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Abstract
In their 2006 seminal paper in Distributed Computing, Angluin et al. present a construction that,
given any Presburger predicate as input, outputs a leaderless population protocol that decides the
predicate. The protocol for a predicate of size m (when expressed as a Boolean combination of
threshold and remainder predicates with coefficients in binary) runs in O(m · n2 log n) expected
number of interactions, which is almost optimal in n, the number of interacting agents. However,
the number of states of the protocol is exponential in m. This is a problem for natural computing
applications, where a state corresponds to a chemical species and it is difficult to implement protocols
with many states. Blondin et al. described in STACS 2020 another construction that produces
protocols with a polynomial number of states, but exponential expected number of interactions. We
present a construction that produces protocols with O(m) states that run in expected O(m7 · n2)
interactions, optimal in n, for all inputs of size Ω(m). For this, we introduce population computers,
a carefully crafted generalization of population protocols easier to program, and show that our
computers for Presburger predicates can be translated into fast and succinct population protocols.
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1 Introduction

Population protocols [4, 5] are a model of computation in which indistinguishable, mobile
finite-state agents, randomly interact in pairs to decide whether their initial configuration
satisfies a given property, modelled as a predicate on the set of all configurations. The
decision is taken by stable consensus; eventually all agents agree on whether the property
holds or not, and never change their mind again. Population protocols are very close to
chemical reaction networks, a model in which agents are molecules and interactions are
chemical reactions.

In a seminal paper, Angluin et al. proved that population protocols decide exactly the
predicates definable in Presburger arithmetic (PA) [7]. One direction of the result is proved
in [5] by means of a construction that takes as input a Presburger predicate and outputs a
protocol that decides it. The construction uses the quantifier elimination procedure for PA:
every Presburger formula φ can be transformed into an equivalent boolean combination of
threshold predicates of the form a⃗ · x⃗ ≥ c and remainder predicates of the form a⃗ · x⃗ ≡m c,
where a⃗ is an integer vector, c and m are integers, and ≡m denotes congruence modulo m

[13]. Slightly abusing language, we call the set of these boolean combinations quantifier-free

mailto:czerner@in.tum.de
https://nicze.de/philipp
https://orcid.org/0000-0002-1786-9592
mailto:guttenbe@in.tum.de
https://orcid.org/0000-0001-6140-6707
mailto:helfrich@in.tum.de
https://martinhelfrich.de
https://orcid.org/0000-0002-3191-8098
mailto:esparza@in.tum.de
https://www7.in.tum.de/~esparza
https://orcid.org/0000-0001-9862-4919


2 Fast and Succinct Population Protocols for Presburger Arithmetic

Presburger arithmetic (QFPA).1 Using that PA and QFPA have the same expressive power,
Angluin et al. first construct protocols for all threshold and remainder predicates, and then
show that the predicates computed by protocols are closed under negation and conjunction.

The two fundamental parameters of a protocol are the expected number of interactions
until a stable consensus is reached, and the number of states of each agent. The expected
number of interactions divided by the number of agents, also called the parallel execution
time, is an adequate measure of the runtime of a protocol when interactions occur in parallel
according to a Poisson process [6]. The number of states measures the complexity of an
agent. In natural computing applications, where a state corresponds to a chemical species, it
is difficult to implement protocols with many states.

Given a formula φ of QFPA, let m be the number of bits of the largest coefficient of φ

in absolute value, and let s be the number of atomic formulas of φ, respectively. Let n be
the number of agents participating in the protocol. The construction of [5] yields a protocol
with O(s · n2 log n) expected interactions. Observe that the protocol does not have a leader
(an auxiliary agent helping the other agents to coordinate), and agents have a fixed number
of states, independent of the size of the population. Under these assumptions, which are
also the assumptions of this paper, every protocol for the majority predicate needs Ω(n2)
expected interactions [1], and so the construction is nearly optimal.2 However, the number
of states is Ω(2m+s), or Ω(2|φ|) in terms of the number |φ| of bits needed to write φ with
coefficients in binary. This is well beyond the only known lower bound, showing that for
every construction there exist an infinite subset of predicates φ for which the construction
produces protocols with Ω(|φ|1/4) states [9]. So the constructions of [5], and also those of
[6, 3, 12], produce fast but very large protocols.

In [9, 8] Blondin et al. exhibit a construction that produces succinct protocols with
O(poly(|φ|)) states. However, they do not analyse their stabilisation time. We demonstrate
that they run in Ω(2n) expected interactions. Loosely speaking, the reason is the use of
transitions that “revert” the effect of other transitions. This allows the protocol to “try out”
different distributions of agents, retracing its steps until it hits the right one, but also makes
it very slow. So [9, 8] produce succinct but very slow protocols.

Is it possible to produce protocols that are both fast and succinct? We give an affirmative
answer. We present a construction that yields for every formula φ of QFPA a protocol with
O(poly(|φ|)) states and O(poly(|φ|) · n2) expected interactions. So our construction achieves
optimal stabilisation time in n, and, at the same time, yields more succinct protocols than
the construction of [8]. Moreover, for inputs of size Ω(|φ|) (a very mild constraint when
agents are molecules), we obtain protocols with O(|φ|) states.

Our construction relies on population computers, a carefully crafted generalization of
the population protocol model of [5]. Population computers extend population protocols in
three ways. First, they can exhibit certain k-way interactions between more than two agents.
Second, they have a more flexible output condition, defined by an arbitrary function that
assigns an output to every subset of states, instead of to every state.3 Finally, population
computers can use helpers: auxiliary agents that, like leaders, help regular agents to coordinate
themselves but whose number, contrary to leaders, is not known a priori. We exhibit succinct
population computers for all Presburger predicates in which every run is finite, and show

1 Remainder predicates cannot be directly expressed in Presburger arithmetic without quantifiers.
2 If the model is extended by allowing a leader (and one considers the slightly weaker notion of convergence

time), or the number of states of an agent is allowed to grow with the population size, O(n · polylog(n))
interactions can be achieved [6, 3, 2, 12, 11].

3 Other output conventions for population protocols have been considered [10].
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how to translate such population computers into fast and succinct population protocols.

Organization of the paper. We give preliminary definitions in Section 2 and introduce
population computers in Section 3. Section 4 gives an overview of the rest of the paper and
summarises our main results. Section 5 describes why previous constructions were either not
succinct or slow. Section 6 describes population computers for every Presburger predicate.
Section 7 converts these computers into succinct population protocols. Section 8 shows that
the resulting protocols are also fast.

Appendix A completes the proofs of Section 5. For the other appendices, there is no
one-to-one correspondence to sections of the main paper, instead they are grouped by
the construction they analyse. Appendix B concerns the construction of Section 6, but
also analyses speed. The four parts of our conversion process are analysed separately, in
Appendices C, D, E and F. Appendix G combines the previous to prove the complete
conversion theorem. Appendix H summarises the definitions for our speed analyses, and
Appendix I contains minor technical lemmata.

2 Preliminaries

Multisets. Let E be a finite set. A multiset over E is a mapping E → N, and NE denotes the
set of all multisets over E. We sometimes write multisets using set-like notation, e.g. Ha, 2 · bI
denotes the multiset v such that v(a) = 1, v(b) = 2 and v(e) = 0 for every e ∈ E \ {a, b}.
The empty multiset HI is also denoted ∅.

For E′ ⊆ E, v(E′) :=
∑

e∈E′ v(e) is the number of elements in v that are in E′. The size
of v ∈ NE is |v| := v(E). The support of v ∈ NE is the set supp(v) := {e ∈ E | v(e) > 0}. If
E ⊆ Z, then we let sum(v) :=

∑
e∈E e · v(e) denote the sum of all the elements of v. Given

u, v ∈ NE , u + v and u − v denote the multisets given by (u + v)(e) := u(e) + v(e) and
(u − v)(e) := u(e) − v(e) for every e ∈ E. The latter is only defined if u ≥ v.

Multiset rewriting transitions. A multiset rewriting transition, or just a transition, is
a pair (r, s) ∈ NE × NE , also written r 7→ s. A transition t = (r, s) is enabled at v ∈ NE if
v ≥ r, and its occurrence leads to v′ := v − r + s, denoted v →t v′. We call v →t v′ a step.
The multiset v is terminal if it does not enable any transition. An execution is a finite or
infinite sequence v0, v1, ... of multisets such that v →t1 v1 →t2 · · · for some sequence t1, t2, ...

of transitions. A multiset v′ is reachable from v if there is an execution v0, v1, ..., vk with
v0 = v and vk = v′; we also say that the execution leads from v to v′. An execution is a run
if it is infinite or it is finite and its last multiset is terminal. A run v0, v1, ... is fair if it is
finite, or it is infinite and for every multiset v, if v is reachable from vi for infinitely many
i ≥ 0, then v = vj for some j ≥ 0.

Presburger arithmetic Angluin et al. proved that population protocols decide exactly
the predicates Nk → {0, 1} definable in Presburger arithmetic, the first-order theory of
addition, which coincide with the semilinear predicates [13]. Using the quantifier elimination
procedure of Presburger arithmetic, every Presburger predicate can be represented as a
Boolean combination of threshold and remainder predicates. A predicate φ : Nv → {0, 1} is a
threshold predicate if φ(x1, ..., xv) = (

∑v
i=1 aixi ≥ c), where a1, ..., av, c ∈ Z, and a remainder

predicate if φ(x1, ..., xv) = (
∑v

i=1 aixi ≡m c), where a1, ..., av ∈ Z, m ≥ 1, c ∈ {0, ..., m−1},
and a ≡m b denotes that a is congruent to b modulo m. We call the set of these formulas
quantifier-free Presburger arithmetic, or QFPA. The size of a predicate is the minimal number
of bits of a formula of QFPA representing it, with coefficients written in binary.
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3 Population Computers

Population computers are a generalization of population protocols that allows us to give very
concise descriptions of our protocols for Presburger predicates.
Syntax. A population computer is a tuple P = (Q, δ, I, O, H), where:

Q is a finite set of states. Multisets over Q are called configurations.
δ ⊆ NQ ×NQ is a set of multiset rewriting transitions r 7→ s over Q such that |r| = |s| ≥ 2
and |supp(r)| ≤ 2. Further, we require that δ is a partial function, so s1 = s2 for all
r, s1, s2 with (r1 7→ s1), (r2 7→ s2) ∈ δ. A transition r 7→ s is binary if |r| = 2. We call a
population computer is binary if every transition binary.
I ⊆ Q is a set of input states. An input is a configuration C such that supp(C) ⊆ supp(I).
O : 2Q → {0, 1, ⊥} is an output function. The output of a configuration C is O(supp(C)).
An output function O is a consensus output if there is a partition Q = Q0 ∪ Q1 of Q such
that O(Q′) = 0 iff Q′ ⊆ Q0, O(Q′) = 1 iff Q′ ⊆ Q1, and O(Q′) = ⊥ otherwise.
H ∈ NQ\I is a multiset of helper agents or just helpers. A helper configuration is a
configuration C such that supp(C) ⊆ supp(H) and C ≥ H.

Graphical notation. We visualise population computers as Petri nets (see e.g. Figure 3).
Places (circles) and transitions (squares) represent respectively states and transitions. To
visualise configurations, we draw agents as tokens (smaller filled circles).
Semantics. Intuitively, a population computer decides which output (0 or 1) corresponds
to an input CI as follows. It adds to the agents of CI an arbitrary helper configuration CH

of agents to produce the initial configuration CI + CH . Then it starts the computation and
lets it stabilise to configurations of output 1 or output 0. Formally, the initial configurations
of P for input CI are all configurations of the form CI + CH for some helper configuration
CH . A run C0C1... stabilises to b if there exists an i ≥ 0 such that O(supp(Ci)) = b and Ci

only reaches configurations C ′ with O(supp(C ′)) = b. An input CI has output b if for every
initial configuration C0 = CI + CH , every fair run starting at C0 stabilises to b. A population
computer P decides a predicate φ : NI → {0, 1} if every input CI has output φ(CI).
Terminating and bounded computers. A population computer is bounded if no run
starting at an initial configuration C is infinite, and terminating if no fair run starting at C

is infinite. Observe that bounded population computers are terminating.
Size and adjusted size. Let P = (Q, δ, I, O, H) be a population computer. We assume
that O is described as a boolean circuit with size(O) gates. For every transition t = (r 7→ s)
let |t| := |r|. The size of P is size(P) := |Q| + |H| + size(O) +

∑
t∈δ|t|. If P is binary, then

(as for population protocols) we do not count the transitions and define the adjusted size
size2(P) := |Q| + |H| + size(O). Observe that both the size of a transition and the size of
the helper multiset are the number of elements, i.e. the size in unary, strengthening our later
result about the existence of succinct population computers.
Population protocols. A population computer P = (Q, δ, I, O, H) is a population protocol
if it is binary, has no helpers (H = ∅), and O is a consensus output. It is easy to see that
this definition coincides with the one of [5]. The speed of a binary population computer with
no helpers, and so in particular of a population protocol, is defined as follows. We assume a
probabilistic execution model in which at configuration C two agents are picked uniformly at
random and execute a transition, if possible, moving to a configuration C ′ (by assumption
they enable at most one transition). This is called an interaction. Repeating this process, we
generate a random execution C0C1... . We say that the execution stabilises at time t if Ct



P. Czerner, R. Guttenberg, M. Helfrich and J. Esparza 5

reaches only configurations C ′ with O(supp(C ′)) = O(supp(Ct)), and we say that P decides
φ within T interactions if it decides φ and E(t) ≤ T . See e.g. [6] for more details.
Population computers vs. population protocols. Population computers generalise
population protocols in three ways:

They have non-binary transitions, but only those in which the interacting agents populate
at most two states. For example, Hp, p, qI 7→ Hp, q, oI (which in the following is written
simply as p, p, q 7→ p, q, o) is allowed, but p, q, o 7→ p, p, q is not.
They use a multiset H of auxiliary helper agents, but the addition of more helpers does
not change the output of the computation. Intuitively, contrary to the case of leaders,
agents do not know any upper bound on the number of helpers, and so the protocol
cannot rely on this bound for correctness or speed.
They have a more flexible output condition. Loosely speaking, population computers
accept by stabilising the population to an accepting set of states, instead of to a set of
accepting states.

4 Overview and Main Results

Given a predicate φ ∈ QFPA over variables x1, ..., xv, the rest of this paper shows how
to construct a fast and succinct population protocol deciding φ. First, Section 5 gives an
overview of previous constructions and explains why they are not fast or not succinct. Then
we proceed in five steps:
1. Construct the predicate double(φ) ∈ QFPA over variables x1, ..., xv, x′

1, ..., x′
v by syn-

tactically replacing every occurrence of xi in φ by xi +2x′
i. For example, if φ = (x−y ≥ 0)

then double(φ) = (x + 2x′ − y − 2y′ ≥ 0). Observe that |double(φ)| ∈ O(|φ|).
2. Construct a succinct bounded population computer P deciding double(φ).
3. Convert P into a succinct population protocol P ′ deciding φ for inputs of size Ω(|φ|).
4. Prove that P ′ runs within O(n3) interactions.
5. Use a refined running-time analysis to prove that P ′ runs within O(n2) interactions.

Section 6 constructs bounded population computers for all predicates φ ∈ QFPA. This
allows us to conduct steps 1 and 2. More precisely, the section proves:

▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

Section 7 proves the following conversion theorem (steps 3 and 4).

▶ Theorem 2. Every bounded population computer of size m deciding double(φ) can be
converted into a terminating population protocol with O(m2) states which decides φ in at
most O(f(m) n3) interactions for inputs of size Ω(m), for some function f .

Section 8 introduces α-rapid population computers, where α ≥ 1 is a certain parameter,
and uses a more detailed analysis to show that the population protocols of Theorem 2 are in
fact smaller and faster (step 5):

▶ Theorem 3. (a) The population computers constructed in Theorem 1 are O(|φ|3)-rapid.
(b) Every α-rapid population computer of size m deciding double(φ) can be converted into a

terminating population protocol with O(m) states that decides φ in O(α m4n2) interactions
for inputs of size Ω(m).
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The restriction to inputs of size Ω(m) is very mild. Moreover, it can be lifted using a
technique of [8], at the price of adding additional states (and at no cost regarding asymptotic
speed, since the speed of the new protocol only changes for inputs of size O(m)):

▶ Corollary 4. For every φ ∈ QFPA there exists a terminating population protocol with
O(poly(|φ|)) states that decides φ in O(f(|φ|) n2) interactions, for a function f .

It is known that the majority predicate can only be decided in Ω(n2) interactions by
population protocols [1], so — as a general construction — our result is optimal w.r.t. time.
Regarding space, an Ω(|φ|1/4) lower bound was shown in [9], leaving a polynomial gap.

5 Previous Constructions: Angluin et al. and Blondin et al.

The population protocols for a quantifier free Presburger predicate φ constructed in [5] are
not succinct, i.e. do not have O(|φ|a) states for any constant a, and those of [8] are not fast,
i.e. do not have speed O(|φ|anb) for any constants a, b. We explain why with the help of
some examples.

▶ Example 5. Consider the protocol of [5] for the predicate φ = (x − y ≥ 2d). The states are
the triples (ℓ, b, u) where ℓ ∈ {A, P}, b ∈ {Y, N} and −2d ≤ u ≤ 2d. Intuitively, ℓ indicates
whether the agent is active (A) or passive (P), b indicates whether it currently believes
that φ holds (Y) or not (N), and u is the agent’s wealth, which can be negative. Agents
for input x are initially in state (A, N, 1), and agents for y in (A, N, −1). If two passive
agents meet their encounter has no effect. If at least one agent is active, then the result of
the encounter is given by the transition (∗, ∗, u), (∗, ∗, u′) 7→ (A, b, q), (P, b, r) where b = Y

if u + u′ ≥ 2d else N ; q = max(−2d, min(2d, u + u′)); and r = (u + u′) − q. The protocol
stabilises after O(n2 log n) expected interactions [5], but it has 2d+1 + 1 states, exponentially
many in |φ| ∈ Θ(d).

▶ Example 6. We give a protocol for φ = (x − y ≥ 2d) with a polynomial number of states.
This is essentially the protocol of [8]. We remove states and transitions from the protocol of
Example 5, retaining only the states (ℓ, b, u) such that u is a power of 2, and some of the
transitions involving these states:

(∗, ∗, 2i), (∗, ∗, 2i) 7→ (A, N, 2i+1), (P, N, 0) for every 0 ≤ i ≤ d − 2
(∗, ∗, 2d−1), (∗, ∗, 2d−1) 7→ (A, Y, 2d), (P, Y, 0)

(∗, ∗, −2i), (∗, ∗, −2i) 7→ (A, N, −2i+1), (P, N, 0) for every 0 ≤ i ≤ d − 1
(∗, ∗, 2i), (∗, ∗, −2i) 7→ (A, N, 0), (P, N, 0) for every 0 ≤ i ≤ d − 1

The protocol is not yet correct. For example, for d = 1 and the input x = 2, y = 1, the
protocol can reach in one step the configuration in which the three agents (two x-agents and
one y-agent) are in states (A, Y, 2), (P, Y, 0), (A, N, −1), after which it gets stuck. In [8] this
is solved by adding “reverse” transitions:

(A, N, 2i+1), (P, N, 0) 7→ (A, N, 2i), (P, N, 2i) for every 0 ≤ i ≤ d − 2
(A, Y, 2d), (P, Y, 0) 7→ (A, N, 2d−1), (P, N, 2d−1)

(A, N, −2i+1), (P, N, 0) 7→ (A, N, −2i), (A, N, −2i) for every 0 ≤ i ≤ d − 1

The protocol has only Θ(d) states and transitions, but runs within Ω(n2d−2) interactions.
Consider the inputs x, y such that x−y = 2d, and let n := x+y. Say that an agent is positive
at a configuration if it has positive wealth at it. The protocol can only stabilise if it reaches
a configuration with exactly one positive agent with wealth 2d. Consider a configuration
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with i < 2d positive agents. The next configuration can have i − 1, i, or i + 1 positive agents.
The probability of i + 1 positive agents is Ω(1/n), while that of i − 1 positive agents is only
O(1/n2), and the expected number of interactions needed to go from 2d positive agents to
only 1 is Ω(n2d−1) Appendix A.1.

▶ Example 7. Given protocols P1, P2 with n1 and n2 states deciding predicates φ1 and φ2,
Angluin et al. construct in [5] a protocol P for φ1 ∧ φ2 with n1 · n2 states. It follows that the
number of states of a protocol for φ := φ1 ∧ · · · ∧ φs grows exponentially in s, and so in |φ|.
Blondin et al. give an alternative construction with polynomially many states [8, Section
5.3]. However, their construction contains transitions that, as in the previous example,
reverse the effect of other transitions, and make the protocol very slow. The problem is
already observed in the toy protocol with states q1, q2 and transitions q1, q1 7→ q2, q2 and
q1, q2 7→ q1, q1. (Similar transitions are used in the initialisation of [8].) Starting with an
even number n ≥ 2 of agents in q1, eventually all agents move to q2 and stay there, but the
expected number of interactions is Ω(2n/10) Appendix A.2.

6 Succinct Bounded Population Computers for Presburger Predicates

In Sections 6.1 and 6.2 we construct population computers for remainder and threshold
predicates in which all coefficients are powers of two. We present the remainder case in detail,
and sketch the threshold case. The generalization to arbitrary coefficients is achieved by means
of a gadget very similar to the one we used to compute boolean combinations of predicates.
This later gadget is presented in Section 6.3, and so we introduce the generalization there.

6.1 Population computers for remainder predicates
Let Pow+ = {2i | i ≥ 0} be the set of positive powers of 2.

We construct population computers Pφ for remainder predicates φ :=
∑v

i=1 aixi ≡m c,
where ai ∈ Pow+ ∩ {0, ..., m−1} for every 1 ≤ i ≤ v, m ∈ N, and c ∈ {0, ..., m−1}. We
say that a finite multiset r over Pow+ represents the residue rep(r) := sum(r)mod m.
For example, if m = 11 then r18 := H23, 23, 21I represents 7. Accordingly, we call the
multisets over Pow+ representations. A representation of degree d only contains elements
of Pow+

d := {2d, 2d−1, ..., 20}. A representation r is a support representation if r(x) ≤ 1 for
every x ∈ Pow+; so its represented value is completely determined by the support. For
example, r18 is not a support representation of 7, but H25, 23I is.

We proceed to construct Pφ. Let us give some intuition first. Pφ has Pow+
d ∪ {0} as set

of states. We extend the notion of representation to configurations by disregarding agents in
state 0; a configuration is therefore a support representation if all states except 0 have at
most one agent. The initial states of Pφ are chosen so that every initial configuration for an
input (x1, ..., xv) is a representation of the residue z :=

∑v
i=1 aixi mod m. The transitions

transform this initial representation of z into a support representation of z. Whether z ≡m c

holds or not depends only on the support of this representation, and the output function
thus returns 1 for the supports satisfying z ≡m c, and 0 otherwise. Let us now formally
describe Pφ for φ :=

∑v
i=1 aixi ≡m c where ai ∈ Pow+ ∩ {0, ..., m−1}.

States and initial states. Let d := ⌈log2 m⌉. The set of states is Q = Pow+
d ∪ {0}. The

set of initial states is I := {a1, ..., av}. Observe that an input CI = Hx1 · a1, ..., xv · avI is a
representation of z, but not necessarily a support representation.
Transitions. Transitions ensure that non-support representations, i.e. representations with
two or more agents in some state q, are transformed into representations of the same residue
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Figure 1 (middle) Graphical Petri net representation (see Section 3) of population computer
for the predicate φ1 ∨ φ2 with φ1 = (8x + 5y ≡11 4) and φ2 = (y − 2x ≥ 5). All dashed arrows
implicitly lead to the reservoir state 0. It has 22 helpers although only 9 are drawn for space reasons.
(left) decision diagram for output function of remainder predicate 8x + 5y ≡11 4. It checks if the
total value is 15 or 4. Starting at the top node of the diagram: if state 8 is populated, we move to
the left child, otherwise to the right child; at the left child, if state 4 is populated we move to the
right child, etc. (right) decision diagram for output function of threshold predicate y − 2x ≥ 5.

“closer” to a support representation. For q ∈ 20, ..., 2d−1 we introduce the transition:

2i, 2i 7→ 2i+1, 0 for 0 ≤ i ≤ d − 1 〈combine〉

For q = 2d we introduce a transition that replaces an agent in 2d by a multiset of agents
r with sum(r) = 2d − m, preserving the residue. Let bdbd−1...b0 be the binary encoding of
2d − m, and let {i1, ..., ij} be the positions such that bi1 = · · · = bij = 1. The transition is:

2d, 0, ..., 0 7→ 2i1 , ..., 2ij 〈modulo〉

These transitions are enough, but we also add a transition that takes d agents in 2d and
replaces them by agents with sum d · 2d mod m. Intuitively, this makes the protocol faster.
Let bdbd−1...b0 and {i1, ..., ij} be as above, but for d · 2d mod m instead of 2d − m.

2d, ..., 2d 7→ 2i1 , ..., 2ij , 0, ..., 0 〈fast modulo〉

Helpers. We set H := H3d · 0I, i.e. the computer initially places at least 3d helper agents in
state 0. This makes sure one can always execute the next 〈modulo〉 or 〈fast modulo〉 transition:
if no more agents can be combined, there are at most d agents in the states 20, ..., 2d−1.
Thus, there are at least 2d agents in the states 0 and 2d, enabling one of these transitions.
Observe that for every initial configuration CI + CH we have sum(CI + CH) = sum(CI), and
so, abusing language, every initial configuration for CI is also a representation of z.
Output function. The computer eventually reaches a support configuration with at most
one agent in every state except for 0. Thus, for every support set S ⊆ Q, we define O(S) := 1
if sum(S) ≡m c, and O(S) = 0 else. We show the existence of a small boolean circuit for the
output function O in the proof of Lemma 8; this can be found in Appendix B.1.
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▶ Lemma 8. Let φ :=
∑v

i=1 aixi ≡m c, where ai ∈ {2d−1, ..., 21, 20} for every 1 ≤ i ≤ v and
c ∈ {0, ..., m−1} with d := ⌈log2 m⌉. There is a bounded computer of size O(d) deciding φ.

The left half of Figure 1 shows the population computer for φ = (8x + 5y ≡11 4).

6.2 Population computers for threshold predicates
We sketch the construction of population computers Pφ for threshold predicates φ :=∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v and c ∈ N. As the
construction is similar to the construction for remainder, we will focus on the differences and
refer to Appendix B.2 for details.

As for remainder, we work with representations that are multisets of powers of 2. However,
they represent the sum of their elements (without modulo) and we allow both positive and
negative powers of 2. Similar to the remainder construction, the computer transforms any
representation into a support representation without changing the represented value. Then,
the computer decides the predicate using only the support of that representation.

Again, there are 〈combine〉 transitions that allow agents with the same value to com-
bine. Instead of modulo transitions, 〈cancel〉 transitions further simplify the representation:
2i, −2i 7→ 0, 0. Note that even after exhaustively applying 〈combine〉 and 〈cancel〉 there can
still be many agents in 2d or many agents in −2d. This has two consequences:

In the construction for general predicates of Section 6.3, we need that computers for
remainder and threshold move most agents to state 0. In the remainder construction, all
but a constant number of agents are moved to 0. In contrast, the threshold construction
does not have this property. Thus, we do not design a single computer for a given
threshold predicate φ but a family: one for every degree d larger than some minimum
degree d0 ∈ Ω(|φ|). Intuitively, larger degrees result in a larger fraction of agents in 0.
Assume we detect agents in 2d (−2d is analogous). If there are many, the predicate is
true. However, if there is just one, then the represented value might be small, due to
negative contributions −20, ..., −2d−1. We cannot distinguish the two cases, so we add
transition 〈cancel 2nd highest〉: 2d, −2d−1 7→ 2d−1, 0. It ensures that agents cannot be
present in both 2d and −2d−1; therefore, an agent in 2d certifies a value of at least 2d−1.

The right half of Figure 1 shows the population computer for φ = (−2x + y ≥ 5) with degree
d = 4. Appendix B.2 proves:

▶ Lemma 9. Let φ :=
∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v.
For every d ≥ max{⌈log2 c⌉ + 1, ⌈log2|a1|⌉, ..., ⌈log2|av|⌉} there is a bounded computer of size
O(d) that decides φ.

6.3 Population computers for all Presburger predicates
We present a construction that, given threshold or remainder predicates φ1, ..., φs, yields
a population computer P deciding an arbitrary given boolean combination B(φ1, ..., φs)
of φ1, ..., φs. We only sketch the construction, see Appendix B.3 for details. We use the
example φ1 = (y − 2x ≥ 5), φ2 = (8x + 5y ≡11 4) and B(φ1, φ2) = φ1 ∨ φ2. The result of
the construction for this example is shown in Figure 1. The construction has 6 steps:
1. Rewrite Predicates. The constructions in Sections 6.1 and 6.2 only work for predicates
where all coefficients are powers of 2. We transform each predicate φi into a new predicate φ′

i

where all coefficients are decomposed into their powers of 2. In our example, φ′
1 := φ1 because

all coefficients are already powers of 2. However, φ2(x, y) = (8x + 5y ≡11 4) is rewritten as
φ′

2(x, y1, y2) := (8x + 4y1 + 1y2 ≡11 4) because 5 = 4 + 1. Note that φ2(x, y) = φ′
2(x, y, y)
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holds for every x, y ∈ N. Let r be the size of the largest split of a coefficient, i.e. r = 2 in the
example.
2. Construct Subcomputers. For every 1 ≤ i ≤ s, if φi is a remainder predicate, then let
Pi be the computer defined in Section 6.1. If φi is a threshold predicate, then let Pi be the
computer of Section 6.2, with d = d0 + ⌈log2 s⌉. We explain this choice of d in step 5.
3. Combine Subcomputers. Take the disjoint union of Pi, but merging their 0 states.
More precisely, rename all states q ∈ Qi to (q)i, with the exception of state 0. Construct a
computer with the union of all the renamed states and transitions. Figure 1 shows the Petri
net representation of the computer so obtained for our example. We call the combined 0
state reservoir as it holds agents with no value that are needed for various tasks like input
distribution.
4. Input Distribution. For each variable xi add a corresponding new input state xi. Then
add a transition that takes an agent in state xi and agents in 0 and distributes agents to the
input states of the subcomputers that correspond to xi. In our example, we add two states x

and y and the transitions x, 0 7→ (1)1 , (8)2 and y, 0, 0 7→ (−2)1 , (4)2 , (1)2. The distribution
for x needs one helper, because we need one agent in each subcomputer. The distribution
for y needs two helpers, one for P1 and two for P2, as 5y was split into 4y1 + 1y2. This
way, once the input states are empty, the correct value is distributed to each subcomputer.
Crucially, this input distribution can be fast as it is not reversible.
5. Add Extra Helpers. In addition to all helpers from the subcomputers, add r − 1 more
helpers to state 0. Intuitively, this allows to distribute the first input agent. Because of
our choice for d in threshold subcomputers, each subcomputer returns most agents back to
state 0. More precisely, for each distribution the number of agents that do not get returned
to 0 only increases by at most 1

s (per subcomputer). So in total only one agent is “consumed”
per distribution and enough agents are returned to 0 for the next distribution to occur. In
our example, the agents that stay in each of the s = 2 subcomputers only increases by at
most 1

2 per distribution. (In fact, remainder subcomputers return all distributed agents.)
6. Combine Output. Note that we can still decide φi from the support of the states in
the corresponding subcomputer Pi. We compute the output for φ by combining the outputs
of the subcomputers P1, ..., Ps according to B(φ1, ..., φs). In our example, we set the output
to 1 if and only if the output of P1 or P2 is 1.

In Appendix B.3, we show that this computer is succinct, correct and bounded:

▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

7 Converting Population Computers to Population Protocols

In this section we prove Theorem 2. We proceed in four steps, which must be carried out in
the given order. Section 7.1 converts any bounded computer P for double(φ) of size m into
a binary bounded computer P1 with O(m2) states. Section 7.2 converts P1 into a binary
bounded computer P2 with a marked consensus output function (a notion defined in the
section). Section 7.3 converts P2 into a binary bounded computer P3 for φ — not double(φ)

— with a marked consensus output function and no helpers. Section 7.4 shows that P3 runs
within O(n3) interactions. Finally, we convert P3 to a binary terminating (not necessarily
bounded) computer P4 with a normal consensus output and no helpers, also running within
O(n3) interactions. This uses standard ideas; for space reasons it is described only in the
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full version at Appendix F. Similarly, the other conversions and results are only sketched,
with details in the appendix.

7.1 Removing multiway transitions
We transform a bounded population computer with k-way transitions r 7→ s such that
|supp(r)| ≤ 2 into a binary bounded population computer. Let us first explain why the
construction introduced in [9, Lemma 3], which works for arbitrary transitions r 7→ s, is too
slow. In [9], the 3-way transition t : q1, q2, q3 7→ q′

1, q′
2, q′

3 is simulated by the transitions

t1 : q1, q2 7→ w, q12 t2 : q12, q3 7→ c12, q′
3 t3 : q′

3, w 7→ q′
1, q′

2 t1 : w, q12 7→ q1, q2

Intuitively, the occurrence of t1 indicates that two agents in q1 and q2 want to execute t, and
are waiting for an agent in q3. If the agent arrives, then all three execute t2t3, which takes
them to q′

1, q′
2, q′

3. Otherwise, the two agents must be able to return to q1, q2 to possibly
execute other transitions. This is achieved by the “revert” transition t1. The construction
for a k-way transition has “revert” transitions t1, ..., tk−2. As in Example 6 and Example 7,
these transitions make the final protocol very slow.

We present a gadget without “revert” transitions that works for k-way transitions r 7→ s

satisfying |supp(r)| ≤ 2. Figure 2 illustrates it, using Petri net notation, for the 5-way
transition t : H3p, 2qI 7→ Ha, b, c, d, eI. In the gadget, states p and q are split into (p, 0), ..., (p, 3)

c

b

a

d

e

q

p

2

3
⇝

2 1 0

q

〈execute〉
a

b

c

d

e

1 023

〈commit〉

p

2

22

Figure 2 Simulating the 5-way transition H3 · p, 2 · q 7→ a, b, c, d, eI by binary transitions.

and (q, 0), ..., (q, 2). Intuitively, an agent in (q, i) acts as representative for a group of i agents
in state q. Agents in (p, 3) and (q, 2) commit to executing t by executing the binary transition
〈commit〉. After committing, they move to the states a, ..., e together with the other members
of the group, who are “waiting” in the states (p, 0) and (q, 0). Note that 〈commit〉 is binary
because of the restriction |supp(r)| ≤ 2 for multiway transitions.

To ensure correctness of the conversion, agents can commit to transitions if they represent
more than the required amount. In this case, the initiating agents would commit to a
transition and then elect representatives for the superfluous agents, before executing the
transition. This requires additional intermediate states.

Appendix C formalises the gadget and proves its correctness and speed.

7.2 Converting output functions to marked-consensus output functions
We convert a computer with an arbitrary output function into another one with a marked-
consensus output function. An output function is a marked-consensus output function if there
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are disjoint sets of states Q0, Q1 ⊆ Q such that O(S) := b if S ∩ Qb ≠ ∅ and S ∩ Q1−b = ∅,
for b ∈ {0, 1}, and O(S) := ⊥ otherwise. Intuitively, for every S ⊆ Q we have O(S) = 1
if all agents agree to avoid Q0 (consensus), and at least one agent populates Q1 (marked
consensus). We only sketch the construction, a detailed description as well as a graphical
example can be found in Appendix D.

Our starting point is some bounded and binary computer P = (Q, δ, I, O, H), e.g. as
constructed in Section 7.1. Let (G, E) be a boolean circuit with only NAND-gates computing
the output function O. We simulate P by a computer P ′ with a marked consensus output and
O(|Q| + |G|) states. This result allows us to bound the number of states of P ′ by applying
well known results on the complexity of Boolean functions.

Intuitively, P ′ consists of two processes running asynchronously in parallel. The first one
is (essentially, see below) the computer P itself. The second one is a gadget that simulates
the execution of G on the support of the current configuration of P . Whenever P executes a
transition, it raises a flag indicating that the gadget must be reset (for this, we duplicate
each state q ∈ Q into two states (q, +) and (q, −), indicating whether the flag is raised or
lowered). Crucially, P is bounded, and so it eventually performs a transition for the last
time. This resets the gadget for the last time, after which the gadget simulates (G, E) on the
support of the terminal configuration reached by P.

The gadget is designed to be operated by one state-helper for each q ∈ Q, with set of
states Qsupp(q), and a gate-helper for each gate g ∈ G, with set of states Qgate(g), defined as
follows:

Qsupp(q) := {q} × {0, 1, !}. These states indicate that q belongs/does not belong to the
support of the current configuration (states (q, 0) and (q, 1)), or that the output has
changed from 0 to 1 (state (q, !)).

Qgate(g) := {g} × {0, 1, ⊥}3 for each gate g ∈ G, storing the current values of the two
inputs of the gate and its output. Uninitialised values are stored as ⊥.

Recall that a population computer must also remain correct for a larger number of helpers.
This is ensured by letting all helpers populating one of these sets, say Qsupp(q), perform
a leader election; whenever two helpers in states of Qsupp(q) meet, one of them becomes
a non-leader, and a flag requesting a complete reset of the gadget is raised. All resets are
carried out by a reset-helper with set of states Qreset := {0, ..., |Q| + |G|}, initially in state 0.
(Reset-helpers also carry out their own leader election!) Whenever a reset is triggered, the
reset-helper contacts all other |Q| + |G| helpers in round-robin fashion, asking them to reset
the computation.

Eventually the original protocol P has already reached a terminal configuration with
some support Qterm, each set Qsupp(q) and Qgate(g) is populated by exactly one helper, and
all previous resets are terminated. From this moment on, P never changes its configuration.
The |Q| state-helpers detect the support Qterm of the terminal configuration by means of
transitions that move them to the states Qterm × {1} and (Q \ Qterm) × {0}; the gate-helpers
execute (G, E) on input Q′ by means of transitions that move them to the states describing
the correct inputs and outputs for each gate. State-helpers use Q × {!} as intermediate states,
indicating that the circuit must recompute its output.

It remains to choose the sets Q0 and Q1 of states the marked consensus output. We do it
according to the output b of the output gate gout ∈ G: Qb is the set of states of Qgate(gout)
corresponding to output b.
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7.3 Removing helpers
We convert a bounded binary computer P deciding the predicate double(φ) over variables
x1, ..., xk, x′

1, ..., x′
k into a computer P ′ with no helpers deciding φ over variables x1, ..., xk.

In [8], a protocol with helpers and set of states Q is converted into a protocol without helpers
with states Q × Q. We sketch a better construction that avoids the quadratic blowup. A
detailed description can be found in Appendix E.

Let us give some intuition first. All agents of an initial configuration of P ′ are in
input states. P ′ simulates P by liberating some of these agents and transforming them
into helpers, without changing the output of the computation. For this, two agents in
an input state xi are allowed to interact, producing one agent in x′

i and one “liberated”
agent, which can be used as a helper. This does not change the output of the computation,
because double(φ)(..., xi, ..., x′

i, ...) = double(φ)(..., xi − 2, ..., x′
i + 1, ...) holds by definition

of double(φ).

x

x′

q1 q2 q3 q4

y

y′ ⇝

x

x′

liberated y

y′

q2q1 q3 q4

2 2

4

Figure 3 Illustration in graphical Petri net notation (see Section 3) of construction that removes
helpers. Initial states are highlighted.

Figure 3 illustrates this idea. Assume P has input states x, y, x′, y′ and helpers H =
Hq1, q2, q3, q4I, as shown on the left-hand side. Assume further that P computes a predicate
double(φ)(x, y, x′, y′). The computer P ′ is shown on the right of the figure. The additional
transitions liberate agents, and send them to the helper states H. Observe that the initial
states of P ′ are only x and y. Let us see why P ′ decides φ(x, y). As the initial configuration of
P ′ for an input x, y puts no agents in x′, y′, the computer P ′ produces the same output on input
x, y as P on input x, y, 0, 0. Since P decides double(φ) and double(φ)(x, y, 0, 0) = φ(x, y) by
the definition of double(φ), we are done. We make some remarks:

P ′ may liberate more agents than necessary to simulate the multiset H of helpers of P.
This is not an issue, because by definition additional helpers do not change the output of
the computation.
If the input is too small, P ′ cannot liberate enough agents to simulate H. Therefore, the
new computer only works for inputs of size Ω(|H|) = Ω(|φ|).
Even if the input is large enough, P ′ might move agents out of input states before
liberating enough helpers. However, the computers of Section 6 can only do this if there
are enough helpers in the reservoir state (see point 3. in Section 6.3). Therefore, they
always generate enough helpers when the input is large enough.

7.4 A O(n3) bound on the expected interactions
We show that the computer obtained after the previous conversion runs within O(n3)
interactions. We sketch the main ideas; the details are in Appendix G.

We introduce potential functions that assign to every configuration a positive potential,
with the property that executing any transition strictly decreases the potential. Intuitively,
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every transition “makes progress”. We then prove two results: (1) under a mild condition,
a computer has a potential function iff it is bounded, and (2) every binary computer with
a potential function and no helpers, i.e. any bounded computer for which speed is defined,
stabilises within O(n3) interactions. This concludes the proof.

Fix a population computer P = (Q, δ, I, O, H).

▶ Definition 10. A function Φ : NQ → N is linear if there exist weights w : Q → N s.t.
Φ(C) =

∑
q∈Q w(q)C(q) for every C ∈ NQ. We write Φ(q) instead of w(q). A potential

function (for P) is a linear function Φ such that Φ(r) ≥ Φ(s) + |r| − 1 for all (r 7→ s) ∈ δ.

Observe that k-way transitions reduce the potential by k − 1, binary transitions by 1. At
this point, we consider only binary computers, but this distinction becomes relevant for the
refined speed analysis.

If a population computer has a potential function, then every run executes at most O(n)
transitions, and so the computer is bounded. Applying Farkas’ Lemma we can show that the
converse holds for computers in which every state can be populated—a mild condition, since
states that can never be populated can be deleted without changing the behaviour.

▶ Lemma 11. If P has a reachable configuration Cq with Cq(q) > 0 for each q ∈ Q, then P
is bounded iff there is a potential function for P.

Consider now a binary computer with a potential function and no helpers. At every
non-terminal configuration, at least one (binary) transition is enabled. The probability that
two agents chosen uniformly at random enable this transition is Ω(1/n2), and so a transition
occurs within O(n2) interactions. Since the computer has a potential function, every run
executes at most O(n) transitions, and so the computer stabilises within O(n3) interactions.

The final step to produce a population protocol is to translate computers with marked-
consensus output function into computers with standard consensus output function, while
preserving the number of interactions. For space reasons this construction is presented in
Appendix F.

8 Rapid Population Computers: Proving a O(n2) Bound

We refine our running-time analysis to show that the population protocols we have constructed
actually stabilise within O(n2) interactions. We continue to use potential functions, as
introduced in Section 7.4, but improve our analysis as follows:

We introduce rapidly-decreasing potential functions. Intuitively, their existence shows
that progress is not only possible, but also likely. We prove that they certify stabilisation
within O(n2) interactions.
We introduce rapid population computers, as computers with rapidly-decreasing potential
functions that also satisfy some technical conditions. We convert rapid computers into
protocols with O(|φ|) states, and show that the computers of Section 6 are rapid.

In order to define rapidly-decreasing potential functions, we need a notion of “probability
to execute a transition” that generalises to multiway transitions and is preserved by our
conversions. At a configuration C of a protocol, the probability of executing a binary
transition t = (p, q 7→ p′, q′) is C(q)C(p)/n(n − 1). Intuitively, leaving out the normalisation
factor 1/n(n − 1), the transition has “speed” C(q)C(p), proportional in the product of the
number of agents in p and q. But for a multiway transition like q, q, p 7→ r1, r2, r3 the
situation changes. If C(q) = 2, it does not matter how many agents are in p – the transition
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is always going to take Ω(n2) interactions. We therefore define the speed of a transition as
min{C(q), C(p)}2 instead of C(q)C(p).

For the remainder of this section, let P = (Q, δ, I, O, H) denote a population computer.

▶ Definition 12. Given a configuration C ∈ NQ and some transition t = (r 7→ s) ∈ δ,
we let tmint(C) := min{C(q) : q ∈ supp(r)}. For a set of transitions T ⊆ δ, we define
speedT (C) :=

∑
t∈T tmint(C)2, and write speed(C) := speedδ(C) for convenience.

▶ Definition 13. Let Φ denote a potential function for P and let α ≥ 1. We say that Φ
is α-rapidly decreasing at a configuration C if speed(C) ≥ (Φ(C) − Φ(Cterm))2/α for all
terminal configurations Cterm with C → Cterm.

We have not been able to find potential functions for the computers of Section 6 that are
rapidly decreasing at every reachable configuration, only at reachable configurations with
sufficiently many helpers, defined below. Fortunately, that is enough for our purposes.

▶ Definition 14. C ∈ NQ is well-initialised if C is reachable and C(I) + |H| ≤ 2
3 n.

Observe that an initial configuration C can only be well-initialised if C(supp(H)) ∈
Ω(C(I)). We now define rapid population computers, and state the result of our improved
analysis.

▶ Definition 15. P is α-rapid if
1. it has a potential function Φ which is α-rapidly decreasing in well-initialised configurations,
2. every state of P but one has at most 2 outgoing transitions,
3. all configurations in NI are terminal, and
4. for all transitions t = (r 7→ s), q ∈ I we have r(q) ≤ 1 and s(q) = 0.

▶ Theorem 3. (a) The population computers constructed in Theorem 1 are O(|φ|3)-rapid.
(b) Every α-rapid population computer of size m deciding double(φ) can be converted into a

terminating population protocol with O(m) states that decides φ in O(α m4n2) interactions
for inputs of size Ω(m).

The detailed proofs can be found in the Appendix, in the following sections. The proof
of (a) is given in Appendix B. For (b), we prove separate theorems for each conversion in
Appendices C, D, E, and F. To achieve a tighter analysis of our conversions, we generalise
the notion of potential function; this is described in Appendix H.

9 Conclusions

We have shown that every predicate φ of quantifier-free Presburger arithmetic has a population
protocol with O(poly(|φ|)) states and O(|φ|7 · n2) expected number of interactions. If only
inputs of size Ω(|φ|) matter, we give a protocol with O(|φ|) states and the same speed.
The obvious point for further improvement is the |φ|7 factor in the expected number of
interactions.

Our construction is close to optimal. Indeed, for every construction there is an infinite
family of predicates for which it yields protocols with Ω(|φ|1/4) states [9]; further, it is known
that every protocol for the majority predicate requires in Ω(n2) interactions.
Acknowledgements. We thank the anonymous reviewers for many helpful remarks. In
particular, one remark led to Lemma 11, which in turn led to a nicer formulation of Theorem 2,
one of our main results.
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A Proofs of Section 5: Previous constructions

A.1 The protocol of Example 6 is slow
Given a configuration C with i < 2d positive agents, the next configuration C ′ can have i − 1,
i, or i + 1 positive agents. Let us give a lower bound on the probability of the case i + 1, and
an upper bound on the probability of the case i − 1.

i → i + 1. This happens whenever a non-zero agent with wealth different from 1 or −1
meets a zero agent. Since i is the number of positive agent, the configuration C has
n − i > n − 2d zero agents. Further, since the total wealth is 2d and there are less than
2d non-zero agents, at least one agent has wealth bigger than 1. So the probability is at
least p+ := 2(n − 2d)/n(n − 1), and so Ω(1/n).
i → i − 1. This can only happen if two non-zero agents meet. Since there are less than
2d non-zero agents, p− := 2d(2d − 1)/n(n − 1) is an upper bound, and so the probability
is O(1/n2) for fixed d.

We analyse the following random walk with states is Q = {2d, ..., 1}, with initial state 2d,
target 1, and probabilities p+, p−, and 1 − p+ − p− ∈ O(1) of moving towards 2d, 1, and
staying in the same state.

For i ∈ {2d, ..., 1}, let Ti be the first time to hit 1 starting in i. Since the induced
stochastic process X0, X1, ... is a Markov chain, we can use the strong Markov property, i.e.
we can restart the process at any stopping time. We choose T := inf{i ∈ N : Xi ̸= Xi−1}.
If i ∈ {2d − 1, ..., 2}, then XT = i − 1 or XT = i + 1, with probability p1 ∈ O(1/n) of
being in i − 1 and probability p2 = 1 − p1 ∈ Θ(1) of being in i + 1. Importantly, these
probabilities of moving left or right again do not depend on the location 2d > i > 1 we
started at. If we started at 2d, then XT = 2d − 1. We have Ti = T + TXT

and therefore
E[Ti] = p1E[Ti−1] + p2E[Ti+1]. For the cases i = 2d and i = 1 we obtain E[T1] = 0 and
E[T2d ] = E[T ] + E[T2d−1]. In order to obtain a rudimentary lower bound, we use E[T ] ≥ 1
to obtain the inequalities

E[Ti] ≥ p1E[Ti+1] + p2E[Ti−1] + 1 for all 2d > i > 1
E[T2d ] ≥ E[T2d−1] + 1

which can be easily solved, yielding E[T2d ] ∈ (p2/p1))2dd2 ∈ Ω(n2d−2). In fact, this is a
well-known fact for a random walk biased in the wrong direction by a factor of p2/p1, which
yields the same inequalities.

A.2 The toy protocol of Example 7 is slow
Recall that the toy protocol has states q1, q2 and transitions q1, q1 7→ q2, q2 and q1, q2 7→ q1, q1.
The initial configuration C0 puts n agents in q1 and 0 agents in q2.

Let (C0, C1, ...) be the stochastic process induced by the toy protocol, where Ci indicates
the configuration after i interactions. Since at every step agents are chosen independently and
uniformaly at random, the process is a Markov chain. We can identify the state space of the
chain with the set {0, 1, 2, ..., n} via the mapping Ct 7→ Ct(q1). At state i, three transitions
can happen, leading to states i + 1, i and i − 2. The probabilities of moving to i + 1 and
i − 2 are i(n−i)

n(n−1) and i(i−1)
n(n−1) , respectively. The goal is to reach the state 0 from the state n.

In order to obtain a lower bound on the number of steps, let us reduce the states to
{0, ..., ⌊n/5⌋}, replacing the transition ⌊n/5⌋ 7→ ⌊n/5⌋+1 by a self-loop at ⌊n/5⌋, and starting
at state ⌊n/5⌋ instead of n. This only reduces the number of steps to the goal. In this new
chain, the quotient of the probabilities of moving to i + 1 and i − 2 is i(i−1)

i(n−i) ≤ i
n−i ≤ 1

4
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for all states i such that i + 1 and i − 2 exist. Using the same idea as in the analysis of
Example 6, and choosing again the stopping time T := inf{j ∈ N : Cj ̸= Cj−1}, we can
simplify the chain further, without increasing the number of steps to the goal, into a chain
with probability 4/5 and 1/5 of moving to from i to i + 1 and to i − 2, respectively.

The expected number of steps to the goal in this chain is the same as for a random walk
with states {0, ..., ⌊n/10⌋}, biased by a factor of 2 in the wrong direction. Indeed, the fact
that in the chain we move from i to i − 2, while in the random walk we move from i to i − 1,
is compensated by the probability in the chain being lower by a factor of 4. This biased
random walk needs Ω(2n/10) steps until it reaches 0 from ⌊n/10⌋.
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B Population Computers for Presburger Predicates: Detailed
Construction and Analysis

In this section we will give a detailed description of the constructions in Section 6, prove
their correctness, and show that the resulting population computers are fast.

We show two two results; these encapsulate all properties used by other sections. First,
we prove the existence of succinct and bounded population computers.
▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

The proof is split over multiple sections. Appendix B.1 and Appendix B.2 introduce
our construction for threshold and modulo predicates, and Appendix B.3 generalises this to
boolean combinations of such predicates. Finally, Appendix B.4 shows that the construction
has the desired size and is correct and bounded.

Second, we show that the resulting computers are rapid. The definition of rapid population
computers can be found in Section 8.
▶ Theorem 3a. The population computers constructed in Theorem 1 are O(|φ|3)-rapid.

The technical properties are shown in Lemma 16, while the existence of a rapidly-
decreasing potential function is shown as Lemma 21.

Notation

We often need to split an integer into its powers of two. Thus, we introduce the function
bin(x) that maps to an integer x the multiset that contains the (possibly negative) powers
of 2 corresponding to binary representation of x, i.e. bin(−13) = H−23, −22, −20I and
bin(10) = H23, 21I.

sign(x) :=


1 if x > 0
0 if x = 0
−1 if x < 0

bin(x) := Hsign(x) · 2i | i-th bit in the binary encoding of |x| is 1I

Note that sum(bin(x)) = x for all x ∈ Z.

B.1 Remainder predicates
Let Pow+ = {2i | i ≥ 0} be the set of positive powers of 2. Let φ be a remainder predicates
of the form

∑v
i=1 aixi ≡m c, where ai ∈ Pow+ ∩ {0, ..., m−1} for every 1 ≤ i ≤ v, m ∈ N,

and c ∈ {0, ..., m−1}. We call a multiset r ∈ NPow+ a representation.
Let rep(r) := sum(r) mod m denote the remainder represented by r. For example, if

m = 11 then r18 := H23, 23, 21I represents rep(r18) = 7. A representation of degree d only
contains elements of Pow+

d := {2d, 2d−1, ..., 20}. A representation r is a support representation
if r(x) ≤ 1 for every x ∈ Pow+, i.e. if rep(r) is completely determined by its support. For
example, r18 is not a support representation of 7, but H25, 23I and H22, 21, 20I are.

Let d := ⌈log2 m⌉ be the degree. Now we define the computer Pφ := (Q, δ, I, O, H):

Q := Pow+
d ∪ {0} I := {a1, ..., av}

O(S ⊆ Q) :=
{

1 if z (Hq | q ∈ SI) = c

0 otherwise
H := H(3d) · 0I
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We now define the transitions in δ.

2i, 2i 7→ 0, 2i+1 for 0 ≤ i ≤ d − 1 〈combine〉
2d, 0, ..., 0 7→ H0, 0I + bin(2d − m) 〈modulo〉
Hd · 2dI 7→ bin(d2d mod m) + H0, ..., 0I 〈fast modulo〉

▶ Lemma 8. Let φ :=
∑v

i=1 aixi ≡m c, where ai ∈ {2d−1, ..., 21, 20} for every 1 ≤ i ≤ v and
c ∈ {0, ..., m−1} with d := ⌈log2 m⌉. There is a bounded computer of size O(d) deciding φ.

Proof. The sum of all agents never increases and cannot become negative. Initially, each
agent has a value of less than m and 〈modulo〉 / 〈fast modulo〉 transitions reduce the sum
by at least m. Thus, there can be at most n 〈modulo〉 / 〈fast modulo〉 transitions. Between
tween two 〈modulo〉 / 〈fast modulo〉 transitions, there can be at most n 〈combine〉 transitions,
because they increase the number of agents by one. This implies that Pφ is bounded.

After at most n(n+1) transitions, we reach a terminal configuration C. We know that
C(2i) < 1 for 0 ≤ i < d, because all 〈combine〉 transitions are disabled in C. Thus,
C(0) + C(2d) ≥ 2d, because we started with 3d helpers. We know C(2d) = 0, because
otherwise either 〈modulo〉 or 〈fast modulo〉 would be enabled. Therefore C is a support
configuration. The value of rep is invariant throughout the configurations of a run. Thus,
we can decide the predicate by evaluating rep(C) = c. Because of the choice for d, we know
rep(C) = sum(C) or rep(C) = sum(C) − m. Therefore, rep(C) = c can be checked by a
boolean circuit of size O(d). There are d 〈combine〉 transitions with size 2 and we know
|〈modulo〉| ≤ d+2 and |〈fast modulo〉| ≤ d. Thus, size(Pφ) := |Q|+ |H|+size(O)+

∑
t∈δ|t| =

(d + 2) + 3d + O(d) +
∑

t∈δ|t| = O(d). ◀

B.2 Threshold predicates
Let Pow = {2i, −2i | i ≥ 0} be the set of positive and negative powers of 2. Let φ

be a threshold predicates of the form
∑v

i=1 aixi ≥ c, where ai ∈ Pow for every 1 ≤
i ≤ v and c ∈ N. We call a multiset r of powers of 2 a representation and let z(r) :=
sum(r) denote the integer represented by r. For example, r11 := H23, 23, 20, −22, −21I
represents z(r11) = 11. A representation of degree d only contains elements of Powd :=
{2d, 2d−1, ..., 20, −20, ..., −2d−1, −2d}. For example, r11 is a representation of degree 3.

Let d0 := max{⌈log2 c⌉ + 1, ⌈log2|a1|⌉, ..., ⌈log2|av|⌉} be the minimum degree. Now we
define the computer P := (Q, δ, I, O, H) for degree d ≥ d0:

Q := Powd ∪ {0} I := {a1, ..., av}

O(S ⊆ Q) :=
{

1 if z
(
Hq | q ∈ SI

)
≥ c

0 otherwise
H := Hd · 0I

Note that the computer is still bounded and correct, even if we do not add helpers. However,
they make sure that all input agents are returned to state 0. This property is used in
the general construction of Section 6.3 / Appendix B.3. The transitions in δ are, with
i ∈ [0, d − 1]:

−2i , 2i 7→ 0 , 0 −2d , 2d 7→ 0 , 0 〈cancel〉
2i , 2i 7→ 0 , 2i+1 −2i , −2i 7→ 0 , −2i+1 〈combine〉
2d , −2d−1 7→ 0 , 2d−1 −2d , 2d−1 7→ 0 , −2d−1 〈cancel 2nd highest〉
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▶ Lemma 9. Let φ :=
∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v.
For every d ≥ max{⌈log2 c⌉ + 1, ⌈log2|a1|⌉, ..., ⌈log2|av|⌉} there is a bounded computer of size
O(d) that decides φ.

Proof. Pφ is bounded because each transition increases the number of agents in state 0.
Thus, after at most n transitions, we reach a terminal configuration C. No transition changes
the represented value. Thus, we can decide the predicate by comparing z(C) with the
threshold c.

We will now describe an algorithm that decides z(C) ≥ c from the support of C. First
note that as 〈cancel〉 and 〈cancel〉 are not enabled, we know:

C(x) + C(−x) ≤ 1 for every x ∈ Powd−1 (1)

There are three cases:
C(2d) > 0. Because 〈cancel 2nd highest〉 is disabled, we know C(−2d−1) = 0. Then,
because of (1), we know that the value of all other agents must be larger then −2d−1.
Thus, z(C) > 2d − 2d−1 = 2d−1 ≥ |c| and we directly know z(C) ≥ c.
C(−2d) > 0. Symmetric.
C(2d) = 0 = C(−2d). Because of (1), we can calculate z(C) by adding up the values
of all states in the support of C. We add the values in decreasing order of absolute
value (i.e. 2d−1, −2d−1, 2d−2, ..., 21, −21, 20, −20). This way, the absolute value of all
agents that have not been observed is getting smaller. Let x be the current sum after
considering the states 2i and −2i. Using (1), all smaller powers of two can only change
the total sum by at most 2i − 1. Thus, if x ≥ c + 2i − 1 we can directly output 1 and
if x < c − 2i + 1 we can directly output 0; i.e. we only need to continue if x is in the
interval [c − (2i − 1), c + (2i − 1) − 1]. The size of the interval is 2 · 2i − 3 and x is a
multiple of 2i. Thus, there are at most two values of x for which we need to continue.

This gives rise to a decision diagram with at most 2d + 2 decisions that can be converted to
a circuit of size O(d). Note that Pφ is binary and has O(d) transitions. Thus, size(Pφ) :=
|Q| + |H| + size(O) +

∑
t∈δ|t| = (2d + 3) + d + O(d) + O(d) = O(d). ◀

B.3 Construction for general predicates
Let φ be a positive boolean combination B(φ1, ..., φs) of pairwise different threshold or
remainder predicates φ1, ..., φs over variables X := {x1, ..., xv}. Let aj

i be the coefficient of
variable xi ∈ X in predicate φj . Let aj

max := maxv
i=1|aj

i |. If φj is a remainder predicate, let mj

be the modulo parameter and cj be the threshold parameter, i.e. φj =
( ∑v

i=1 aj
i xi ≡mj cj

)
.

Wlog we can assume that 0 ≤ aj
i < mj and 0 ≤ cj < mj . If φj is a threshold predicate, let

cj denote the threshold parameter, i.e. φj =
( ∑v

i=1 aj
i xi ≥ cj

)
.

Let r := maxv
i=1

∑s
j=1

∣∣bin(aj
i )

∣∣ denote the size of the largest split. We now rewrite each
predicate φj :

φ′
j :=


∑v

i=1
∑

e∈supp(bin(aj
i
)) e · xi,e ≥ cj if φj is a threshold predicate∑v

i=1
∑

e∈supp(bin(aj
i
)) e · xi,e ≡mj

cj if φj is a remainder predicate

Then we construct the population computer Pj = (Qj , δj , Ij , Oj , Hj) for each φ′
j . If φ′

j is a
remainder predicate, we follow the construction in Section 6.1 / Appendix B.1. In particular,
the degree of Pj is dj := ⌈log2 mj⌉. Otherwise, if φ′

j is a threshold predicate, then we
choose the degree dj := max{⌈log2 cj⌉ + 1, ⌈log2(s · aj

max)⌉} + 4 and follow the construction in
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Section 6.2 / Appendix B.2. We remark that the addition of 4 is not necessary for correctness,
but we will later use it to show that the protocol is fast.

For our states, we use Q := X ∪ {(q)j : q ∈ Qj , q ̸= 0} ∪ {0}, and define the corresponding
mappings renaming the states q ∈ Qj .

νj : Qj → Q, q 7→

{
0 if q = 0
(q)j otherwise

We define a new transition which distributes the input agents, for input i ∈ {1, ..., v}.

xi, 0, ..., 0 7→
s∑

j=1
νj ◦ bin(aj

i ) 〈distribute〉

Here, νj ◦ M for a multiset M ∈ NQj is the result of renaming the agents in M according to
νj . We have to be careful if |

∑
j bin(aj

i )| ≤ 1, i.e. if an input agent should be distributed to
0 or 1 states. In that case the 〈distribute〉 transition is an interaction between less than two
agents. We make these transitions binary by adding 0 agents that don’t change their state.

In addition to 〈distribute〉, we also add the transitions of δj renamed accordingly, for
j = 1, ..., s.

νj ◦ p 7→ νj ◦ r for (p 7→ r) ∈ δj 〈subcomputer〉

Finally, we define the inputs I := X, the output function O := B(O1, ..., Os), and the
helpers H := (max(r, 2) − 1) · H0I +

∑s
j=1 Hj .

B.4 Size and correctness
In this section, we want to show that our constructions fulfils the claimed properties, except
for speed (which we show separately in the next section, as it is more involved). The main
focus is on showing the following result.

▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

Before we start proving Theorem 1, we start by noting a few technical properties, which
are needed by the conversions later on.

We use the notation of the previous section. In particular, we will write P = (Q, δ, I, O, H)
for the result of the conversion.

▶ Lemma 16. No state in I has incoming transitions, all configurations in NI are terminal,
every state but one has at most 2 outgoing transitions, and r(q) ≤ 1 for q ∈ I and (r 7→ p) ∈ δ.

Proof. These properties follow directly from the construction. In particular, the only outgoing
transition of states in I is 〈distribute〉, which uses an agent in 0 /∈ I. Additionally, the only
state with more than two outgoing transitions is 0. ◀

We will now proceed with the proof of Theorem 1, which will take up the remainder of
this section. The following lemma argues that summing the sizes of the subprotocols is still
linearly bounded in φ.

▶ Lemma 17.
∑s

j=1 dj ∈ O(|φ|)
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Proof. We start by showing |φ| ∈ Θ(s log2 s).
Let l := max {|φ1|, ..., |φs|} be the size of the largest predicate. Remember that the

construction of P assumed that all threshold and remainder predicates are different. Because
predicates are encoded in binary, there are 2l+1 − 1 different predicates with a length of at
most l. Thus, 2l+1 − 1 ≥ s and therefore l ≥ log2(s + 1) − 1. The combined length of all
predicates with length at most l is

∑l
i=0 i2i. The length of φ must be at least as long as all

predicates with size at most l − 1 and thus:

|φ| ≥
l−1∑
i=0

i2i

≥
log2(s+1)−2∑

i=0
i2i

= (log2(s + 1) − 2) · (2log2(s+1)−1+1 − 1)
= (log2(s + 1) − 2) · s

≥ s log2 s − 2s

= Θ(s log2 s)

Using this fact we know:
s∑

j=1
dj =

s∑
j=1

O(log2 cj + log2 s + log2 aj
max) (by def. of dj)

= O(s log2 s) +
s∑

j=1
O(log2 cj + log2 aj

max)

= O(s log2 s) + O(|φ|) (by def. of |φ|)
= O(|φ|)

◀

We can use this to show a bound on the size of the protocol.

▶ Lemma 18. size(P) ∈ O(|φ|)

Proof. This lets us prove that P is succinct:

size(P) = |Q| + |H| + size(O) +
∑
t∈δ

|t| (by def. of Q, H, δ and O)

= |X| + max(r, 2) − 1 + O(s) +
∑

t∈δdist

|t| +
s∑

j=1
size(Pj)

(by definition of 〈distribute〉 and |φ|)

= O(|φ|) +
s∑

j=1
size(Pj) (by Lemmas 8 & 9)

= O(|φ|) +
s∑

j=1
O(dj)

= O(|φ|)

◀
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Next, we show boundedness, which follows more or less directly from the boundedness of
the subprotocols.

▶ Lemma 19. P is bounded.

Proof. P is constructed by distributing input agents to the subcomputers P1, ..., Ps. By
Lemma 8 and Lemma 9, each subcomputer Pj is bounded. Transition 〈distribute〉 reduces
the number of agents in the input states I. As this number cannot increase via other kinds
of transitions, so 〈distribute〉 executes only finitely often.

Afterwards, we can use Lemmata 8 and 9, which show that the subcomputers are bounded.
Here, we note that 〈distribute〉 only adds agents to input states of a subcomputer Pj , so any
transition sequence executed by the subcomputer Pj could also be executed by Pj when
started in an initial configuration. ◀

Finally, we show the correctness of P, concluding the proof of Theorem 1.

▶ Lemma 20. P decides φ.

Proof. Assume that in each terminal configuration C, there are no agents in input states, i.e.
C(X) = 0. From the definition of δdist we know the distribution of an agent in state xi adds
the value aj

i to each subcomputer Pj . Further, it is easy to see that the construction of P
keeps all invariants of the subcomputers intact. Because in each terminal configuration, all
input agents where distributed, each subcomputer Pj still decides φj . Using the definition of
the output function, we conclude that P decides φ.

We still need to show that C(X) = 0 in every terminal configuration C. Let x be the
number of distributed input agents in C. We will now proof that C(Qj \ {0}) ≤ Hj(0) + x

s

for each subcomputer Pj . Intuitively, we show that the number of agents in the non-zero
states of Pj is at most the number of helpers of Pj plus a “fair share” (i.e. 1

s ) of all
distributed agents. If Pj is a remainder predicate, then C(Qj \ {0}) ≤ 3dj = Hj(0) because
otherwise a transition t ∈ δj would be enabled (see proof of Lemma 8). Intuitively, remainder
predicates return 100% of all distributed agents. If Pj is a threshold predicate, we know
C

(
Qj \

{(
2dj

)
j

,
(
−2dj

)
j

, 0
})

≤ dj = Hj(0) and C
((

2dj
)

j

)
= 0 or C

((
−2dj

)
j

)
= 0,

because the transitions t ∈ δj are disabled in C. Each of the x distribution transitions
increased the absolute value of all agents in the states Qj \ {0} by at most aj

max. Thus, the
total absolute value in states Qj is at most xaj

max. Using the definition of dj , this implies
that C(

(
2dj

)
j
) + C(

(
−2dj

)
j
) ≤ xaj

max
2dj

≤ x
s .

We started with at least max(r, 2)−1 +
∑s

j=1 Hj(0) helpers in state 0 and distributed x

input agents. Therefore:

C(0) = C(Q \ X) −
s∑

j=1
C(Qj \ {0})

≥ C(Q \ X) −
s∑

j=1

(
Hj(0) + x

s

)
≥ max(r, 2)−1 + x +

s∑
j=1

Hj(0) −
s∑

j=1

(
Hj(0) + x

s

)
= max(r, 2)−1

Using the definition of r and the definition of δdist, we conclude C(X) = 0 as otherwise, one
of the distribution transitions would be enabled in the terminal configuration C. ◀
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B.5 Speed
We now move on to show that our construction is fast, i.e. that a rapidly-decreasing potential
function for P exists. In particular, the goal is to prove the following lemma:

▶ Lemma 21. Φ is O(|φ|3)-rapidly decreasing in all well-initialised configurations.

The analysis will proceed via potential functions. While we already know that a potential
function exists — P is bounded, so Lemma 11 applies — we will construct one explicitly
to optimise the dependence on |φ| in our analysis. Afterwards, we show that this potential
function is rapidly-decreasing.

Potential Function
To give a potential function for our construction (specifically the computers produced by
Theorem 1), the most interesting part are the subcomputers of remainder predicates, which
we now examine in detail.

▶ Example 22. Let P refer to a subcomputer for a remainder predicate, with states
Q = {0, 20, 21, ..., 2d}, and let d′ := d − ⌈log2 6d⌉. We define a potential function Φ as follows,
with i ∈ 0, ..., d′ − 1 and j ∈ {0, ..., d − d′}.

Φ(0) := 0 Φ(2i) := 2 Φ(2d′+j) := 2j + 1

▶ Lemma 23. Φ is a potential function for P.

Proof. We need to check that every transition reduces the potential. For 〈combine〉, we
need to show Φ(2i) + Φ(2i) > Φ(2i+1), which, depending on i, reduces to either 2 + 2 > 2
or 2j + 1 + 2j + 1 > 2j+1 + 1 for some j ≥ 0. In the case of 〈modulo〉, we note that
2m ≥ 2d (as d = ⌈log2 m⌉), so 2d − m ≤ 20 + 21 + ... + 2d−2. It thus suffices to show
Φ(2d) ≥

∑d−2
i=0 Φ(2i) + (d − 2), and we get

d−2∑
i=0

Φ(2i) = 2d′ + (d − d′ − 2) + 2d−d′−1 − 1 ≤ 2d + 2d−d′−1

So Φ(2d)−
∑d−2

i=0 Φ(2i) ≥ 2d−d′ +1− (2d+2d−d′−1) which is at least d−2 if 2d−d′−1 ≥ 3d−3.
The latter then follows from our choice of d′. Finally, 〈fast modulo〉 obviously reduces the
potential as well. ◀

Apart from remainder predicates, the potential function is easy to choose. For threshold
predicates, every state (except 0) has potential 1, and for an input state its potential is
simply given by the total potential of the states it distributes to, plus one. The combined
state 0 still has potential 0. This leads to the following statement.

▶ Proposition 24. For every population computer P produced by Theorem 1, there exists a
potential function Φ for P. Additionally, Φ(0) = 0 and Φ(q) ∈ O(|φ|) for all q ∈ Q.

Rapidly-Decreasing
Our next goal is showing that the potential function Φ constructed in the previous section is
rapidly-decreasing.

Throughout this section we will need to reference particular states or sets of states.
First, recall that I are the input states, 0 is the combined reservoir state, and we have s
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subcomputers, each of which corresponds to either a remainder or a threshold predicate φj .
Subcomputer j has a degree dj , for j = 1, ..., s, corresponding to the bits of the representation
it encodes. We need to reference specifically the highest bits of threshold subcomputers, so
let Qd := {(2dj )j : φj is threshold predicate}.

Additionally, we are interested in the states q for which a transition using only agents in
q exists, which are precisely Qself := Q \ (I ∪ Qd ∪ {0}).

We start by showing two technical lemmata. It will be necessary to keep track of which
state contributes to which subcomputer, which we want to denote by valuej(q), for q ∈ Q

and a subcomputer j ∈ {1, ..., s}. In particular, we set valuej((q)j) := q for each q ∈ Qj ,
valuej(0) := 0 and valuej(xi) := aj

i for input i ∈ {1, .., v}.
Note that the

∑
q valuej(q)C(q) is invariant for configurations C of a run, if j is a

threshold predicate. (For remainder predicates it would be invariant modulo mj , but that is
not relevant for this section.) Also, the sum

∑
q|valuej(q)|C(q) is nonincreasing, for all j.

First, we prove that there cannot be too many agents in Qd; they would hold too much
value.

▶ Lemma 25. Let C denote a reachable configuration. Then C(Qd) ≤ |C|/8.

Proof. Let j denote the index of the threshold predicate, q = (±2dj )j ∈ Qd one of its largest
states, and p ∈ I an input state. We then have

|valuej(p)| ≤ aj
max ≤ 2dj

16s
= valuej(q)

16s

due to the choice of dj . As C is reachable from some initial configuration C0, and∑
q|valuej(q)|C(q) cannot increase, we sum over p to get

|valuej(q)| C(q) ≤
∑
p∈I

|valuej(p)| C(p) ≤
∑
p∈I

|valuej(q)| C(p)/16s = |valuej(q)| C(I)/16s

So we have C(q) ≤ C(I)/16s and summing over q yields the desired statement. ◀

▶ Lemma 26. Let tj := ((2dj )j , (−2dj )j 7→ 0, 0) ∈ 〈cancel〉, where j is the index of a threshold
subcomputer. Let C, C ′ denote configurations with C → C ′.

Then C(Qd) − C ′(Qd) ≤ 2
∑

j tmintj (C) + C(I) + C(Qself).

Proof. Let D ∈ NQd with D(q) := max{C(q) − C ′(q), 0} for q ∈ Qd. Note that D(q)
is a lower bound on how many agents leave state q in any run from C to C ′, and that
C(Qd) − C ′(Qd) ≤ D(Qd).

Let j be the index of a threshold subcomputer. As the only way to leave these states are
〈cancel〉 and 〈cancel 2nd highest〉, we know that∑

q∈Qj+

|valuej(q)| C(q) ≥ 2dj−1
(

D((2dj )j) + D((−2dj )j)
)

where Qj+ := {q ∈ Q : valuej(q) > 0}. The same inequality holds when replacing Qj+ with
Qj− := {q ∈ Q : valuej(q) < 0}. From these, we derive

2 C((∼2dj )j) + 2
∑

q∈Q\Qd

2−dj |valuej(q)| C(q) ≥ D((2dj )j) + D((−2dj )j)

for ∼ ∈ {+, −}, as Q \ Qd ⊇ Qj∼ ∪ {(−2dj )j}. We can combine the two inequalities into

2 tmintj
(C) + 2

∑
q∈Q\Qd

2−dj |valuej(q)| C(q) ≥ D((2dj )j) + D((−2dj )j)
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Summing over j then yields

2
∑
t∈Td

tmint(C) + 2
∑

q∈Q\Qd

∑
j

2−dj |valuej(q)| C(q) ≥ D(Qd)

If
∑

j 2−dj |valuej(q)| ≤ 1
2 were to hold for all q ∈ Q \ Qd, then we would get the desired

statement (noting value(0) = 0), so it remains to show this claim. For q ∈ Qj \ Qd for some
j we have |valuej(q)| ≤ 2dj−1 and valuej′(q) = 0 for j′ ̸= j, and for q ∈ I it follows from
|valuej(q)| ≤ aj

max ≤ 2dj /16s for all j ∈ {1, ..., s}. ◀

▶ Lemma 21. Φ is O(|φ|3)-rapidly decreasing in all well-initialised configurations.

Proof. Let C ′ ∈ ZQ with C ′ := C − Cterm and let W := maxq∈Q Φ(q) denote the largest
weight. Then

Φ(C) − Φ(Cterm) = Φ(C ′) ≤ W C ′(Q \ {0})

Applying Lemma 26, as well as C ′ ≤ C, yields

C ′(Q \ {0}) = C ′(Qd) + C ′(I) + C ′(Qself) ≤ 2
∑
t∈Td

tmint(C) + 2C(I) + 2C(Qself) (∗)

where Td := {tj : φj threshold predicate} with tj as for Lemma 26. As we are in a well-
initialised configuration, C(I) ≤ 2(C(Qself)+C(0)+C(Qd)), and Lemma 25 implies C(Qd) ≤
C(Q \ Qd)/7. We use both to derive

C(I) ≤ 2C(Qself) + 2C(0) + 2
7
(
C(I) + C(Qself) + C(0)

)
⇒ 5

7 C(I) ≤ 16
7 (C(Qself) + C(0))

⇒ C(I) ≤ 16
5

(
C(Qself) + C(0)

)
≤ 4

(
C(Qself) + C(0)

)
Of course, C(I) ≤ 4C(Qself) + 4 min{C(0), C(I)} is thus true as well. We write TI :=
〈distribute〉 and use Lemma 63 to get

C(I) ≤ 4C(Qself) + 4
∑
t∈TI

tmint(C)

Every state q ∈ Qself has a (unique) transition using only agents in q; we use To to denote
this set and set T := TI ∪ To ∪ Td. We can now insert the previous inequality into (∗) to get
C ′(Q \ {0}) ≤ 8

∑
t∈T tmint(C). Noting |T | ≤ 2|Q|, we finally apply Lemma 66.

Φ(C ′)2 ≤
(

8 W
∑
t∈T

tmint(C)
)2

≤ 128 W 2|Q| speed(C)

The desired statement then follows from |Q|, W ∈ O(|φ|). ◀
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C Conversion 1: Removing Multiway Transitions

In this section we describe how to convert a population computer P = (Q, δ, I, O, H)
with arbitrary interactions into a population computer P ′ = (Q′, δ′, I ′, O′, H ′) where all
interactions are binary. The goal is to show the following theorem. (We remark that the
definition of potential function can be found in Section 7.4.)

▶ Theorem 27. Let P = (Q, δ, I, O, H) be a bounded population computer. Then there exists
an equivalent bounded binary population computer P ′ = (Q′, δ′, I ′, O′, H ′) with adjusted size
O(β · size(P )), where β ≤ |Q|. Additionally:
1. If every state of P but one has at most 2 outgoing transitions, β ≤ 2.
2. If no state in I has incoming transitions, then neither do states in I ′.
3. If all configurations in NI are terminal and r(q) ≤ 1 for q ∈ I and (r 7→ p) ∈ δ, then all

configurations in NI′ are terminal.
4. If there is a potential function Φ for P which is α-rapidly decreasing in all well-initialised

configurations, and conditions 2 and 3 are met, then there is a potential function Φ′ for
P ′, which is O(|Q|2k2α)-rapidly decreasing in all well-initialised configurations, where
k := max{|r| : (r 7→ p) ∈ δ}.

We remark that rapid population computers fulfil all four conditions by definition.
The theorem contains all properties to make this section self-contained. Its proof is

split into lemmata 30, 31, 32 for the basic properties, Lemma 33 for conditions 1-3, and
lemmata 37 and 38 for condition 4.

This section is split into three parts. In Appendix C.1 we describe the construction
formally, in Appendix C.2 we show the desired properties except for speed, which is proven
in Appendix C.3.

C.1 Construction

Let m(q) := max{r(q) : (r 7→ s) ∈ δ} denote the maximum multiplicity of any outgoing
transition of q. For each state q we allow up to m(q) agents to “stack”, so we create states
{(q, i) : q ∈ Q, i = 0, ..., m(q)} and the following transitions, for q ∈ Q, i, j ∈ {1, ..., m(q) − 1}.

(q, i), (q, j) 7→ (q, i + j), (q, 0) if i + j ≤ m(q)
(q, i), (q, j) 7→ (q, m(q)), (q, i + j − m(q)) if i + j ≥ m(q).

〈stack〉

Intuitively, an agents in (q, i) „owns“ i agents in state q, meaning that it certifies that
i − 1 additional agents are in (q, 0). A transition t = (r 7→ s) ∈ δ with supp(r) = {q, p} can
be initiated by any pair of agents, who together represent at least r agents, i.e. an agent in
(q, i) with i ≥ r(q) and an agent in (p, j) with j ≥ r(p) (if p ̸= q, else we need i + j ≥ r(q)).

One of these agents will be designated as the primary agent, responsible for executing
the remainder of the transition. This is based on their corresponding state in Q; here we will
assume q to be primary. First, the secondary agent in state (p, j) reduces its value by r(p),
moving to (p, j − r(p)), while the primary agent moves to (q, i − r(q), t). This indicates that
it has ownership of i − r(q) agents in q, and is in the process of executing transition t. We
then have states {(q, i, t) : i = 0, ..., m(q)}, and, assuming q ̸= p, transitions

(q, i), (p, j) 7→ (q, i − r(q), t), (p, j − r(p)) for i ≥ r(q), j ≥ r(p) 〈commit〉
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If q = p, we pick any i, j with i + j ≥ r(q) and get

(q, i), (q, j) 7→ (q, i + j − r(q), t), (q, 0) if i + j − r(q) ≤ m(q)
(q, i), (q, j) 7→ (q, i + j − r(q) − m(q), t), (q, m(q)) else

〈commit〉

Afterwards, the agent in (q, i − r(q), t) needs to transfer its remaining value (if any) of i− r(q)
to another agent.

(q, i, t), (q, 0) 7→ (q, 0, t), (q, i) for i = 1, ..., m(q) 〈transfer〉

Finally, the transition can be executed. For this, we add states {(t, i) : i = 1, ..., |r|}. Let
s1, ..., sl denote an enumeration of the resulting agents s, with l := |s|. Intuitively, an agent
in (t, i) moves one agent into (si, 1), and then goes to (t, i + 1). Instead of moving an agent
into (t, 1) via a transition, we identify (q, 0, t) with (t, 1) directly. Additionally, we identify
(t, l) with (sl, 1), so that we do not have to create a special transition for the last agent. The
remaining transitions are as follows, for i = 1, ..., l − 1.

(t, i), (p, 0) 7→ (t, i + 1), (si, 1) if i ≤ r(p)
(t, i), (q, 0) 7→ (t, i + 1), (si, 1) if i > r(p)

〈execute〉

As defined above, P ′ is not deterministic, i.e. for some of the transitions 〈stack〉 and
〈commit〉 it may be the case that 〈stack〉 = (r 7→ s1) and 〈commit〉 = (r 7→ s2) for the same
r. However, in this case we always prefer to execute 〈commit〉 over 〈stack〉, and, in the case
of conflicting 〈commit〉 transitions, pick an arbitrary one.

We retain the original input states and helpers, by identifying each q ∈ Q with (q, 1). For
the output function we define O′(S) := O({q : (q, i) ∈ S}) for any S, but note that a circuit
for O grows by at most a factor of 3, as (q, i) ∈ supp(C) ⇒ (q, 0) ∈ supp(C) for i ≥ 2 and
any reachable configuration C and state q, so it suffices to check for (q, 0) and (q, 1).

C.2 Correctness
We want to show that P ′ is bounded and decides the same predicate as P. To this end, we
will show that P ′ “refines” P, i.e. that runs of P ′ correspond to runs of P in some fashion.
The formal definition of refinement is given in Appendix I.1.

To begin, let us introduce the mapping between configurations of P ′ and P describing
the refinement. We define π : Q′ → NQ by setting

π((q, i)) := q · i

π((q, i, t)) := q · i + s for all q ∈ Q, t = (r 7→ s) ∈ δ and i

π((t, i)) := si + ... + sl

This uses the same enumeration of s as above. Clearly, π is well-defined, as π((q, 0, t)) =
s = π((t, 1)) and π((t, l)) = sl = π((sl, 1)). Finally, we extend π to a linear mapping
π : NQ′ → NQ in the obvious fashion.

Before we show that P ′ is a refinement, we argue that agents cannot get stuck in
intermediate states, implying that P ′ can always make a transition at C if one is enabled at
π(C).

▶ Lemma 28. Let C ∈ NQ′ be both reachable and terminal. Then π(C) is terminal.
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Proof. We first observe that transition 〈transfer〉 is always enabled if an agent is in state
(q, i, t), with t = (r, s) ∈ δ and i ≥ 1, as that state “owns” i + r(q) agents in q. Hence there
must be i + r(q) − 1 ≥ i ≥ 1 agents in (q, 0). By the same line of argument, 〈execute〉 is
always enabled if an agent is in (t, i), for t ∈ δ and 1 ≤ i < |s|.

Now, assume π(C) is not terminal, so there is some transition t = (r 7→ s) ∈ δ which
is enabled at π(C). As we have just argued, all agents of C are in states (q, i), for q ∈ Q

and i ∈ {0, ..., m(q)}. Transition 〈commit〉 is not enabled at C, wherefore one of the states
q ∈ Q used by t fulfils i < r(q) for all i with C((q, i)) > 0. But t is enabled at π(C), so
π(C)(q) ≥ r(q) and, by definition of π, there are i, j > 0 s.t. C contains both an agent in (q, i)
and one in (q, j). Due to our choice of m, we have r(q) ≤ m(q), and therefore 0 < i, j < m(q),
wherefore transition 〈stack〉 is enabled, contradicting that C is terminal. ◀

▶ Lemma 29. P ′ refines P.

Proof. We show that π fulfils the properties required by Definition 61.
1. Note that π is invariant under execution of 〈stack〉, 〈transfer〉 and 〈execute〉. Additionally,

for a t ∈ δ and a corresponding 〈commit〉 transition t′, we find that C →t′ C ′ implies
π(C) →t π(C ′) for all C, C ′ ∈ NQ′ .

2. We identified q ∈ Q with (q, 1) and set π((q, 1)) := q, so I = I ′ and π(C) = C for all
C ∈ NQ follows.

3. This follows immediately from Lemma 28 and our choice of O′.
◀

To conclude the proof, we merely need to show that P ′ is bounded and can then rely on
the properties of refinement.

▶ Lemma 30. P ′ is bounded.

Proof. Assume an infinite run C0, C1, ... of P ′ exists. If transition 〈commit〉 is executed
infinitely often in that run, at steps i0, i1, ... ∈ N, then π(Ci0), π(Ci1), ... would be an infinite
run of P, contradicting that P is bounded. Hence there is an infinite suffix of C0, C1, ... in
which 〈commit〉 is never fired.

In this suffix the number of agents in a state (q, i, t) ∈ Q′ with i > 0 cannot increase, but
decreases whenever 〈transfer〉 is executed. Hence this also happens only finitely often and the
number of agents in a state (t, i) cannot increase beyond a point. As 〈execute〉 increases i, it
too must occur only finitely often. The only transition left is 〈stack〉, which always increases
the number of agents in either (q, 0) or (q, m(q)), for some q ∈ Q. ◀

▶ Lemma 31. If P decides φ, then P ′ does so as well.

Proof. This follows immediately from lemmata 29, 30 and 62. ◀

To estimate the size of the resulting protocol, let βq denote the number of transitions
t ∈ δ for which q ∈ Q is the primary agent, and set β := max{βq : q ∈ Q}.

▶ Lemma 32. |Q′| ≤ (β + 2) size(P).

Proof. We begin by bounding the total value of m(q). Clearly, m(q) ≤
∑

(r 7→s)∈δ r(q) for
q ∈ Q, and thus

∑
q∈Q m(q) ≤

∑
t∈δ|t|.

For every q ∈ Q we create m(q) + 1 states, for every t ∈ δ we create |t| states, and we
create an additional m(q) states for every transition t using state q as primary agent, so at
most βm(q). In total we create at most (β + 2)

∑
t∈δ|t| + |Q| states. ◀
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▶ Lemma 33. If every state of P but one has at most 2 outgoing transitions, β ≤ 2.
If no state in I has incoming transitions, then neither do states in I ′.
If all configurations in NI are terminal and r(q) ≤ 1 for q ∈ I and (r 7→ p) ∈ δ, then all
configurations in NI′ are terminal.

Proof. To show the first statement, let q ∈ Q denote the state with the most outgoing
transitions. For our construction, we can simply not choose q as primary agent, for all
transitions that also uses a different agent. There is at most one other transitions (using only
agents in q), so every state is chosen as primary agent with at most 2 transitions and β ≤ 2.

The second statement is obvious from the construction.
For the third, note that the condition implies m(q) ≤ 1 for all q ∈ I. Therefore the only

transition using an agent in I ′ is 〈commit〉, which is not enabled at C if π(C) is terminal. ◀

C.3 Speed
In this section we want to show that our construction is fast, by proving that a potential
function exists and that it is rapidly decreasing. We assume that Condition 4 of Theorem 27
is met (and thus conditions 2 and 3 as well).

The next lemma constructs a potential function for P ′, based on the potential of P . The
potential of a state then corresponds directly to the original potential of states it owns, with
some additional accounting to pay for overhead of executing a multiway transition.

At this point it becomes important that our definition of potential function requires a
transition of size k to reduce the potential by k − 1, as this means that we have to increase
the total potential by only a constant factor.

▶ Lemma 34. Let Φ be a potential function for P. There is a potential function Φ′ for P ′.

Proof. We first adjust Φ by multiplying it with 5, so that Φ(r) ≥ Φ(s) + 5(|s| − 1) for all
transitions (r 7→ s) ∈ δ.

Let q, p ∈ Q, t = (r 7→ s) ∈ δ a transition where supp(r) = {q, p} and q is primary, and
let s1, ..., sl denote the enumeration of s from above. We define Φ′ as

Φ′((q, 0)) := 0
Φ′((q, i)) := iΦ(q) + 1 for i ∈ {1, ..., m(q) − 1}

Φ′((q, m(q))) := m(q)Φ(q)
Φ′((q, i, t)) := iΦ(q) + Φ(s) + 2l + 2 for i ∈ {1, ..., m(q)}

Φ′((t, i)) :=
l∑

j=i

(Φ(sj) + 2) for i ∈ {1, ..., l − 1}

For most transitions, it is easy to see that Φ′ decreases. However, we need to verify that
〈commit〉 does so as well. If q ̸= p, we have to prove the inequality

iΦ(q) + jΦ(p) + 2 ≥ (i − r(q))Φ(q) + Φ(s) + 2l + 2 + (j − r(p))Φ(p) + 1

which boils down to Φ(r) ≥ Φ(s) + 2l + 1. This then follows from Φ(r) ≥ Φ(s) + 5(l − 1).
The case q = p is shown analogously. ◀

The next three lemmata show technical properties that are needed for the proof that Φ′

is rapidly decreasing. The first gives a relation between the potential of P ′ and of the refined
computer P.
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▶ Lemma 35. Φ(π(C)) ≤ Φ′(C) ≤ Φ(π(C)) + 2C(S) for S := Q′ \ {(q, m(q)), (q, 0) : q ∈ Q}.

Proof. For the first inequality we simply observe Φ(π(C)) ≤ Φ′(q) for each q ∈ Q′.
Each state q = (p, m(p)), for p ∈ Q, has Φ′(q) = Φ(π(q)). For each other state q ∈ S we

show Φ′(q) − Φ(π(q)) ≤ 2c, where c is the amount of agents “owned” by an agent in state
q. E.g. (q, i) for q ∈ Q and 0 < i < m(q) has Φ′(q) − Φ(π(C)) = 1 and c = i. For (q, i, t),
we have c = |s| + i, and (t, i) owns c = |s| + 1 − i agents, the respective inequalities follow
immediately. ◀

In prior proofs we have seen that states which can initiate a transitions by themselves
are useful to show speed bounds. More concretely, this means that there is a state q and
a transition t = (r 7→ s) with supp(r) = {q}, implying tmint(C) = C(q) for all C. For the
next lemma, we show that there are transitions with the same useful property (even if not
all of them use only a single state).

▶ Lemma 36. Let S := Q′ \ {(q, m(q)), (q, 0) : q ∈ Q}. There is an injection g : S → δ′, s.t.
C(q′) = tming(q′)(C) for any reachable configuration C and q′ ∈ S.

Proof. Let q ∈ Q, and t = (r 7→ s) ∈ δ.
If q′ = (q, i) for i < m(q), then there is a 〈stack〉 transition using only agents in q, which

we use as g(q′). If q′ = (q, i, t), then we know that C(q′) ≤ C((q, 0)), as q′ owns at least
|r| ≥ 1 agents, so we can pick the 〈transfer〉 transitions for g(q′). Finally, if q′ = (t, i), for
i < |s|, then q′ owns |s| − i ≥ 1 agents other than itself, and we choose the corresponding
〈execute〉 transition. ◀

In the end, we want to show that Φ′ is rapidly decreasing in all well-initialised configura-
tions if Φ is. For this, we need to argue briefly that being a well-initialised configuration
corresponds.

▶ Lemma 37. If C is well-initialised, then so is π(C).

Proof. Due to Condition 3 of Theorem 27, m(q) = 1 for each q ∈ I. In combination with
Condition 2 we get C((q, 1)) = π(C)(q) for all q ∈ I. This implies C(I ′) = π(C)(I). Noting
|H| = |H ′|, the statement follows immediately. ◀

Finally, we can prove that the potential is rapidly decreasing.

▶ Lemma 38. Let k := max{|r| : (r 7→ s) ∈ δ}. Φ′ is O(αk2|Q|2)-rapidly decreasing in C if
Φ is α-rapidly decreasing in π(C), for all reachable configurations C and α ≥ 1.

Proof. Let Cterm denote a terminal configuration reachable from C. Using Lemma 35 we get
Φ′(C) − Φ′(Cterm) ≤ Φ(π(C)) − Φ(π(Cterm)) + 2C(S). We know that π(Cterm) is reachable
from π(C), and, as shown in the proof of Lemma 31, it is terminal as well. Hence we can use
that P is α-rapidly decreasing in π(C) to get

(
Φ(π(C)) − Φ(π(Cterm))

)2 ≤ α speed(π(C)).
To estimate speed(π(C)), we write t∗ for the 〈commit〉 transition corresponding to

t ∈ δ using agents in states (q, m(q)), (p, m(p)) for q, p ∈ Q. Additionally, let Hq :=∑
q′∈S C(q′)π(q′)(q) for q ∈ Q denote the contribution of agents in states S to π(C)(q), for

q ∈ Q. We then observe π(C)(q) = Hq + m(q)C((q, m(q))) ≤ Hq + kC((q, m(q))).
Now, let t = (r 7→ s) ∈ δ and q, p ∈ Q with supp(r) = {q, p}. Then the above (together

with Lemma 65) yields

tmint(π(C)) = min{π(C)(q), π(C)(p)} ≤ k tmint∗(C) + Hq + Hp.
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Via Lemma 66, squaring the right-hand side gives at most 3(k2 tmint∗(C)2 + H2
q + H2

p ), so
by summing over t we get

speed(π(C)) ≤ 3k2
∑
t∈δ

tmint∗(C)2 + 6|Q|
∑
q∈Q

H2
q

Moving on, we get
∑

q∈Q H2
q ≤

( ∑
q∈Q Hq

)2
and

∑
q∈Q Hq = |π(CS)|, where CS(q) :=

C(q) for q ∈ S and 0 otherwise. Based on the definition of π, we have |π(q)| ≤ 2k, so
|π(CS)| ≤ 2k|CS |. Due to Lemma 36 we find |CS | ≤

∑
t′∈g(S) tmint′(C).

Putting things together, and applying Lemma 66 again, we get the following bound.

speed(π(C)) ≤ 3k2
∑
t∈δ

tmint∗(C)2 + 24k2|Q|2
∑

t′∈g(S)

tmint′(C)2 ≤ 24k2|Q|2 speed(C)

Now we can go back to the start, and complete the proof. (Note C(S) = |CS |.)(
Φ′(C) − Φ′(Cterm)

)2 ≤ 2
(
Φ(π(C)) − Φ(π(Cterm))

)2 + 8C(S)2

≤ 2α speed(π(C)) + 8|Q| speed(C) ≤ 49αk2|Q|2 speed(C)

◀
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D Conversion 2: Converting Output functions to Marked Consensus

In this section, we show how to convert a bounded binary computer P into an equivalent
computer P ′ using a marked consensus output instead of a general output function. We
prove the following conversion theorem, consisting of multiple independent parts. The last
part concerns the speed analysis, the relevant definitions can be found in Appendix H.

▶ Theorem 39. Let P = (Q, δ, I, O, H) be a bounded binary population computer. Then
there exists an equivalent bounded binary computer P ′ = (Q′, δ′, I ′, O′, H ′) with adjusted size
O(size2(P)) using a marked consensus output. Additionally:
1. If no state in I has incoming transitions, then neither do states in I ′.
2. If all configurations in NI are terminal, then so are all configurations in NI′ .
3. If there is a potential function Φ for P which is α-rapidly decreasing in all well-initialised

configurations, and Condition 2 is met, then P ′ has a potential group of size 5 which is
O(α + size2(P)2)-rapidly decreasing in all well-initialised configurations.

Theorem 39 summarises all the information necessary about the computers such that the
rest of the conversions proceed smoothly. Specifics about the computer are not necessary for
the next sections.

The proof will span this section and is split over lemmata 42 and 43 for the base statement,
Lemma 44 for conditions 1 and 2, and Lemma 45 for Condition 3.

D.1 Construction

We begin by describing the construction that is depicted in Figure 4. Let P = (Q, δ, I, O, H)
denote a bounded binary population computer, and let (G, E) denote a circuit for O, where
G = {1, ..., β} is a set of NAND-gates, and E : G → (G ∪ Q)2 specifies the two inputs for
each gate. We assume that u < g for all g ∈ G and u ∈ E(g) ∩ G, and that gate β gives the
output of the circuit.

The computer P ′ consists of four parts:
Qorig := Q × {−, +}, the states of the original protocol combined with a flag to indicate
that the support might have changed.
Qsupp := Q × {0, 1, !}, one agent for each state of P, detecting whether that state is
present. ! is equivalent to 1, but also indicates that the gates must be reset.
Qgate := G × {0, 1, ⊥}3, one agent for each gate, which stores the current values of its
two inputs and its output. Uninitialised values are stored as ⊥.
Qreset := {0, ..., |Q| + β}, one agent that resets the agents in Qsupp if the support changed,
and which resets the agents in Qgate, if the output of the circuit needs to be recomputed.

We now formally specify the required transitions. First, we need to refine the original
protocol, requesting to recompute the support with each transition. Different occurrences of
± need not match.

(q, ±), (p, ±) 7→ (q′, +), (p′, −) for (q, p 7→ q′, p′) ∈ T 〈execute〉

It suffices to reset once, so for the purpose of speed we clear superfluous flags.

(q, +), (p, +) 7→ (q, +), (p, −) for q, p ∈ Q 〈denotify〉
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Figure 4 Figure visualising the conversion to marked consensus output for a population computer
with states {p, q, r}, a single transition p, q 7→ r, r and output function ¬(r ∧ ¬(p ∧ q)).
State names are abbreviated: xy and xy are used instead of (x, y), and only the last two components
of states in Qgate are shown. Transitions are drawn using Petri net notation. The same state may
appear multiple times. Occurrences beyond the first are drawn with a dashed border.
Hexagons indicate wildcards. Each hexagon is associated with a group of states (indicated by shaded
areas). Used as input to a transition, it denotes that any agent of that group can be used (i.e.
they create multiple copies of the transition). Transition may use hexagons as both input and
output, in which case the output hexagon refers to the state corresponding to the state used for the
input hexagon. For example, transition 〈denotify〉 takes two agents x+, y+, with x, y ∈ {p, q, r} and
produces an agent in x− and one in y+.
We omit 〈leader〉 transitions and the third case of 〈init-reset〉 from the drawing. Please note, however,
that the resulting computer is still correct under the assumption that no superfluous helpers are
provided. (This is equivalent to using leaders instead of helpers.)

To keep the protocol deterministic, we remove all 〈denotify〉 transitions which could also
initiate another transition (in particular 〈execute〉). The support is computed by setting the
stored bit to ‘!’ once the corresponding state has been observed.

(q, 0), (q, −) 7→ (q, !), (q, −) for q ∈ Q 〈detect〉

To define the transitions for Qgate, we need to introduce some notation. First, we write
nand for the NAND function, i.e. nand(i, j) := ¬(i ∧ j) for i, j ∈ {0, 1} and nand(i, j) := ⊥
otherwise. We also use E1, E2 to denote the first and second component of E, and write Sb

g for
the set of states indicating that gate g ∈ Q ∪ G has truth value b ∈ {0, 1}, i.e. Sb

q := {(q, b)}
for q ∈ Q and Sb

g := {g, b} × {0, 1}2 for g ∈ G. We add the following transitions, for any gate
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g ∈ G and b, i ∈ {0, 1}.

(g, ⊥, ⊥, ⊥), q 7→ (g, ⊥, b, i), q for q ∈ Sb
E1(g)

(g, ⊥, i, ⊥), q 7→ (g, nand(i, b), i, b), q for q ∈ Sb
E2(g)

〈gate〉

These transitions perform the computation of the gate, by initialising the first and then the
second input. Once the second input is initialised, the output of the gate is set accordingly.

There are two kinds of resets; depending on whether the agents in Qsupp are affected.
(The gates are always reset.) Both resets are executed by an agent in Qreset, who goes
through the other agents one by one. Let q1, ..., q|Q| denote an enumeration of Q.

i − 1, (qi, b) 7→ i, (qi, 0) for (qi, b) ∈ Qsupp

|Q| + g − 1, (g, b1, b2, b3) 7→ |Q| + g, (g, ⊥, ⊥, ⊥) for (g, b1, b2, b3) ∈ Qgate
〈reset〉

There are three ways to initiate a reset:

(q, +), i 7→ (q, −), 0 for (q, +) ∈ Qorig, i ∈ Qreset

(q, !), i 7→ (q, 1), min{i, |Q|} for (q, !) ∈ Qsupp, i ∈ Qreset

i, j 7→ 0, (qh, −) for i, j ∈ Qreset

〈init-reset〉

First, an agent in Qorig may indicate that the support has changed, and everything will be
reset. Second, an agent in Qsupp will request that all gates be reset whenever it changes
its output. Third, if two agents are in Qreset, the computation so far must be discarded
and we continue with only one of them. The other moves into an arbitrary state qh ∈ Q

with H(qh) > 0, so it is given back to P to use for its computations. Picking a state with
H(qh) > 0, i.e. a helper state, ensures that this does not affect the correctness of P.

Finally, all states in Qsupp and Qgate also participate in a leader election, to ensure that
there is only one agent in Qsupp for each q ∈ Q, and only one agent for each gate.

q, q′ 7→ q, 0 for q, q′ ∈ Qsupp s.t. q1 = q′
1

g, g′ 7→ g, 0 for g, g′ ∈ Qgate s.t. g1 = g′
1

〈leader〉

These transitions indirectly cause a reset, by producing an agent in Qreset.
It remains to define the inputs, helpers and outputs. For this, we identify a state q ∈ Q

with (q, −) ∈ Qorig. We define I ′ := I, as well as H ′(q) := H(q) for q ∈ Q and H(q) := 1 for
q ∈ Q × {0} ∪ G × {(⊥, ⊥, ⊥)} ∪ {0}. To define the marked consensus output, we pick the
special states Q0 = {(β, 1)} × {0, 1}2 and Q1 := {(β, 0)} × {0, 1}2.

D.2 Correctness
As for the previous construction in Appendix C.2 we will show that P ′ refines P, formally
defined in Appendix I.1. Hence we introduce a mapping π : NQ′ → NQ to describe the
configuration that P ′ is representing. For all C we define

π(C) :=
∑
q∈Q

q · C((q, ±)) + qh · (C(Qsupp ∪ Qgate ∪ Qreset) − |Q| − β − 1)

Recall that qh ∈ Q is the state to which superfluous agents are moved, as defined in 〈init-reset〉.
Eventually, we have exactly one agent for each state in Q, to detect the support, exactly one
agent for each gate, and exactly one reset agent, so |Q| + β + 1 in total. Everything beyond
that is superfluous and will be returned to qh at some point.
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▶ Lemma 40. Let C denote a reachable configuration of P ′. Then C(Qreset) ≥ 1, C({q} ×
{0, 1, !}) ≥ 1 for q ∈ Q, and C({g} × {0, 1, ⊥}3) ≥ 1 for g ∈ G. If C is terminal, the above
hold with equality.

Proof. Let Sq := {q} × {0, 1, !} for q ∈ Q and Gg := {g} × {0, 1, ⊥}3 for g ∈ G. First,
note that the sets of states Qreset, Sq and Gg each contain at least one agent in an initial
configuration (due to the choice of H ′). Additionally, they cannot be emptied, as every
transition removing agents from one of these sets also puts at least one agent back. (Using
Petri net terminology, they are traps.)

If two agents are in Qreset, the third part of 〈init-reset〉 is active and C is not terminal.
Similarly, if two agents are in Sq, for some q, or two agents are in Gg, for some g, then
〈leader〉 can be executed. ◀

▶ Lemma 41. P ′ refines P.

Proof. We show that π fulfils the properties required by Definition 61. The first two are
simple.
1. Observe that π(C) is changed only via transition 〈execute〉, and that this happens

according to a transition t ∈ T .
2. I = I ′ holds by construction and the remainder follows from H(qh) > 0 and the definition

of π.
Property 3 will take up the remainder of this proof. Let C denote a reachable, terminal
configuration of P ′. Using Lemma 40 we get π(C) =

∑
q∈Q q · C((q, ±)). Therefore, if a

transition t ∈ δ is enabled at π(C), the corresponding 〈execute〉 transition is enabled at C.
As C is terminal, so is π(C).

Finally we have to argue O′(supp(C)) = O(supp(π(C))). Due to Lemma 40 we know
that in C we have exactly one agent in either (q, 0), (q, 1), or (q, !). It cannot be in (q, !), as
then transition 〈init-reset〉 would be enabled.

If it were in (q, 0) but π(C)(q) > 0, then transition 〈detect〉 would be enabled, so that
cannot be the case either. Conversely, if it were in (q, 1) but π(C)(q) = 0, then we also
arrive at a contradiction: after the last agent left (q, ±) via 〈execute〉, it must have triggered
a reset, which moved the agent to (q, 0) (or, if there were multiple agents in q × {0, 1, !},
〈leader〉 would have triggered another reset later). But after that reset π(C)(q) = 0, so it is
impossible to leave (q, 0).

Therefore we find that the agents in Qsupp precisely indicate the support of π(C).
Whenever an agent in Qsupp changes its opinion (either due to a 〈reset〉 or 〈detect〉), all gates
will be reset. So there is some point at which the opinions of agents in Qsupp have stabilised
(in particular, all inequalities of Lemma 40 are tight, else there would be another reset) and
the unique agent in Qreset is in state |Q|, i.e. it is in the process of resetting all gates. As the
gates are reset in order of some topological sorting (so a gate is reset after its inputs are),
a gate will only assume a value after its inputs have stabilised and therefore compute the
correct value according to the circuit. As the circuit computes O(supp(π(C))), the statement
follows. ◀

▶ Lemma 42. P ′ is bounded.

Proof. Due to Lemma 41 we know that π(C) can change only finitely often, as P is bounded,
and thus transition 〈execute〉 can be executed only finitely often. After that, the number of
agents in a state Q × {+} ⊆ Qorig cannot increase, but can always decrease using the first
〈init-reset〉 transition. So eventually no agents remain in those states.
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Parallel to that, both C(Qsupp) and C(Qgate) cannot increase. Whenever C(Qsupp) > |Q|
or C(Qgate) > β, 〈leader〉 is enabled and decreases one of them, until C(Qsupp) = |Q|
and C(Qgate) = β. Afterwards, 〈leader〉 cannot fire again (note Lemma 40), and C(Qreset)
cannot increase. If C(Qreset) > 1, the third case of 〈init-reset〉 will reduce this number, until
C(Qreset) = 1.

To summarise, eventually no agents remain in Q × {+} and all inequalities of Lemma 40
become tight. At that point, the first and third case of 〈init-reset〉 are disabled, and it is
not possible for the agent in Qreset to lower its value to below β. Via 〈reset〉, it will thus
eventually arrive at β, and the first part of 〈reset〉 cannot be executed again.

Once that happens, agents cannot enter states Q × {0} ⊆ Qsupp, such that 〈detect〉 can
never occur any more. This then causes 〈init-reset〉 to eventually be fully disabled, and then
〈reset〉 as well. Finally, transition 〈gate〉 can then fire only finitely often, and the protocol
terminates. ◀

▶ Lemma 43. If P decides φ, then P ′ does so as well.

Proof. This follows immediately from lemmata 41, 42 and 62. ◀

To close out this section, we argue that the technical conditions are met.

▶ Lemma 44. If no state in I has incoming transitions, then neither do states in I ′. If all
configurations in NI are terminal, then so are all configurations in NI′ .

Proof. Note that I ′ = I × {−} by definition. If no state in I has incoming transitions,
then it is not possible to put an agent into I × {+}, as that happens only via 〈execute〉.
Therefore transitions 〈denotify〉 or the first part of 〈init-reset〉 cannot move an agent from
(q, +) to (q, −), for q ∈ I. Finally, note that qh /∈ I ′, as supp(H) ∩ I = ∅ by the definition
of population computers. (So, to be precise, the statement only holds once we modify our
construction to delete unused states and transitions.)

For the second part, note that the only transition which can execute from a configuration
in NI′ is 〈execute〉, but that requires a transition in P which can execute in a configuration
in NI . ◀

D.3 Speed
As mentioned at the start of this section, the definitions for speed analysis can be found in
Appendix H. We will use the more general notion of potential groups rather than potential
functions.

While it is possible to provide a potential function for P ′ based on a potential function
for P , this will result in large constants for the speed of the protocol. The reason for this lies
in the nature of our computation, which proceeds in multiple phases.

As an example, take transition 〈execute〉. One of the resulting agents has its flag set to
+, which may initiate a reset of every agent in Qsupp ∪ Qgate. To pay for this work, every
transition of P would have to reduce the potential by |Q| + β. However, most of this cost
would be wasted; only the last reset needs to be executed fully, and the other resets are likely
to be interrupted before completion.

▶ Lemma 45. Let Φ denote a potential function for P which is α-rapidly decreasing in all
well-initialised configurations, and assume that states in I have no incoming transitions in
P ′. Then there exists a potential group Φ′ of size 5 for P ′, which is O(α + |Q|2 + β2)-rapidly
decreasing in all well-initialised configurations.
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Proof. We will construct the potential group Φ′ = (Φ′
1, ..., Φ′

5) and show that it is rapidly
decreasing in all well-initialised configurations. So let C denote such a configuration, and let
Cterm denote a terminal configuration reachable from C.

For the sake of readability we will defer the definition of the Φ′
i until it is used. However,

note that the definition will be independent of C.
The proof is going to proceed via case distinction based on the properties of C. For the

i-th case we are going to show that Φ′
i is active. We are going to implicitly assume that

prior cases are excluded, so the proof for case i is going to rely on the conditions for cases
1, ..., i − 1 not being met.

Case 1. C(Qsupp ∪ Qgate ∪ Qreset) > |Q| + β + 1. For Φ′
1, the goal is to show that the

“leader elections” for each state happen quickly. We set Φ′
1(q) := 2 for q ∈ Qsupp ∪ Qgate,

Φ′
1(q) := 1 for q ∈ Qreset, and Φ′

1(q) := 0 for q ∈ Qorig. Clearly, the only transitions that
affect Φ′

1 are 〈leader〉 and the third part of 〈init-reset〉, both of these reducing the potential
by 1. It is thus not possible for Φ′

1 to increase. One of these transitions is enabled, so Φ′
1 can

decrease at C.
In particular, note that for each q ∈ S, where S := {q ∈ q′ : Φ′

1(q) > 0} are the states
with positive potential, there is a transition reducing Φ′

1 using two agents in q. Using T to
denote these transitions, we get Φ(C) ≤ 2C(S) ≤ 2

∑
t∈T tmint(C) and thus (via Lemma 66),

(Φ(C) − Φ(Cterm))2 ≤ Φ(C)2 ≤ 4|T | speedT (C). Finally, we note |T | = |Q| + β + 1.
Case 2. π(C) is not terminal. In this case, we will argue that the refined transitions of

P are likely to occur. We define Φ′
2((q, ±)) := Φ(q) for q ∈ Q (recall that Φ is the potential

function of P), and set Φ′
2 to 0 elsewhere. Φ′

2 is reduced precisely by the 〈execute〉 transitions,
and increased only by the third case of 〈init-reset〉.

As we exclude Case 1, we have C(Qsupp ∪ Qgate ∪ Qreset) = |Q| + β + 1. This implies
Φ(π(C)) = Φ′

2(C) (we even get π(C)(q) = C((q, ±)) for q ∈ Q) and ensures that the third
case of 〈init-reset〉 cannot be executed by any configuration reachable from C. Having
π(C)(q) = C((q, ±)) for q ∈ Q then ensures that for a transition of P enabled at π(C), there
is a corresponding 〈execute〉 transition enabled at C.

We now want to show that π(C) is well-initialised.

π(C)(I) (1)= C(I ′)
(2)
≤ 2

3 |C| − |H ′| = 2
3 |C| − |H| − |Q| − β − 1

(3)
≤ 2

3 C(Qorig) − |H|

At (1), we use that states in Q have no incoming transitions in P, so Q × {+} have no
incoming transitions in P ′ and are always empty. (2) follows from C being well-initialised.
For (3) we use C(Q′ \ Qorig) = C(Qsupp ∪ Qgate ∪ Qreset) = |Q| + β + 1. Finally, due to
C(Qorig) = |π(C)| we derive that π(C) is well-initialised.

This allows us to use that Φ is α-rapidly decreasing:

(Φ′
2(C) − Φ′

2(Cterm))2 = (Φ(π(C)) − Φ(π(Cterm)))2 ≤ α speed(π(C))

It remains to show speed(π(C)) ≤ speedT (C), where T are the 〈execute〉 transitions. For
each transition t ∈ T we have four corresponding transitions t1, ..., t4 ∈ T , one for each choice
of ±. The bound tmint(π(C)) ≤

∑
i tminti

(C) then follows from Corollary 64.
Case 3. C(Q × {+}) > 0. Here, we show that all “+” flags are eliminated quickly. We

set Φ′
3((q, +)) = 1 for q ∈ Q and 0 elsewhere. We know that π(C) is terminal (else we would

be in Case 2), and it must remain so. Hence 〈execute〉 is disabled and no transition increases
Φ′

3. Also, the first case of 〈init-reset〉 is enabled and can reduce the potential.
For every q ∈ Q′ with Φ′

3(q) > 0 we have a 〈denotify〉 transition which decreases Φ′
3 and

uses only agents in q. Similarly to Φ′
1, we use T to denote the set of these transitions, and

find (Φ(C) − Φ(Cterm))2 ≤ |T | speedT (C), noting |T | ≤ |Q|.
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Case 4. C({0, ..., |Q| − 1}) > 0 or C((q, 1)) ̸= 1 for some q ∈ supp(π(C)). In this case,
we show that the agents in Qsupp stabilise quickly. We use the potential

Φ′
4((q, 0)) := Φ′

4((q, !)) + 1 := 2 for q ∈ Q

Φ′
4(i) := 3(|Q| − i) for i = 0, ..., |Q|

Again, Φ′
4 is 0 elsewhere. Due to the conditions on Cases 1 and 3, the only transition

producing a state {0, ..., |Q| − 1} is the first part of 〈reset〉, which decreases Φ′
4. Otherwise,

state Q × {0} cannot be produced. The only other transitions affecting the potential are
〈detect〉 and the second case of 〈init-reset〉, which both decrease Φ′

4. One of the above
transitions, which we again denote by T , is always enabled, so speedT (C) ≥ 1. Additionally,
we have C(Qsupp) = |Q| and C(Qreset) = 1, so Φ′

4(C) ≤ 5|Q| ≤ 5|Q| speedT (C).
Case 5. C is not terminal. Finally, we consider the speed at which gates stabilise and

the computer terminates.

Φ′
5((g, b1, b2, b3)) := 1⊥(b2) + 1⊥(b3) for g ∈ G

Φ′
5(|Q| + i) := 3(β − i) for i = 0, ..., β

where 1⊥(⊥) := 1 and 1⊥(0) := 1⊥(1) := 0. At this point, only transitions 〈gate〉 and the
second part of 〈reset〉 are active, and both reduce Φ′

5. We denote them by T and, analogous
to Phase 4, we get the estimate Φ′

5(C) ≤ 5β speedT (C) and find that one of these transitions
is always enabled. ◀
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E Conversion 3: Removing Helpers

In this section, we show to obtain fast succinct population computers without helpers for all
predicates φ ∈ QFPA. For this we prove a general conversion theorem, however the theorem
does not convert a computer into an equivalent one. Instead it starts with a computer for
a predicate we call τ(φ) to generate a computer for φ. In this predicate, one input stands
for two inputs of the original predicate. For example, for majority x − y ≥ 0 we would have
x1 + 2x2 − y1 − 2y2 ≥ 0.

Formally, given predicate φ : NI → {0, 1}, we define a new set of inputs I ′ := {x′ : x ∈ I}
consisting of a copy of I, and define τ(φ) : NI∪I′ → {0, 1} as

τ(φ)(x1, ..., xk, x′
1, ..., x′

k) := φ(x1 + 2x′
1, ..., xk + 2x′

k)

for all inputs x1, ..., xk, x′
1, ..., x′

k ∈ N. Clearly, τ(φ) ∈ QFPA if φ ∈ QFPA and |τ(φ)| ∈
O(|φ|), since we can obtain it by replacing every occurrence of xi in φ by xi + 2x′

i.
The conversion theorem is as follows. As for the previous conversions, it contains a

part giving a bound on the speed of the resulting computer, which is independent from the
rest and relies on the definitions summarised in Appendix H, in particular the definition of
potential groups.

▶ Theorem 46. Let φ ∈ QFPA and let P = (Q, δ, I, O, H) be a bounded binary population
computer with marked consensus output deciding τ(φ), s.t. states in I have no incoming
transitions and every configuration in NI is terminal.

Then there exists a bounded binary population computer P ′ = (Q′, δ′, I ′, O′, ∅) of size
O(size2(P)) without helpers and with a marked consensus output deciding φ for inputs of
size at least |I| + 2|H|.

Additionally, if P has a potential group of size e, which is α-rapidly decreasing in all
well-initialised configurations, then P ′ has a potential group of size e + 1, which is (α + (|I| +
|H|)|H|2)-rapidly decreasing in all reachable configurations of size at least 6|I| + 10|H|.

It will be proven in the following subsections, as Lemma 49 and Lemma 50, where the
latter contains the speed bound.

E.1 Construction

Intuitively, two agents in state x ∈ I can combine to an agent in x′, freeing one agent to act
as helper. It is important to ensure that the protocol does not run out of inputs until we
have generated enough helpers to ensure correctness, so we only distribute helpers once we
have collected |H| of them. Condition 2 ensures that the protocol cannot execute transitions
before this point.

Ideally, we would add a state h and transitions

x, x 7→ 2x, h for x ∈ I 〈double〉
|H| · h 7→ H 〈helper〉

However, our resulting model cannot use multiway transitions. (For technical reasons it is
easier to remove multiways before helpers.) Instead of 〈helper〉, we will therefore inline the
construction from Section 7.1 (simplified slightly).
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We add states Qhelper := {△i,▽i : i = 0, ..., |H|}, and identify △1 with h and ▽1 with h1;
here, h1, ..., hm is an enumeration of H. For i, j ∈ {1, ..., |H| − 1} we have transitions

△i, △j 7→ △i+j , △0 if i + j < |H|
△i, △j 7→ ▽|H|, △i+j−|H| if i + j ≥ |H|
▽i+1, △0 7→ ▽i, hi+1

〈helper〉

Of course, we also let the computer P execute normally, so we add all transitions of δ to
δ′. Finally, we choose O′(S) := O(S ∩ Q) for all S ⊆ Q′ (note that Q ⊆ Q′).

E.2 Correctness
As for the other conversions, we define a linear map π : NQ′ → NQ to translate configurations
of P ′ to ones of P. Here, we simply choose π(C)(q) := C(q) for q ∈ Q. We do not, however,
show that P ′ refines P , as that does not hold: transitions 〈double〉 and 〈helper〉 change π(C)
in a way that is not compatible with an execution of P.

Instead, we start by showing that it suffices to consider only certain transition sequences,
where the 〈double〉 and 〈helper〉 transitions occur only in the beginning. After that point,
our proof proceeds just as for the refinement results.

▶ Definition 47. Let σ1, σ2, σ3 ∈ (δ′)∗ denote (finite) sequences of transitions, where σ1
contains only 〈double〉 transitions, σ2 only 〈helper〉 transitions, and σ3 ∈ δ∗. The sequence
σ := σ1σ2σ3 is then called good.

▶ Lemma 48. If C ∈ NQ′ is reachable from an initial configuration C0 ∈ NI , then there is a
good sequence σ ∈ (δ′)∗ with C0 →σ C.

Proof. States x ∈ I have no incoming transitions (condition 1 of Theorem 46), so the number
of agents in x is monotonically decreasing during a run. Hence a 〈double〉 transition can
always be moved to any earlier position in a transition sequence.

Similarly, the states used as input by a 〈helper〉 transition only have incoming 〈double〉 or
〈helper〉 transitions, so if a 〈helper〉 transition is preceded by a δ transition, their order may
be swapped. ◀

▶ Lemma 49. P ′ is bounded and decides φ for inputs of size at least 2|H| + |I|.

Proof. Let C ∈ NQ′ denote a terminal configuration reachable from an input configuration
C0 with at least 2|H| + |Q| agents. Lemma 48 then implies that there are configurations
C1, C2 with C0 → C1 → C2 → C, s.t. going from C0 to C1 executes only 〈double〉 transitions,
going from C1 to C2 only 〈helper〉 transitions, and from C2 to C only transitions in δ. We
now consider two cases.

If 〈double〉 is not enabled at C1, then C1(h) ≥ |H|, as there can be at most |I| agents left
in C1(I). It is not possible to remove agents from Qhelper without executing 〈helper〉, so at
some point at least |H| agents in C1(h) will be distributed to h1, ..., h|H| and we get C2 ≥ H

Else, 〈double〉 is enabled at C1 (but not at C), thus some transition removing agents
from C(I) must have occurred between C2 and C (as 〈helper〉 transitions cannot do so). Due
to condition 2 of Theorem 46, we get C2(supp(H)) > 0, which, due to the construction of
transition 〈helper〉, implies C2 ≥ H. (In particular, helpers are distributed in batches of H.)

So in both cases we have C2 ≥ H and therefore find that π(C2) is an initial configuration
(of P). Between C0 and C2, only transition 〈double〉 affects states I ∪ I ′, and it preserves the
value of double(φ). (Also note φ(C0) = double(φ)(C0), as only agents in I are present.)
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As C can be reached from C2 by executing only transitions in δ, we also get that π(C) is
a reachable configuration of P. Moreover, C is terminal w.r.t. δ′ ⊇ δ, so π(C) is a terminal
configuration of C. We have defined O′ s.t. O′(C) = O(π(C)) and thus get the correct
output.

To argue that P ′ is bounded, we note that δ′ \ δ is acyclic. So if P ′ has arbitrarily long
runs, then, due to Lemma 48, P has as well. But that cannot be, as P is bounded. ◀

E.3 Speed
As mentioned at the start of this section, the definitions for speed analysis can be found in
section H.

▶ Lemma 50. If a potential group Φ for P of size e exists, which is α-rapidly decreasing
in all well-initialised configurations, then there is a potential group Φ′ for P ′ of size e + 1,
which is (α + (2|H| + |I|)|H|2)-rapidly decreasing in all reachable configurations of size at
least 6|H| + 10|I|.

Proof. Let (Φ1, ..., Φe) := Φ. We define Φ′ := (Φ′
1, Φ1, Φ2, ..., Φe), where:

Φ′
1(q) := 2 for q ∈ I

Φ′
1(△i) := i + 1 for i ∈ {1, ..., |H| − 1}

Φ′
1(▽i) := i for i ∈ {2, ..., |H|}

As usual, other states have potential 0, and we extend Φi to NQ′ by setting the weight of
states in Q′ \ Q to 0.

Clearly, transitions 〈double〉 and 〈helper〉 decrease Φ′
1, while transitions in δ cannot

increase it due to condition 1 of Theorem 46.
Now, let C denote a configuration reachable from an input of size at least 2|H| + |I|. To

show that Φ′ is rapidly decreasing in C, we differentiate between two cases.
Case 1. If either 〈double〉 or 〈helper〉 is enabled at C, we show that Φ′

1 is active. It
has already been shown that Φ′

1 cannot decrease. To show that Φ′
1 is rapidly-decreasing,

let S := {q ∈ Q′ : Φ′
1(q) > 0} denote the states with positive potential. For each state

q ∈ I ∪{△1, ..., △|H|−1} ⊆ S we have a transition using only agents in q. For each other state,
i.e. q = ▽i ∈ S for some i, we observe C(△0) ≥ C(▽i), as the construction guarantees that
enough agents in △0 exist. So in total we have Φ(C) ≤ |H|C(S) and C(S)2 ≤ |S| speedδ>

(C)
by Lemma 66. Using |S| ≤ |I| + 2|H|, Φ′

1 is (|I| + 2|H|)|H|2-rapidly decreasing in C.
Case 2. Otherwise, C(I) ≤ |I|, C(Qhelper) < |H| and, due to our construction, C(I ′) ≤

|C|/2. From the second, we derive C(Q) > |C| − |H|, which we combine with the other
two to get C(I ∪ I ′) ≤ |I| + |C|/2 < |I| + (C(Q) + |H|)/2. Rearranging terms yields
C(I ∪ I ′) + |H| ≤ C(Q)/2 + |I| + 3

2 |H|.
Now, we use |C| ≥ 6|I|+10|H| to get C(Q) > |C|−|H| ≥ 6|I|+9|H|, so C(I ∪I ′)+ |H| ≤

|I| + 3
2 |H| + C(Q)/2 ≤ 2

3 C(Q). Noting C(Q) = |π(C)|, we find that π(C) is well-initialised,
so Φ is α-rapidly decreasing in π(C). This extends directly to Φ′. ◀
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F Conversion 4: Fast Output Broadcast

This section describes the final step of our conversions, which shows how to construct an
equivalent population protocol out of a given bounded binary population computer P without
helpers using a marked consensus output. We show the following general conversion result.
The first half of the theorem can be read independently of the second half, which uses
definitions introduced exclusively for the purpose of speed analysis. These are summarised
in Section H.

▶ Theorem 51. Let P = (Q, δ, I, O, ∅) be a bounded binary population computer without
helpers and using a marked consensus output deciding a predicate φ for inputs of size at least
m. Then there exists a terminating population protocol P ′ with 4|Q| states deciding φ for
inputs of size at least m. Additionally:

If P has a potential function, then P ′ terminates in O(n3) interactions in expectation.

If P has a potential group of size e, which is α-rapidly decreasing in all reachable
configurations of size at least m, then P ′ terminates in O(e(

√
α|Q| + α)n2) interactions

in expectation.

As usual, the proof of Theorem 51 will span the remainder of this section and consist of
multiple results, in particular lemmata 53 and 55.

F.1 Construction

The obvious approach would be to add an extra bit to every state, which will be the opinion
of the agent, and is set whenever the agent meets a marked agent. However, this would be
slightly too slow: convincing the i-th agent takes roughly n2/(n − i) steps (the inverse of the
probability that the single marked agent meets one of the remaining n − i agents with the
wrong opinion). In total, this sums to n2 log n steps.

Instead, we are going to modify the procedure slightly. Whenever an agent meets a
marked agent, besides assuming the correct opinion it will receive a token, which it can use
once, to convince another agent.

Formally, let Q0, Q1 ⊆ Q denote the states defining the marked consensus output O, and
set Q⊥ := Q \ (Q0 ∪ Q1). We use states Q′ := Q × {0, 1}2, where the second component
denotes the current opinion of the agent, and the third whether it has a token.

Let q, p ∈ Q. We want to execute P simultaneously to the following transitions. To write
this down, we choose q′, p′ as the result of a transition (q, p 7→ q′, p′) ∈ δ, if such a transition
exists, else we set q′ := q, p′ := p.

For convenience, we write ∗ if the component does not matter. A ∗ in the result of
the transition indicates that this component is left unchanged. Based on our definitions
the agents of a transitions have no order, so (q, p 7→ q′, p′) and (p, q 7→ q′, p′) are the same
transition. Let i ∈ {0, 1}.

If an agent meets a marked agent, then the former will assume the latter’s opinion and
receive a token.

(q, ∗, ∗), (p, ∗, ∗) 7→ (q′, i, 1), (p′, i, 1) if {q′, p′} ∩ Qi ̸= ∅ 〈certify〉
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If an agent with token meets a non-token agent with opposing opinion, the latter is convinced
and the token consumed. Similarly, if two tokens held by agents with opposing opinions
meet, the tokens are simply dropped.

(q, i, 1), (p, 1 − i, 0) 7→ (q′, i, 0), (p′, i, 0) 〈convince〉
(q, i, 1), (p, 1 − i, 1) 7→ (q′, i, 0), (p′, 1 − i, 0) 〈drop〉

Otherwise, nothing happens.

(q, ∗, ∗), (p, ∗, ∗) 7→ (q′, ∗, ∗), (p′, ∗, ∗) if (q, p) ̸= (q′, p′) 〈noop〉

As defined above, our transitions are not deterministic. If multiple transitions are possible,
we will pick a 〈certify〉 transition, or (if there are none) a 〈convince〉 or 〈drop〉 transition.

Finally, we choose O′ as the consensus output given by the partition O′
i := Q×{i}×{0, 1},

for i ∈ {0, 1} and I ′ := I, where we identify q ∈ I with (q, 0, 0).

F.2 Correctness
As for the other conversions, let π : NQ′ → NQ denote a mapping from configurations of
P ′ to ones of P. We choose π(C)(q) := C(q × {0, 1}2), so π simply projects onto the first
component. Again, we are going to show that P ′ refines P, as defined in Definition 61.

▶ Lemma 52. P ′ refines P.

Proof. Properties 1 and 2 follow immediately from the construction. For the third property,
let C denote a reachable, terminal configuration of P ′. If a transition of P were enabled at
π(C), the corresponding 〈noop〉 transition would be enabled at C, so π(C) must be terminal
as well.

As P has a marked consensus output, there is an agent in a state q ∈ Qi, where i ∈ {0, 1}
is the output of P and π(C)(q) > 0. (Recall that Q0, Q1 ⊆ Q are the states inducing the
output function of P.) By the definition of π this implies that there is a q′ ∈ {q} × {0, 1}2

with C(q′) > 0.
We now claim supp(C) ⊆ Q′

i, so assume the contrary and pick a p′ ∈ Q′ \ Q′
1−i with

C(p′) > 0. But agents q′, p′ can now execute transition 〈certify〉, which contradicts C being
terminal. Thus the claim is shown and our choice of O′ yields O′(supp(C)) = i. ◀

In contrast to the other conversions, P ′ is not bounded. It is, however, still terminating,
which is sufficient to rely on the refinement property to show that P ′ and P decide the same
predicate.

▶ Lemma 53. P ′ is terminating and decides φ for inputs of size at least m.

Proof. Let C denote a reachable configuration of P ′. As P ′ refines P, π(C) is reachable
in P; as P is bounded π(C) can reach some terminal configuration D. We can execute a
corresponding sequence of transitions in P ′ and find a configuration C ′ with C → C ′ and
π(C ′) terminal. At this point, π(C)(Qi) > 0 and π(C)(Q1−i) = 0 for an i ∈ {0, 1}, which
corresponds to the output of P. By executing at most n − 1 〈certify〉 transitions, we can
reach a configuration where all agents have opinion i and a token; the resulting configuration
is terminal.

To summarise, we have argued that any reachable configuration can reach a terminal
configuration. Hence any infinite run can reach terminal configurations infinitely often and
any fair run will eventually terminate.
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To show that P ′ decides φ for inputs of size at least m we would like to simply cite
Lemma 62, relying on the notion of refinement. Formally, however, this does not work, as we
would need to assume that P decides φ for all inputs. Fortunately, the proof can trivially be
adapted to consider only inputs of size at least m. ◀

F.3 Speed
As mentioned at the start of this section, the definitions and results for speed analysis can be
found in Section H. In particular, it contains Proposition 60, which shows that any population
protocol with a potential group reaches a terminal configuration within a quadratic number
of steps.

This can be applied to P (i.e. the protocol we are converting to P ′) by ignoring its output,
to show that the refined protocol quickly terminates. Afterwards, we have to prove that we
can broadcast the result to all agents in a reasonable amount of time.

Intuitively, the broadcast operates in two phases. First, the marked agents ensures that
“many”, e.g. 2

3 n, agents have both the correct opinion and a token. Afterwards, these agents
use their tokens to convince the remaining agents of the correct opinion. The first phase is
fast as there are always linearly many agents for the marked agent to interact with, and in
the second phase the remaining agents with wrong opinion always have linearly many agents
with tokens to interact with.

▶ Lemma 54. If P ′ reaches a configuration C with π(C) terminal within f(n) random
interactions in expectation, P ′ stabilises after O(f(n)+n2) random interactions in expectation.

Proof. Let C1 denote a configuration s.t. π(C1) is terminal. In C1, we have at least one
marked agent for the correct answer b := O(supp(C1)), and no marked agents for the wrong
answer, and this will not change during the remainder of the computation.

Let fij := C(Q × {i} × {j}), for i, j ∈ {0, 1} denote the number of agents with opinion
i and holding j tokens. Then F := fb1 − f(1−b)0 − 2f(1−b)1 counts the agents with correct
opinion and a token, subtracting both the agents with the wrong opinion and the tokens
held by agents with the wrong opinion. It is easy to see that this number cannot decrease,
and will increase whenever a marked agent meets an agent that either has the wrong opinion,
or does not have a token.

If F ≤ 2
5 n, we have fb1 ≤ 4

5 n, so in expectation we have to wait 5n steps for F to increase.
As F ≥ −2n by definition, we need 5n( 2

5 n + 2n) ∈ O(n2) steps until we have F ≥ 2
5 n.

As noted, F cannot decrease, so after that point we always have fb1 ≥ F ≥ 2
5 n. Whenever

an agent with opinion 1 − b meets an agent in fb1, the value f(1−b)0 + 2f(1−b)1 decreases. As
long as agents with the wrong opinion exist, this has to happen after at most 5

2 n steps in
expectation. Noting f(1−b)0 + 2f(1−b)1 ≤ 2n we find that after O(n2) steps no agents with
opinion 1 − b remain. ◀

▶ Lemma 55. (a) If there is a potential function Φ for P, then P ′ stabilises after O(n3)
random interactions in expectation.

(b) Let Φ denote a potential group for P of size e which is rapidly decreasing in all reachable
configurations with at least m agents. Then P ′ stabilises after O(e(

√
α|Q| + α) n2)

interactions.

Proof. In both cases we apply Lemma 54. For (a) we simply note f(n) ∈ O(n3) based
on the existence of a potential function Φ: at every step at least one transition can make
progress, so every O(n2) steps the potential reduces by one, and an initial configuration C0
has Φ(C0) ∈ O(n). For (b) we instead use Proposition 60. ◀
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G A General Conversion Theorem

Our paper makes two statements about conversion of population computers: a general
conversion theorem for bounded population computers, and a specialised version that only
applies to rapid computers, but provides better bounds. Here we describe the former, using
the general conversion theorems of the previous sections.

Before going into the conversions, in Section G.1 we take a brief detour and show that
bounded population computers have a potential function. In particular, they are linearly
bounded. When analysing the running time, this will become crucial to show that the
resulting population protocols stabilise within O(n3) interactions.

Afterwards, Section G.2 will assemble the necessary components to complete the proof.

G.1 Boundedness and Potential Functions
In this section we are going to prove that boundedness and existence of a potential function
are equivalent, as long as the population computer has no “useless” states.

Let P = (Q, δ, I, O, H) denote some population computer. Our goal is to prove the
following result.

▶ Lemma 11. If P has a reachable configuration Cq with Cq(q) > 0 for each q ∈ Q, then P
is bounded iff there is a potential function for P.

For the remainder of this section we are going to assume that all states of P are reachable,
i.e. for every q ∈ Q there is a reachable configuration C with C(q) > 0. As a simple
consequence we can show that is is possible to put arbitrarily many agents into every state.

▶ Lemma 56. Let i ∈ N. There is a reachable configuration C with C(q) ≥ i for q ∈ Q.

Proof. Transitions of population computers (and population protocols) are “monotonic”,
so for any C → C ′ and D → D′ we have C + D → C ′ + D′. Additionally, for two initial
configurations C0, D0 the configuration C0 + D0 is initial as well. (Recall that for helpers, as
opposed to leaders, it is allowed to provide more agents then are required.) Combining these
two facts we find that C + D is reachable, for any reachable configurations C, D. As we
require that for every q ∈ Q there is some reachable C s.t. C(q) > 0, the desired statement
follows. ◀

The proof invokes Farkas’ lemma; we thus need to convert a statement about boundedness
and potential functions to linear algebra. To this end, we define the incidence matrix of P
as A ∈ Zδ×Q s.t. the t-th row is At := s − r, for t = (r 7→ s) ∈ δ. Intuitively, given a vector
y ∈ Nδ which assigns each transition a count, A⊤y is the change in the number of agents of
each state after executing the transitions of y.

▶ Lemma 57. The following are equivalent:
(a) P is bounded.
(b) A⊤y ̸= 0 for all y ∈ Nδ with y ̸= 0.
(c) A⊤y ̸= 0 for all y ∈ Rδ

≥0 with y ̸= 0.
(d) Ax ≤ −1 for some x ∈ RQ.
(e) There is a potential function Φ for P.

Proof. “(a) ⇒ (b)”: Assume that (b) does not hold, so there is a nonempty multiset y ∈ Nδ

with A⊤y = 0. Let t1, ..., tk ∈ δ denote an enumeration of y. Due to the definition of A,
A⊤y = 0 means that executing the sequence t1t2...tk has no effect. Formally, for any C, C ′
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with C →t1 ... →tk
C ′ we get C = C ′. It suffices to find such a configuration C which is

reachable; as then we can clearly construct an infinite run, contradicting (a).
Using Lemma 56, we pick a C with C(q) ≥ km, where m := max{|r| : (r 7→ s) ∈ δ} is

the maximum size of any transition. A single transition moves at most m agents, so the
sequence t1, ..., tk can be executed at C.

“(b) ⇒ (c)”: We argue by contraposition and assume that {y ∈ Rδ
≥0 \ {0} : A⊤y = 0}

is not empty. Then there is some ε ∈ Q with ε > 0 s.t. {y ∈ Rδ
≥0 : A⊤y = 0 ∧ 1⊤y ≥ ε} is

not empty either. This is a satisfiable system of linear inequalities and thus has a rational
solution y∗ ∈ Qδ. As y∗ ≥ 0 we can find a µ > 0 with µy∗ ∈ Nδ, showing the negation of (b).

“(c) ⇒ (d)”: Due to y ≥ 0 the condition y ̸= 0 is equivalent to 1⊤y > 0; using 1 for the
all-ones vector of appropriate dimension. In other words, the system {y ∈ Rδ

≥0 : A⊤y =
0 ∧ −1⊤y < 0} has no solution. We apply Farkas’ lemma; this shows that the system
{x ∈ RQ : Ax ≤ −1} does have a solution.

“(d) ⇒ (e)”: Again, Ax ≤ −1 is a system of linear inequalities, so if it has a solution it
has a rational solution as well. Scaling a solution with a factor µ > 1 yields another solution,
so there is also an integer solution. Let x ∈ ZQ with Ax ≤ −1 denote such a solution. The
weights for our potential function have to be natural numbers, so let xmin := minq∈Q x(q)
and set x∗ := x − xmin1. Finally define m as above and choose the weights w := mx∗.

It remains to show that the linear function Φ induced by w is actually a potential function.
Let t = (r 7→ s) ∈ δ be a transition. We have Φ(r) − Φ(s) =

∑
q(r(q) − s(q))w(q) = −A⊤

t w,
with At the t-th row of A, as above. Furthermore, we get A⊤

t w = mA⊤
t (x − xmin1). Using

|r| = |s| we get A⊤
t 1 = 0; and Ax ≤ −1 implies A⊤

t x ≤ −1. In total we thus have
Φ(r) − Φ(s) ≥ m ≥ |r| − 1.

“(e) ⇒ (a)”: For any initial configuration C0 we have Φ(C0) ∈ O(n) as Φ is a linear
function. Since, by definition, Φ(C) ≥ 0 for all configurations C and any transition strictly
reduces Φ, a run starting at C0 can execute at most Φ(C0) transitions. ◀

G.2 Proof of Theorem 2
We now prove the following result.

▶ Theorem 2. Every bounded population computer of size m deciding double(φ) can be
converted into a terminating population protocol with O(m2) states which decides φ in at
most O(f(m) n3) interactions for inputs of size Ω(m), for some function f .

Let P = (Q, δ, I, O, H) denote a bounded population computer of size m deciding a
predicate double(φ). We want to apply theorems 27, 39, 46 and 51 in sequence. For this,
however, we need the two additional conditions required by Theorem 46:

states in I have no incoming transitions, and
every configuration in NI is terminal.

We can easily modify P to ensure that they hold. We define a new computer P ′ =
(Q′, δ′, I ′, O′, H ′) as follows:

Q′ := Q ∪ {h} ∪ {q∗ : q ∈ I},
δ′ := δ ∪ {q∗, h 7→ q, h : q ∈ I},
I ′ := {q∗ : q ∈ I},
O′(S) := O(S ∩ Q), for S ⊆ Q′, and
H ′(q) := H(q) for q ∈ Q and H(h) := 1.
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We remark that the technical conditions are still necessary for the improved running-time
analysis using rapid computers, as these conversions affect their speed. For our purposes we
only need that P ′ is bounded, which is clearly the case.

The aforementioned conversion theorems can now be applied, resulting in the intermediate
computers P1, P2, P3, and the population protocol P4. Using Qi to denote the states of Pi,
we get

|Q4| = 4|Q3| ∈ O(size2(P2)) ∈ O(size(P1) · |Q1|) ⊆ O(m2)

For the time bound we use that P3 is bounded, so by Lemma 11 there is a potential
function Φ for P3 and Theorem 51 guarantees stabilisation within O(n3) interactions.
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H Potential Groups

In this section we describe how we generalise the notion of potential function (described
in Section 7.4) to better analyse our conversions (in particular the simulation of output
functions and the simulation of helpers). We start by briefly recalling the main definitions of
Sections 7.4 and 8.

▶ Definition 10. A function Φ : NQ → N is linear if there exist weights w : Q → N s.t.
Φ(C) =

∑
q∈Q w(q)C(q) for every C ∈ NQ. We write Φ(q) instead of w(q). A potential

function (for P) is a linear function Φ such that Φ(r) ≥ Φ(s) + |r| − 1 for all (r 7→ s) ∈ δ.

▶ Definition 12. Given a configuration C ∈ NQ and some transition t = (r 7→ s) ∈ δ,
we let tmint(C) := min{C(q) : q ∈ supp(r)}. For a set of transitions T ⊆ δ, we define
speedT (C) :=

∑
t∈T tmint(C)2, and write speed(C) := speedδ(C) for convenience.

▶ Definition 13. Let Φ denote a potential function for P and let α ≥ 1. We say that Φ
is α-rapidly decreasing at a configuration C if speed(C) ≥ (Φ(C) − Φ(Cterm))2/α for all
terminal configurations Cterm with C → Cterm.

▶ Definition 14. C ∈ NQ is well-initialised if C is reachable and C(I) + |H| ≤ 2
3 n.

While the above definitions can be applied to all of our conversions, they would lead to
large constants in the final speed. These are merely the result of a loose analysis – they do
not reflect the actual speed of our protocols.

Mainly, this is due to a single potential function being unable to model computations
that consist of multiple phases efficiently. A concrete explanation of this problem in the
context of the output conversion is given in Section D.3. In this section we will introduce the
formal machinery necessary to better adapt our technique the those constructions, leading to
better constants and easier proofs.

We start by extending the definition of rapidly-decreasing to handle linear functions
which are not potentials. Here, we do not need to deal with multiway transitions, so let
P = (Q, δ, I, H, O) denote a binary population computer.

▶ Definition 58. Let Φ : NQ → N be linear, set δ> := {(r 7→ s) ∈ δ : Φ(r) > Φ(s)} to
the transitions decreasing Φ, and let α > 0. If speedδ>

(C) ≥ (Φ(C) − Φ(Cterm))2/α for a
configuration C and all terminal configurations Cterm with C → Cterm, we say that Φ is
α-rapidly decreasing in C.

The only change compared to Definition 13 is that the speed considers only transitions
which reduce the given linear function. For a potential function Φ we have δ> = δ and
Φ(C) > Φ(Cterm) for all non-terminal configurations C, making this definition coincide with
Definition 13.

To model phases, the general idea is that we construct a family of linear functions
Φ1, ..., Φe. For each configuration C, one of these will be rapidly decreasing (we refer to it as
“active”). That alone would not be enough to guarantee linear running time (or any time
bound at all), as it would not prevent the other functions from increasing their value. So
we require the stronger property that a Φi cannot increase once it has been active. We also
need that Φi can decrease at C, which certifies that some progress can be made. Otherwise,
Φi might be “rapidly decreasing” but already at its lowest point.

▶ Definition 59. A tuple Φ = (Φ1, ..., Φe) where Φ1, ..., Φe : NQ → N denote linear maps, is
called potential group (of size e).
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We say that Φ is α-rapidly decreasing in C, for α ≥ 1 and C ∈ NQ, if C is terminal or
there is some i ∈ {1, ..., e} s.t. Φi is α-rapidly decreasing in C, some transition reducing Φi is
enabled at C, and no transition increasing Φi can be executed at any configuration reachable
from C. We then call Φi active at C.

The definition places no restrictions on the order in which the Φi are listed. However, in
our proofs we will generally order them in the same fashion as they would become active
in a run. Further, our potential groups have the additional property that they decrease
lexicographically with each transition.

To close out the section, we show that the above notion does actually lead to a strong
speed bound when applied to population protocols.

▶ Proposition 60. Let P denote a population protocol and Φ a potential group for P of
size e which is rapidly decreasing in all reachable configurations with at least m agents.
Then P reaches a terminal configuration C after O(e(

√
α|Q| + α) n2) random interactions in

expectation.

Proof. Let σ = C0C1... denote a fair run of P, and pick the smallest l s.t. Cl is terminal.
We define

Xc
i := |{j : Φi is active at Cj and Φi(Cj) − Φi(Cl) = c}|

We observe that l ≤
∑

i,c Xc
i holds and will now proceed to prove a bound on the expected

value E(Xc
i ), for all i, c, if σ is generated via random interactions.

Consider P(Xc
i ≥ k + 1 | Xc

i ≥ k), for k ≥ 1. We note that σ is generated by a
(homogeneous) Markov chain and the index τ of the k-th configuration counting towards
Xi is a stopping time. By the strong Markov property, the above probability is equal to
the probability that P reaches some configuration C counting towards Xc

i when started in
the configuration Cτ . This is at most 1 − γ, where γ is the probability that P executes a
transition reducing Φi at Cτ , as an active Φi cannot increase at any later point.

First, we know that Φi is active at Cτ , so some transition reducing Φi is enabled at Cτ

and γ ≥ 1/n(n − 1). However, if c is large enough we can get a better bound due to the fact
that Φi is rapidly decreasing at Cτ .

Let δ> ⊆ δ denote the transitions reducing Φi. Let ξ := tmint(Cτ ) for some t = (q, p 7→
q′, p′) ∈ δ>. By definition we have Cτ (q), Cj(p) ≥ ξ and thus the probability of executing t

at Cτ is at least ξ(ξ − 1)/n(n − 1) (note that q = p is possible). As ξ(ξ − 1) ≥ ξ2/2 − 1, we
find n(n − 1)γ ≥ speedδ>

(Cτ ) − |δ>|.
Of course, |δ>| ≤ |Q|2, and rapidly decreasing implies speedδ>

(Cτ ) ≥ c2/α. In total we
get γ ≥ max{1, c2/α − |Q|2}/n(n − 1).

From P(Xc
i ≥ k + 1 | Xc

i ≥ k) ≤ 1 − γ for all k ≥ 1 we get E(Xc
i ) ≤ 1/γ (similar to the

geometric distribution). We then sum over i and c:

E(l) ≤
e∑

i=1

∞∑
c=0

E(Xc
i ) ≤ en(n − 1)

∞∑
c=0

1
max{1, c2/α − |Q|2}

We now use c2/α − |Q|2 ≥ c2/2α for c ≥
√

2α|Q|.

≤ en(n − 1)
(√

2α|Q| +
∞∑

c=1

2α

c2

)
≤ en(n − 1)

(√
2α|Q| + απ2

3

)
◀
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I Miscellaneous

I.1 Refinement
To show correctness of the conversions, we use a notion of refinement; i.e. we show that
the behaviour of our constructed population computer P ′ matches the behaviour of the
original computer P. Here, we define this notion formally and show that it implies that the
computers are equivalent, in that they decide the same predicate.

▶ Definition 61. Let P = (Q, δ, I, O, H) and P ′ = (Q′, δ′, I ′, O′, H ′) denote population
computers. We write I, I ′ for the initial configurations for P and P ′, respectively.

We say that P ′ refines P if there is a π : NQ′ → NQ with
1. π(C) → π(C ′) for all reachable C, C ′ ∈ NQ′ with C → C ′,
2. I = I ′ and for C ∈ I ′ we have π(C) ∈ I and π(C)(q) = C(q) for q ∈ I, and
3. π(C) is terminal and O(supp(π(C))) = O′(supp(C)) for all terminal configurations

C ∈ NQ′ .

To show that P ′ decides the same predicate as P, we need the additional assumption
that P ′ is terminating. (Recall that a population computer is terminating if every fair run is
finite, while it is bounded if every run is finite.) Must of our constructions are bounded, and
are thus terminating as well.

▶ Lemma 62. Let P, P ′ denote population computers, where P decides φ and P ′ is termin-
ating. If P ′ refines P, then P ′ decides φ as well.

Proof. Let C0 ∈ NQ′ denote an arbitrary initial configuration of P ′. We decompose C0 =:
CI + CH into an input configuration CI ∈ NI′ and a helper configuration CH ∈ Nsupp(H′),
CH ≥ H. As P ′ is terminating, there is a terminal configurations C with C0 → C. It now
suffices to show O′(supp(C)) = φ(CI). For this, we use properties 1-4 of the definition of
refinement.

Property 2 implies that π(C0) is an initial configuration of P . Further, π(C0) = CI + DH ,
where CI is the same as above and DH ∈ NH , DH ≥ H is a helper configuration of P. So
we now only need to show that P outputs O′(supp(C)) on CI , i.e. that there is a terminal
configuration D ∈ NQ reachable from π(C0) with O(supp(D)) = O′(supp(C)).

We set D := π(C). By property 1, π(C0) → π(C), and by property 3 we get that π(C) is
terminal. Finally, property 3 also implies O(supp(π(C))) = O′(supp(C)). ◀

I.2 Properties of minima
▶ Lemma 63. Let x, y1, ..., yk ∈ R≥0. Then min{x,

∑
i yi} ≤

∑
i min{x, yi}.

Proof. If x ≥
∑

i yi then x ≥ yi for all i, so min{x,
∑

i yi} =
∑

i yi =
∑

i min{x, yi}.
Otherwise, we assume x ≤

∑
i yi and get min{x,

∑
i yi} = x. If there is a j with yj > x,

then x = min{x, yj} ≤
∑

i min{x, yi}, else we have min{x, yi} = yi for all i and thus∑
i min{x, yi} =

∑
i yi, which is at least x by assumption. ◀

▶ Corollary 64. Let x1, ..., xk, y1, ..., yk ∈ R≥0. Then min{
∑

i xi,
∑

i yi} ≤
∑

i,j min{xi, yj}.

▶ Lemma 65. Let x1, x2, y1, y2 ∈ R≥0. Then min{x1 + x2, y1 + y2} ≤ min{x1, y1} + x2 + y2.

Proof. Both min{x1 + x2, y1 + y2} ≤ x1 + x2 + y2 and min{x1 + x2, y1 + y2} ≤ y1 + x2 + y2
are trivial, and the statement follows. ◀
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I.3 Sum of squares inequality
The following inequality is well-known. Intuitively, it states that a sum of squares is minimised
when all summands are equal (assuming that their sum is held constant).

▶ Lemma 66. Let x1, ..., xn ∈ R. Then( ∑
i

xi

)2
≤ n

∑
i

x2
i

Proof. We apply the Cauchy-Bunyakovsky-Schwarz inequality, yielding( n∑
i=1

1 · xi

)2
≤

( n∑
i=1

12
)

·
( n∑

i=1
x2

i

)
= n

n∑
i=1

x2
i

◀
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