Running-time Analysis of Broadcast Consensus Protocols

Philipp Czerner, Stefan Jaax Fakultät für Informatik, TU München

March 23, 2021

Introduction

 \blacktriangleright distributed computation

- \blacktriangleright distributed computation
- \blacktriangleright population of *agents*

- \blacktriangleright distributed computation
- \blacktriangleright population of *agents*
- \blacktriangleright agents are finite-state machines

- \blacktriangleright distributed computation
- \blacktriangleright population of *agents*
- \blacktriangleright agents are finite-state machines
- \blacktriangleright random interactions

- \blacktriangleright distributed computation
- \blacktriangleright population of *agents*
- \blacktriangleright agents are finite-state machines
- \blacktriangleright random interactions

- \blacktriangleright distributed computation
- \blacktriangleright population of agents
- \blacktriangleright agents are finite-state machines
- \blacktriangleright random interactions
- \blacktriangleright want to reach consensus on whether the initial configuration satisfies a property

 \blacktriangleright well-studied

 \blacktriangleright finite set of states Q

 \blacktriangleright well-studied

 \blacktriangleright finite set of states Q

▶ pairwise transitions T : $Q^2 \rightarrow Q^2$

 \blacktriangleright well-studied

- \blacktriangleright finite set of states Q
- ▶ pairwise transitions T : $Q^2 \rightarrow Q^2$
- ▶ compute exactly semi-linear (or Presburger) predicates

 \blacktriangleright well-studied

- \blacktriangleright finite set of states Q
- ▶ pairwise transitions T : $Q^2 \rightarrow Q^2$
- \triangleright compute exactly semi-linear (or Presburger) predicates
	- \blacktriangleright i.e. predicates expressible in first-order theory of integers with addition and the usual order

 \blacktriangleright well-studied

- \blacktriangleright finite set of states Q
- ▶ pairwise transitions T : $Q^2 \rightarrow Q^2$
- \triangleright compute exactly semi-linear (or Presburger) predicates
	- \blacktriangleright i.e. predicates expressible in first-order theory of integers with addition and the usual order

 \triangleright can compute majority: $x \geq y$

 \blacktriangleright well-studied

- \blacktriangleright finite set of states Q
- ▶ pairwise transitions T : $Q^2 \rightarrow Q^2$
- \triangleright compute exactly semi-linear (or Presburger) predicates
	- \blacktriangleright i.e. predicates expressible in first-order theory of integers with addition and the usual order
- \triangleright can compute majority: $x \geq y$
	- \triangleright $\Omega(n^2/\text{polylog}(n))$ interactions to stabilise [Alistarh et al. 2017]

 \blacktriangleright well-studied

- \blacktriangleright finite set of states Q
- ▶ pairwise transitions T : $Q^2 \rightarrow Q^2$
- \triangleright compute exactly semi-linear (or Presburger) predicates
	- \blacktriangleright i.e. predicates expressible in first-order theory of integers with addition and the usual order
- \triangleright can compute majority: $x \geq y$
	- \triangleright $\Omega(n^2/\text{polylog}(n))$ interactions to stabilise [Alistarh et al. 2017]
	- **►** $\mathcal{O}(n^{1+\epsilon})$ interactions to converge [Kosowski, Uznański 2018]

Broadcasts Consensus Protocols

 $BCP = Population Protocol + Broadcasting$

 $BCP = Population Protocol + Broadcasting$

```
BCP = Population Protocol + Broadcasts
```
Why?

1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]

```
BCP = Population Protocol + Broadcasts
```
- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
	- \blacktriangleright NL refers predicates decidable by log-space Turing machines, with input encoded as unary

```
BCP = Population Protocol + Broadcasts
```
- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
	- \blacktriangleright NL refers predicates decidable by log-space Turing machines, with input encoded as unary
	- \blacktriangleright much bigger than just semi-linear predicates

```
BCP = Population Protocol + Broadcasts
```
- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
	- \blacktriangleright NL refers predicates decidable by log-space Turing machines, with input encoded as unary
	- \blacktriangleright much bigger than just semi-linear predicates
	- \triangleright other extensions in the literature: clocks, cover-time service / absence-detection

 $BCP =$ Population Protocol $+$ Broadcasts

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
	- \blacktriangleright NL refers predicates decidable by log-space Turing machines, with input encoded as unary
	- \blacktriangleright much bigger than just semi-linear predicates
	- \triangleright other extensions in the literature: clocks, cover-time service / absence-detection
- 2. Study broadcasts in the computation-by-consensus paradigm

 $BCP =$ Population Protocol $+$ Broadcasts

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
	- \blacktriangleright NL refers predicates decidable by log-space Turing machines, with input encoded as unary
	- \blacktriangleright much bigger than just semi-linear predicates
	- \triangleright other extensions in the literature: clocks, cover-time service / absence-detection
- 2. Study broadcasts in the computation-by-consensus paradigm
- 3. Model global influences in e.g. biological systems (cf. [Bertrand et al. 2017])

 $BCP =$ Population Protocol $+$ Broadcasts

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
	- \blacktriangleright NL refers predicates decidable by log-space Turing machines, with input encoded as unary
	- \blacktriangleright much bigger than just semi-linear predicates
	- \triangleright other extensions in the literature: clocks, cover-time service / absence-detection
- 2. Study broadcasts in the computation-by-consensus paradigm
- 3. Model global influences in e.g. biological systems (cf. [Bertrand et al. 2017])
- 4. Construct faster and more powerful protocols

Results

Prior work:

- ▶ Blondin, Esparza and Jaax show that BCPs compute exactly NL
	- \triangleright no bounds on running time
	- \blacktriangleright multiple stages of reduction \rightarrow complicated protocols

 $¹$ w.r.t. number of transitions</sup>

Results

Prior work:

- ▶ Blondin, Esparza and Jaax show that BCPs compute exactly NL
	- \triangleright no bounds on running time
	- \blacktriangleright multiple stages of reduction \rightarrow complicated protocols

Our results:

- 1. time-optimal¹, simple protocols for semi-linear predicates
	- rexpected $\mathcal{O}(n \log n)$ transitions

 1 w.r.t. number of transitions

Results

Prior work:

- \blacktriangleright Blondin, Esparza and Jaax show that BCPs compute exactly NL
	- \triangleright no bounds on running time
	- \blacktriangleright multiple stages of reduction \rightarrow complicated protocols

Our results:

- 1. time-optimal¹, simple protocols for semi-linear predicates
	- rexpected $\mathcal{O}(n \log n)$ transitions
- 2. poly-time BCPs are precisely ZLP
	- \blacktriangleright i.e. predicates decidable by zero-error, log-space, expected poly-time randomised Turing Machines

 $¹$ w.r.t. number of transitions</sup>

 $BCP = Population Protocol + Broadcasting$

Formally:

finite set of states Q, transitions $B: Q \to Q \times Q^Q$

 $BCP = Population Protocol + Broadcasting$

Formally:

finite set of states Q, transitions $B: Q \to Q \times Q^Q$

 \blacktriangleright Pairwise interactions can be simulated

 $BCP = Population Protocol + Broadcasting$

Formally:

finite set of states Q, transitions $B: Q \to Q \times Q^Q$

 \blacktriangleright Pairwise interactions can be simulated

 \triangleright Non-determinism can be simulated

Run on population of agents $C \in \mathbb{N}^Q$ (multiset of states).

Run on population of agents $C \in \mathbb{N}^Q$ (multiset of states).

Execute: transition $q \mapsto r, f$, with $q, r \in Q, f : Q \rightarrow Q$

Run on population of agents $C \in \mathbb{N}^Q$ (multiset of states).

Execute: transition $q \mapsto r, f$, with $q, r \in Q, f : Q \rightarrow Q$

Run on population of agents $C \in \mathbb{N}^Q$ (multiset of states).

Execute: transition $q \mapsto r, f$, with $q, r \in Q, f : Q \rightarrow Q$

Computation

initial states
$$
I \subseteq Q
$$

output mapping $O : Q \rightarrow \{0, 1\}$
predicate $\varphi : \mathbb{N}^I \rightarrow \{0, 1\}$

Computation

initial states
$$
I \subseteq Q
$$

output mapping $O : Q \rightarrow \{0, 1\}$
predicate $\varphi : \mathbb{N}^I \rightarrow \{0, 1\}$

How do we compute φ ?

Computation

initial states
$$
I \subseteq Q
$$

\noutput mapping $O: Q \rightarrow \{0, 1\}$

\npredicate $\varphi: \mathbb{N}^I \rightarrow \{0, 1\}$

How do we compute *ϕ* ?

Pick agents at random until everyone has (and retains) the same output.

Example

Majority $\varphi(x, y) \Leftrightarrow x \geq y$

$$
(x,y)=(2,3)
$$

input

Example

Majority $\varphi(x, y) \Leftrightarrow x \geq y$

$$
(x, y) = (2, 3)
$$
\n
\n
$$
\bullet
$$
\n
\n
$$
x
$$
\n
\n
$$
x
$$
\n
\n
$$
y
$$
\n
\n
$$
multiset
$$

x y

Example

Majority $\varphi(x, y) \Leftrightarrow x \geq y$

Compute $\varphi(x, y) \Leftrightarrow x \geq y$

Compute
$$
\varphi(x, y) \Leftrightarrow x \geq y
$$
 $y \mapsto 0, \{x \mapsto x', y \mapsto y', 0 \mapsto 0'\}$

Compute
$$
\varphi(x, y) \Leftrightarrow x \geq y
$$
 $x' \mapsto 0, \{x' \mapsto x, y' \mapsto y, 0' \mapsto 0\}$

Compute $\varphi(x, y) \Leftrightarrow x \geq y$ $y \mapsto 0, \{x \mapsto x', y \mapsto y', 0 \mapsto 0'\}$

Compute $\varphi(x, y) \Leftrightarrow x \geq y$ $x' \mapsto 0, \{x' \mapsto x, y' \mapsto y, 0' \mapsto 0\}$

Compute $\varphi(x, y) \Leftrightarrow x \geq y$ $y \mapsto 0, \{x \mapsto x', y \mapsto y', 0 \mapsto 0'\}$

 \blacktriangleright Example generalises to all semi-linear predicates

 \blacktriangleright Example generalises to all semi-linear predicates

 \blacktriangleright Shared global state

 \blacktriangleright Example generalises to all semi-linear predicates

 \blacktriangleright Shared global state

Steps:

- 1. Decompose semi-linear predicate into boolean combination of modulo and threshold predicates
- 2. Protocol for modulo predicates
- 3. Protocol for threshold predicates
- 4. Boolean combinations (simple)

Modulo predicates

$$
a_1x_1 + \ldots + a_lx_l \equiv b \pmod{k}
$$

Global state is $\{0, ..., k-1\}$, additions modulo k

Threshold predicates

 $a_1x_1 + ... + a_lx_l \ge k$

Global state is large enough counter, take care not to overflow.

Standard coupon-collector analysis for $O(n \log n)$ transitions

- Standard coupon-collector analysis for $O(n \log n)$ transitions
- ▶ Simple matching lower bound (all agents have to act at least once)
- Standard coupon-collector analysis for $O(n \log n)$ transitions
- ▶ Simple matching lower bound (all agents have to act at least once)
- Thus we get time-optimal BCPs for semi-linear predicates.

Thank you for your attention!