
Running-time Analysis of
Broadcast Consensus Protocols

Philipp Czerner, Stefan Jaax
Fakultät für Informatik, TU München

March 23, 2021



Introduction



The Setting

I distributed computation

I population of agents
I agents are finite-state

machines
I random interactions
I want to reach consensus on

whether the initial
configuration satisfies a
property

3



The Setting

I distributed computation
I population of agents

I agents are finite-state
machines

I random interactions
I want to reach consensus on

whether the initial
configuration satisfies a
property

4



The Setting

I distributed computation
I population of agents
I agents are finite-state

machines

I random interactions
I want to reach consensus on

whether the initial
configuration satisfies a
property

q1

q2

q3
q4

q2

q2

q4

q4

q1

q1

q3 q2

5



The Setting

I distributed computation
I population of agents
I agents are finite-state

machines
I random interactions

I want to reach consensus on
whether the initial
configuration satisfies a
property

q1

q2

q3
q4

q2

q2

q4

q4

q1

q1

q3 q2q2
q4

6



The Setting

I distributed computation
I population of agents
I agents are finite-state

machines
I random interactions

I want to reach consensus on
whether the initial
configuration satisfies a
property

q1

q2

q3
q4

q2

q2

q4

q4

q1

q1

q3 q2q2
q4q1
q5

7



The Setting

I distributed computation
I population of agents
I agents are finite-state

machines
I random interactions
I want to reach consensus on

whether the initial
configuration satisfies a
property

q1

q1

q1
q5

q1

q1

q5

q1

q1

q1

q5 q1

8



Population Protocols

I well-studied

I finite set of states Q
I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates
I i.e. predicates expressible in first-order theory of integers with

addition and the usual order
I can compute majority: x ≥ y

I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]

9



Population Protocols

I well-studied
I finite set of states Q

I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates
I i.e. predicates expressible in first-order theory of integers with

addition and the usual order
I can compute majority: x ≥ y

I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]

10



Population Protocols

I well-studied
I finite set of states Q
I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates
I i.e. predicates expressible in first-order theory of integers with

addition and the usual order
I can compute majority: x ≥ y

I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]

11



Population Protocols

I well-studied
I finite set of states Q
I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates

I i.e. predicates expressible in first-order theory of integers with
addition and the usual order

I can compute majority: x ≥ y
I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]

12



Population Protocols

I well-studied
I finite set of states Q
I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates
I i.e. predicates expressible in first-order theory of integers with

addition and the usual order

I can compute majority: x ≥ y
I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]

13



Population Protocols

I well-studied
I finite set of states Q
I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates
I i.e. predicates expressible in first-order theory of integers with

addition and the usual order
I can compute majority: x ≥ y

I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]

14



Population Protocols

I well-studied
I finite set of states Q
I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates
I i.e. predicates expressible in first-order theory of integers with

addition and the usual order
I can compute majority: x ≥ y

I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]

I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]

15



Population Protocols

I well-studied
I finite set of states Q
I pairwise transitions T : Q2 → Q2

I compute exactly semi-linear (or Presburger) predicates
I i.e. predicates expressible in first-order theory of integers with

addition and the usual order
I can compute majority: x ≥ y

I Ω(n2/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
I O(n1+ε) interactions to converge [Kosowski, Uznański 2018]

16



Broadcasts Consensus
Protocols



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary
I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection
2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])
4. Construct faster and more powerful protocols

18



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?

1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary
I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection
2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])
4. Construct faster and more powerful protocols

19



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]

I NL refers predicates decidable by log-space Turing machines,
with input encoded as unary

I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection
2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])
4. Construct faster and more powerful protocols

20



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary

I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection
2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])
4. Construct faster and more powerful protocols

21



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary
I much bigger than just semi-linear predicates

I other extensions in the literature: clocks, cover-time service /
absence-detection

2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])
4. Construct faster and more powerful protocols

22



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary
I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection

2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])
4. Construct faster and more powerful protocols

23



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary
I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection
2. Study broadcasts in the computation-by-consensus paradigm

3. Model global influences in e.g. biological systems
(cf. [Bertrand et al. 2017])

4. Construct faster and more powerful protocols

24



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary
I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection
2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])

4. Construct faster and more powerful protocols

25



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Why?
1. Simple extension to population protocols for NL power

[Blondin, Esparza, Jaax 2019]
I NL refers predicates decidable by log-space Turing machines,

with input encoded as unary
I much bigger than just semi-linear predicates
I other extensions in the literature: clocks, cover-time service /

absence-detection
2. Study broadcasts in the computation-by-consensus paradigm
3. Model global influences in e.g. biological systems

(cf. [Bertrand et al. 2017])
4. Construct faster and more powerful protocols

26



Results

Prior work:
I Blondin, Esparza and Jaax show that BCPs compute exactly

NL
I no bounds on running time
I multiple stages of reduction → complicated protocols

Our results:
1. time-optimal1, simple protocols for semi-linear predicates

I expected O(n log n) transitions
2. poly-time BCPs are precisely ZLP

I i.e. predicates decidable by zero-error, log-space, expected
poly-time randomised Turing Machines

1w.r.t. number of transitions
27



Results

Prior work:
I Blondin, Esparza and Jaax show that BCPs compute exactly

NL
I no bounds on running time
I multiple stages of reduction → complicated protocols

Our results:
1. time-optimal1, simple protocols for semi-linear predicates

I expected O(n log n) transitions

2. poly-time BCPs are precisely ZLP
I i.e. predicates decidable by zero-error, log-space, expected

poly-time randomised Turing Machines

1w.r.t. number of transitions
28



Results

Prior work:
I Blondin, Esparza and Jaax show that BCPs compute exactly

NL
I no bounds on running time
I multiple stages of reduction → complicated protocols

Our results:
1. time-optimal1, simple protocols for semi-linear predicates

I expected O(n log n) transitions
2. poly-time BCPs are precisely ZLP

I i.e. predicates decidable by zero-error, log-space, expected
poly-time randomised Turing Machines

1w.r.t. number of transitions
29



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q,
transitions B : Q → Q × QQ

I Pairwise interactions can be simulated
I Non-determinism can be simulated

30



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q,
transitions B : Q → Q × QQ

I Pairwise interactions can be simulated

I Non-determinism can be simulated

31



What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol + Broadcasts

Formally:

finite set of states Q,
transitions B : Q → Q × QQ

I Pairwise interactions can be simulated
I Non-determinism can be simulated

32



Transitions

Run on population of agents C ∈ NQ (multiset of states).

q

q1 q2

q3
q4

Execute: transition q 7→ r , f , with q, r ∈ Q, f : Q → Q

33



Transitions

Run on population of agents C ∈ NQ (multiset of states).

q

q1 q2

q3
q4

q

Execute: transition q 7→ r , f , with q, r ∈ Q, f : Q → Q

34



Transitions

Run on population of agents C ∈ NQ (multiset of states).

q

q1 q2

q3
q4

q

q 7→ r

r

q1 q2

q3
q4

Execute: transition q 7→ r , f , with q, r ∈ Q, f : Q → Q

35



Transitions

Run on population of agents C ∈ NQ (multiset of states).

q

q1 q2

q3
q4

q r

f (q1) f (q2)

f (q3)
f (q4)

f

Execute: transition q 7→ r , f , with q, r ∈ Q, f : Q → Q

36



Computation

initial states I ⊆ Q
output mapping O : Q → {0, 1}
predicate ϕ : NI → {0, 1}

How do we compute ϕ ?
Pick agents at random until everyone has (and retains) the same
output.

37



Computation

initial states I ⊆ Q
output mapping O : Q → {0, 1}
predicate ϕ : NI → {0, 1}

How do we compute ϕ ?

Pick agents at random until everyone has (and retains) the same
output.

38



Computation

initial states I ⊆ Q
output mapping O : Q → {0, 1}
predicate ϕ : NI → {0, 1}

How do we compute ϕ ?
Pick agents at random until everyone has (and retains) the same
output.

39



Example

Majority ϕ(x , y)⇔ x ≥ y

(x , y) = (2, 3)

input

40



Example

Majority ϕ(x , y)⇔ x ≥ y

(x , y) = (2, 3)

input multiset

yx

41



Example

Majority ϕ(x , y)⇔ x ≥ y

(x , y) = (2, 3)

input multiset

yx

y

x

x

y

y

population

42



Compute ϕ(x , y)⇔ x ≥ y

x

y

x

y

y

output 1

output 0

“active”

“disabled”

43



Compute ϕ(x , y)⇔ x ≥ y y 7→ 0, {x 7→ x ′, y 7→ y ′, 0 7→ 0′}

x

y

x

y

y

output 1

output 0

“active”

“disabled”

x ′

y ′

x ′

0′

y ′

44



Compute ϕ(x , y)⇔ x ≥ y x ′ 7→ 0, {x ′ 7→ x , y ′ 7→ y , 0′ 7→ 0}

x

y

x

y

y

output 1

output 0

“active”

“disabled”

x ′

y ′

x ′

0′

y ′

y

x

0

y

0

45



Compute ϕ(x , y)⇔ x ≥ y y 7→ 0, {x 7→ x ′, y 7→ y ′, 0 7→ 0′}

x

y

x

y

y

output 1

output 0

“active”

“disabled”

x ′

y ′

x ′

0′

y ′

y

x

0

y

0 0′

y ′

x ′

0′

0′

46



Compute ϕ(x , y)⇔ x ≥ y x ′ 7→ 0, {x ′ 7→ x , y ′ 7→ y , 0′ 7→ 0}

x

y

x

y

y

output 1

output 0

“active”

“disabled”

x ′

y ′

x ′

0′

y ′

y

x

0

y

0 0′

y ′

x ′

0′

0′

y

0

0

0

0

47



Compute ϕ(x , y)⇔ x ≥ y y 7→ 0, {x 7→ x ′, y 7→ y ′, 0 7→ 0′}

x

y

x

y

y

output 1

output 0

“active”

“disabled”

x ′

y ′

x ′

0′

y ′

y

x

0

y

0 0′

y ′

x ′

0′

0′

y

0

0

0

0

0′

0′

0′

0′

0′

48



Semi-linear predicates



Semi-linear predicates

I Example generalises to all semi-linear predicates

I Shared global state

Steps:
1. Decompose semi-linear predicate into boolean combination of

modulo and threshold predicates
2. Protocol for modulo predicates
3. Protocol for threshold predicates
4. Boolean combinations (simple)

50



Semi-linear predicates

I Example generalises to all semi-linear predicates
I Shared global state

Steps:
1. Decompose semi-linear predicate into boolean combination of

modulo and threshold predicates
2. Protocol for modulo predicates
3. Protocol for threshold predicates
4. Boolean combinations (simple)

51



Semi-linear predicates

I Example generalises to all semi-linear predicates
I Shared global state

Steps:
1. Decompose semi-linear predicate into boolean combination of

modulo and threshold predicates
2. Protocol for modulo predicates
3. Protocol for threshold predicates
4. Boolean combinations (simple)

52



Modulo predicates

a1x1 + ... + alxl ≡ b (mod k)

Global state is {0, ..., k − 1}, additions modulo k

53



Threshold predicates

a1x1 + ... + alxl ≥ k

Global state is large enough counter, take care not to overflow.

54



I Standard coupon-collector analysis for O(n log n) transitions

I Simple matching lower bound (all agents have to act at least
once)

Thus we get time-optimal BCPs for semi-linear predicates.

55



I Standard coupon-collector analysis for O(n log n) transitions
I Simple matching lower bound (all agents have to act at least

once)

Thus we get time-optimal BCPs for semi-linear predicates.

56



I Standard coupon-collector analysis for O(n log n) transitions
I Simple matching lower bound (all agents have to act at least

once)
Thus we get time-optimal BCPs for semi-linear predicates.

57



Thank you for
your attention!

58


