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well-studied
finite set of states @
pairwise transitions T : Q% — Q?

compute exactly semi-linear (or Presburger) predicates

» i.e. predicates expressible in first-order theory of integers with
addition and the usual order

can compute majority: x >y
» Q(n%/ polylog(n)) interactions to stabilise [Alistarh et al. 2017]
> O(n'*¢) interactions to converge [Kosowski, Uznanski 2018]
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What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Why?
1. Simple extension to population protocols for NL power
[Blondin, Esparza, Jaax 2019]

» NL refers predicates decidable by log-space Turing machines,
with input encoded as unary

» much bigger than just semi-linear predicates

» other extensions in the literature: clocks, cover-time service /
absence-detection

2. Study broadcasts in the computation-by-consensus paradigm

3. Model global influences in e.g. biological systems
(cf. [Bertrand et al. 2017])

4. Construct faster and more powerful protocols
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Results

Prior work:

» Blondin, Esparza and Jaax show that BCPs compute exactly
NL

» no bounds on running time
» multiple stages of reduction — complicated protocols
Our results:
1. time-optimal®, simple protocols for semi-linear predicates
> expected O(nlog n) transitions
2. poly-time BCPs are precisely ZLP

» i.e. predicates decidable by zero-error, log-space, expected
poly-time randomised Turing Machines

lw.r.t. number of transitions
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What is a Broadcast Consensus Protocol (BCP)?

BCP = Population Protocol 4+ Broadcasts

Formally:

finite set of states @,
transitions B: Q — Q x Q9

» Pairwise interactions can be simulated

» Non-determinism can be simulated
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Execute: transition g — r, f, with g,r € Q,f : Q — Q

36



Computation

initial states | C Q
output mapping O : Q — {0,1}
predicate o : N/ — {0, 1}

37



Computation

initial states | C @
output mapping O : Q — {0,1}
predicate o : N/ — {0, 1}

How do we compute ¢ 7

38



Computation

initial states | C Q
output mapping O : Q — {0,1}
predicate o : N/ — {0, 1}

How do we compute ¢ 7
Pick agents at random until everyone has (and retains) the same

output.
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Compute p(x,y) < x>y X' = 0,{x' = x,y — y,0 0}
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Compute p(x,y) < x>y y=0,{x—x,y—y, 00}

- -

,——~\ 7 ,——\\ 7 ~ , \ ’ 7Y
X ) ol x —PL X X 2 0 —» 0
~ 7 AN 7 \ 7

-~ N —- S - -~ - -
PEXS -=< - =~ -—-
’ N / - \ 4 \ . N \
Cx 3y (X o) {0 o) o)

~— ~s - ~— -~ - \

/-_~\ /-_~\ —~ /-_-\
@O 0 PO YD OO
Qoo o () o {0

=) QOey *':9"_"‘

(O output 1 O "active”

() output 0 (") “disabled”




Semi-linear predicates



Semi-linear predicates

» Example generalises to all semi-linear predicates

50



Semi-linear predicates

» Example generalises to all semi-linear predicates
» Shared global state

51



Semi-linear predicates

» Example generalises to all semi-linear predicates
» Shared global state

Steps:

1. Decompose semi-linear predicate into boolean combination of
modulo and threshold predicates

2. Protocol for modulo predicates
3. Protocol for threshold predicates

4. Boolean combinations (simple)

52



Modulo predicates

axy+...+ax=b (mod k)

Global state is {0, ..., k — 1}, additions modulo k
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Threshold predicates

aix1+...+ax >k

Global state is large enough counter, take care not to overflow.
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» Standard coupon-collector analysis for O(nlog n) transitions

» Simple matching lower bound (all agents have to act at least
once)

Thus we get time-optimal BCPs for semi-linear predicates.
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Thank you for
your attention!



