
Compact Oblivious Routing in Weighted Graphs

Philipp Czerner, Harald Räcke
Fakultät für Informatik, TU München

August 25, 2020

Compact Oblivious Routing

Input:
I undirected graph
I source-target pairs (si , ti)
I demands di

Output:
I si -ti flows fi with value di

s1

s2

s3

t1

t2

t3

d3 = 4

d2 = 7

d1 = 5

Compact Oblivious Routing

Input:
I undirected graph
I source-target pairs (si , ti)
I demands di

Output:
I si -ti flows fi with value 1

s1

s2

s3

t1

t2

t3

d3 = ?

d2 = ?

d1 = ?

Compact Oblivious Routing

Input:
I undirected graph
I source-target pairs (si , ti)
I demands di

Output:
I si -ti flows with value 1
I specified implicitly by a

routing algorithm

s1

s2

s3

t1

t2

t3

d3 = ?

d2 = ?

d1 = ?

Routing Algorithm

routing
algorithm

packet
header

routing
table

packet
header

edge
index

current
node

incoming outgoing

I packet header initialised to target’s node label

Routing Algorithm

routing
algorithm

packet
header

routing
table

packet
header

edge
index

current
node

incoming outgoing

I packet header initialised to target’s node label

Cost Measures

I competitive ratio
1. total load∑

e

∑
i

di fi (e)
w(e)

2. maximum load (congestion)

max
e

∑
i

di fi (e)
w(e)

I space complexity
I node labels
I routing tables
I packet headers

Cost Measures

I competitive ratio
1. total load∑

e

∑
i

di fi (e)
w(e)

2. maximum load (congestion)

max
e

∑
i

di fi (e)
w(e)

I space complexity
I node labels
I routing tables
I packet headers

shortest path routing
already oblivious
many results on compact
routing schemes

Cost Measures

I competitive ratio
1. total load∑

e

∑
i

di fi (e)
w(e)

2. maximum load (congestion)

max
e

∑
i

di fi (e)
w(e)

I space complexity
I node labels
I routing tables
I packet headers

shortest path routing
already oblivious
many results on compact
routing schemes, see e.g.

[Frederickson, Janardan 1988]
[Fraigniaud, Gavoille 1995]
[Cowen 2001]
[Thorup, Zwick 2001]
[Krioukov, Fall, Yang 2004]
[Abraham et al. 2006]
[Rétvári et al. 2013]

Cost Measures

I competitive ratio
1. total load∑

e

∑
i

di fi (e)
w(e)

2. maximum load (congestion)

max
e

∑
i

di fi (e)
w(e)

I space complexity
I node labels
I routing tables
I packet headers

shortest path routing
already oblivious
many results on compact
routing schemes

only one result on
compact oblivious routing
w.r.t. congestion!

[Räcke, Schmidt 2019]

I uses a hierarchical decomposition
I competitive ratio Õ(1)
I node labels Õ(1)
I packet headers Õ(1)
I routing tables Õ(deg(v))

But:
I only in unweighted graphs! 1

Our contribution: extend this to graphs with polynomial weights.

1and graphs where the decomposition tree has bounded degree

[Räcke, Schmidt 2019]

I uses a hierarchical decomposition
I competitive ratio Õ(1)
I node labels Õ(1)
I packet headers Õ(1)
I routing tables Õ(deg(v))

But:
I only in unweighted graphs! 1

Our contribution: extend this to graphs with polynomial weights.

1and graphs where the decomposition tree has bounded degree

Our Result

Theorem 1. For any undirected graph with polynomial weights
and n nodes there exists a compact oblivious routing scheme with:
I competitive ratio O(log9 n)
I node labels O(log2 n)
I packet headers O(log3 n)
I routing tables O(deg(v) log9 n)

Decomposition Tree

Decomposition Tree

Decomposition Tree

Decomposition Tree

Decomposition Tree

Decomposition Tree

Decomposition Tree

Decomposition Tree

Decomposition Tree

Decomposition Tree

Two Directions

Our routing scheme needs to support two operations:

“mixing”

“unmixing”

I “mixing” is easier, we start with that

From now on, we think only about a single parent cluster.

Two Directions

Our routing scheme needs to support two operations:

“mixing”

“unmixing”

I “mixing” is easier, we start with that

From now on, we think only about a single parent cluster.

Two Directions

Our routing scheme needs to support two operations:

“mixing”

“unmixing”

I “mixing” is easier, we start with that

From now on, we think only about a single parent cluster.

Why are weighted graphs hard? (1)

Unweighted graph:
I Compute multi-commodity flow routing all children at once

I Possible with low congestion
I Use paths instead of flows (randomised rounding)
I Due to low congestion, only few paths per edge
I Can store per-path routing information in the graph

I Õ(deg(v)) per adjacent node

Why are weighted graphs hard? (1)

Unweighted graph:
I Compute multi-commodity flow routing all children at once
I Possible with low congestion

I Use paths instead of flows (randomised rounding)
I Due to low congestion, only few paths per edge
I Can store per-path routing information in the graph

I Õ(deg(v)) per adjacent node

Why are weighted graphs hard? (1)

Unweighted graph:
I Compute multi-commodity flow routing all children at once
I Possible with low congestion
I Use paths instead of flows (randomised rounding)

I Due to low congestion, only few paths per edge
I Can store per-path routing information in the graph

I Õ(deg(v)) per adjacent node

Why are weighted graphs hard? (1)

Unweighted graph:
I Compute multi-commodity flow routing all children at once
I Possible with low congestion
I Use paths instead of flows (randomised rounding)
I Due to low congestion, only few paths per edge
I Can store per-path routing information in the graph

I Õ(deg(v)) per adjacent node

Why are weighted graphs hard? (1)

Weighted graph:

Many paths use the same edge!

Single-commodity Flows

Multi-commodity Flows?

4
4

7

7

4
4

5 5

4

3

Multi-commodity Flows?

4 4

7
4
3

I assign each unit of flow a unique id
I determine thresholds s.t. each edge gets the right amount

We cannot keep flow of different sources separate!

Multi-commodity Flows?

4 4

7
4
3

I assign each unit of flow a unique id
I determine thresholds s.t. each edge gets the right amount

We cannot keep flow of different sources separate!

Single-commodity Flows

4
4

7

7

4
4

5 5

1
3
2

2

Single-commodity Flows

4
4

7

7

4
4

5 5

3

4

Allows us to use single-commodity flows as building block.

Are we done?

“mixing”

I We could embed a single-commodity flow for each child

I Uses Õ(deg(v)) space per child cluster → too much

Are we done?

“mixing”

I We could embed a single-commodity flow for each child
I Uses Õ(deg(v)) space per child cluster → too much

Random Walks

Cut-matching Games [Khandekar, Rao, Vazirani 2006]

I Õ(1) iterations

, in each we
I are given a cut (M, V \ M), with |M| = |V \ M|
I output any bipartite matching on this cut

Cut-matching Games [Khandekar, Rao, Vazirani 2006]

I Õ(1) iterations, in each we
I are given a cut (M, V \ M), with |M| = |V \ M|

I output any bipartite matching on this cut

Cut-matching Games [Khandekar, Rao, Vazirani 2006]

I Õ(1) iterations, in each we
I are given a cut (M, V \ M), with |M| = |V \ M|
I output any bipartite matching on this cut

Cut-matching Games [Khandekar, Rao, Vazirani 2006]

Now we can do a random walk:
I Each iteration we throw a coin
I Either change to the matching partner or not
I Result: Uniformly distributed

Routing a Random Walk

I Idea: Use single-commodity flow instead of matching

I two flows, one in each direction
I the procedure still works!

We need only Õ(1) flows!

Routing a Random Walk

I Idea: Use single-commodity flow instead of matching
I two flows, one in each direction
I the procedure still works!

We need only Õ(1) flows!

Mixing works!

“mixing”

I embed a random walk for the parent
I go from child to parent by executing the random walk

Unmixing

Hypercube Embedding

Problem:
I there can be Ω(n) child clusters
I so we must compress the routing information

[Räcke, Schmidt 2019] use a hypercube:
I each child cluster gets a (contiguous!) range of hypercube ids
I each node gets roughly O(deg(v)) hypercube ids
I each hypercube id has O(log n) neighbours

Only need to store routing information for Õ(deg(v)) hypercube
edges in each node.

Hypercube Embedding

Problem:
I there can be Ω(n) child clusters
I so we must compress the routing information

[Räcke, Schmidt 2019] use a hypercube:

I each child cluster gets a (contiguous!) range of hypercube ids
I each node gets roughly O(deg(v)) hypercube ids
I each hypercube id has O(log n) neighbours

Only need to store routing information for Õ(deg(v)) hypercube
edges in each node.

Hypercube Embedding

Problem:
I there can be Ω(n) child clusters
I so we must compress the routing information

[Räcke, Schmidt 2019] use a hypercube:
I each child cluster gets a (contiguous!) range of hypercube ids

I each node gets roughly O(deg(v)) hypercube ids
I each hypercube id has O(log n) neighbours

Only need to store routing information for Õ(deg(v)) hypercube
edges in each node.

Hypercube Embedding

Problem:
I there can be Ω(n) child clusters
I so we must compress the routing information

[Räcke, Schmidt 2019] use a hypercube:
I each child cluster gets a (contiguous!) range of hypercube ids
I each node gets roughly O(deg(v)) hypercube ids

I each hypercube id has O(log n) neighbours
Only need to store routing information for Õ(deg(v)) hypercube
edges in each node.

Hypercube Embedding

Problem:
I there can be Ω(n) child clusters
I so we must compress the routing information

[Räcke, Schmidt 2019] use a hypercube:
I each child cluster gets a (contiguous!) range of hypercube ids
I each node gets roughly O(deg(v)) hypercube ids
I each hypercube id has O(log n) neighbours

Only need to store routing information for Õ(deg(v)) hypercube
edges in each node.

Hypercube Embedding

Problem:
I there can be Ω(n) child clusters
I so we must compress the routing information

[Räcke, Schmidt 2019] use a hypercube:
I each child cluster gets a (contiguous!) range of hypercube ids
I each node gets roughly O(deg(v)) hypercube ids
I each hypercube id has O(log n) neighbours

Only need to store routing information for Õ(deg(v)) hypercube
edges in each node.

Why are weighted graphs hard? (2)

Hypercube ids are not bounded by deg(v) but weighted degree.

So we use O(log n) hypercubes with geometric weights.

Why are weighted graphs hard? (2)

Hypercube ids are not bounded by deg(v) but weighted degree.

So we use O(log n) hypercubes with geometric weights.

For now, consider a hypercube with weight 1.

What do we need to route?

Why are weighted graphs hard? (3)

1

1

1

1

1

Use randomised rounding to get a single path for each demand.

Why are weighted graphs hard? (3)

Same problem we had earlier!
We cannot store the paths.

Compact Path Encoding

Solution: random walk + Valiant’s trick

si ti

random walk
starting at si

I do a random walk to (random) intermediate node
I then do random walk, but condition on ending up at the target
I this is Valiant’s trick, so good congestion
I only need Õ(1) coin-flips to store the path!

Compact Path Encoding

Solution: random walk + Valiant’s trick

si ti

random walk
starting at si

I do a random walk to (random) intermediate node

I then do random walk, but condition on ending up at the target
I this is Valiant’s trick, so good congestion
I only need Õ(1) coin-flips to store the path!

Compact Path Encoding

Solution: random walk + Valiant’s trick

random walk
ending at ti

si ti

random walk
starting at si

I do a random walk to (random) intermediate node
I then do random walk, but condition on ending up at the target

I this is Valiant’s trick, so good congestion
I only need Õ(1) coin-flips to store the path!

Compact Path Encoding

Solution: random walk + Valiant’s trick

random walk
ending at ti

si ti

random walk
starting at si

I do a random walk to (random) intermediate node
I then do random walk, but condition on ending up at the target
I this is Valiant’s trick, so good congestion

I only need Õ(1) coin-flips to store the path!

Compact Path Encoding

Solution: random walk + Valiant’s trick

random walk
ending at ti

si ti

random walk
starting at si

I do a random walk to (random) intermediate node
I then do random walk, but condition on ending up at the target
I this is Valiant’s trick, so good congestion
I only need Õ(1) coin-flips to store the path!

Compact Path Encoding

1100

0001

0010

1010

1101

Now we can store the path information at the source.

Why are weighted graphs hard? (4)

4

si ti

This does not work for hypercubes with large weight!

si would have to store too many paths.

Why are weighted graphs hard? (4)

si ti

This does not work for hypercubes with large weight!
si would have to store too many paths.

Distribute Routing Information

si ti

Idea: This happens only if there are many small edges between si
and ti → We can use adjacent nodes for storage!

Distribute Routing Information
2

3

s1 t1

s2 t2

I construct paths

I identify intermediate nodes
I group demands
I route a single-commodity flow

Distribute Routing Information

s1 t1

s2 t2

I construct paths
I identify intermediate nodes

I group demands
I route a single-commodity flow

Distribute Routing Information

s1 t1

s2 t2

I construct paths
I identify intermediate nodes
I group demands

I route a single-commodity flow

Distribute Routing Information

s1 t1

s2 t2

I construct paths
I identify intermediate nodes
I group demands
I route a single-commodity flow

Distribute Routing Information

s1 t1

s2 t2

I route backwards

I packets might get mixed up
I new demands

I smaller
I use storage of intermediate nodes

Distribute Routing Information

s1 t1

s2 t2

I route backwards
I packets might get mixed up

I new demands
I smaller
I use storage of intermediate nodes

Distribute Routing Information
1

1
1

1

1

s1 t1

s2 t2

I route backwards
I packets might get mixed up
I new demands

I smaller
I use storage of intermediate nodes

Thank you for
your attention!

