,
expand to a constant number if instructions. For restart we need to introduce the helper
procedure of length Θ(n), but this overhead is only incurred once. So in total we end up
with O(n + L) instructions.
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7.3. Conversion to Population Protocols
Let A = (Q, F, F , I) denote a population machine. Our goal is to convert A to a
population protocol PP = (Q∗, δ, I, O).

We will use two types of agents: register agents to store the values of the registers,
and pointer agents to store the pointers. For a register we have many identical agents,
and the value of the register corresponds to the total number of those agents. However,
for each pointer we use a unique agent, storing the value of the pointer in its state.

The population protocol has no leaders, so we implement a leader election for each
pointer. If two agents store the value of a pointer, they eventually meet and one of them
is moved to another state. When this happens, the computation is restarted — but note
that the values of the registers are not reset. As population machines have no restrictions
on the initial register configuration, this poses no issues.

For the population to come to a consensus, we use a standard output broadcast. In a
first step, we define a population protocol that merely simulates the machine, without
coming to a consensus. Afterwards, we add a single bit to all states. In this bit an agent
stores its current opinion. When any agent meets the pointer agent of the output flag
OF , the former will assume the opinion of the latter. Eventually, the value of the output
flag has stabilised and will propagate throughout the entire population, at which point a
consensus has formed.

We now define our conversion formally.
States. The register agents use states Q, while the pointer agent for pointer X ∈ F\{IP}
uses states of the form QX := {Xv

s : v ∈ FX , s ∈ SX}. Here, v ∈ FX stores the current
value of the pointer, while s ∈ SX indicates intermediate stages during the execution of
an instruction. The possible values of s depend on the type of pointer:

SIP := {none, wait, half}
SX := {none, done, emit, take, test, true, false} if X = Vx

SX := {none, done} if X ̸= Vx, X ̸= IP

Finally, to perform the mappings necessary for instruction of the form (X := f(Y )),
we add states Qmap := {X i

map : Ii = (X := f(Y ))}.
In total, we have states Q∗ := Q ∪ ⋃

X∈F QX ∪ Qmap.
Initial states and leader election. Let X1, ..., X|F | denote some enumeration of F with
X|F | = IP. We set I := {X1}, i.e. we use X1 as unique initial state.

For each pointer Xi, fix an initial value vi ∈ FXi
. These initial values must fulfil

the requirements of initial configurations set forth in Definition 2, i.e. v|F | := 1 (recall
X|F | = IP), and vi := x if Xi = Vx for x ∈ Q. To define the transitions, we also fix some
arbitrary register x ∈ Q. For convenience, we use ∗ as a wildcard.

(Xi)∗
∗, (Xi)∗

∗ 7→ (Xi)vi
none, (Xi+1)vi+1

none for i = 1, ..., |F | − 1
IP∗

∗, IP∗
∗ 7→ (X1)v1

none, x
〈elect〉

Intuitively, whenever two agents in Xi meet, one of them moves to Xi+1, initialising it in
the process. The pointer IP is handled slightly differently: here one of the agents moves
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to x and thus becomes a register agent, while the other moves to X1. This will then
re-initialise X1, ..., X|F |.
Instructions. The transitions for executing an instruction Ii, i ∈ {1, ..., L}, depend on
the type of instruction. The first case is Ii = (x 7→ y). This is somewhat involved as we
need to first translate x and y using the register map. First (the agent responsible for)
IP instructs Vx to move one agent from the register currently assigned to x to some fixed
register z. (Note that z is independent of the instruction.) After that is completed, Vy

moves the agent from z to its target. Note that i = L means that the machine hangs.

IP i
none, (Vx)v

∗ 7→ IP i
wait, (Vx)v

emit for v ∈ FVx

(Vx)v
emit, v 7→ (Vx)v

done, z for v ∈ FVx

IP i
wait, (Vx)v

done 7→ IP i
half, (Vx)v

none for v ∈ FVx

IP i
half, (Vy)v

∗ 7→ IP i
wait, (Vy)v

take for v ∈ FVy

(Vy)v
take, z 7→ (Vy)v

done, v for v ∈ FVy

IP i
wait, (Vy)v

done 7→ IP i+1
none, (Vy)v

none if i < L, for v ∈ FVx

〈move〉

For Ii = (maybe x > 0) the IP agent again recruits the Vx agent to do the actual
operation. The latter either detects x or it does not, and then stores the result in CF .

IP i
none, (Vx)v

∗ 7→ IP i
wait, (Vx)v

test for v ∈ FVx

(Vx)v
test, v 7→ (Vx)v

true, v for v ∈ FVx

(Vx)v
test, q 7→ (Vx)v

false, q for v ∈ FVx , q ∈ Q∗ \ {v}
(Vx)v

b , CF ∗
∗ 7→ (Vx)v

done, CF b
none for v ∈ FVx , b ∈ {true, false}

IP i
wait, (Vx)v

done 7→ IP i+1
none, (Vx)v

none if i < L, for v ∈ FVx

〈test〉

The third type, Ii = (X := f(Y )), has some special cases. We first assume Y ̸= IP wlog,
as the value of IP is simply i and f(Y ) could be replaced by a constant expression. Both
X = Y and X = IP have to be handled separately. The general procedure then is that
(the agent responsible for) IP moves X into an intermediate state in Qmap and waits.
Then, X meets Y , updates its value, and finally signals IP to continue to computation.

We start with the ordinary case X /∈ {Y, IP}.

IP i
none, X∗

∗ 7→ IP i
wait, X i

map if i < L

X i
map, Y v

∗ 7→ X
f(v)
done, Y v

none for v ∈ FY

IP i
wait, Xv

done 7→ IP i+1
none, Xv

none for v ∈ FX

〈pointer〉

Now we handle the special cases. These are easier, as only two agents are involved.

IP i
none, Y v

∗ 7→ IPf(i)
none, Y v

none if X = IP, for v ∈ FY

IP i
none, Y v

∗ 7→ IP i+1
none, Y f(v)

none if X = Y , i < L, for v ∈ FY

〈pointer〉
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Output broadcast. As mentioned above, we need to ensure that the agents come to a
consensus. So we convert PP again, to the final population protocol PP ′ = (Q′, δ′, I ′, O′).
This uses the standard broadcast construction, so Q′ := Q∗×{true, false}, I ′ := I×{false},
O′ := Q′×{true} and for all q1, q2, q′

1, q′
2 ∈ Q∗ with (q1, q2 7→ q′

1, q′
2) ∈ δ or (q1, q2) = (q′

1, q′
2)

we have transitions

(q1, ∗), (q2, ∗) 7→ (q′
1, b), (q′

2, b) if OF b
∗ ∈ {q′

1, q′
2}, for a b ∈ {true, false}

(q1, b1), (q2, b2) 7→ (q′
1, b1), (q′

2, b2) otherwise

We now summarise the above conversion.

Proposition 11. If a population machine deciding φ with size n exists, then there is a
population protocol deciding φ′(x) ⇔ φ(x − i) ∧ x ≥ i with O(n) states, for some i ≤ n.

Proof. Let π denote a mapping between configurations of the population machine A and
the population protocol PP resulting from our conversion. A configuration C of A is
mapped to a configuration π(C) of PP as follows.

π(C)(x) := C(x) for x ∈ Q
π(C)(Xv

none) := 1 if C(X) = v, for X ∈ F, v ∈ FX

π(C)(X∗
∗ ) := 0 otherwise

If PP is run on a configuration with fewer than |F | agents, no agent can reach a state
IP∗

∗ via 〈elect〉, and not other transition is enabled. In particular, it is not possible for
any agent to enter OF true

∗ .
We now assume that at least |F | agents are present, and argue that every fair run of

PP reaches a configuration π(C). As long as there is an X ∈ F with at least two agents
in states X∗

∗ , 〈elect〉 is enabled. So eventually we enter a configuration where every X∗
∗

has exactly one agent. At the moment this happens, these agents are in Xv
none, where

v is the initial state of the pointer. Therefore we have reached a configuration π(C);
moreover, C must be an initial configuration of A with |C| = |π(C)| − |F | agents.

To see that a run of PP corresponds to one of A, we need only convince ourselves that
〈move〉, 〈test〉 and 〈pointer〉 correctly implement the semantics of Definition 2 and move
to a configuration π(C ′), where C → C ′.

Every fair run of A stabilises a b ∈ {true, false}, according to φ. So eventually there
will be a unique agent in OF b

∗, and it will remain in one of these states.
It remains to argue that runs of PP ′ correspond to runs of PP (and thus to runs of A),

and that they stabilise to the correct output. The former is easy to see, as the output
broadcast construction simply uses the first component to execute PP (and this is not
affected by the second). Once a unique agent remains in OF b

∗ in PP, the corresponding
run in PP ′ will have an agent in (OF b

∗, b). Eventually, this agent will convince all other
agents that the output is b, and the computation stabilises to b.

As PP (and PP ′) use |F | agents to store the value of each pointer, the corresponding
configurations of A are smaller, and PP ′ decides φ′(x) ⇔ x ≥ |F | ∧ φ(x − |F |).
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Finally, we need to count the states of PP ′. We have |Q′| = 2 · |Q∗| and

|Q∗| = |Q| +
∑

X∈F

|QX | + |Qmap| ≤ |Q| + 7
∑

X∈F

|FX | + L ∈ O(n)

8. Conclusions
We have shown an O(log log n) upper bound on the state-complexity of flock-of-bird
predicates for leaderless population protocols, closing the last remaining gap. Our result
is based on a new model, population programs, which enable the specification of leaderless
population protocols using structured programs.

Flock-of-bird predicates can be considered the most important family for the study of
space complexity, as they are (perhaps) the simplest way of encoding a number into the
protocol. The precise space complexity of other classes of predicates, however, is still
mostly open. The existing results generalise somewhat; the construction presented in
this paper, for example, can also be used to decide φ(x) ⇔ x = k for k ≥ 22n with O(n)
states. As mentioned, there also exist succinct constructions for arbitrary (decidable)
predicates, but — to the extent of our knowledge — it is still open whether, for example,
φ(x) ⇔ x = 0 (mod k) can be decided for k ≥ 22n , both with and without leaders.

(Such remainder predicates have special significance for population protocols, as any
predicate decided by a population protocol can be written as a boolean combination of
threshold and modulo predicates.)

As defined, our model of population programs can only decide unary predicates and
it seems impossible to decide even quite simple remainder predicates (e.g. “is the total
number of agents even”). Is this a fundamental limitation, or simply a shortcoming of
our specific choices? We tend towards the latter, and hope that other very succinct
constructions for leaderless population protocols can make use of a similar approach.
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A. Robustness of Flock-of-bird Protocols
A major motivation behind the construction of succinct protocols for flock-of-bird predi-
cates is the application to chemical reactions. In this, as in other environments, compu-
tations must be able to deal with errors. While not the focus of this paper, we want to
briefly discuss how our construction, by virtue of dealing with adversarial initialisation,
is robust against some (but not all) sources of noise.

Related research has considered self-stabilising population protocols [8, 16, 15]. Such
a protocol must converge to a desired output regardless of the input configuration. This
matches exactly the guarantees provided by our population programs; however, in the
process of converting to population protocols the property is lost. Indeed, it is impossible
for a self-stabilising population protocol (with a constant number of states) to decide
φ(x) ⇔ x ≥ k for any k > 1, as any stably accepting configuration must still be stably
accepting if one agent is removed.

However, we can consider a weaker notion of noise, where an adversary may add or
remove agents during the computation. To the extend of our knowledge, our protocol
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is the first to be robust against addition of agents. In particular, all prior known
constructions are 1-aware, and thus can be made to accept by adding a single agent to
the 1-aware state.

Our construction is not robust against removal of agents, even if the removal does not
cause the number of agents to drop below the threshold. Intuitively, it is possible to
remove the agent responsible for storing the instruction pointer (see Section 7.3) and the
computation stops before the output is determined.

This limitation is shared by all prior constructions except for one (discussed below).
Intuitively, the constructions of [4, 13, 19] collect the value of multiple agents into a
single one. Eliminating the latter may then change the output.

There is a known construction that can handle removal of agents. It uses states
{0, ..., k} and transitions

i, i 7→ i + 1, i for i < k k, i 7→ k, k for i < k

However, this protocol cannot handle addition of agents (a single state-k will cause it to
accept) and it not succinct.
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