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Compact Oblivious Routing

Input:
I undirected graph
I source-target pairs (si , ti )
I demands di

Output:
I si -ti flows with value 1
I specified implicitly by a

routing algorithm
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only one result on
compact oblivious routing
w.r.t. congestion!



[Räcke, Schmidt 2019]

I uses a hierarchical decomposition
I competitive ratio Õ(1)
I node labels Õ(1)
I packet headers Õ(1)
I routing tables Õ(deg(v))

But:
I only in unweighted graphs! 1

Our contribution: extend this to graphs with polynomial weights.

1and graphs where the decomposition tree has bounded degree
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I packet headers Õ(1)
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Our Result

Theorem 1. For any undirected graph with polynomial weights
and n nodes there exists a compact oblivious routing scheme with:
I competitive ratio O(log9 n)
I node labels O(log2 n)
I packet headers O(log3 n)
I routing tables O(deg(v) log9 n)
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Two Directions

Our routing scheme needs to support two operations:

“mixing”

“unmixing”

I “mixing” is easier, we start with that

From now on, we think only about a single parent cluster.



Two Directions

Our routing scheme needs to support two operations:

“mixing”

“unmixing”

I “mixing” is easier, we start with that

From now on, we think only about a single parent cluster.



Two Directions

Our routing scheme needs to support two operations:

“mixing”

“unmixing”

I “mixing” is easier, we start with that

From now on, we think only about a single parent cluster.



Why are weighted graphs hard? (1)

Unweighted graph:
I Compute multi-commodity flow routing all children at once

I Possible with low congestion
I Use paths instead of flows (randomised rounding)
I Due to low congestion, only few paths per edge
I Can store per-path routing information in the graph

I Õ(deg(v)) per adjacent node
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Why are weighted graphs hard? (1)

Weighted graph:

Many paths use the same edge!



Single-commodity Flows
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Allows us to use single-commodity flows as building block.
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I are given a cut (M, V \ M), with |M| = |V \ M|
I output any bipartite matching on this cut
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Cut-matching Games [Khandekar, Rao, Vazirani 2006]

Now we can do a random walk:
I Each iteration we throw a coin
I Either change to the matching partner or not
I Result: Uniformly distributed



Routing a Random Walk

I Idea: Use single-commodity flow instead of matching

I two flows, one in each direction
I the procedure still works!

We need only Õ(1) flows!



Routing a Random Walk

I Idea: Use single-commodity flow instead of matching
I two flows, one in each direction
I the procedure still works!

We need only Õ(1) flows!



Mixing works!

“mixing”

I embed a random walk for the parent
I go from child to parent by executing the random walk



Unmixing



Hypercube Embedding

Problem:
I there can be Ω(n) child clusters
I so we must compress the routing information

[Räcke, Schmidt 2019] use a hypercube:
I each child cluster gets a (contiguous!) range of hypercube ids
I each node gets roughly O(deg(v)) hypercube ids
I each hypercube id has O(log n) neighbours

Only need to store routing information for Õ(deg(v)) hypercube
edges in each node.
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So we use O(log n) hypercubes with geometric weights.



Why are weighted graphs hard? (2)

Hypercube ids are not bounded by deg(v) but weighted degree.

So we use O(log n) hypercubes with geometric weights.



For now, consider a hypercube with weight 1.

What do we need to route?



Why are weighted graphs hard? (3)
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Use randomised rounding to get a single path for each demand.



Why are weighted graphs hard? (3)

Same problem we had earlier!
We cannot store the paths.



Compact Path Encoding

Solution: random walk + Valiant’s trick
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random walk
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I do a random walk to (random) intermediate node
I then do random walk, but condition on ending up at the target
I this is Valiant’s trick, so good congestion
I only need Õ(1) coin-flips to store the path!
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I only need Õ(1) coin-flips to store the path!



Compact Path Encoding

Solution: random walk + Valiant’s trick

random walk
ending at ti

si ti

random walk
starting at si

I do a random walk to (random) intermediate node
I then do random walk, but condition on ending up at the target
I this is Valiant’s trick, so good congestion
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Compact Path Encoding
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Now we can store the path information at the source.
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si would have to store too many paths.



Distribute Routing Information

si ti

Idea: This happens only if there are many small edges between si
and ti → We can use adjacent nodes for storage!
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Thank you for
your attention!


