Running-time Analysis of Broadcast Consensus Protocols

Philipp Czerner, Stefan Jaax Fakultät für Informatik, TU München

March 23, 2021

Introduction

distributed computation

- distributed computation
- ▶ population of *agents*

- distributed computation
- ▶ population of *agents*
- agents are finite-state machines

- distributed computation
- ▶ population of *agents*
- agents are finite-state machines
- random interactions

- distributed computation
- ▶ population of *agents*
- agents are finite-state machines
- random interactions

- distributed computation
- population of agents
- agents are finite-state machines
- random interactions
- want to reach consensus on whether the initial configuration satisfies a property

► well-studied

• finite set of states Q

well-studied

• finite set of states Q

▶ pairwise transitions $T: Q^2 \rightarrow Q^2$

well-studied

- ▶ finite set of states Q
- ▶ pairwise transitions $T: Q^2 \rightarrow Q^2$
- compute exactly semi-linear (or Presburger) predicates

well-studied

- ▶ finite set of states Q
- ▶ pairwise transitions $T: Q^2 \rightarrow Q^2$
- compute exactly semi-linear (or Presburger) predicates
 - ► i.e. predicates expressible in first-order theory of integers with addition and the usual order

well-studied

- ▶ finite set of states Q
- ▶ pairwise transitions $T: Q^2 \rightarrow Q^2$
- compute exactly semi-linear (or Presburger) predicates
 - ► i.e. predicates expressible in first-order theory of integers with addition and the usual order

• can compute majority: $x \ge y$

well-studied

- ▶ finite set of states Q
- ▶ pairwise transitions $T: Q^2 \rightarrow Q^2$
- compute exactly semi-linear (or Presburger) predicates
 - ► i.e. predicates expressible in first-order theory of integers with addition and the usual order
- can compute majority: $x \ge y$
 - $\Omega(n^2/\operatorname{polylog}(n))$ interactions to stabilise [Alistarh et al. 2017]

well-studied

- ▶ finite set of states Q
- ▶ pairwise transitions $T: Q^2 \rightarrow Q^2$
- compute exactly semi-linear (or Presburger) predicates
 - ► i.e. predicates expressible in first-order theory of integers with addition and the usual order
- can compute majority: $x \ge y$
 - $\Omega(n^2/\operatorname{polylog}(n))$ interactions to stabilise [Alistarh et al. 2017]
 - $\mathcal{O}(n^{1+\varepsilon})$ interactions to converge [Kosowski, Uznański 2018]

Broadcasts Consensus Protocols

 $\mathsf{BCP} = \mathsf{Population}\ \mathsf{Protocol} + \mathsf{Broadcasts}$

 $\mathsf{BCP} = \mathsf{Population}\ \mathsf{Protocol} + \mathsf{Broadcasts}$

```
BCP = Population Protocol + Broadcasts
```

Why?

1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]

```
BCP = Population Protocol + Broadcasts
```

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
 - NL refers predicates decidable by log-space Turing machines, with input encoded as unary

```
\mathsf{BCP} = \mathsf{Population}\ \mathsf{Protocol} + \mathsf{Broadcasts}
```

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
 - NL refers predicates decidable by log-space Turing machines, with input encoded as unary
 - much bigger than just semi-linear predicates

```
\mathsf{BCP} = \mathsf{Population}\ \mathsf{Protocol} + \mathsf{Broadcasts}
```

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
 - NL refers predicates decidable by log-space Turing machines, with input encoded as unary
 - much bigger than just semi-linear predicates
 - other extensions in the literature: clocks, cover-time service / absence-detection

```
\mathsf{BCP} = \mathsf{Population}\ \mathsf{Protocol} + \mathsf{Broadcasts}
```

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
 - NL refers predicates decidable by log-space Turing machines, with input encoded as unary
 - much bigger than just semi-linear predicates
 - other extensions in the literature: clocks, cover-time service / absence-detection
- 2. Study broadcasts in the computation-by-consensus paradigm

```
\mathsf{BCP} = \mathsf{Population}\ \mathsf{Protocol} + \mathsf{Broadcasts}
```

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
 - NL refers predicates decidable by log-space Turing machines, with input encoded as unary
 - much bigger than just semi-linear predicates
 - other extensions in the literature: clocks, cover-time service / absence-detection
- 2. Study broadcasts in the computation-by-consensus paradigm
- 3. Model global influences in e.g. biological systems (cf. [Bertrand et al. 2017])

```
\mathsf{BCP} = \mathsf{Population}\ \mathsf{Protocol} + \mathsf{Broadcasts}
```

- 1. Simple extension to population protocols for NL power [Blondin, Esparza, Jaax 2019]
 - NL refers predicates decidable by log-space Turing machines, with input encoded as unary
 - much bigger than just semi-linear predicates
 - other extensions in the literature: clocks, cover-time service / absence-detection
- 2. Study broadcasts in the computation-by-consensus paradigm
- 3. Model global influences in e.g. biological systems (cf. [Bertrand et al. 2017])
- 4. Construct faster and more powerful protocols

Results

Prior work:

- Blondin, Esparza and Jaax show that BCPs compute exactly NL
 - no bounds on running time
 - \blacktriangleright multiple stages of reduction \rightarrow complicated protocols

¹w.r.t. number of transitions

Results

Prior work:

- Blondin, Esparza and Jaax show that BCPs compute exactly NL
 - no bounds on running time
 - $\blacktriangleright \ \ \mbox{multiple stages of reduction} \rightarrow \ \mbox{complicated protocols}$

Our results:

- 1. time-optimal $^{1},$ simple protocols for semi-linear predicates
 - expected $\mathcal{O}(n \log n)$ transitions

¹w.r.t. number of transitions

Results

Prior work:

- Blondin, Esparza and Jaax show that BCPs compute exactly NL
 - no bounds on running time
 - \blacktriangleright multiple stages of reduction \rightarrow complicated protocols

Our results:

- 1. time-optimal 1 , simple protocols for semi-linear predicates
 - expected $\mathcal{O}(n \log n)$ transitions
- 2. poly-time BCPs are precisely ZLP
 - i.e. predicates decidable by zero-error, log-space, expected poly-time randomised Turing Machines

¹w.r.t. number of transitions

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q, transitions $B:Q
ightarrow Q imes Q^Q$

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q_{i} transitions $B: Q \rightarrow Q \times Q^Q$

Pairwise interactions can be simulated

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q, transitions $B:Q o Q imes Q^Q$

Pairwise interactions can be simulated

► Non-determinism can be simulated

Run on population of agents $C \in \mathbb{N}^Q$ (multiset of states).

Run on population of agents $C \in \mathbb{N}^Q$ (multiset of states).

Execute: transition $q \mapsto r, f$, with $q, r \in Q, f : Q \rightarrow Q$

Run on population of agents $C \in \mathbb{N}^Q$ (multiset of states).

Execute: transition $q \mapsto r, f$, with $q, r \in Q, f : Q \rightarrow Q$

Run on population of agents $C \in \mathbb{N}^Q$ (multiset of states).

Execute: transition $q \mapsto r, f$, with $q, r \in Q, f : Q \rightarrow Q$

Computation

initial states
$$I \subseteq Q$$

output mapping $O: Q \rightarrow \{0, 1\}$
predicate $\varphi: \mathbb{N}^{I} \rightarrow \{0, 1\}$

Computation

initial states
$$I \subseteq Q$$

output mapping $O: Q \rightarrow \{0, 1\}$
predicate $\varphi: \mathbb{N}^{I} \rightarrow \{0, 1\}$

How do we compute φ ?

Computation

$$\begin{array}{l} \text{initial states } I \subseteq Q \\ \text{output mapping } O: Q \rightarrow \{0,1\} \\ \text{predicate } \varphi: \mathbb{N}^{I} \rightarrow \{0,1\} \end{array}$$

How do we compute φ ?

Pick agents at random until everyone has (and retains) the same output.

Example

Majority $\varphi(x, y) \Leftrightarrow x \ge y$

$$(x,y)=(2,3)$$

input

Example

Majority $\varphi(x, y) \Leftrightarrow x \ge y$

$$(x, y) = (2, 3)$$
input
$$(x, y) = (2, 3)$$

$$(x,$$

y

Example

Majority $\varphi(x, y) \Leftrightarrow x \ge y$

Compute $\varphi(x, y) \Leftrightarrow x \ge y$

Compute
$$\varphi(x, y) \Leftrightarrow x \ge y$$
 $y \mapsto 0, \{x \mapsto x', y \mapsto y', 0 \mapsto 0'\}$

Compute
$$\varphi(x, y) \Leftrightarrow x \ge y$$
 $x' \mapsto 0, \{x' \mapsto x, y' \mapsto y, 0' \mapsto 0\}$

Compute $\varphi(x, y) \Leftrightarrow x \ge y$ $y \mapsto 0, \{x \mapsto x', y \mapsto y', 0 \mapsto 0'\}$

Compute $\varphi(x, y) \Leftrightarrow x \ge y$ $x' \mapsto 0, \{x' \mapsto x, y' \mapsto y, 0' \mapsto 0\}$

Compute $\varphi(x, y) \Leftrightarrow x \ge y$ $y \mapsto 0, \{x \mapsto x', y \mapsto y', 0 \mapsto 0'\}$

Example generalises to all semi-linear predicates

Example generalises to all semi-linear predicates

► Shared global state

Example generalises to all semi-linear predicates

Shared global state

Steps:

- 1. Decompose semi-linear predicate into boolean combination of modulo and threshold predicates
- 2. Protocol for modulo predicates
- 3. Protocol for threshold predicates
- 4. Boolean combinations (simple)

Modulo predicates

$$a_1x_1 + \ldots + a_lx_l \equiv b \pmod{k}$$

Global state is $\{0, ..., k-1\}$, additions modulo k

Threshold predicates

$$a_1x_1 + \ldots + a_lx_l \ge k$$

Global state is large enough counter, take care not to overflow.

▶ Standard coupon-collector analysis for $O(n \log n)$ transitions

- ▶ Standard coupon-collector analysis for $O(n \log n)$ transitions
- Simple matching lower bound (all agents have to act at least once)

- ▶ Standard coupon-collector analysis for $O(n \log n)$ transitions
- Simple matching lower bound (all agents have to act at least once)
- Thus we get time-optimal BCPs for semi-linear predicates.

Thank you for your attention!