Running-time Analysis of
Broadcast Consensus Protocols

Philipp Czerner, Stefan Jaax
Fakultat fur Informatik, TU Minchen

March 23, 2021

Introduction

The Setting

» distributed computation

The Setting

» distributed computation

» population of agents

The Setting

» distributed computation
» population of agents

P> agents are finite-state
machines

The Setting

v

distributed computation
population of agents

agents are finite-state
machines

random interactions

as

aa

a2

The Setting

v

distributed computation
population of agents

agents are finite-state
machines

random interactions

as

aa

a2

The Setting

v

distributed computation

population of agents ‘
random interactions

want to reach consensus on

whether the initial

configuration satisfies a . .
property

agents are finite-state
machines

Population Protocols

» well-studied

Population Protocols

» well-studied
» finite set of states @

10

Population Protocols

» well-studied
» finite set of states @
» pairwise transitions T : Q° — Q2

11

Population Protocols

» well-studied

» finite set of states @

» pairwise transitions T : Q° — Q2

» compute exactly semi-linear (or Presburger) predicates

12

Population Protocols

» well-studied

» finite set of states @

» pairwise transitions T : Q° — Q2

» compute exactly semi-linear (or Presburger) predicates

» i.e. predicates expressible in first-order theory of integers with
addition and the usual order

13

Population Protocols

vvyyvyy

well-studied
finite set of states @
pairwise transitions T : Q% — Q?

compute exactly semi-linear (or Presburger) predicates

» i.e. predicates expressible in first-order theory of integers with
addition and the usual order

can compute majority: x >y

14

Population Protocols

vvyyvyy

well-studied
finite set of states @
pairwise transitions T : Q% — Q?

compute exactly semi-linear (or Presburger) predicates

» i.e. predicates expressible in first-order theory of integers with
addition and the usual order

can compute majority: x >y
» Q(n?/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]

15

Population Protocols

vvyyvyy

well-studied
finite set of states @
pairwise transitions T : Q% — Q?

compute exactly semi-linear (or Presburger) predicates

» i.e. predicates expressible in first-order theory of integers with
addition and the usual order

can compute majority: x >y
» Q(n%/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
> O(n'*¢) interactions to converge [Kosowski, Uznanski 2018]

16

Broadcasts Consensus
Protocols

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

18

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts
Why?

19

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Why?
1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]

20

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Why?
1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]

» NL refers predicates decidable by log-space Turing machines,
with input encoded as unary

21

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Why?
1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]

» NL refers predicates decidable by log-space Turing machines,
with input encoded as unary
» much bigger than just semi-linear predicates

22

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Why?
1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]

» NL refers predicates decidable by log-space Turing machines,
with input encoded as unary

» much bigger than just semi-linear predicates

» other extensions in the literature: clocks, cover-time service /
absence-detection

23

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Why?
1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]

» NL refers predicates decidable by log-space Turing machines,
with input encoded as unary

» much bigger than just semi-linear predicates

» other extensions in the literature: clocks, cover-time service /
absence-detection

2. Study broadcasts in the computation-by-consensus paradigm

24

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Why?
1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]

» NL refers predicates decidable by log-space Turing machines,
with input encoded as unary

» much bigger than just semi-linear predicates

» other extensions in the literature: clocks, cover-time service /
absence-detection

2. Study broadcasts in the computation-by-consensus paradigm

3. Model global influences in e.g. biological systems
(cf. [Bertrand et al. 2017])

25

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Why?
1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]

» NL refers predicates decidable by log-space Turing machines,
with input encoded as unary

» much bigger than just semi-linear predicates

» other extensions in the literature: clocks, cover-time service /
absence-detection

2. Study broadcasts in the computation-by-consensus paradigm

3. Model global influences in e.g. biological systems
(cf. [Bertrand et al. 2017])

4. Construct faster and more powerful protocols

26

Results

Prior work:

» Blondin, Esparza and Jaax show that BCPs compute exactly
NL
» no bounds on running time
» multiple stages of reduction — complicated protocols

lw.r.t. number of transitions

27

Results

Prior work:

» Blondin, Esparza and Jaax show that BCPs compute exactly
NL

» no bounds on running time
» multiple stages of reduction — complicated protocols

Our results:
1. time-optimal®, simple protocols for semi-linear predicates
> expected O(nlog n) transitions

lw.r.t. number of transitions

28

Results

Prior work:

» Blondin, Esparza and Jaax show that BCPs compute exactly
NL

» no bounds on running time
» multiple stages of reduction — complicated protocols
Our results:
1. time-optimal®, simple protocols for semi-linear predicates
> expected O(nlog n) transitions
2. poly-time BCPs are precisely ZLP

» i.e. predicates decidable by zero-error, log-space, expected
poly-time randomised Turing Machines

lw.r.t. number of transitions

29

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Formally:

finite set of states @,
transitions B: Q — Q x Q9

30

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Formally:

finite set of states @,
transitions B: Q — Q x Q9

» Pairwise interactions can be simulated

31

What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Formally:

finite set of states @,
transitions B: Q — Q x Q9

» Pairwise interactions can be simulated

» Non-determinism can be simulated

32

Transitions

Run on population of agents C € N® (multiset of states).

33

Transitions

Run on population of agents C € N® (multiset of states).

Execute: transition g — r, f, with g,r € Q,f : Q — Q

34

Transitions

Run on population of agents C € N® (multiset of states).

qg—r

Execute: transition g — r, f, with g,r € Q,f : Q — Q

35

Transitions

Run on population of agents C € N® (multiset of states).

@ @
f

& ® 7

Execute: transition g — r, f, with g,r € Q,f : Q — Q

36

Computation

initial states | C Q
output mapping O : Q — {0,1}
predicate o : N/ — {0, 1}

37

Computation

initial states | C @
output mapping O : Q — {0,1}
predicate o : N/ — {0, 1}

How do we compute ¢ 7

38

Computation

initial states | C Q
output mapping O : Q — {0,1}
predicate o : N/ — {0, 1}

How do we compute ¢ 7
Pick agents at random until everyone has (and retains) the same

output.

39

Example

Majority o(x,y) < x =y

(%) =(2,3)

input

40

Example

Majority o(x,y) < x =y

(x,y) =(2,3)

input

~ 000

o
o
X

multiset

41

Example

Majority o(x,y) < x =y

(x,y) = (2,3) o
o

~ 000

input multiset

@,

O O
L

population

42

Compute p(x,y) & x >y

(O output 1
() output 0

O “active”

(") "disabled”

43

Compute p(x,y) < x>y y=0,{x—x,y—y, 00}

(O output 1 O "active”

() output 0 (") "disabled”

Compute p(x,y) & x>y

7T
\
_’l\ X

Se-

(O output 1
() output 0

X' = 0,{x' = x,y — y,0 0}

O “active”

(") "disabled”

45

Compute p(x,y) & x>y

&

(-6

7T
\
_’l\ X

S -
AN

» 0
_—/

e

-—

Z \

_N\ 0/'

Sa -

(O output 1
() output 0

y=0,{x—x,y—y, 00}

r'_/‘\
0
~——
/-_,~‘

|

Y
r'_/‘\
0y

——-

,-_/~\
2P 0"
~ -

o “active”

(") "disabled”

46

Compute p(x,y) < x>y X' = 0,{x' = x,y — y,0 0}

/770N / 277N / o~ 2PN
G @D D e
-~ N —- S —-
P -— - -~
’ & / 4 \ 4 \ , \
o Do) o {0
N _—/ ~—=7 \~_—/

/-_~\ /-_~\
@ 0 O Y PO
DT [& T D

Y RO R

(O output 1 O "active”

() output 0 (") "disabled”

Compute p(x,y) < x>y y=0,{x—x,y—y, 00}

- -

,——~\ 7 ,——\\ 7 ~ , \ ’ 7Y
X) ol x —PL X X 2 0 —» 0
~ 7 AN 7 \ 7

-~ N —- S - -~ - -
PEXS -=< - =~ -—-
’ N / - \ 4 \ . N \
Cx 3y (X o) {0 o) o)

~— ~s - ~— -~ - \

/-_~\ /-_~\ —~ /-_-\
@O 0 PO YD OO
Qoo o () o {0

=) QOey *':9"_"‘

(O output 1 O "active”

() output 0 (") “disabled”

Semi-linear predicates

Semi-linear predicates

» Example generalises to all semi-linear predicates

50

Semi-linear predicates

» Example generalises to all semi-linear predicates
» Shared global state

51

Semi-linear predicates

» Example generalises to all semi-linear predicates
» Shared global state

Steps:

1. Decompose semi-linear predicate into boolean combination of
modulo and threshold predicates

2. Protocol for modulo predicates
3. Protocol for threshold predicates

4. Boolean combinations (simple)

52

Modulo predicates

axy+...+ax=b (mod k)

Global state is {0, ..., k — 1}, additions modulo k

53

Threshold predicates

aix1+...+ax >k

Global state is large enough counter, take care not to overflow.

54

» Standard coupon-collector analysis for O(nlog n) transitions

55

» Standard coupon-collector analysis for O(nlog n) transitions

» Simple matching lower bound (all agents have to act at least
once)

56

» Standard coupon-collector analysis for O(nlog n) transitions

» Simple matching lower bound (all agents have to act at least
once)

Thus we get time-optimal BCPs for semi-linear predicates.

57

Thank you for
your attention!

