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configuration satisfies a
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Population Protocols

I well-studied

I finite set of states Q
I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates
I i.e. predicates expressible in first-order theory of integers with

addition and the usual order
I can compute majority: x ≥ y

I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]
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Broadcasts Consensus
Protocols



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary
I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection
2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])
4. Construct faster and more powerful protocols
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Results

Prior work:
I Blondin, Esparza and Jaax show that BCPs compute exactly

NL
I no bounds on running time
I multiple stages of reduction → complicated protocols

Our results:
1. time-optimal1, simple protocols for semi-linear predicates

I expected O(n log n) transitions
2. poly-time BCPs are precisely ZLP

I i.e. predicates decidable by zero-error, log-space, expected
poly-time randomised Turing Machines

1w.r.t. number of transitions
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What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q,
transitions B : Q → Q × QQ

I Pairwise interactions can be simulated
I Non-determinism can be simulated

30



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q,
transitions B : Q → Q × QQ

I Pairwise interactions can be simulated

I Non-determinism can be simulated

31



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q,
transitions B : Q → Q × QQ

I Pairwise interactions can be simulated
I Non-determinism can be simulated

32



Transitions

Run on population of agents C ∈ NQ (multiset of states).

q

q1 q2

q3
q4

Execute: transition q 7→ r , f , with q, r ∈ Q, f : Q → Q
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Computation

initial states I ⊆ Q
output mapping O : Q → {0, 1}
predicate ϕ : NI → {0, 1}

How do we compute ϕ ?
Pick agents at random until everyone has (and retains) the same
output.
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Example

Majority ϕ(x , y)⇔ x ≥ y

(x , y) = (2, 3)

input
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Compute ϕ(x , y)⇔ x ≥ y
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“active”

“disabled”
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Compute ϕ(x , y)⇔ x ≥ y y 7→ 0, {x 7→ x ′, y 7→ y ′, 0 7→ 0′}
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Semi-linear predicates



Semi-linear predicates

I Example generalises to all semi-linear predicates

I Shared global state

Steps:
1. Decompose semi-linear predicate into boolean combination of

modulo and threshold predicates
2. Protocol for modulo predicates
3. Protocol for threshold predicates
4. Boolean combinations (simple)
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Modulo predicates

a1x1 + ... + alxl ≡ b (mod k)

Global state is {0, ..., k − 1}, additions modulo k
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Threshold predicates

a1x1 + ... + alxl ≥ k

Global state is large enough counter, take care not to overflow.
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I Standard coupon-collector analysis for O(n log n) transitions

I Simple matching lower bound (all agents have to act at least
once)

Thus we get time-optimal BCPs for semi-linear predicates.
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Thank you for
your attention!
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