
Multi-Agent Programming Contest 2017:
lampe Team Description

Philipp Czerner, Jonathan Pieper

philipp.czerner@nicze.de, jpieper@swbmail.de
Department of Informatics, Clausthal University of Technology

Abstract In this paper we describe our participation in the 2017 edition
of the Multi-Agent Programming Contest as team ‘lampe’. Our strategy was
implemented in C++; it uses a centralised organisation of agents and evaluates
different strategies based on an internal simulation of the future game state.
Strategies are generated using handwritten heuristics in a randomised fashion,
also relying on the internal simulation.

1 Introduction
The Multi-Agent Programming Contest (MAPC) is an annual competition with the
goal of advancing the field of multi-agent system development and programming [1].
We participated in the 2017 version of this contest as team ‘lampe’, taking fifth place
amongst seven participants. Our team consisted of two undergraduate students.
This is the second time team ‘lampe’ participates in the MAPC [2]. Our system was

originally developed in 2016 as a course project and then further improved upon in
advance to that year’s contest. For this year, our system makes use of the framework we
developed, which handles communication with MASSim and other organisational tasks,
but the strategy has been completely rewritten.
The name ‘lampe’ is an acronym for ‘Library for Agent Manipulation and Planning

Efficiently’ and used to denote both our team and the framework we wrote to implement
our strategy.

This paper is structured as follows: Section 2 first introduces the general design of our
system and gives a high-level overview of our implementation. We then provide a detailed
description of our strategy in section 3, including the various layers and components
involved. A brief overview of techniques used for implementation and debugging is given
in section 4. Next, section 5 analyses some interesting games from the contest, discusses
strengths and weaknesses of our solution and evaluates the choices we made in our

1



CLI

Session Manager

Mothership

Simulation

Pathfinding Message Parser

Socket

lampe

MASSim

Figure 1: Structure of the framework (adapted from [2]). New parts are highlighted.

implementation. Finally, section 7 comprises our answers to the organisers’ questions,
giving an overview of our team and its strategy.

2 System design and implementation
In this section we briefly describe the overall architecture of our system, as well as its
major components. Then, we give a general overview of our implementation of that
architecture.

As our system is based on our work during last year’s contest, most of the architecture
surrounding the team’s strategy was already in place. Consequently, our design work
focused on our agents’ logic and various supporting systems, such as the internal simulation
or exact distance calculation.
We did not use any specific methodology for our software development, and opted

against architectures and technologies typically used for agent programming, instead
focusing on conventional programming techniques.

2.1 Architecture
We briefly recap our general architecture as used in last year’s contest before specifying
the changes and additions made.
Figure 1 shows the general structure of our framework. The application is invoked

via a command line interface, which initialises the session manager, responsible for
managing the connection to MASSim, authentication, loading the maps for pathfinding
and controlling the lifecycle of the mothership. The mothership is the central entity
controlling all agents, communicating to the session manager via an API. This makes it
possible to plug in different motherships, a feature we used mainly for debugging.

2



The message parser transforms the XML-based messages exchanged with MASSim
into our internal data structures and vice versa.

For this year’s version, we added subsystems dedicated to pathfinding and the internal
simulation. Additionally, we completely replaced our mothership, i.e. the part responsible
for our strategy. Pathfinding parses the graphs output by MASSim (which uses the
GraphHopper library internally) and provides a routine to quickly find shortest paths. It
is imperative that these paths correspond exactly to the ones calculated by MASSim, as
they are used to predict travel times.

The internal simulation tries to predict future events based on the current situation. It
basically mirrors MASSim’s internal workings concerned with advancing the game state.
Since the simulation is non-deterministic and the opponents change the state as well,
precisely simulating the game is of course impossible, wherefore the internal simulation
can only ever be an approximation.

2.2 Implementation
We implemented our system using the C++ programming language. More specifically,
we used the C++14 standard with some C++17 extensions that were supported by our
compiler. Some features we deliberately abstained from, most notably exceptions and
class hierarchies, both for their negative impact on code readability and performance.

Originally we chose C++ for our framework due to our familiarity with the language as
well as the freedom in choice of abstractions it offers. With our new strategy, performance
becomes an important factor, too. We believe that implementing our strategy in another
comparable, general-purpose language such as Java or Python, while not impossible,
would incur additional overhead in applying further optimisations, in order to get to an
acceptable level of performance.
For communication MASSim’s XML protocol is used via a TCP/IP socket. The

message parser translates between XML and our data structures, and performs various
transformations to make the data easier to use and more compact (e.g. strings are
replaced by integers, coordinates are normalized and converted to fixed-point precision).
Our data structures used for representing the game state are unusual in the sense

that they are stored contiguously in memory. This makes it difficult to apply structural
changes to existing data (such as adding an item to a list), but simplifies copying and
storage. Since the former happens very rarely during simulations (it is mostly agents
changing positions and items changing amounts), this is a trade-off we are happy to
make.
In total we wrote 8512 lines of code (all counts excluding comments and blanks), of

which 2396 are implementing the strategy and internal simulation. The code implementing
the communication with MASSim is 1051 lines long, and the pathfinding amounts to 996
lines. The rest consists of interaction with the operating system (1167 lines), as well as
various utilities, data structures and debug code.

Last year’s project consisted of 4805 lines, of which only 882 were controlling the agent
behaviour. This illustrates that most of our work has gone into implementing a more
complex strategy.

3



Strategy

Strategy

Strategy

...

Strategy Pool

Fixer Clean-up Create
Work Rate

Explore

Fast-forward

Assembly PlannerPathfinding

Simulation

Task

Task

..
.

Action

Action

..
.

Perception

Perception

..
.

Figure 2: Overview of the general strategy.

3 Strategy
We organise our agents in a centralised fashion, meaning that there is a single entity,
which collects and processes the individual perceptions and then dispatches actions for
the agents to execute. We call the component responsible for implementing this entity
mothership.

There are multiple layers of abstraction between the decision-making of the mothership
and the actual game. Firstly, there are tasks, which are an abstraction over actions. Each
tasks comprises an operation which could take multiple actions to complete, and handles
failures of individual actions transparently. For example, the buy-item task covers the
agent going to a shop (potentially involving multiple goto actions) and then buying the
item (a single buy-action, or more if a random failure occurs). For more details, see
section 3.2.
A strategy assigns each agent a number of tasks, to be completed in order. The

maximum number of tasks queued up per agent is limited to 4 in our implementation.
Strategies can be executed, resulting in a single action per agent being sent to MASSim.
More importantly, we are able to internally simulate the results of a strategy, allowing
the mothership to consider multiple possible strategies in advance.

A situation contains both a strategy and the current state of the simulation. The latter
is mostly equivalent to the contents of the perceptions as received from MASSim, with
duplicated data removed. Additionally, there is a small amount of bookkeeping to be
done, in order to track information that is not present in the perceptions, most notably
the state of delivered items.

4



The internal simulation of a situation for a certain number of steps—called fast-forward
in our code—is central to the other high-level operations on strategies. This operation
takes a situation as input and returns the situation that would result from executing
the strategy for a certain number of steps. It applies all deterministic elements of the
simulation, but cannot predict random events or the behaviour of the opposing team.

Most of the work is done in the fixer, which takes a strategy and addresses any issues
during its execution. For example, an agent might not have enough charge to reach its
destination, leaving it unable to move. Running out of charge will be noticed inside
fast-forward, causing a charge task to be added to the agent. The fixer is very robust and
able to deal (at least in principle) with all problems that can arise during the execution
of a strategy. It is responsible for handling the dependencies arising during item assembly.
Section 3.3 describes the fixer in more detail.

Other operations on strategies include clean-up, which removes superfluous tasks, create
work, which searches for profitable jobs and adds tasks to complete them (see section 3.4),
and rate, responsible for rating the expected score in any given situation (see section 3.5).
An overview of our general strategy is provided in figure 2.
The mothership maintains a pool of prospective strategies, that is initialised with the

strategy chosen in the previous step. Until the time limit is reached, the mothership then
explores the most promising strategy.
To explore a strategy, the mothership first applies the fixer. As the fixer only runs

limited number of iterations, a strategy may not necessarily have all its issues resolved
after this step. Subsequently, the mothership performs a clean-up of the strategy, as the
fixer may create superfluous tasks (such as buying an item which is not needed). This
happens when a task is removed while its dependencies remain. As those are difficult to
determine ahead of time, it is easier to remove them afterwards in a separate clean-up
phase.

If there are no errors present in the strategy, create work is called and tasks to complete
profitable jobs are added. Finally, the strategy is rated, to update both its own value,
and the expected exploration value of its parent.

After exploring strategies, the mothership selects the best strategy based on the rating
of its situation (this does not consider the value of children of the strategy) and executes
it. The resulting actions are sent to MASSim. When the next set of perceptions is
received, all completed tasks are removed from the strategy, which then initialises the
pool for the next phase of exploration.

There is no specific mechanism to encourage the mothership continuing in its previous
course of action, so it is possible for it to pick a wildly varying strategy. However,
our heuristics generally operate in a way that keeps working tasks unchanged, and the
previous strategy is always part of the next pool of strategies. Consequently, any new
strategy would have to achieve a higher rating to be adopted.

3.1 Comparison with lampe 2016
As our strategy has been rewritten from scratch, there are only conceptual similarities.

5



Similar to last year’s strategy, we used an abstraction to represent operations consisting
of a sequence of actions. The original version was called ‘requirement’ and fulfilled a
similar role to our current model of tasks, i.e. handling failures of individual actions
transparently and grouping sequences of actions, making them easier to reason about.
However, tasks are more light-weight and thus allow finer control over an agent’s

actions. A task consists of travel to a destination and some kind of action being executed
there. A requirement would additionally consider a delivery of the resulting item (if any)
to a workshop or storage, involving two more stages of execution.

Furthermore, charging was built-in and handled transparently—an agent would locally
decide whether to charge and which charging stations to choose. This feature was dropped
in favour of a dedicated charge task, which is managed centrally by the fixer.

Requirements were executed via the use of finite-state-machines, keeping track of the
different stages of execution locally in each agent. We have simplified the former part,
rendering the execution of tasks stateless, only depending on the information about the
game. Tasks are still executed locally, but there is an additional consideration specifically
for assemblies. When multiple agents cooperate on an assembly, the assembly planner
creates an execution plan for the current step, which the agents then use to synchronize
their actions.
Switching from requirements to tasks enables the use of simple building blocks for

our strategy, featuring very little local reasoning. Instead, decisions are made centrally,
making it easier to take context into account and consider the strategy as a whole.

In more general terms, the biggest difference is in the handling of errors. Last year we
were focused on preventing problems from occurring, always taking care to only assign
requirements to agents that can actually execute them. Ensuring this beforehand was
complicated and had to take a multitude of factors into account. Some heuristics had to
be especially conservative in order to avoid running into problems later. When errors did
happen due to bugs in our programming, our team was often not able to function at all,
as a single failed delivery would prevent the completion of a whole job
This year, our strategy revolved around handling errors as they happen. However,

rather than running into problems in the actual simulation, we use our internal simulation
to find these problems in advance. Whereas previously our heuristics had to be quite
clever to make accurate guesses about the future, we can now make use of the (simulated)
future in our heuristics. These are then much simpler, not having to factor in any
prediction.

Additionally, we are able to assign tasks optimistically. If any failure occurs as a result
of a complex interaction, the simulation will notice this and in order to resolve the issue
the full state of the simulation at the time of the error is available to the fixer.

The downside is the necessity of solving problems in an arbitrary strategy with complex
interactions between agents, without running into a loop. This makes the implementation
of the fixer quite difficult.

6



Table 1: The different task-types. Each tasks stores data about its location and items.
The first operation is always travelling to the target. All operations make use of
goto actions.

Name Parameter Second operation Non-goto cctions involved

buy-item buy item buy
deliver-item job id deliver to job deliver
retrieve-item retrieve item retrieve_delivered
craft-item assembly id assemble item assemble, give, receive
craft-assist assembly id assist assembly assist_assemble, give, receive
charge charge the battery charge

3.2 Tasks
Tasks are an abstraction over actions, describing an operation that takes multiple actions
to finish. Table 1 gives an overview of the different types of tasks used in lampe. All
tasks involve travel to a destination, using a direct path to the target. In particular, they
are not taking the agents’ charge into account while travelling, as this is considered at a
higher level (the fixer, to be precise).

Each task stores its destination, which is always a facility, the type of which depends
on the task, e.g. buy-item always targets a shop. Furthermore, all tasks except charge
specify type and amount of a requested item. While the action ‘assemble’ only creates
a single item at a time, the task craft-item allows for an arbitrary amount of items to
be created. The item parameter of a craft-assist specifies a lower bound on the agent’s
contribution to the assembly, i.e. the agent has to contribute at least the item (or tool)
specified. This models the common case of a single item, helping our heuristics to map
out approximate dependencies and detect failures early. When the assist-assembly task
is executed, the agent may contribute all items in its inventory, regardless of what is
specified in the task.
After arriving at the destination, an action specific to the task is performed. For

most tasks (Buy-Item, Deliver-Item, Retrieve-Item and Charge) this action is simply
repeated until the requested amount of items has been processed. Assemblies are a bit
more complicated, they are described in the next section.

If an agent has no task, or is currently waiting on some other operation to complete, it
usually spend its action recharging. Sometimes the mothership decides to place a bid on
an auction job, which is then placed by an idle agent. Section 3.6 describes this in detail.

3.2.1 Assemblies

As they involve the synchronisation of multiple agents, extra care is taken to efficiently
execute assemblies. For each assembly there is exactly one craft-item task, and any
number of craft-assist tasks.
The craft-item task stores an assembly id, which uniquely references the assembly.

7



Table 2: Types of errors addressed by the fixer and their respective resolution strategy.

Task type Error description Resolution strategy

any out of battery add charge task
craft-item, craft-assist assembly failed, missing item add item to agent, or dis-

patch a craft-assist
craft-assist useless assist remove task
craft-assist invalid assembly id remove task
deliver-item delivery failed, missing item add item to agent, or move

delivery
deliver-item useless delivery remove task
deliver-item invalid job id remove task
buy/retrieve/craft-item maximum load reached reduce the item’s amount
buy-item not in stock reduce the item’s amount

Corresponding craft-assist tasks then use this id to point to the specific assembly they
apply to, in order to not confuse different assemblies by the same agent or at the same
workshop.

Our agents spend much of their time waiting for all participants of an assembly to
arrive. This makes it necessary to optimise the execution of the craft-item and craft-assist
tasks, so that this time is used as efficiently as possible.

First, the mothership needs to determine whether it is possible to complete the assembly
in the current step, i.e. all agents carrying the required items and tools have arrived at
the workshop. If that is the case, the agents assemble the item.

Else, the mothership considers whether an agent can give their items to another agent,
and leave before the assembly is completed. There are a number of factors to take into
account (e.g. carrying capacity, tools), but this optimisation is often viable (on average
about once per two assemblies).

Once that possibility is exhausted as well, the agents at the target workshop are idle,
i.e. they recharge or place a bid for an auction job.

When the internal simulation executes the task, we additionally look for possible future
agents joining the assembly, and whether they are able to bring the necessary items. If
that is not the case, the assembly is impossible to complete and an error is emitted. This
serves to detect failed assemblies as soon as possible.

3.3 The fixer
Central to our strategy is the concept of discovering issues using our internal simulation,
and then iteratively improving on our strategy to arrive at a working state. This is
realised by the fixer, which is both the most complex and most important component of
our system.
The fixer uses randomised heuristics that assign possible choices different weights

8



based on a number of factors. For each viable choice there is a non-zero probability, so
that running the fixer indefinitely will eventually discover a solution, if it exists. More
importantly, while the heuristics are biased so that most of the time an acceptable
outcome is reached, multiple runs of the fixer explore different solutions.

Table 2 lists the possible errors that may arise in a simulation. For most of them, the
resolution is trivial. If a task is useless (for example delivering an item to a job twice) or
malformed (like a craft-assist referencing an assembly that does not exist), the offending
task is simply deleted. These tasks are not results of malfunctioning code, but can arise
when other tasks are modified.

When a task cannot be executed due to limits in an agent’s storage capacity or a
shop’s stock, the amount of items is simply reduced to the maximum feasible number, or
the task is deleted if not even a single item can be transferred.

Some complications arise when an agent runs out of charge. This situation is generally
solved by adding a charge task just before the failing task, minimising the total distance
travelled. In rare cases this does not work, as the agent is unable to even reach the
nearest charging station, and the charge task is moved back one slot further. If there is
no further task in front, the agent is stuck and must call breakdown service.
The most complex heuristics are used to deal with missing items, with the following

possibilities being considered:

• An agent already holds the item in its inventory and it is not being used by other
tasks. This is the preferred method to obtain items.

• The item was previously delivered to a job which can no longer be completed, so
that the item can be retrieved from storage. Our heuristics are also biased towards
this choice, though not as much.

• Another task to buy this item is already underway, and there is capacity to increase
its item amount. This is considered an average choice.

• The item is available for purchase in a shop. There is a slight bias against this
method.

• Finally, assembling the item is considered, although this choice has the lowest bias.

Depending on the type of task that is missing the item (craft-item or deliver-item), we
then need to issue a craft-assist to the new agent (if it was not already involved), or a
deliver-item task. In the latter case, the original delivery can be deleted.
There are other factors modifying the chances of assigning a task to an agent:

• the agent is idle for an extended period of time at the end of the internal simulation
(which only simulates 80 steps into the future)

• there are free slots left for the new task(s) (if there are none, the agent is not
considered)

• the agent is able to carry all items for the task

9



Agent 1

Agent 2

task 1, deliver
job4, (item5, 3)

task 0, deliver
job4, (item4, 1)

(a) The initial strategy, possibly gen-
erated by our create work subrou-
tine. As the agents do not have
the required items, both tasks
fail.

Agent 1

Agent 2

task 2, assemble
(item5, 3)

task 1, deliver
job4, (item5, 3)

task 3, assist
tool2

task 0, deliver
job4, (item4, 1)

(b) The fixer first adds task 2 to assemble the required items.
As tool2 is needed, agent 2 is assigned to assist the
assembly. They already have this tool in their inventory,
and are able to use it.

Agent 1

Agent 2

task 4, buy
(item4, 6)

task 2, assemble
(item5, 3)

task 1, deliver
job4, (item5, 3)

task 5, retrieve
(item3, 3)

task 3, assist
tool2

task 0, deliver
job4, (item4, 1)

(c) There are still items needed for task 2, so the fixer adds the tasks to obtain them. Task 1
now works successfully. Note that the assist in task 3 is not limited to the item originally
specified, but rather contributes all useful items in the agent’s inventory.

Agent 1

Agent 2

task 6, buy
(item4, 7)

task 2, assemble
(item5, 3)

task 1, deliver
job4, (item5, 3)

task 5, retrieve
(item3, 3)

task 3, assist
tool2

(d) Task 0 does not work, as agent 2 is not in possession of item4. The fixer notices that
agent 1 is already buying this item, and is involved in the delivery. So it increases the
amount in task 4 (assigning a new id in the process) and deletes task 0. Similar to
assists, deliveries contribute all items in an agent’s inventory, so task 1 will also deliver
item4.

Figure 3: Example showing a possible execution of the fixer.

• the agent is already participating in the assembly

Then, an appropriate facility is chosen, minimising a combination of total distance
travelled and price (the latter only for shops). Figure 3 shows an example execution of
the fixer, illustrating the above possibilities.

Usually, there are multiple possible slots for the task(s) to be inserted. Always choosing
the last possible slot does not work, as one of these tasks may be a prerequisite for a
task scheduled earlier on. A converse problem may occur when inserting them in front,
possibly causing problems with tasks that were working fine before, some of which may
generate items that are needed for a task at hand. So task has to inserted somewhere ‘in
the middle’.

This situation is further complicated by the fact dependency chains between tasks are

10



notoriously hard to analyse correctly, as much depends on the state of the simulation at
the time. For example, a craft-assist may contribute any item in the agent’s inventory to
the assembly, if they are needed. That, however, depends on the inventories of the other
agents involved in the assembly.
In the end, we ended up with a simple heuristic: insert the task after the last task

that completed successfully in the simulation. This ensures that working tasks are not
impeded, and any tasks dependent on the inserted one are executed afterwards.
This rule works well together with another property of the fixer, namely that errors

in tasks with higher id (task ids are always increasing) are considered first. Essentially,
the fixer performs a depth-first traversal of the dependency tree of the tasks, and inserts
tasks according to that order. Whenever a task is working, i.e. completed successfully in
the last simulation, it will be ‘committed’ in a sense, in that no tasks are inserted before
it (or any of its dependencies, as they must also have been completed successfully).
Besides being a simple rule that resolves dependencies without having to construct

them explicitly, this also avoids deadlocks, at least most of the time. The depth-first
traversal always causes any dependencies to be placed in front of their tasks, which avoids
cyclic dependencies. However, it is possible for a task to fail in more complicated ways
(a shop running out of stock, for example), some of them outside of our agents’ control.
Thus there is the possibility of a working strategy breaking with a step of the actual
simulation, or due to various indirect interactions of tasks.
Deadlocks have been observed in practice, albeit very rarely. As a result, our fixer

detects cycles in the dependency chain, and moves one of the tasks to resolve the deadlock,
updating their task ids in the process.

Sometimes the fixer is not able to find a solution for an error, for example when most
agents are occupied and a complex assembly cannot be completed. Therefore, after trying
a certain number of times, the fixer gives up on a task and deletes it instead.

3.4 Create work
We only consider jobs that are currently available to generate work, so no work is done
speculatively in preparation for future jobs. We tried to add a subroutine that buys tools
in the beginning of the simulation, when our agents would otherwise be idle, but it did
not improve our performance.
Our heuristic for evaluating a job’s profitability is as follows:

α+ r + f −
∑
ci(β1nhave(i) + β2nneed(i))

m

where r is the reward of the job, f the fine, ci the estimated base cost of item i, nhave(i)
the amount of item i that is currently stored in the inventories and can be used for the
job, nneed(i) the difference between nhave(i) and the amount needed to complete the job,
m the number of assemblies required to complete the job, α is a positive value iff the job
has been partially completed, and β1, β2 are factors chosen empirically.

As an aside, we estimate the base cost of an item by averaging the prices of all shops.
This generally yields values very close to MASSim’s internal base value. Furthermore, we

11



are interested not in the true value of an item, but the price we have to pay to acquire it,
for which the actual prices in shops are a better estimation.
We choose a job probabilistically, biased towards jobs with higher profit. If a job is

not estimated to be profitable, it is not considered.
Auctions and Missions assigned to our team are considered in exactly the same manner

as other jobs, with the virtual reward being equal to the sum of bid and fine. The latter
is usually high enough for the mothership to pursue these jobs. (Note that bidding on
auctions is completely independent of this process, here only auctions where we have
already won the bid are relevant. See section 3.6 for a description of the bidding process.)
In order to create tasks after a job is chosen, we add deliver-item tasks to a random,

available agent. All the other logistics are handled by the fixer.

3.5 Rate
The previous operations yield randomised results, which naturally leads to the possibility
of a search over strategies by applying them repeatedly. This search is guided by the rate
operation, which assesses the value of a certain situation (recall that a situation contains
both a strategy and the state of the world at a certain point in time).
We take four things into account:

• The score of our team.

• All items currently in inventories of our agents. This value becomes less important
as the game nears completion, and is irrelevant at the end.

• The amount of time the agents are idle after completing their tasks.

• Whether an error occurred during the execution of a task.

This heuristic is run on the situation obtained by internally simulating the execution
of our strategy, allowing it to be rather simple. This means that in step 920 we would
simulate the strategy until the end of the game (step 1000), at which point items no
longer hold any value.

3.6 Auctions
Auctions are a major feature we ignored last year, for which we decided to add at least a
simple solution, that does not lose us money but potentially improves our chances.
We rate auctions based on the same heuristic we use for choosing jobs (see section

3.4), which (mostly) ensures that an auction is profitable if we win the bid. There is a
minimum profitability we target. For any auction better than that, we place a random
bid such that we still meet the minimum.

As many teams in the last contest (including ourselves) chose not to implement betting
on auctions at all, we try to detect whether the other team has placed a bid at some
point in the game. If that is not the case, we always bid the maximum allowed amount.

12



After determining to place a bid on an auction, this bid is placed by an otherwise idle
agent, of which there usually is no shortage. If we win the auction, create work will
consider it when creating new tasks.
Note that this part of our strategy did not work correctly during the contest, so that

we always bid the maximum amount.

4 Implementation details
This section describes how our strategy was actually implemented and some techniques
we used for debugging.

Most of our time is spent executing the internal simulation, so we had to make sure
that it is reasonably efficient. To this end, the simulation does not proceed step-by-step.
Instead, it is event-based, with the events always being some agent waking up and
processing its task.
Whenever a task is considered, we execute as much as possible at once and schedule

an event to continue after the appropriate duration has elapsed. For example, if an agent
is assigned a buy-item task, the simulation would first calculate the duration of travelling
to the shop, immediately move the agent and update its charge, and then let it sleep for
that amount of time.
The simulation jumps forward in time until the next agent wakes up (i.e. the next

event), and only that agent is then processed. In other words, our internal simulation
operates one level of abstraction higher than MASSim, as it executes tasks rather than
actions.
This implementation gets a bit more complicated when assemblies are involved. The

execution of the assembly is handled entirely by the assembling agent. They are woken
up when an assisting agent arrives at the workshop.
Our data structures, which are described in more detail below, are inefficient when

making structural changes (such as adding an item to a list). When running the internal
simulation, these changes are mostly confined to adding items to an agent’s inventory.
Removing items can easily be done by replacing them with an invalid item id. The other
places where items may be added are shops (due to restock) and jobs, both of which
have a small list of possible items for which a slot is reserved. This is not possible for
agents, as they may carry arbitrary items. In practice, however, they rarely exceed 7
items at once, which is why we make sure that agents have some buffer in the form
of invalid items in their inventory. When adding items, our routine uses this buffer if
possible. Should the limit of 7 items be exceeded, these changes are accumulated during
an iteration and then applied at once.

Pathfinding is heavily used in the internal simulation, as most tasks involve travelling.
We are able to estimate the time of travel exactly (not considering random failures)
almost always, only rarely do our results differ from MASSim by a few steps. There is
much redundancy in the paths in multiple runs of the internal simulation, so we keep a
cache of distances between agents and facilities (which are the only valid targets).

To debug our program, we mostly relied on liberal use of assertions and print statements.

13



many size=2 list1 list2 size=1 item1

Figure 4: Example illustrating the layout of our data structures in memory. many is an
array of arrays of items, while list1 and list2 are arrays of items. The arrows
indicate the offset of an array’s data.

Our containers do bound-checking in debugging builds, which catches most cases that
would otherwise result in invalid memory accesses or corruption. Finding out that a
certain check has failed is not very useful on its own, so we implemented the printing of
stacktraces using operating system facilities. Once in a while the stacktrace does not
contain useful information, in which case we use a debugger to investigate further.

Printing nested data structures is not easy in C++, as there is a lack of good facilities
for introspection of data types. Still, we implemented subroutines for formatted, human-
readable output of our data structures. As these procedures already have the structural
information, it was quite simple to also implement a structural diff. This helped in
investigating differences between our internal simulation and MASSim.

While our heuristics are randomised, our pseuodo-random number generator is always
initialised with the same seed, so that subsequent runs produce the same results. As
MASSim is deterministic as well, there was no problem in reproducing errors during
testing.

For our data structures we only use simple unsorted arrays, most operations involving
a linear search. Some of these arrays are nested. We store them contiguously in memory,
using offsets to point to the start of an array (see Figure 4 for an example). Increasing
the size of a list would require moving all subsequent bytes and adjusting some offsets.
This is an expensive operation, but it is rarely needed.

5 Evaluation
In this section we will evaluate our performance by analysing two matches against teams
Flisvos and Jason-DTU, respectively, who share second place in the tournament. We feel
that these two simulations are the most interesting and highlight the characteristics of
our strategy well.

5.1 Exploiting auction jobs against Flisvos
Figure 5 shows the score during the game against team Flisvos. Looking at the graph,
one may assume that both teams were evenly matched and we managed to win by a
slim margin in the end. However, a more detailed analysis reveals that the two teams
had different sources of income and the final score was mostly a result of favourable
randomness in the simulation’s generation.
Flisvos completed 54 jobs during the simulation, consisting of 51 normal jobs and

3 missions, as shown in table 3. We finished only 34 jobs, with a split of 14 normal

14



5

10

15

0 100 200 300 400 500 600 700 800 900 1000

·104
Sc

or
e

Flisvos
lampe

Figure 5: Score during simulation 2 against Flisvos, with time in steps. lampe ends with
a score of 145621, Flisvos with 129985.

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

A
ct
iv
ity

Flisvos
lampe

Figure 6: Activity during simulation 2 against Flisvos, with time in steps. For each
10-step interval, the number of successful actions is shown, not counting ‘skip’,
‘abort’ and ‘recharge’.

jobs, 18 auctions and 2 missions. Indeed, not a single bid was placed by team Flisvos,
leading to the assumption that they did not implement the handling of auction jobs. Our
agents took full advantage, and placed bids on 22 auction jobs uncontested. As we did
not detect any bids from our opponent, each bid was placed for the maximum amount.
Consequently, the auctions we completed had an average reward of 6148, which almost
doubles the average amount Flisvos received, which is 3390.
Even with that advantage, the game was extremely close and we won by just a few

points, indicating superior efficiency of Flisvos with regards to normal jobs. To investigate
this, we try to determine whether a job has been attempted by a team. We consider both
(possibly partial) deliveries and moving an agent with all required items to the storage as
attempts on a normal job. (For auctions and missions only deliveries count.) The former
is well suited to our agents, as they often use partial deliveries to complete a job, while
the latter is necessary for Flisvos, because they only deliver the full amount at once.
This heuristic is far from perfect, as two jobs may happen to require similar items,

15



Table 3: Various statistics for simulation 2 against Flisvos. A job is considered attempted
if a partial delivery occurs or an agent with appropriate items goes to the storage
(only for normal jobs). This yields some false positives. Contented refers to jobs
attempted by both teams, excluding auctions and missions. Completion time is
counted relative to the job’s beginning. For completion time and the rewards,
the mean value is shown.

Description Team All Contended Normal Auctions Missions

Number of completions Flisvos 54 27 51 - 3
lampe 34 6 14 18 2

Number of attempts Flisvos 60 33 57 - 3
lampe 65 33 41 21 3

Completion time Flisvos 34 34 34 - 38
lampe 44 37 35 48 72

Reward (completed) Flisvos 3390 3361 3395 - 3304
lampe 4628 3106 2774 6148 3925

Reward (attempted) Flisvos 3362 3315 3365 - 3304
lampe 4115 3315 3161 6093 3304

such that items intended for the completion of one are also counted as an attempt for
another. However, considering that Flisvos completed all but 6 of their attempted jobs,
this error seems to be small.
If both teams attempt a job, we call it contended. In total there were 33 contended

jobs, 27 of which were completed by Flisvos compared to 6 by lampe. This points to
what we believe is the key point concerning Flisvos’ advantage in normal jobs: Our team
is not able to complete jobs as quickly as other teams, and thus looses out on the most
profitable jobs.
This effect can be seen in multiple statistics. On average, our team takes 46 steps

to complete non-contended jobs, but only 37 for contended ones. Flisvos takes 34-35
steps for both, indicating that we managed to complete some contended jobs by being
quicker than Flisvos. As the average reward for those jobs was slightly lower than that
of an average contended job, team Flisvos maybe did not place a high priority on them.
Indeed, we see that for completion of normal jobs, our average reward is 2774, which is
decidedly lower than Flisvos’ 3395.
In total, Flisvos completed 183060 points worth of jobs, which is 16% more than

our combined rewards of 157352. In total, Flisvos spent 41344 points more during the
simulation. We conclude that our team operated at a higher efficiency in general, which
may have led to our decreased ability in quickly completing jobs.

Another interesting thing to note here is that our team was able to prioritise between
started jobs, as for both auctions and missions the average reward of completed jobs
was higher than that of attempted ones, with both being uncontested by the other team.
This indicates that our mothership decided to forgo the pursuit of some of these jobs,

16



seeing better opportunities elsewhere.
Figure 6 shows the game from a different angle. We measure the level of activity of a

team by counting the number of successful actions for each 10-step interval, excluding
actions ‘skip’, ‘abort’ and ‘recharge’. The maximum number of actions is 280, as each of
the 28 agents can take one action for all 10 steps.

In last year’s edition, our agents showed a distinct pattern of activity characterised by
a burst of activity at the beginning of a new job, followed by a long period of inactivity
waiting for a small number of agents to complete the job. We noted this as a major
disadvantage, because most of our agents possible actions are spent idling. Hence we are
happy to report that our new strategy does not suffer from similar problems. In fact,
the general level of activity is quite similar for both teams. In total we performed 7954
actions, 57% more than Flisvos at 5075.

Right at the beginning of the game, our agents are waiting for the first jobs to appear.
While our implementation supports buying items speculatively, our agents performed
worse during testing when this was enabled. This is a possible avenue of improvement
for the future.
Then, until step 280 we are considerably more active than team Flisvos. We believe

that during this initial phase, with no stockpiles of items having been acquired yet, our
optimisation procedure is able to utilise all agents to a high degree, coordinating the
multiple assemblies that have to happen more efficiently than our opponents. Indeed,
half of the contended jobs we completed were done in the first 100 steps (at steps 63, 82
and 99).

Between steps 280 and 960 both teams show a very similar patter of activity. Some of
our actions are due to auction jobs, which are ignored by team Flisvos, but especially
during steps 520-670 they are almost identical. We think that this is caused by there
being only a small number of highly profitable jobs, which are pursued by both teams at
the same time. As many of the items are left over from previous jobs, which were not
completed, our level of activity decreases, compared to the beginning.
After step 960, activity of team Flisvos vanishes, maybe to avoid starting a job that

cannot be completed in time. Our strategy makes no pre-emptive considerations in this
direction, if a job completes in time in our internal simulation, it is carried out regardless.
Thus our agents manage to complete an auction job at step 998 with a reward of 10805,
which was very significant in this game. (We won by a margin of only 15636 points.)

In conclusion, Flisvos played very well, beating us soundly in completing normal jobs
for most of the game with the exception of the first 100 steps, which were quite balanced.
We were lucky to exploit highly profitable auction jobs in this simulation and thus
managed to win. The map generation in the other simulations did not exhibit this many
highly profitable auctions, and Flisvos won both with a considerable margin. Still, our
team was able to operate efficiently, even when only able to complete about half of the
jobs we attempted.

17



5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

·104
Sc

or
e

Jason-DTU
lampe

Figure 7: Score during simulation 3 against Jason-DTU, with time in steps. lampe ends
with a score of 100880, Jason-DTU with 225755.

0
50

100
150
200
250
300

0 100 200 300 400 500 600 700 800 900 1000

A
ct
iv
ity

Jason-DTU
lampe

Figure 8: Activity during simulation 3 against Jason-DTU, with time in steps. For each
10-step interval, the number of successful actions is shown, not counting ‘skip’,
‘abort’ and ‘recharge’.

5.2 Technical difficulties against Jason-DTU
The score in simulation 3 against team Jason-DTU is shown in Figure 7. This game was
not close, with Jason-DTU steadily increasing their lead throughout. We see that our
team was not able to consistently complete jobs, for example there is a large period of
inactivity between step 564 and 744.
Looking at the activity graph in figure 8 we note that once again both teams have

similar periods of activity. However, Jason-DTU is consistently more active, they complete
18045 actions in total, almost doubling ours at 9560.

Unlike team Flisvos, Jason-DTU placed bids on auctions, with a total of 23 bids placed
in this simulation (compared to our 21). This should cause our mothership to switch to
the slightly more intelligent logic, where each bid is random with the restriction that the
job still has to be profitable. This would line up well against our opponent’s strategy,
which always bids the maximum reward minus 2. Sadly, our detection logic was not

18



Table 4: Statistics for simulation 3 against Jason-DTU. See table 3 for a description.

Description Team All Cont. Normal Auctions Missions

Number of completions Jason-DTU 62 30 39 18 5
lampe 30 9 22 3 5

Number of attempts Jason-DTU 71 39 48 18 5
lampe 61 39 52 4 5

Completion time Jason-DTU 53 53 56 48 44
lampe 48 47 42 70 58

Reward (completed) Jason-DTU 5175 5139 5097 5940 3032
lampe 4132 4359 3768 8637 3032

Reward (attempted) Jason-DTU 5071 4959 4958 5940 3032
lampe 4746 4959 4559 9320 3032

working correctly, and we only bid according to our default behaviour, which always
chooses the maximum amount.

Hence any auction which had both teams bidding was always won by Jason-DTU. As
shown in table 4, we only attempted 4 auctions compared to Jason-DTU’s 18. Interestingly,
we won 6 bids and Jason-DTU won 21, so both teams chose not to pursue some auctions
despite the fines this would incur.
For some auctions we were the only bidder. These had a comparatively high reward,

so we speculate that Jason-DTU might have considered them impossible to complete in
time. Our agents completed 3 out of 4 attempted auctions. The one left unfinished also
had a high reward (11369), indicating that it was dropped due to infeasibility.

Normal jobs were also mostly won by Jason-DTU, they completed 30 of the 39 contented
jobs first. We see a similar pattern as in the previous game, in that our completion
time for auctions and missions is much higher than for contended jobs. Additionally, the
rewards of jobs we completed were much lower on average.
Jason-DTU completed their jobs mostly using a single delivery (24 partial deliveries

to our 114), which is also similar to Flisvos. We believe that to be an advantage when
considering completion times.

5.3 Problems with our strategy
As seen in the two games analysed, we were less suited to compete with other teams for
jobs. This, we believe, is mostly due to our team not completing jobs fast enough. Our
heuristics do not consider the other team when assessing the completion of a job, which
leads to inaccurate predictions of our internal simulation.
For example, if an opponent has an agent with the required items on its way to the

storage, our simulation would not predict it completing the job. So our own strategy
may very well be optimised under the assumption that completing the job 50 steps from
now would yield the same reward.

19



The subsystem for detecting bids of opposing agents did not work correctly in the
contest, probably due to a simple bug in our implementation. As a result, we were unable
to test our betting strategy against other teams and lost out on many lucrative auction
jobs during the games.
Our agents employ a search over possible strategies, with the best one being chosen.

This means that errors in our lower-level routines sometimes show themselves only
through indirect means, as the affected strategies are then not chosen. For example, we
noticed some jobs being abandoned despite having a large reward (or fine), and being
partially completed. We thus suspect bugs in our subroutines, especially the fixer.
Some features of the simulation we did not take into account, most notably resource

nodes. Implementing resource nodes would not be trivial, as we would then have to
reason about the value of exploring the map. However, it poses no fundamental problem
with our strategy.

5.4 Design and implementation choices
We make use of a centralised architecture in our strategy, with the mothership collecting
all perceptions and making all major decisions. Similar to last year, this fits our strategy
very well. We are focused on optimising a combined allocation of tasks for all agents.
Making all decisions centrally allows us to take interactions between different agents into
account without additional difficulties.

Choosing C++ as programming language comes with several advantages. We are able
to choose the representation of our data structures to suit our needs. For example, the
game-related data is stored contiguously in memory, making copying trivial (a single
memcpy suffices), but structural modifications (such as adding an item to a list) are more
complex. As we run multiple internal simulations, resetting the state of the game each
time, copying of the whole game state is a common operation.
As we run a randomised search of possible strategies, the feasibility of our approach

is dependent upon our application’s performance. C++ is well known to have the
potential for high performance, and it offers fine-grained control over data structures and
other low-level implementation details. We believe that implementing our solution in a
managed language such as Java or Python would have incurred a significant amount of
time spent on further optimisations, resulting in more complex code. An implementation
in agent-programming languages such as Jason or Pyson may not be feasible at all.

For our solution we did not spend much time on optimisation, as we are able to search
about a 100 different strategies per step (depending on circumstances) and improving
the underlying heuristics proved more valuable.

Then there is our existing framework, which we could adapt easily to accommodate the
changes for this year’s contest. Hence we were able to focus our efforts on implementing
our strategy, and did not need to work on communication with MASSim and the operating
system.
Other benefits we considered are static typechecking, manual memory management

and mature toolchains for developing C++.

20



6 Conclusion
Our participation in the 2017 MAPC was an opportunity to try out a completely different
approach, and a valuable learning experience regarding the implementation of a complex
strategy with multiple layers of abstractions.
We are quite happy with our results, considering the small amount of time in which

our strategy was developed. While only ranking fifth out of seven is not great, we were
able to provide some interesting games. Even when playing against stronger opponents
our strategy was able to keep functioning, most of time still turning a profit.

Analysing the games revealed multiple weak points of our team, most importantly the
slow completion of jobs. We also suspect some flaws in our internal heuristics used by
the fixer.

7 Team overview: short answers
7.1 Participants and their background

What was your motivation to participate in the contest?
We wanted to try out a more complex strategy based on internal simulation of the
game state, using the framework we built in last year’s participation to handle
communication with MASSim and interaction with the operating system.

What is the history of your group? (course project, thesis, . . .)
Our framework was originally developed in a course project in 2016, as was a basic
strategy. We then improved on that project and participated in the 2016 edition
of the MAPC. This year, our participation makes use of our framework, but the
strategy has been completely rewritten.

What is your field of research? Which work therein is related?
Does not apply.

7.2 The cold hard facts

How much time did you invest in the contest (for programming, organizing
your group, other)?
There were about 200 hours invested, almost entirely into programming.

How many lines of code did you produce for your final agent team?
In total there were 8512 lines of C++ code (all counts excluding comments and
blanks), of which 2396 are implementing the strategy and internal simulation (see
section 2.2 for more details).

How many people were involved?
Two people were involved.

21



When did you start working on your agents?
The original framework was developed in starting in April 2016. For this year,
preliminary work begun in March 2017, although the strategy was being worked on
since late August.

7.3 Strategies and details

What is the main strategy of your agent team?
Our agents are controlled by a central entity. Strategies are evaluated based on
an internal simulation of the game state, and iteratively improved upon using
randomised, hand-written heuristics. The tree of strategies is explored and the
most promising strategy chosen.

How does the team work together? (coordination, information sharing, ...)
As the team is centralised and all agent are controlled by a single entity, there is no
need to share information or communicate. The heuristics generating the strategy
ensure that actions involving multiple agents are coordinated appropriately.

What are critical components of your team?
The most important component is the internal simulation, which mirrors MASSim.
This allows the agents to reason about future events and consider the outcomes
of various strategies. An important part is our pathfinding, to precisely estimate
the distances between locations. Most of the work generating strategies is done by
the fixer, which simulates the execution of a strategy and addresses any issues that
crop up.

Can your agents change their behaviour during runtime? If so, what triggers
the changes?
There are no explicit state changes in the behaviour of our agents, except for the
betting strategy on auction jobs (described in section 3.6).

Did you have to make changes to the team during the contest?
We fixed a few minor bugs on the first day, but made no changes apart from that.

How do you organize your agents? Do you use e.g. hierarchies? Is your
organization implicit or explicit?
The agents are organised in a centralised fashion, with a single entity controlling
all agents.

Is most of your agents’ behaviour emergent on an individual or team level?
The strategy is planned centrally and assigns tasks to all agents, so all behaviour
emerges on a team level.

22



If your agents perform some planning, how many steps do they plan ahead?
The agents plan up to 4 tasks ahead. This may involve at most 80 simulation steps,
with a value of 30 being a typical duration of an error-free strategy.

If you have a perceive-think-act cycle, how is it synchronized with the
server?
The synchronisation is based on the blocking behaviour of the TCP socket we use
for communication with MASSim. As our program is implemented sequentially, no
further synchronisation is necessary.

7.4 Scenario specifics

How do your agents decide which jobs to complete?
The heuristic responsible for generating new tasks rates the profitability of jobs
based on estimated item values. Jobs are selected probabilistically, with higher
weight given to jobs with higher estimated profit.

Do you have different strategies for the different roles?
There are no explicit considerations of different roles.

Do your agents form ad-hoc teams for each job?
No, each individual assembly is considered separately.

What do your agents do when they do not pursue any job?
They recharge their batteries whenever they have no other actions to execute.
Additionally, they may place a bet for an auction job, which are prepared by the
centralised planning whenever there are profitable auction jobs.

How did you go about debugging your system?
We relied mostly on printf-style debugging combined with liberal use of assertions
and printing of stack traces. In rare cases of memory corruption we employed a
debugger. More details are given in section 4.

What were prominent questions you would have asked your system during
development? (i.e. “why did you just do X?”)
Mostly we investigated discrepancies between our internal simulation and MASSim,
as well as problems with the fixer, such as not being able to converge on a working
strategy, or making questionable decision while moving tasks around.

7.5 And the moral of it is . . .

What did you learn from participating in the contest?
We learned a lot about developing robust heuristics based on an internal simulation
of the future.

23



What are the strong and weak points of your team?
Our team is able to both plan ahead and alter its strategy on-the-fly based on
incoming information, working around failures of individual tasks. However, it
cannot compete with the handwritten and highly specialised strategy of team
BusyBeaver and is less efficient overall than the strategies of teams Flisvos 2017,
Jason-DTU, and SMART-JaCaMo, taking too long to complete jobs.

How viable were your chosen programming language, methodology, tools,
and algorithms?
C++ remained viable as a programming language for the MAPC, especially as we
had our framework from last year to build on. It allows us a large degree of freedom
in designing our own specialised abstractions and data structures. Additionally,
our strategy is viable only due to the performance of our application, which would
be much more difficult to achieve in languages like Java, Python or any of the
agent-oriented languages used by some of the other teams, if not outright impossible.

Did you encounter new problems during the contest?
We encountered various minor problems, as well as multiple issues with the internal
simulation and other strategy, which impacted our performance quite severely.

Did playing against other agent teams bring about new insights on your
own agents?
Our team is more focused on completing jobs efficiently than being the first to
complete a job.

What would you improve if you wanted to participate in the same contest
a week from now (or next year)?
If we had a week, we would implement additional features of the simulation, such
as resource nodes and maybe parallelise our implementation, but mostly focus on
fixing all the bugs we encountered. Additionally we would incorporate a simple
approximation to take completion of jobs by our opponents into account. In a year,
we could have a close look at our heuristics and improve them across the board,
e.g. by optimising locality of strategies.

Which aspect of your team cost you the most time?
Implementing the fixer was the most time-consuming, as there are many different
ways for tasks to go wrong and influence each other.

What can be improved regarding the contest/scenario for next year?
This year’s team BusyBeaver exploited a combination of properties, enabling it to
adopt a latency-based strategy focused on completing all profitable jobs before the
other team. We would suggest reducing the speed of agents with regards to the
map size significantly, to ensure that it is profitable for a team to spread out across

24



the map. This may require an increase in the number of facilities to balance out.
Another possibility would be to raise the difficulty of assembling items, by raising
their price, the required amounts, the number of item types or their volume.

Why did your team perform as it did? Why did the other teams perform
better/worse than you did?
Our team was able to execute a competitive strategy, but our implementation
was ill-suited to opponents focusing on fast completion of jobs. Hence our overall
performance was quite bad, but we still managed to deliver a few close games.

References
[1] Ahlbrecht, T., Fiekas, N., Dix, J.: Multi-agent programming contest 2016. Int. J.

Agent-Oriented Softw. Eng. (in press)

[2] Czerner, P., Pieper, J.: Multi-agent programming contest 2016: lampe team descrip-
tion. Int. J. Agent-Oriented Softw. Eng. (in press)

25


	Introduction
	System design and implementation
	Architecture
	Implementation

	Strategy
	Comparison with lampe 2016
	Tasks
	Assemblies

	The fixer
	Create work
	Rate
	Auctions

	Implementation details
	Evaluation
	Exploiting auction jobs against Flisvos
	Technical difficulties against Jason-DTU
	Problems with our strategy
	Design and implementation choices

	Conclusion
	Team overview: short answers
	Participants and their background
	The cold hard facts
	Strategies and details
	Scenario specifics
	And the moral of it is …


