
Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

Semi-oblivious Routing Strategies in
Directed Graphs

Semioblivious Routing in gerichteten Graphen

Philipp Czerner

15.09.2020
Supervised by Prof. Dr. Harald Räcke

1. Introduction
Routing is the problem of sending packets through a network while minimising the load
generated. It is gaining importance with the increasing scale of real-world networks.
An area that has received considerable interest in recent years is the topic of oblivious
routing, which tries to compute possible routes without knowing the actual amount of
packets that will be sent. In other words, it identifies routes that perform well under all
possible traffic conditions and are not subject to change after initial deployment.

This has considerable advantages when compared to adaptive routing, which measures
current conditions in the network and adapts routes accordingly. In particular, any
measurement necessarily involves error and adds complexity to the overall implementation.
Additionally, temporary performance degradations can occur while the network updates
to optimise for the current situation.

However, oblivious routing comes with drawbacks as well. While it guarantees that its
routes will be close to optimal (i.e. to routes optimised for the specific traffic conditions),
this is only up to a logarithmic factor, and only in undirected graphs. In directed graphs,
not only does such a guarantee not exist, there are also strong (polynomial) lower bounds
showing that oblivious routing is not practical in this case.
Semi-oblivious routing tries to present a practical compromise. Instead of fixing the

routes completely independent of traffic conditions, it restricts itself to using only a small
number of routes, but adapts the rate at which these are used to the current conditions.
This is much easier to implement, as the usage rate of a route can be controlled by
a simple forwarding decision at the source and no routing tables have to be updated
dynamically.

There have been experimental investigations into semi-oblivious routing based on traffic
simulations. These have been generally positive, showing that it performs better than
oblivious routing. Despite these encouraging practical results, however, the theoretical
research has been entirely negative, showing that the worst-case behaviour of semi-
oblivious routing matches that of oblivious routing.

In this thesis we investigate this discrepancy, with a focus on the theoretical performance
of semi-oblivious routing in directed graphs. As mentioned, it is known that oblivious
routing has weak worst-case behaviour in that case, exemplified by simple counterexamples.
However, to the best of our knowledge, it is as of yet unknown how semi-oblivious routing
performs in directed graphs.1
Our main conclusion is negative, showing a lower bound for semi-oblivious routing

schemes with a logarithmic number of routes. The main result reads as follows.

Theorem 2. Let G denote a directed, unweighted, single-sink graph with n nodes. Then
any semi-oblivious routing scheme on G using k flows per node has competitive ratio at
least n1/20/23k4/5.

In particular, it is not possible for a semi-oblivious routing scheme to be polylogarith-
mically competitive with only a polylogarithmic number of flows per node.

1Note the discussion in Section 3.2.

2

Existing lower bounds for oblivious routing in directed graphs are based on graphs with
multiple different traffic conditions which require the routing scheme to avoid certain
areas. As oblivious routing can use only a single route, having two such conditions is
sufficient. Semi-oblivious routing, however, is able to choose between multiple routes and
can deal with a constant number of situations.

To prove the above result, we therefore construct a graph with a high number of traffic
conditions, which cannot be adequately routed with only a logarithmic number of flows.
As it turns out, the existence of semi-oblivious routing schemes in this graphs is related
to an elementary statement about random arithmetic progressions in coloured finite fields.
In particular, we show the following:
Theorem 1. Let f1, ..., fq ⊆ Fp, p prime, s.t.

∑
c fc = p and |fc| ≤ dp/qe for each c. An

arithmetic progression P ⊆ Fp of length 16q2, chosen u.a.r., has fc ∩ P 6= ∅ for each c
with probability at least 1

2 .
The rest of this thesis is structured as follows: In Section 2 we give an overview

of prior work on this subject. Then Section 3 introduces the relevant definitions. A
weak lower bound is proved in Section 4, which suffices to rule out polylogarithmically
competitive semi-oblivious routing schemes with a constant number of flows per node.
Then, Section 5 changes topics to a show an elementary result about random arithmetic
progressions in coloured finite fields, which is subsequently used in Section 6 to prove our
main result, shown above. Finally, we close out by showing different avenues that were
investigated but did not yield interesting results, in particular related to upper bounds, in
Section 7, and summarise the overall findings and potential directions for future research
in Section 8.

2. Related Work
Oblivious routing in general undirected graphs was first studied by Räcke [16], who
showed that it is O(log3 n) competitive. This was later improved to O(logn) [11, 17],
matching a known lower bound [3, 15]. Additionally, the lower bound of Ω(logn) still
holds if all commodities share a common source or sink [10].

For directed graphs a lower bound of Ω(
√
n) is well-known [1], which was improved to

Ω(n) by Ene et al. [7].
Hajiaghayi, Kleinberg, and Leighton [9] show multiple lower bounds for semi-oblivious

routing, including a bound of Ω(logn/ log logn) on undirected graphs, almost matching
the known lower bound for oblivious routing schemes. They also provide a Ω(n1/10)
lower bound in directed graphs, for semi-oblivious routing schemes using at most O(n1/5)
paths per node. While this looks superficially similar to our main result, it is based on
a different model of semi-oblivious routing schemes, where, as we argue in Section 3.2,
semi-oblivious routing schemes are trivially bad when restricted to a sublinear number of
paths.
While the theoretical results have been negative, on the practical side semi-oblivious

routing seems promising. In particular, multiple empirical simulations comparing semi-
oblivious routing to various other approaches show near-optimal performance [13, 14].

3

Regarding random arithmetic progressions in coloured finite fields we are not aware
of any results investigating the exact problem we are interested in. Similar questions
are raised in the study of rainbow arithmetic progressions, where the elements of the
arithmetic progression must have pairwise distinct colours. While Butler et al. [4] show
that a large number of colours is required if there are no restrictions on how often each
colour appears, there are more favourable results for equinumerous colouring of sets of
consecutive integers.
Let Tk denote the smallest number t ∈ N s.t. for any n ∈ N every equinumerous

colouring of {1, ..., tn} admits a rainbow arithmetic progression of length k. Jungić et
al. [12] show that Tk ∈ O(k3)∩Ω(k2), with the upper bound subsequently being improved
to O(k2 log k) [8, 6, 2].

This result is in some sense dual to our Lemma 4 (of which Theorem 1 is a generalisation):
Instead of maximising the the length of an arithmetic progression s.t. it remains rainbow,
we minimise the length of the arithmetic progression s.t. it contains each colour at least
once. Interestingly, in both cases the gap between length and number of colours seems to
be roughly quadratic (though we provide only an upper bound).

3. Preliminaries
Let G = (V,E,w) denote a directed weighted graph, with V a set of nodes and E ⊆ V 2

a set of (directed) edges (also referred to as arcs). Generally speaking, n := |V | is the
number of nodes, but for some constructions it is more convenient to use n as some
unspecified parameter and end up with Θ(n) nodes, which does not change the bounds
asymptotically. Also, w : E → R≥0 is a set of weights. Applying w to a set of edges
refers to taking the sum, so w(U) :=

∑
e∈U w(e) for U ⊆ E.

A flow is a function f : E → R≥0. Instead of writing f((u, v)) we may instead write
f(u, v). The balance of f is the difference between outgoing and incoming flow, i.e.
balf (v) :=

∑
(v,u)∈E f(v, u)−

∑
(u,v)∈E f(u, v) for each v ∈ V .

We say that a flow f is an s-t-flow (with value α) if f transports α units of flow (aka
packets) from node s to node t, meaning balf (s) = α, balf (t) = −α and balf (v) = 0
for v ∈ V \ {u, v}. Additionally, f is a unit s-t-flow if it has value 1. A path is an
integral unit s-t-flow for some s, t ∈ V , and a node t is reachable from s if a unit s-t-flow
exists. Same as for weights, applying a flow to a set of edges refers to taking the sum, so
f(A) :=

∑
e∈A f(e) for A ⊆ E. We extend addition and scalar multiplication to flows

componentwise, so (f + g)(e) := f(e) + g(e) and (λf)(e) := λf(e) for flows f, g, λ ∈ R
and edge e ∈ E.
We associate with G a set of commodities C. Each commodity is a pair (s, t) ∈ V 2,

with s denoting the source and v denoting the sink (aka target), s.t. t is reachable from
s. Unless otherwise specified, we assume that all valid combinations are possible, i.e. the
set of commodities is {(s, t) ∈ V 2 : t is reachable from s}. We usually identify C with
some other set more convenient to write, for example we might write i instead of (si, ti).
If all commodities have the same sink, i.e. C ⊆ V × {t} for some t ∈ V , we say that G is
single-sink.

4

A multi-commodity flow f = (f(s,t))(s,t)∈C is a family of flows, s.t. f(s,t) is an s-t-flow.
For an edge e ∈ E we write f(e) :=

∑
i∈C fi(e). If we specify a multi-commodity flow only

on a subset of commodities, we assume flows with value zero for the others. We also define
a componentwise addition and scalar multiplication operation as f + g := (fi + gi)i∈C
and λf := (λfi)i∈C for multi-commodity flows f, g and λ ∈ R.
Let d : C → R≥0 denote demands, i.e. it assigns each commodity (s, t) the amount

d(s, t) ≥ 0 that must be sent from s to t. It is often convenient to specify demands only
for a subset of commodities I ⊆ C, in which case d(s, t) := 0 for (s, t) /∈ I. A routing (of
d) then is a multi-commodity flow R = (Ri)i∈C s.t. Ri has value d(i). The congestion of
R is the maximum relative load over any edge:

cong(R) := max
e∈E

R(e)
w(e)

The optimal congestion (w.r.t. d) cong(d) is the minimal congestion of any routing of d.

3.1. Semi-oblivious Routing Schemes
The idea of a semi-oblivious routing scheme is that we fix a small number of flows for
each commodity obliviously, i.e. without knowing the demands. Afterwards, we are given
the actual demands and distribute the packets for a commodity amongst the chosen flows.
We assume that this is done optimally.

Definition 1. A semi-oblivious routing scheme S is a mapping of commodities (s, t) to
sets of unit s-t-flows S(s, t). We say that S uses k flows per node if |S(s, t)| ≤ k for each
(s, t) ∈ C.

An S-routing (of d) is a routing R of d with R(s, t) =
∑

f∈S(s,t) λff for each (s, t) ∈ C
and some factors λf ≥ 0. The congestion of S (w.r.t. d) cong(S, d) is the minimal
congestion of any S-routing of d. The competitive ratio of S is the maximum ratio
between the optimal congestion and the congestion of S for any demands d. Formally,

comp(S) := max
demands d

cong(S, d)
cong(d)

An oblivious routing scheme S is a semi-oblivious routing scheme using one flow per
node.

As for an oblivious routing scheme S the value S(s, t) always is a one-element set
containing a flow, we identify it with the contained flow when convenient (and thus S
with a map from commodities to flows). Note that there is only a single S-routing R if S
is oblivious, which has R =

∑
i∈C d(i)S(i).

3.2. Paths or Flows
Finally, a remark on the above definition of a semi-oblivious routing scheme S. It differs
in one important detail from the one by Hajiaghayi, Kleinberg, and Leighton [9]. In
particular, they define S(s, t) as a set of paths instead of flows. This is equivalent if you

5

s t

1

2

n

Figure 1: Restricting the number of paths used for routing to a sub-polynomial amount
leads to a large congestion.

weight 1
weight

√
n

e

s1

t1

s2

t2

sn

tn

Figure 2: Oblivious routing is Ω(
√
n)-competitive.

allow for a polynomial number of paths or flows per node, but has important consequences
for smaller schemes.
As illustrated in Figure 1, restricting the number of paths to, say, O(n1−ε) for some

ε > 0 means that the routing scheme has competitive ratio Ω(nε). Therefore the path-
based model of semi-oblivious routing is (at least on some instances) worse than an
ordinary oblivious routing scheme!

We conclude that it makes little sense to study the path-based model with a sublinear
number of paths. Instead we will consider the flow-based model, as defined above, which
exhibits interesting behaviour even for a small number of flows per node, where it is a
natural extension of oblivious routing.

This also implies that the lower bound of Hajiaghayi, Kleinberg, and Leighton regarding
directed graphs [9, Theorem 3.5] is of limited interest in this context, as it applies to the
path-based model.

4. Simple Lower Bound
Before we begin with proving the main result, we will take a look at a strictly weaker bound,
which is much easier to prove. It illustrates some of the problems when constructing
lower bounds for semi-oblivious routing.
As mentioned earlier, it is well-known that oblivious routing is Ω(n)-competitive in

6

directed graphs. As our bound for semi-oblivious routing schemes can be viewed as a
generalisation of it, we start by presenting a construction similar to the bound utilised
by Ene at al. [7, Figure 4].
The graph is illustrated in Figure 2. The basic idea is that there are two scenarios.

Either all commodities send one unit of flow, in which case exclusively using the (si, ti)
arcs would be (close to) optimal, or only a single pair communicates. In the latter case,
we have a single demand to route

√
n packets from some si to ti, and it is (close to)

optimal to use the large edge e.

Lemma 1 (see [1, 7]). Oblivious routing in directed graphs is Ω(
√
n)-competitive.

Proof. Fix some parameter n and consider a graph G = (V,E,w) which consists of nodes
V :=

⋃n
i=1{si, ti}∪ {u, v} and arcs E :=

⋃n
i=1{(si, ti), (si, u), (v, ti)}∪ {(u, v)}. All (si, ti)

arcs, for i = 1, ..., n, have weight 1, the other arcs have weight
√
n. For i = 1, ..., n we

have a commodity i with source si and sink ti.
Let S denote any oblivious routing scheme. Additionally we use E1 := {(u, v)} and

E2 := {(si, ti) : i = 1, ..., n} to denote two subsets of edges. Removing E1 ∪ E2 from G
disconnects all source-target pairs, so each flow f = S(i) for i ∈ C has f(E1) + f(E2) = 1.
Hence the average (over f) of either f(E1) or f(E2) must be at least 1/2. We consider
these cases separately.
If f(E1) is at least 1/2 on average, then

∑
f∈S(C) ≥ n/2 and setting the demands

d to 1 for each commodity would incur a congestion of
√
n/2 on edge e. Meanwhile

the optimal routing of d has a congestion of at most 1 by using all (si, ti) arcs, so S is
Ω(
√
n)-competitive.

In the other case, we pick an f maximising f(E2), which therefore has f(E2) ≥ 1/2.
Now we induce a single demand of

√
n for commodity i, with i being the commodity

corresponding to f , i.e. f = S(i). When routing this demand, S causes a congestion of
at least

√
n/2 on the edge (si, ti) while the optimal routing can use arc e exclusively and

has only a congestion of at most 1.
So in both cases S is Ω(

√
n)-competitive.

However, it is obvious that semi-oblivious routing is 1-competitive (i.e. optimal) in this
example, using two flows per node. In fact, other lower bounds for oblivious routing in
directed graphs, such as the original one by Ene at el. [7, Figure 4] or the earlier bound
by Azar et al. [1, Theorem 7.1] exhibit a similar pattern. They have two different kinds
of demands, and oblivious routing cannot perform well on both. However, semi-oblivious
routing simply uses two flows, one for each situation, and performs optimally.
Hence we generalise the previous example by encoding more than a constant amount

of traffic situations in the graph. The graph is illustrated in Figure 3.
While, in contrast to Figure 2, there is only a single sink here, we could also adapt

the previous example to the single-sink case. The important difference is that we now
separate the edges separating sources and sink into classes. There are k + 1 classes, one
more than the number of flows used by the semi-oblivious routing scheme. The first class
has a single edge with capacity

√
n, for a total capacity of

√
n. For the second class we

have α2 edges with a capacity of
√
n/α, so that the total capacity increases by a factor

7

weight 1
weight

√
n/α

t

weight
√
n

weight ∞α2 n

s2 sn−1s1 sn

nodes Ag

nodes A′g

Figure 3: Simple lower bound on semi-oblivious routing. There are k + 1 classes and
α := 2k

√
n, with k being the number of flows per node used by the routing scheme.

of α. We choose α := 2k
√
n, meaning that the last class has n nodes of capacity 1, as we

increase the number of edges by a factor of α2 and decrease their capacity by α for each
subsequent class.
We then have k + 1 different traffic situations, one for each class. The corresponding

demand enables exactly one commodity for each arc belonging to the class. This makes
these arcs ideal for routing the demands: Using an edge belonging to another class either
uses an edge with lower weight, or one shared by multiple sources. In either case there is
a congestion of at least α.

Lemma 2. Semi-oblivious routing schemes using at most k flows per commodity have
competitive ratio at least 2k

√
n/2(k + 1).

Proof. The structure of our counterexample is illustrated in Figure 3. We start with a
single sink t and nodes si for i = 1, ..., n, with n being some parameter (later we will
change the bound so that n matches the number of nodes). To connect si with ti, we
will partition the set {1, ..., n} into groups. For a group g ⊆ {1, ..., n} we use a single
arc to connect all si to t with i ∈ g. More precisely, we add nodes Ag, A

′
g and arcs

(Ag, A
′
g), (si, Ag), (A′g, t) for i ∈ g. The (A′g, t) arcs have weight ∞, the other weights will

be specified in a moment. Commodity i is the source-sink pair (si, t).
To get our groups, we use k + 1 partitions of M := {1, ..., n}. In the j-th partition,

j = 0, ..., k, we have rj groups of equal size (perhaps off by one), and the groups use
arcs of weight cj . So for a group g of the j-th partition the respective (Ag, A

′
g) and

(si, Ag) arcs have weight cj (though the latter could have weight ∞ just as well). Setting
α := 2k

√
n we define rj := α2j and cj := αk−j . We call these groups class j groups.

Therefore, to communicate between si and t, i = 1, ..., n, the scheme S can distribute
the flow across k + 1 paths, one for each class. Hence we can identify each flow with a
vector h ∈ Rk+1, where h(j) is the amount of flow using the class j path, with j = 0, ..., k.

8

While S can pick k different flows h1, ..., hk, we are interested in the maximum flow
which S can send over an arc when routing a unit demand. Let fi(j) := maxl hl(j) denote
the maximum flow that S can route using the class j path for commodity i = 1, ..., n,
with j = 0, ..., k.

Of course, h1, ..., hk are unit flows, so
∑

j hl(j) = 1 for l = 1, ..., k, which implies that∑
j fi(j) ≤

∑
j,l hl(j) = k. In other words, the average of fi is at most k/(k + 1).

Now we want to find a class j where S cannot route much flow using class j paths.
Summing up all fi leads to

∑
i,j fi(j) ≤ nk. There are k+1 groups, so the average value of∑

i fi(j) for a class j is at most nk/(k+1). Hence we can fix a j with
∑

i fi(j) ≤ nk/(k+1),
i.e. the average of f1(j), ..., fn(j) is at most k/(k + 1).
Moving on, we need a commodity i for each group in class j s.t. the sum of fi(j) is

low. Again, the average value of fi(j) in class j is at most k/(k + 1), so by picking
the smallest value in each group we find a set of commodities I ⊂ {1, ..., n} with∑

i∈I fi(j) ≤ |I|k/(k + 1) = rjk/(k + 1). We now set the demand for each commodity in
I to cj and set all other demands to zero.
This means that the optimal routing has congestion 1, by using one class j path for

each demand. However, S sends at most cjrjk/(k + 1) units of flow over class j paths.
We will now show that the remaining cjrj/(k + 1) = αk+j/(k + 1) units of flow cause
high congestion.

Let j′ 6= j denote a class and x the amount of flow that class receives. First we consider
the case j′ < j. Here we have rj′ arcs of weight cj′ , so we get a congestion of at least
x/rj′cj′ = x/αk+j′ , which is at least x/αk+j−1.

On the other hand, if j′ > j we have more total weight, but each commodity can only
use a single arc. So the congestion is x/rjcj′ = x/αk+2j−j′ , and thus at least x/αk+j−1

as well.
To summarise, each unit of flow not send through class j creates a congestion of at

least 1/αk+j−1. There is at least αk+j/(k + 1) such flow, so we end up with congestion
at least α/(k + 1) = 2k

√
n/(k + 1).

Finally, we have to adjust our bound based on the actual number of nodes used, which
is 2n+

∑
j rj ≤ 2n+ 2α2k = 4n.

In particular, this rules out semi-oblivious routing schemes with a constant number
of flows per node and polylogarithmic congestion, but it leaves open the possibility of
achieving that congestion with a logarithmic number of flows.
The key issue seems to be that we encode the different traffic situations as separate

regions in the graph, each with different weights and numbers of nodes. Those have to
differ by (at least) some constant factor to matter, which then limits us to a logarithmic
number of situations. For our strong lower bound we thus use another approach.

5. Arithmetic Progressions in Coloured Finite Fields
We will now turn our attention towards a different topic entirely. We consider the finite
field Fp with p elements, p prime. These elements are coloured with q colours, such that
each colour appears equally often. Additionally we have a random arithmetic progression

9

P with a fixed length L. (Later we will choose L as a quadratic function of q.) So
P = {a, a+ b, a+ 2b, ..., a+ (L−1)b}, where a ∈ Fp and b ∈ Fp \{0} are chosen uniformly
at random (u.a.r.).

The question then is whether the arithmetic progression contains (at least) one element
of each colour. In particular, we want to find a small L s.t. this happens with constant
probability.

Before talking about colours, we begin by proving a useful property of the arithmetic
progression, namely that pairs of elements are distributed u.a.r. in Fp apart from being
distinct. The proof uses some of the same arguments as constructions of universal hash
functions of the form (ax+b mod p) mod n, see e.g. Carter and Wegman [5, Proposition 7].

Lemma 3. Fix some i, j ∈ {0, ..., L− 1} with i 6= j. Then

P(a+ ib = x ∧ a+ jb = y) = 1
p(p− 1)

for all x, y ∈ Fp with x 6= y. Additionally, P(a+ ib = x) = 1/p for all x ∈ Fp.

Proof. Recall that the random choice is over a and b, which are chosen u.a.r. with
a, b ∈ Fp and b 6= 0.
To see that the statement holds, note that a + ib = x ∧ a + jb = y is equivalent to

b = (x− y)/(i− j) ∧ a = y − bj. So regardless of the values of x and y there is precisely
one choice for a and b that puts the i-th and j-th element into those positions, meaning
that the probability is indeed 1/p(p− 1).
A fortiori, we also get P(a + ib = x) = 1/p for all i and x, by summing over y. In

other words, each individual element of the arithmetic progression is also uniformly
distributed.

5.1. Non-overlapping Colours
To show the general technique, we first start with a simple lemma, which we will later
generalise.

Lemma 4. Let f : Fp → {1, ..., q} denote a colouring, s.t. |f−1(c)| ≤ dp/qe for each c.
An arithmetic progression P ⊆ Fp of length 2q2, chosen u.a.r., has P(|f(P)| = q) ≥ 1

2 .

Proof. Let L := 2q2 denote the length of the arithmetic progression. For L ≥ p we have
P = Fp and the statement holds trivially, so assume L < p. Recall that we use a and b
for the parameters of P , i.e. P = {a, a+ b, ..., a+ (L− 1)b}, with a, b ∈ Fp, b 6= 0. These
are chosen uniformly at random.
For each 0 ≤ i < j < L, let Xij denote a binary random variable, indicating whether

the i-th and j-th element of P have the same colour, i.e. f(a+ ib) = f(a+ jb). We start
by arguing that E(Xij) is not too large.

Fix some i, j defined as above and assume that the i-th element lands in position x, i.e.
x = a+ ib. A colour colours at most dp/qe elements, so Lemma 3 implies that the j-th

10

element will be chosen u.a.r. from the at most dp/qe − 1 remaining elements of colour
f(x). Formally, we get

E(Xij) = P
(
f(a+ ib) = f(a+ jb)

)
≤ dp/qe − 1

p− 1 ≤ p

q(p− 1)

Now we look at X :=
∑

ij Xij , the total number of pairs which have the same colour.
The above bound yields E(X) ≤

(L
2
)
p/q(p−1). Let F (c) := |P∩f−1(c)| denote the number

of times a colour c appears in P . Then we also get X =
∑

c

(F (c)
2
)

= (
∑

c F (c)2 − L)/2.
We can lower bound

∑
c F (c)2 by L2/|f(P)| (see Lemma 16). Of course, |f(P)| ≤ q, so

X is at least L2/2q−L/2. On the other hand, if |f(P)| < q, meaning that not all colours
appear in P , we get X ≥ L2/2(q − 1) − L/2. All that remains is applying Markov’s
inequality to X − (L2/2q − L/2).

P(|f(P)| < q) ≤ P
(
X ≥ L2

2(q − 1) −
L

2

)
≤

E(X)−
(

L2

2q −
L
2
)

L2

2(q−1) −
L
2 −

(
L2

2q −
L
2
)

We use the bound on E(X), then plug in L = 2q2 and L < P

≤
L(L−1)p
2q(p−1) −

(
L2

2q −
L
2
)

L2

2(q−1) −
L
2 −

(
L2

2q −
L
2
) =

(q − 1)
(
q − 1 + L−1

p−1
)

2q2 ≤ q − 1
2q ≤ 1

2

The key idea is that random arithmetic progressions distribute pairs uniformly, which
means that we can analyse properties depending on two elements of the arithmetic
progression quite well. We use this to reason about the number of colours, by looking
at a property (number of pairs sharing a colour) that is minimised when the number of
colours is large.

5.2. Overlapping Colours
While the previous proof is nice and elegant, we sadly need a more general version of that
lemma. Before we assumed a colouring f : Fp → {1, ..., q}, so each element of Fp had
exactly one colour. However, we are actually interested in allowing the colours to overlap,
i.e. we have sets f1, ..., fq ⊆ Fp containing the elements of one colour. As before, each
colour should appear with frequency roughly p/q. There is also the technical condition
that their sizes still sum up to exactly p, which simplifies the following calculations
significantly, but is not actually necessary for the statement to hold.

Theorem 1. Let f1, ..., fq ⊆ Fp, s.t.
∑

c |fc| = p and |fc| ≤ dp/qe for each c. An
arithmetic progression P ⊆ Fp of length 16q2, chosen u.a.r., has fc ∩ P 6= ∅ for each c
with probability at least 1

2 .

11

The proof will take up the remainder of this section.
Now we have a length of L := 16q2. Again, we use a and b for the parameters of P ,

i.e. P = {a, a+ b, ..., a+ (L− 1)b}, with a, b ∈ Fp, b 6= 0. These are chosen uniformly at
random. Additionally, we can assume L < p wlog, as else P = Fp and the statement
trivially holds.
If an element of the arithmetic progression P is contained in fi, with i ∈ {1, ..., q},

we say that it has colour i. (So an element can have multiple colours or none.) We
use the random variable l :=

∑
i li to denote the total number of colours in P , where

li := |{c : a+ (i− 1)b ∈ fc}| is the number of colours of the i-th element of the arithmetic
progression P , for each i = 1, ..., L.
We will later show that l is large, in some sense. Of course, our final goal is proving

that P contains q distinct colours. For this we define Xc := |P ∩ fc| as the number of
times colour c appears in p, for c = 1, ..., q; and X :=

∑
cX

2
c as the sum of their squares.

(Note that
∑

cXc is simply l.)
This is analogous to the previous proof of Lemma 4, where we considered pairs of

elements with the same number. Squaring the number of times a colour appears in P
has the same effect, but it makes the calculations a bit easier.
Let N := |{c : P ∩ fc 6= ∅}| denote the number of distinct colours in P . Again, our

goal is showing that N = q with probability at least 1
2 .

We start with the observation that X tends to be larger if P contains only few distinct
colours.
Lemma 5. X ≥ l2/N
Proof. This is a straightforward application of Lemma 16.

X =
q∑

c=1
X2

c =
∑

fc∩P 6=∅
X2

c ≥
1
N

(∑
fc∩P 6=∅

Xc

)2
= l2

N

We decompose the statement N = q, that our arithmetic progression contains all
colours, into two parts. The idea is that we first show that l is likely to be large, and
then that X is likely to be small, given that l is large. However, for the second part there
are some complications, so we prove a slightly unintuitive statement:

(a) l is large with constant probability, i.e. P(l < L/2) ≤ 1/4.
(b) X − l2/q ≥ L2/4q(q − 1) with probability at most 1/4.

The intuition behind (b) is that we actually want to prove X ≥ l2/(q − 1). We would
like to use Markov’s inequality, but l is not a constant, so we replace it by L/2 and show
that bound instead. (Due to (a), we know that it is unlikely for l to be smaller than
L/2.) However, applying Markov’s to X itself yields only a weak bound, which is not
sufficient for our purposes. Therefore we strengthen the statement by considering the
random variable X − l2/q instead, as we know l2/q to be a lower bound on X. This leads
to the inequality in (b), which we can actually prove.
Now we argue formally why it suffices to prove (a) and (b).

12

Lemma 6. If both (a) and (b) hold, then N = q.

Proof.

P(N < q)
(◦)
≤ P

(
X ≥ l2

q − 1
)

= P
(
X ≥ l2

q − 1 ∧ l ≥
L

2
)

+ P
(
X ≥ l2

q − 1 ∧ l <
L

2
)

(∗)
≤ P

(
X ≥ l2

q
+ L2

4q(q − 1)
)

+ P
(
l <

L

2
)
≤ 1

2

Here, (◦) is simply Lemma 5. To see that (∗) holds, we assume l ≥ L/2, which leads to
the following:

X ≥ l2

q − 1 = l2

q
+ l2

q(q − 1) ≥
l2

q
+ L2

4q(q − 1)

The general plan for proving (a) is that we bound the expected value and variance
of l, and then apply Chebyshev’s inequality. The bound for E(l) is straightforward, for
Var(l) we proceed by carefully estimating how the number of colours behaves for pairs of
elements of the arithmetic progression.

Lemma 7. Statement (a) holds, i.e. P(l < L/2) ≤ 1/4.

Proof. Recall that l :=
∑

i li with li := |{c : a + (i − 1)b ∈ fc}| being the number of
colours of the i-th element of P . Lemma 3 implies that each li has the same expected
value (li is a function of the position of the i-th element of P , but the distribution of
positions does not depend on i). We have

E(l1) =
∑

c

P(a ∈ fc) =
∑

c

|fc|
p

= 1

This yields E(l) = L. Now we turn to the variance of l and consider

Var(l) = E(l2)− E(l)2 =
∑

i

E(l2i) +
∑
i 6=j

E(lilj)− L2

As we have just argued, the li are identically distributed. Additionally, Lemma 3
guarantees that pairs of positions (a+ (i− 1)b, a+ (j − 1)b), and therefore pairs (li, lj),
are identically distributed, for i, j ∈ {1, ..., L}, i 6= j. Hence both E(l2i) and E(lilj) do not
depend on i, j, for i, j ∈ {1, ..., L}, i 6= j. So we only need to consider E(l21) and E(l1l2).
Let nr := P(l1 = r) · p denote the number of elements of Fp which have r colours,

for r = 0, ..., q. Thus, we get 1 = E(l1) =
∑

r rnr/p and E(l21) =
∑

r r
2nr/p, implying

1 ≤ E(l21) ≤ q. To calculate E(l1l2) we need to consider that the positions are distinct:

E(l1l2) =
∑
r 6=s

rsnrns

p(p− 1) +
∑

r

r2nr(nr − 1)
p(p− 1) =

∑
r,s

rsnrns

p(p− 1) −
∑

r

r2nr

p(p− 1)

13

To ease notation, we set ξ := E(l21).

=
∑
r,s

rsnrns

p(p− 1) −
ξ

p− 1 =
∑

s

sns

p− 1
∑

r

rnr

p
− ξ

p− 1 = p− ξ
p− 1

Plugging this into E(l2), we get

E(l2) = Lξ + L(L− 1)p− ξ
p− 1 = L

(L− 1)(p− ξ) + ξ(p− 1)
p− 1

= L
(p− 1)(L− 1) + L− 1 + (p− L)ξ

p− 1

= L(L− 1) + L
L− 1 + (p− L)ξ

p− 1

Using 1 ≤ ξ ≤ q and L < p we get both an upper and a lower bound for E(l2). 2

L2 ≤ E(l2) ≤ L(L− 1) + Lq ≤ L(L+ q) (1)

This yields Var(l) ≤ L(L + q) − L2 = Lq. All that remains for part (a) is applying
Chebyshev’s inequality. Here we use that l < L/2 is implied by l ≤ E(l)/3.

P
(
l <

L

2
)
≤ P

(
l ≤ 1

3 E(l)
)
≤ P

(
|l − E(l)| ≥ 2

3 E(l)
)
≤ 4Lq

9E(l)2 = 1
36q ≤

1
4

Now we finish the proof by showing that (b) holds, which basically states that X is not
too large. Here we show an upper bound on E(X), which again comes down to pairs of
elements of P being uniformly distributed apart from being distinct. Hence one element
of P having a colour c does not make it more likely that another element has the same
colour, which in turn decreases X. Finally, we apply Markov’s inequality, not to X itself,
but to X − l2/q.

Lemma 8. Statement (b) holds, i.e. P(X − l2/q ≥ L2/4q(q − 1)) ≤ 1/4.

Proof. Recall that we defined X as the sum of X2
c , where Xc denotes how often colour c

appears among elements of P . We start by calculating the expected value of X.
Fix some c ∈ {1, ..., q} and let xi denote the binary random variable indicating whether

a+ (i− 1)b ∈ fc for i = 1, ..., L, i.e. the i-th element of the arithmetic progression has
colour c. Of course, Xc =

∑
i xi and X2

c =
∑

i,j xixj . Again, we use that pairs in the
arithmetic progression are distributed u.a.r. apart from being distinct (see Lemma 3).

E(X2
c) =

∑
i

E(x2
i) +

∑
i 6=j

E(xixj) = E(Xc) + L(L− 1)P(x1 ∧ x2)

2Of course, E(l2) ≥ L2 = E(l)2 is trivial.

14

0, 0 2, 22, 12, 01, 21, 11, 00, 20, 1si

0, 0 2, 22, 12, 01, 21, 11, 00, 20, 1aj

t

Figure 4: Construction used to prove the strong lower bound for semi-oblivious routing,
with p = 3. All arcs have weight 1.

Using

P(x1 ∧ x2) = |fc|(|fc| − 1)
p(p− 1) ≤ |fc|

q(p− 1)

we get

E(X) ≤
∑

c

E(Xc) + L(L− 1)
∑

c

|fc|
q(p− 1) = L+ Lp(L− 1)

q(p− 1) (2)

Recall that X ≥ l2/N and N ≤ q, so we can apply Markov’s inequality to X − l2/q,
and show that it is likely at most L2/4q(q − 1).

P
(
X − l2

q
≥ L2

4q(q − 1)
)
≤ E

(
X − l2

q

)
· 4q(q − 1)

L2

(1,2)
≤

(
L+ Lp(L− 1)

q(p− 1) −
L2

q

)
· 4q(q − 1)

L2

=
(
q + p(L− 1)− L(p− 1)

p− 1
)
· 4(q − 1)

L

=
(
q − p− L

p− 1
)
· 4(q − 1)

L
≤ 4(q − 1)2

L
≤ 1

4

6. Strong Lower Bound
The problem with our previous bound for semi-oblivious routing was that we had a
dedicated section of the graph for each type of traffic conditions, which limits the number

15

of scenarios we can create. Instead, our graph in this section will be highly symmetric,
but the choice of demands allows us to create many different bottlenecks, too many for
a semi-oblivious routing scheme with a small number of flows per node to cover. An
instantiation is shown in Figure 4, though the precise structure is perhaps a bit difficult
to determine from just the drawing.

To construct the graph G, we fix a prime p and set n := p2. We have source nodes si

for i = 1, ..., n and a single sink t. Commodity i is the pair (si, t). Between sources and
sinks we add a layer of intermediate nodes aj , j = 1, ..., n, with arcs (aj , t). All arcs have
weight 1. We will refer to these intermediate nodes as links. Finally, there are some arcs
between the si and the aj . Their precise structure is the intricate part.

Let Fp denote the finite field with p elements. For both a commodity i =: (i0, i1) and
a link aj =: (j0, j1) we identify i, j ∈ {1, ..., n} with elements in F2

p, using some fixed
bijection. We will refer to aj as type j1 link and use Type(j1) := {(j0, j1) : j0 ∈ Fp} to
refer to the set of all type j1 links.

Each node aj gives rise to a linear function f : F2
p → F2

p as f(x) = j0 + j1x. We connect
si to aj if i lies on the graph of f , i.e. f(i0) = j0 + j1i0 = i1.

We start by mentioning a few properties of G. There are 2n+ 1 nodes, n+ n1.5 edges,
and each commodity i is connected to

√
n links and vice versa. Different commodities

are “spread out”, in that they use mostly disjoint sets of links:

Lemma 9. Two distinct commodities i, i′ share at most one link.

Proof. Let f : F2
p → F2

p with f(x) = a+bx denote any linear polynomial in Fp. For the link
corresponding to f to be connected to both i and i′, it must fulfil f(i0) = i1 ∧ f(i′0) = i′1.
This implies a = i1 − bi0 = i′1 − bi′0 and thus b(i0 − i′0) = i′1 − i1. If i0 = i′0 then i1 6= i′1
(as i, i′ are distinct) and the equation has no solution. Else, we get a unique value for b
and thus for a, meaning that there is exactly one solution.

Earlier on, we gave each link a type. Later it will become convenient to group links, so
that we can pick a subset of groups to put load on. The following lemma makes the type
a convenient choice for grouping.

Lemma 10. Fix some x ∈ F2
p. Each commodity i is connected to exactly one type x link.

Proof. The equation i1 = j0 + j1i0 = j0 + ai0 has a unique solution for j0.

We will now consider the maximum amount of flow that is possible to send within G,
while keeping the congestion constant. Each node si has degree

√
n, so clearly a single

commodity can route at most O(
√
n) flow. Additionally, there are n links aj for a total

capacity of n, which means that routing significantly more than
√
n commodities with a

demand of
√
n is not possible within constant congestion. Interestingly, we can match

this bound, i.e. it is possible to route
√
n flow for any “small” number of commodities

with constant congestion.

Lemma 11. Let I ⊂ {1, ..., n} denote a subset of at most
√
n commodities. Then

demands d with d(i) :=
√
n for i ∈ I have an optimal routing with congestion at most 2.

16

Proof. Assume that we have some optimal routing f which minimises the maximum
congestion. Additionally, amongst those routings we pick one with the smallest number
of arcs (aj , t) which have maximum congestion. Let J ⊆ {1, ..., n} denote the set
of links aj of those arcs, i.e. J := {aj : f(aj , t) = maxj′ f(aj′ , t)}. Additionally, let
I ′ ⊆ I denote the commodities which are connected to a link aj ∈ J , meaning that
I ′ := {i ∈ I : (si, aj) ∈ E, j ∈ J}.

For an i ∈ I ′ we know that all connected links must be in J . If that were not the case,
then we would have a commodity with both an adjacent maximally congested arc (aj , t)
and one with a strictly smaller congestion, say (aj′ , t). By shifting a small amount of flow
from the former to the latter, we reduce the number of arcs with maximum congestion (or,
if aj was the only one, we reduce the maximum congestion instead). But this contradicts
our choice of f .

Therefore the arcs of links in J form a cut of I ′. In particular, we have that each unit
of flow sent by commodities in I ′ passes over such an arc exactly once, and that no other
commodity uses those arcs. So the congestion of f is simply |I ′|

√
n/|J |.

Now we conclude by arguing that a cut of I ′ has to be large, as I ′ is connected to
many links. Recall that each commodity is connected to

√
n links. If we count each

connected link for each commodity, we may, of course, count some links multiple times.
In particular, a link aj being counted r > 1 times means that there are r(r− 1)/2 ≥ r− 1
pairs of commodities in I ′ which share aj .
Due to Lemma 9 we know that two commodities share at most one links, so by

subtracting the total number of pairs in I ′ we ensure that we underestimate the number
of connected links. Therefore |J | ≥ |I ′|

√
n − |I ′|(|I ′| − 1)/2 ≥ |I ′|

√
n/2 (recall that

|I ′| ≤ |I| ≤
√
n), and the congestion of f is at most 2.

Now consider some semi-oblivious routing scheme S using k flows per commodity
i ∈ {1, ..., n} and with competitive ratio at most C. Our goal will be to construct a
small subset of commodities I ⊂ {1, ..., n} s.t. S cannot route a demand

√
n for each

commodity in I with low congestion. As Lemma 11 states, the optimal routing of any
such subset has constant congestion, leading to a bound on C.
For a node si we have the k unit si-t-flows S(i), which we denote by f1, ..., fk. To

simplify our analysis, we want to round these flows. Given a flow fc, for c = 1, ..., k, we
say that a link aj has colour c if fc(aj , t) ≥ 1/2

√
n. So some links may not have any

colours, while some may have multiple.
If there are at most

√
n/8Ck links of colour c, we call the flow fc sparse, else we call

it dense. Later we want to choose a subset of links so that one is used by each flow
fc ∈ S(i), i.e. that we pick one link of each colour. However, sparse flows use only a few
links and are difficult to cover. Instead, we will now argue that S can transport only a
small amount using sparse flows (while remaining within a good congestion), so that our
subsequent analysis only needs to concern itself with dense flows.

Lemma 12. Using only sparse flows, S can route at most
√
n/2 flow from si to ti with

congestion 2C.

Proof. Pick some arbitrary sparse flow fc ∈ S(i). Node si is connected to
√
n links aj ,

17

so there are at most
√
n links aj without colour c, each of which has f(aj , t) < 1/2

√
n.

Hence they carry at most 1/2 units of flow from fc, and conversely the links with colour
c carry at least 1/2 units of flow. (Recall that fc is a unit flow.)

As fc is sparse, there are only r :=
√
n/8Ck links with colour c, so there is some link aj

with fc(aj) ≥ 1/2r. Then, however, fc can transport at most 2C/fc(aj) ≤ 4Cr =
√
n/2k

flow within a congestion of 2C. There are at most k such flows, yielding the desired
bound.

Let J ⊂ F2
p denote some subset of links. If, for any dense flow fc, there is j ∈ J with

link aj having colour c, we say that J covers i. We use cover(J) := {i ∈ F2
p : J covers i}

to refer to the set of links covered by J .
We are interested in finding a set J which fulfils the following properties:

(a) There is some subset of types T ⊆ Fp s.t. J contains precisely the links with type
in J , i.e. J =

⋃
j1∈T Type(j1) = {(j0, j1) ∈ F2

p : j1 ∈ T}.
(b) The set T is an arithmetic progression of length L := 16(8Ck)2, i.e. there exist

a, b ∈ Fp, b 6= 0 with T = {a, a+ b, ..., a+ (L− 1)b}.
(c) At least a 1

2 fraction of commodities are covered by J , i.e. | cover(J)| ≥ n/2.

First, note that J uses L
√
n links, which is much less than the n/2 commodities it

covers. We want to “scale this down”, i.e. use roughly L links to cover
√
n/2 commodities.

From this we can deduce the demands for our counterexample. Loosely speaking, if we
consider sending

√
n flow for each of the covered commodities, S has to put one unit

of flow onto the (modified) J for each demand it routes, while the optimal routing can
distribute them with congestion 2 and avoid that bottleneck (see Lemma 11).
The specific structure of J (all links of certain types, which form an arithmetic

progression) enables us to do the “scaling down”. We will now show the existence of J ,
before moving on to the proof of our lower bound.

Lemma 13. A set J fulfilling conditions (a)-(c) exists.

Proof. We modify our colouring based on dense flows s.t. it meets the prerequisites of
Theorem 1. Fix some commodity i. Recall that for each dense flow fc of i at least a
1/8Ck fraction of links have colour c. We can remove colours from links so that each fc

covers exactly a 1/8Ck fraction, and add otherwise meaningless dense flows, with the
purpose to have 8Ck dense flows in total. These then yield a colouring of links connected
to commodity i, which we map to a colouring of Fp by mapping each link to its type.

Now we can apply Theorem 1, so choosing an arithmetic progression of types T ⊆ Fp

with length L = 16(8Ck)2 u.a.r. leads to the links of those types covering all dense flows
fc with probability at least 1/2. Therefore we can fix a T s.t. this happens for a 1/2
fraction of commodities, which then yields the set J fulfilling (a)-(c).

Before we start with the proof of Theorem 2, we want explain the intuition behind it,
in particular the reasoning for choosing an arithmetic progression.
Starting with the types T we have a set of links J with size |T |

√
n = L

√
n covering

n/2 commodities. As mentioned, we want to scale this down, so that we have roughly L

18

type

(a) (b) (c)

Figure 5: Covering nodes using links of some fixed types T . Points correspond to links,
with type as x-coordinate. Dashed lines are the links with types T . (a) To cover a set of
commodities (solid lines) we need the links corresponding to the intersections. (b) For
|T | = 2 we can cover m2 commodities using m links of each type. (c) As long as the
types T are equidistant, we need only |T |m links of each type to cover m2 commodities.

links covering roughly
√
n commodities. Those commodities can be routed concurrently

with small congestion (Lemma 11), but the semi-oblivious routing scheme puts too much
flow into the small set of links, creating a large congestion there.

The question then is how many commodities we can cover using links of types T . The
way we connected commodities and links was based on linear polynomials in Fp, where
each commodity corresponds to a point in F2

p, each link to a line, and a commodity is
connected to all links with lines crossing its point. So for a link aj the set of commodities
connected to it forms a line in F2

p, it is precisely the set {(x, j0 + j1x) : x ∈ Fp}. (The
type of the link is the slope of the line.)

From the condition for a commodity i and a link aj being connected, namely j0 +j1i0 =
i1, it is obvious that you can turn this statement around: the set of links connected to a
commodity i also forms a line, which is {(i1 − i0x, x) : x ∈ Fp}.

Viewing points in the two-dimensional plane F2
p as links, we group them by their types.

Conveniently, the links of one type then also form a line. We already know that using all
links with types in T we cover (half of) all commodities. So, if for any one commodity i
we consider its line in F2

p and take the links corresponding to the intersections of the line
of i and the type-lines of types in T , then these links will cover i.
This, as well as the following arguments, are illustrated in Figure 5. Of course, this

means covering a single commodity with |T | = L links, which is not a good exchange
ratio. But if T = {j1, j′1}, i.e. we only had two types, we could take some m consecutive
links of each of the two types, and then each pair of links covers one commodity, for m2

commodities in total. This is a rate of 1 link for m/2 commodities, which is much better.
Sadly, there are more than two types. However, the types are an arithmetic progression,

which turns out to be enough. Let us now consider the setting in R2 instead of F2
p. Now

we have equidistant types T , of which we pick the smallest and largest, calling them j1
and j′1, respectively. Again, we take m consecutive links of j1 and j′1 each, and all of the
m2 commodities connected to those links. Additionally, we take all links of the other
types connected to those commodities. This already ensures that the commodities are
covered, and we only need to upper bound the number of links we have used.

19

Here, the situation is as in Figure 5c (note that the x-coordinate corresponds to the
type, which is the second element of the pair representing the link in F2

p). The coordinates
of the additional links we use are given by convex combinations of the type j1 and type
j′1 links. So if these links have y-coordinates, say, y and y′, then the y-coordinate of
an additional link is given by y∗ := λy + (1 − λ)y′. Crucially, λ = q/(|T | − 1) with
q ∈ {0, ..., |T − 1|}, so λ is an integer fraction with small numerator and denominator. As
both y and y′ are from a range of m consecutive integers, y∗ can only take one of |T |m
values.

Theorem 2. C ≥ n1/20/23k4/5.

Proof. We start by finding a small subset of commodities I ⊂ Fp with at least a 1
2 fraction

covered by J . (Additionally, we want I to have a specific structure.) For x ∈ Fp, a ∈ T
let Jx

a := {(x, a), (x+ 1, a), ..., (x+m− 1, a)} denote a set of m := 4
√
n consecutive type

a links starting at x. By choosing an appropriate offset x we ensure that a modified J ,
where the type a links are restricted to the ones in Jx

a , still covers n/2 4
√
n = n3/4/2 links.

(Note that Jx
a contains a 1/ 4

√
n fraction of type a links.)

More precisely, if we choose the offset x u.a.r. and let X :=
∑

i∈cover(J)Xi denote the
number of covered commodities, with Xi indicating whether commodity i ∈ cover(J) is
covered by J ′ := Jx

a ∪
⋃

j1∈T\{a}Type(j1).
A commodity i ∈ Fp is connected to exactly one link of type a, therefore an i

covered by J remains covered if its connected type a link is in Jx
a . This happens

with probability |Jx
a |/|Type(a)| = 1/ 4

√
n, meaning that E(Xi) ≥ 1/ 4

√
n. We then have

E(X) ≥ | cover(J)|/ 4
√
n which, using property (c), is at least n3/4/2.

Hence we can fix some a s.t. at least n3/4/2 commodities are covered. Applying
the same argument again for type a′ := a + (L − 1)b, we get an offset x′ and a set
J ′′ := Jx

a ∪ Jx′
a′ ∪

⋃
j1∈T\{a,a′}Type(j1) covering at least

√
n/2 commodities.

While we have reduced the number of links we need for types a and a′, we need to
do the same to the other types. For these, however, we will preserve the commodities
I := cover(J ′′) which are covered, since the set I has about the right size (between

√
n/2

and
√
n). Instead we simply choose all links connected to I of that type. Formally, for a

type j1 ∈ T \ {a, a′} we set

J∗j1 := {(j0, j1) : i ∈ I, (si, aj) ∈ E}

and

J∗ := Jx
a ∪ Jx′

a′ ∪
⋃

j1∈T\{a,a′}
J∗j1

Now we need to show that the J∗j1 are “small”, which is where we will use property
(b), that T is an arithmetic progression.

Fix some type j1 ∈ T \ {a, a′}. For a link (j0, j1) to be in J∗j1 , it has to be connected
to some commodity i ∈ I, which itself is connected to a link (y, a) ∈ Jx

a and a link

20

(y′, a′) ∈ Jx′
a′ . This yields a system of equations

j0 + j1i0 = i1 ∧ y + ai0 = i1 ∧ y′ + a′i0 = i1

⇒ j0 + j1i0 = y + ai0 ∧ (a− a′)i0 = y′ − y

⇒ j0 = y + (a− j1)y
′ − y
a− a′

= y + (y′ − y)j1 − a
a′ − a

We are trying to determine how many values j0 could take. The calculations above
happen in Fp; but it will be convenient to consider sets of values in N, as those are easier
to count. Let π : Fp → {0, ..., p− 1} denote the mapping from an element of Fp to their
smallest representative in N. We can count values of j0 in the following manner:∣∣∣{y + (y′ − y)j1 − a

a′ − a
: (y, a) ∈ Jx

a , (y′, a′) ∈ Jx′
a′

}∣∣∣
Scaling by (a′ − a)/b (recall that b is the distance between subsequent elements in the
arithmetic progression T) and adding the constant (m+ x− x′)(j1 − a)/b− x(a′ − a)/b
does not change the cardinality, as we are still in Fp. (Also recall that m = |Jx

a | = 4
√
n).

=
∣∣∣{(y − x)a

′ − a
b

+ (y′ − x′ − (y − x) +m)j1 − a
b

: y, y′
}∣∣∣

≤
∣∣∣{π(y − x)π

(a′ − a
b

)
+ π(y′ − x′ − (y − x) +m)π

(j1 − a
b

)
: y, y′

}∣∣∣ =: |M |

We have (a′ − a)/b = L− 1, with L the length of the arithmetic progression. Similarly,
(j1−a)/b ∈ {1, ..., L− 2} holds and we have y′−x′− (y−x) +m ∈ {1, ..., 2m− 1} due to
the definition of Jx

a implying y − x, y′ − x′ ∈ {0, ...,m− 1}. So the largest number in M
is (m− 1)(L− 1) + (2m− 1)(L− 2) < 3mL, which is an upper bound on the size of J∗j1 .
To summarize, |J∗| ≤ |T |3mL = 3 4

√
nL2.

Finally, we can set up demands for our lower bound. For each commodity in I we set
the demand to

√
n, so d(i) :=

√
n for i ∈ I. Due to Lemma 11, the optimal routing of d

has congestion 2. As S has competitive ratio C, we therefore know that it has congestion
at most 2C. Lemma 12 then shows that sparse flows carry at most

√
n/2 flow for each

commodity i ∈ I, so the remaining
√
n/2 units of flow must use dense flows.

However, i is covered by J∗, therefore for each each dense flow fc of i we have a link
with color c, i.e. one with at least 1/2

√
n flow, in J∗. Thus the

√
n/2 units of flow routed

using dense flows at i induce a load of at least 1/4 in J∗. We have |I| ≥
√
n/2, so the

total load on J∗ is at least
√
n/2. This load then uses the arcs (aj , t) for j ∈ J∗.

Again, the congestion is at most 2C. Together with the load on J∗ this yields

2C ≥
√
n

2|J∗| ≥
4
√
n

6L2 =
4
√
n

3 · 221C4k4 ⇒ C ≥ n1/20

23 k4/5

which is the bound we wanted to show.

21

7. Additional Work
In this section we discuss various approaches to proving upper and lower bounds for
semi-oblivious routing in directed graphs. Our lower bound from Theorem 2 already
settles the case of O(n1/16−ε) flows per node for any ε > 0, by showing that then a
polylogarithmic congestion cannot be achieved. From the other direction, it is clear that
a semi-oblivious routing scheme containing all paths is optimal, and there are at most
n! paths in a directed graph, 2n if it is acyclic. The remaining case are semi-oblivious
routing schemes with a polynomial, or at least subexponential, number of flows per node.

7.1. Counting Arguments
For any specific demand d it is easy to add the flows from its optimal routing to our
semi-oblivious routing scheme S, to ensure that S performs optimally on that demand.
At first glance it might seem futile to add flows for each demand to S, as there are
uncountably many of them, but as we now show it suffices to perform well on binary
demands, of which there are at most an exponential number.
Lemma 14. Let S be an semi-oblivious routing scheme which is C-competitive on binary
demands. Then a semi-oblivious routing scheme with competitive ratio O(C logn) exists.
Proof. Let m denote the number of edges in G. We first change S by rounding its flows f
to put at least 1/2n2 units of flow onto any arc e with f(e) > 0. This increases congestion
by a factor of at most 2, as f can transport at most m/2n2 ≤ 2 packets using these edges.
So our modified S is still 2C-competitive.
Now we fix some arbitrary demands d. We can scale d s.t. its minimum is 1, then

round each demand to be a power of two, which changes congestion by at most a factor
of 2. Now we decompose d into classes, i.e. we construct demands dj with dj(i) = 2j

for i ∈ {i : d(i) = 2j}. For demands dj let Rj denote an S-routing of dj with minimal
congestion which uses at most 2n2 flows (see Lemma 17). (So R has congestion at most
2C cong(dj) ≤ 2C cong(d).)

For each j we now round Rj s.t. each commodity i puts at least dj(i)/4n4 packets on
each flow it uses. Again, as there are at most 2n2 flows in total, Rj can transport at
most dj(i)/2 using flows with fewer than dj(i)/4n4 packets, so this increases congestion
by at most a factor of 2. Note that dj(i) = 2j for each i, so Rj routes at least 2j/4n4

packets with each flow it uses.
We will now fix some edge e ∈ E and analyse the congestion on e. Let j denote the

highest class j s.t. S sends flow over e when routing dj , i.e. j = max{j′ : Rj′(e) > 0}. As
Rj puts at least 2j/4n4 packets into each flow f it uses, and any flow f of S with f(e) > 0
has f(e) ≥ 1/2n2, we have that Rj(e) ≥ 2j/4n6. Conversely, let j∗ := j − 8 log2 n − 3
denote a class. Then any class j′ = 1, ..., j∗ can put at most 2j′n2 flow on e, and
2j′n2 = 2j′−j∗ · 2j/8n6. Hence classes below j′ increase the load on e by at most a factor
of two.
For classes j′ = j∗ + 1, ..., j we use that Rj′ has congestion at most 4C cong(d). So if

we simply add all routings to get R :=
∑

j Rj we conclude that R has congestion at most
O(C cong(d) logn), and S therefore is O(C logn) competitive.

22

For now we consider graphs where each pair of nodes is a commodity. We can try
looking at the different binary demands as a black box, so we construct a semi-oblivious
routing scheme by adding flows for specific demands, and then try to approximate the
demands we did not add. If we group the (binary) demands by cardinality, we note that
there is only one demand of with n2 commodities (the all-ones demand) and only n2

demands with one commodity (the unit demands).
Using n2 + 1 flows per node we could cover those extremes. The largest number of

demands are the ones with cardinality n2/2, of which there are more than (n2/2)n2/2. For
these it seems possible to approximate them by using the flow for the all-ones demand.
Simply reusing any such flow unchanged does not work (it may have a large congestion
for some commodities, causing it to route the other commodities sub-optimally), so it is
unclear how to do so.

Even more problematic are the demands of size n. There are still exponentially many
of them, and they seem difficult to approximate by both the all-ones demand and the
unit demands, as the number of commodities differs by a factor of n from each of them.
Incidentally, similar arguments lead to the construction of our strong lower bound of

Section 6. For the single-sink case there are only n commodities, so the construction
revolves around demands of cardinality

√
n. That construction, however, is inherently

polynomial: we choose an arithmetic progression of types, of which there are only n in
total, and we choose offsets for the two types, again with n possibilities in total. So we
are only able to construct up to n2 different traffic conditions.

7.2. Cuts
In this section we will assume that the semi-oblivious routing scheme uses paths instead
of flows, as this simplifies the presentation.
Characterising routing schemes with cuts seems difficult for semi-oblivious routing.

However, there is a similar notion: the set of maximally congested edges.

Lemma 15. Let S denote a semi-oblivious routing scheme using paths with competitive
ratio C. Then there are demands d and a subset of edges U ⊆ E s.t. cong(S, d)/ cong(d) =
C and for each commodity i with d(i) > 0 all paths in S(i) have an edge in U .

Proof. Let d denote demands s.t. cong(S, d)/ cong(d) = C and R an S-routing of d with
minimal congestion and, amongst those S-routings, one where the set U of edges with
maximal congestion, i.e. U := {e ∈ E : R(e)/w(e) = cong(S, d)}, is smallest.

Consider some commodity i. Assume for contradiction that i has two paths p, p′ ∈ S(i)
s.t. p has an edge in U and p′ does not. Thus each edge of p′ would have a congestion
strictly smaller than cong(S, d) and moving a tiny amount of flow from p to p′ would
decrease the number of maximally congested edges, which contradicts our choice of R.

Therefore we know that either all paths of i have an edge in U , or none do. Let i ∈ I
iff the former holds, i.e. I := {i | d(i) > 0 ∧ ∀p ∈ S(i) : p ∪ U 6= ∅}.
Let d′ : I → R≥0 denote modified demands, with d′(i) := d(i) for i ∈ I. We now

claim that the congestion on d remains unchanged, i.e. cong(S, d′)/ cong(d′) = C. First
we remark that d was chosen s.t. cong(S, d)/ cong(d) is the competitive ratio of S and

23

s t

Figure 6: The graph G0, which has exponentially many paths.

thus maximal. As cong(d′) ≤ cong(d) we already know cong(S, d′) ≤ cong(S, d). If we
show cong(S, d′) ≥ cong(S, d) as well, then cong(d′) ≥ cong(d) and thus our claim would
follow.
We will show this by contradiction: assume cong(S, d′) < cong(S, d). Let R′ denote

an S-routing of d′ with congestion cong(S, d′). We decompose R into R0 and R1, where
R0 := (Ri)i∈I contains only the flows for commodities in I and R1 := (Ri)i/∈I contains
the others. Now we can set R∗ := R1 + (1− λ)R0 + λR′ for some 0 ≤ λ ≤ 1. For λ = 0
we simply have R∗ = R, for λ = 1 we have replaced the routing for commodities in I
with R′.

For an edge e ∈ U we know that R1(e) = 0, as commodities in I ′ do not use edges
in U , and R′(e) < R0(e), as e is maximally congested in R and R′ has strictly lower
congestion than R. So we get R∗(e)/w(e) < R(e)/w(e) = C for λ > 0. Additionally,
for an edge e /∈ U we have R∗(e)/w(e) = R(e)/w(e) < C for λ = 0, as e is not one of
the maximally congested edges. As R∗ is continuous in λ, we can fix a λ > 0 s.t. we
still have R∗(e)/w(e) < C for all e /∈ U . For the other edges we had this already, hence
cong(R∗) < cong(R), which contradicts our choice of R.
This proves the statement, with d′ as demands and U as subset of edges.

It is tempting to use the above lemma to bound the competitive ratio C of a semi-
oblivious routing scheme S. The lower bound is clear, given such a set U and demands d
we know that C ≥

∑
i d(i)/w(U) cong(d). (We know that the optimal routing of demands

d/ cong(d) has congestion 1, and S routes each of these packets over U .)
For the upper bound one could imagine using Lemma 15 to show the other direction.

However, while it yields demands d and a set U with cong(S, d) = C, this congestion
might be caused by paths using edges in U multiple times. Hence the actual competitive
ratio may be higher than

∑
i d(i)/w(U) cong(d).

7.3. Graphs with Exponentially Many Paths
In a graph with polynomially many paths, a semi-oblivious routing scheme can incorporate
all possible paths and route optimally. Hence we need a graph with an exponential
number of paths, the prototypical example of which is shown in Figure 6, which we will
denote G0.

24

s t

Figure 7: Recursive construction for an Ω(logn/ log logn) lower bound. Each edge is
replaced by a copy of G0. A random s-t-path P is highlighted, which the optimal routing
will avoid, but the semi-oblivious routing scheme must use at least partially.

Let S denote some polynomial set of s-t-paths in G0. Then a random s-t-path shares
roughly half of its edges with all paths in S, with high probability. For this it suffices if
G0 has length Ω(logn), as we choose the constant of G after knowing the size of S. So
we can force a semi-oblivious routing scheme to put half of its flow into the “wrong” spot.

Hajiaghayi, Kleinberg, and Leighton construct a lower bound using this kind of
approach [9, Theorem 3.3]. After picking a random s-t-path P in G0, they know that the
a semi-oblivious routing scheme S puts roughly half of its flow onto the path while the
optimal routing can avoid it entirely. So they induce a demand from s to t of 1. Then
we will later “punish” the semi-oblivious routing scheme by adding a demand (u, v) for
each edge (u, v) ∈ P . The optimal routing is not affected, as it does not use any edges
from P and can route these demands without additional congestion.

The key is that we now proceed recursively, i.e. we replace each edge in G with a copy
of G0 (see Figure 7). As this replaces an edge of weight 1 by a structure with capacity
2 we also double all existing demands. Now we add the next set of demands, setting
d(u, v) := 1 for each (u, v) ∈ P . (For this, P is not a path but a set of pairs of nodes.)
After this, we refine P s.t. it is a valid path for our new graph; here we simple replace
each pair (u, v) ∈ P by a random path from u to v. This (roughly) halves the flow that
the semi-oblivious routing scheme sends over P , but we doubled the demand earlier,
so in total the flow does not change. Again, the optimal routing can send the the new
demands without using edges on (the refined) P , but S routes roughly half of the flow of
the new demands over P .
This repeats for Ω(logn/ log logn) iterations. The graph increases in size in each

iteration; after this number of iterations we end up with n nodes. In the end we get a
competitive ratio of Ω(logn/ log logn).
However, it appears difficult to apply a similar procedure and get a bound that is

stronger than logarithmic, since the recursion naturally increases the size of the graph by
a constant factor.

25

7.4. Upper Bounds
In this section we will present a construction for semi-oblivious routing schemes that
does not work. However, it highlights some interesting problems.

Definition 2. A directed graph G = (V,E,w) is a level-graph if there is a partition
V1 ∪̇ V2 ∪̇ ... ∪̇ Vl = V of nodes into levels, arcs only go from a level to the subsequent
level, i.e. E ⊆ (V1 × V2) ∪ (V2 × V3) ∪ ... ∪ (Vl−1 × Vl), and the set of commodities C has
C ⊆ V1 × Vl, i.e. flow is only sent from the first to the last level.
A graph isomorphism π : V → V is a bijection s.t. (u, v) ∈ E iff (π(u), π(v)) ∈ E for

all u, v ∈ V . We call a level graph G node-symmetric, if for all nodes u, v ∈ Vi there is a
graph isomorphism π with π(u) = v.

When constructing lower bounds, there is a tradeoff based on the number of commodities
using a single edge. If there are only few of them, then it is not possible for the arc to
have a high congestion. On the other hand, having lots of commodities traversing an
edge means that they “mix”, i.e. the packet going over that edge can use the same set of
paths, regardless of which commodity it originally belonged to. If two commodities have
similar sets of paths, then there are fewer different demands the routing scheme has to
handle, as it does not matter which of the two commodities is active.

To investigate this, we first apply a few restrictions. First, we require that all commodi-
ties have a common sink. This allows flow of different sources to “mix” freely; during
routing we only need to consider a single-commodity flow.

As it appears difficult to deal with “traps”, i.e. edges that can be overloaded when certain
commodities are enabled, s.t. these they should be avoided when routing. Therefore we
also require G to be a node-symmetric level-graph, so that it does not matter which node
you route to (in some sense).

(As it turns out, even a node-symmetric graph can have very asymmetric behaviour
when talking about groups of nodes, so this restriction does not seem very fruitful.)

We will now talk about the construction of a potential semi-oblivious routing scheme
S in a node-symmetric, single-sink level-graph G which, as mentioned above, does not
actually work.
Let t denote the unique sink and v an arbitrary source node (i.e. a level 1 node). To

construct the semi-oblivious routing scheme, we first do a random walk on G starting at
v, yielding a sequence of distributions µ1, ..., µk, with µ1(v) = 1 and µ1(u) = 0 for u 6= v.
Note that the support of µi are precisely the nodes reachable after i steps. We then

choose a subsequence of levels r0, ..., rl with length l ∈ O(logn), s.t. the size of the support
at most doubles between each rj , relative to the size of the level. Formally, we have r0 = 0
and |µi|/|Vi| ≤ 2|µrj |/|Vrj | for rj < i < rj+1. We use trace(p) := (p ∩ Vr1 , ..., p ∩ Vrl

) to
denote the nodes visited by an v-t-path p on the levels given by ri.
Let X denote the random variable corresponding to the path taken by the random

walk starting at v. From X we can construct a flow in G, referred to as flow(X), by
setting flow(X)(e) := P(e ∈ X).
Finally, our semi-oblivious routing scheme is given by

S(v, t) := {flow(X | trace(X) = T) : T ∈ Vr1 × ...× Vrl
}

26

The idea is that S allows us to adjust the distribution of packets at each level ri. We
could use this to ensure that these distributions remain close to uniform.

Proof idea. Fix some demands d : V0 × {t} → R≥0. Due to Lemma 14 it suffices to
consider only binary demands when trying to achieve a polylogarithmic congestions.

In the following, R denotes a routing of the (binary) demands d and µi : Vi → R≥0 the
distribution of packets at level i w.r.t. R.
At each level, we want to choose a routing that ensures two things, both up to a

constant factor:

(a) The packet distribution is uniform amongst reachable nodes.

(b) Packets follow the probabilities of the random walk.

To be precise, (a) refers to the distribution µi on level i fulfilling µi(v) ≤ α/|Mi| for
each v ∈Mi, with Mi denoting the set of reachable nodes on level i and α some constant
factor. (Of course, µi is zero for non-reachable nodes.)

Assume both (a) and (b) hold. Then, we claim, S is O(1)-competitive: Any routing of
d has to distribute its flow at each level. Distributing it uniformly on as many nodes as
possible and then executing a random walk minimises the congestion at that level, as G
is node-symmetric. Conditions (a) and (b) ensure that, apart from a constant factor, we
do just that for all levels.
We will now try to construct a routing R fulfilling both conditions. Initially, R is

chosen s.t. the packets follow a random walk. Then we iterate over the levels r1, ..., rl, to
progressively update R s.t. conditions (a) and (b) hold.

Assuming that at level rj packets are distributed almost uniformly, meaning µrj (v) ≤
2/|Mrj | for v ∈Mrj , we will now show that on levels rj , ..., rj+1−1 we have µi(v) ≤ 4/|Mi|.
(Note that µi(Vi) = 1 due to our normalisation of d.)

Let xi := maxv µi(v) denote the maximum number of packets in any level i node.
If we do a random walk starting with xi packets in every level i node, then at level
i′ > i each node will have exactly xi · |Vi|/|Vi′ | packets, due to G being node-symmetric.
Consequently, xi′ ≤ xi · |Vi|/|Vi′ | is an upper bound on the distribution µi′ . Setting i := rj

and rj < i′ < rj+1 we get xrj ≤ 2/|Mrj | from our assumption and thus

xi′ ≤
2|Vrj |
|Mrj ||Vi′ |

≤ 4
|Mi′ |

The latter part follows from our choice of the rj : the amount of reachable nodes (relative
to level size) by a single random walk can at most double between levels rj and i′. Doing
multiple random walks simply means that we take the union of the reachability sets,
which then fulfils |Mi′ |/|Vi′ | ≤ 2 · |Mrj |/|Vrj |.

Our assumption holds for level r0 = 0, as our demands d are binary and normalised.
However, and this is where the proof fails, it is not clear how to adjust the distribution
for subsequent rj . So, now we are going to talk about the problems arising in this step.

27

Problems. Firstly, µi′+1 is not necessarily close to uniform for any constant. A simple
example would be a step of the random walk starting at a single node, which has one
outgoing arc with large weight and many with small weight. This can occur even in
unweighted graphs, when a group of q nodes v1, ..., vq is fully connected with q nodes on
the next level (so they have q2 edges between them) and each of the vi has an additional√
q outgoing edges to other nodes.
One can require that G has bounded-degree, but, while this would ensure that µi′+1 is

close to uniform, that is not actually sufficient.
The problem arises where we have almost all packets concentrated in a few nodes,

while a large number of nodes are almost empty. To make the distribution uniform again,
we would have to increase the number of packets arriving at the latter by more than a
constant factor, and it is not clear that this is possible with good congestion.

Worse, even if we adjust the probabilities of the random walk by only a constant factor,
it is not clear that these factors do not compound.
On a higher level, it seems that requiring node-symmetry is not very meaningful, as

groups can exhibit the same kinds of problematic behaviour. For the uniform distributions
we relied on the notion of reachability, which does not hold up well in weighted graphs.
(A node can be barely reachable or well connected, but we cannot differentiate.) Even
in unweighted graphs reachability appears to fall apart in this context, as connections
between groups of nodes are still “weighted”, due to having more or fewer edges between
them.
Additionally, random walks are strictly local. If a node has two outgoing edges, one

with a large weight and one with an extremely large weight, the former will be used less,
even if the relevant bottlenecks occur later. While the idea of this whole construction was
to use the local optimisation provided by random walks and then fix the global behaviour
by adjusting the probabilities at the levels rj , it does not work out that well.

8. Conclusion
Semi-oblivious routing is a promising extension of oblivious routing, performing well in
empirical evaluations. However, as of yet there are no clear theoretical results which
indicate an improvement over oblivious routing. We investigate semi-oblivious routing in
the context of directed graphs, using a flow-based model, and rule out polylogarithmically
competitive semi-oblivious routing schemes with a polylogarithmic number of flows.

The existence of this bound is related to an elementary question about random arith-
metic progressions in coloured finite fields. In particular, we show that an equinumerous
colouring admits a short arithmetic progression (length quadratic in the number of
colours) covering all colours.
There are a number of interesting questions left open for further research. Most

importantly, it is unclear whether a polynomial number of flows per node are sufficient
to achieve a polylogarithmic competitivity. We believe that this is the case, in particular
for single-sink graphs, as only edges used by many commodities are problematic, but it
seems that having many of these edges makes the graph well-connected in some sense.

28

More generally, it is unclear whether semi-oblivious routing provides a clear benefit in
any situation. Regarding congestion, it is known that this is not the case in undirected
graphs and grids. As we have shown, in directed graphs roughly Ω(n1/16) flows per
node are needed at the very least, which already limits its feasibility there as well. So
advantages in this regard would have to be in other classes of graphs, e.g. balanced
graphs3.
One could also investigate whether semi-oblivious routing improves different kinds

of cost measures, such as fault tolerance or compactness, i.e. the space needed to store
routing information in.
Finally, regarding our result on arithmetic progressions, we only proved a quadratic

upper bound between the number of colours and the length of the sequence, and leave
open whether this is sharp. We believe so, due to a symmetry between the gap in this
problem and the maximum length of a rainbow arithmetic progression.

References
[1] Yossi Azar et al. “Optimal oblivious routing in polynomial time”. In: Journal of

Computer and System Sciences 69.3 (2004), pp. 383–394. doi: 10.1145/780542.
780599. url: https://ttic.uchicago.edu/~harry/pdf/optimal_oblivious_
journal.pdf.

[2] József Balogh, William Linz, and Letícia Mattos. Long rainbow arithmetic progres-
sions. 2019. arXiv: 1905.03811 [math.CO].

[3] Yair Bartal and Stefano Leonardi. “On-line routing in all-optical networks”. In: Proc.
International Colloquium on Automata, Languages, and Programming (ICALP).
Springer. 1997, pp. 516–526.

[4] Steve Butler et al. “Rainbow arithmetic progressions”. In: Journal of Combinatorics
7.4 (2016), pp. 595–626. issn: 2150-959X. doi: 10.4310/joc.2016.v7.n4.a3. url:
https://arxiv.org/pdf/1404.7232.

[5] J.Lawrence Carter and Mark N. Wegman. “Universal classes of hash functions”. In:
Journal of Computer and System Sciences 18.2 (1979), pp. 143–154. issn: 0022-0000.
doi: 10.1016/0022-0000(79)90044-8. url: http://www.sciencedirect.com/
science/article/pii/0022000079900448.

[6] David Conlon, Jacob Fox, and Benny Sudakov. Independent arithmetic progressions.
2019. arXiv: 1901.05084 [math.CO].

[7] Alina Ene et al. “Routing under Balance”. In: New York, NY, USA: Association
for Computing Machinery, 2016, pp. 598–611. isbn: 9781450341325. doi: 10.1145/
2897518.2897654. url: https://arxiv.org/pdf/1603.09009.

[8] Jesse Geneson. A note on long rainbow arithmetic progressions. 2018. arXiv: 1811.
07989 [math.CO].

3A directed graph G is α-balanced, if for every cut C the weight of edges entering C differs by at most
a factor of α from the weight of edges leaving C.

29

https://doi.org/10.1145/780542.780599
https://doi.org/10.1145/780542.780599
https://ttic.uchicago.edu/~harry/pdf/optimal_oblivious_journal.pdf
https://ttic.uchicago.edu/~harry/pdf/optimal_oblivious_journal.pdf
https://arxiv.org/abs/1905.03811
https://doi.org/10.4310/joc.2016.v7.n4.a3
https://arxiv.org/pdf/1404.7232
https://doi.org/10.1016/0022-0000(79)90044-8
http://www.sciencedirect.com/science/article/pii/0022000079900448
http://www.sciencedirect.com/science/article/pii/0022000079900448
https://arxiv.org/abs/1901.05084
https://doi.org/10.1145/2897518.2897654
https://doi.org/10.1145/2897518.2897654
https://arxiv.org/pdf/1603.09009
https://arxiv.org/abs/1811.07989
https://arxiv.org/abs/1811.07989

[9] Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tom Leighton. “Semi-Oblivious
Routing: Lower Bounds”. In: SODA ’07. New Orleans, Louisiana: Society for In-
dustrial and Applied Mathematics, 2007, pp. 929–938. isbn: 9780898716245. url:
https://www.cs.cornell.edu/~rdk/papers/semiobliv.pdf.

[10] Mohammad Taghi Hajiaghayi et al. “Oblivious routing on node-capacitated and
directed graphs”. In: ACM Transactions on Algorithms 3.4 (2007), p. 51. doi:
10.1145/1290672.1290688. url: https://www.cs.cornell.edu/~rdk/papers/
OblivSODA05.pdf.

[11] Chris Harrelson, Kirsten Hildrum, and Satish Rao. “A polynomial-time tree de-
composition to minimize congestion”. In: Proc. 15th Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA). 2003, pp. 34–43. doi: 10.1145/
777412.777419. url: https://dl.acm.org/doi/pdf/10.1145/777412.777419.

[12] Veselin Jungić et al. “Rainbow Arithmetic Progressions and Anti-Ramsey Results”.
In: Combinatorics, Probability and Computing 12.6 (Nov. 2003), pp. 599–620. issn:
0963-5483. doi: 10.1017/S096354830300587X. url: http://math.mit.edu/
~fox/paper-antiRamsey.pdf.

[13] Praveen Kumar et al. Kulfi: Robust Traffic Engineering Using Semi-Oblivious
Routing. 2016. arXiv: 1603.01203 [cs.NI].

[14] Praveen Kumar et al. “Semi-Oblivious Traffic Engineering: The Road Not Taken”. In:
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI
18). Renton, WA: USENIX Association, Apr. 2018, pp. 157–170. isbn: 978-1-939133-
01-4. url: https : / / www . usenix . org / conference / nsdi18 / presentation /
kumar.

[15] Bruce M Maggs et al. “Exploiting locality for data management in systems of
limited bandwidth”. In: Proc. 38th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE. 1997, pp. 284–293.

[16] Harald Räcke. “Minimizing congestion in general networks”. In: Proc. 43rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS). IEEE. 2002,
pp. 43–52. doi: 10.1109/SFCS.2002.1181881. url: https://ttic.uchicago.
edu/~harry/pdf/min_congestion.pdf.

[17] Harald Räcke. “Optimal hierarchical decompositions for congestion minimization
in networks”. In: Proc. 40th Annual ACM Symposium on Theory of Computing
(STOC). ACM. 2008, pp. 255–264. doi: 10.1145/1374376.1374415. url: http:
//www.cs.cornell.edu/~abrahao/tdg/papers/p255.pdf.

30

https://www.cs.cornell.edu/~rdk/papers/semiobliv.pdf
https://doi.org/10.1145/1290672.1290688
https://www.cs.cornell.edu/~rdk/papers/OblivSODA05.pdf
https://www.cs.cornell.edu/~rdk/papers/OblivSODA05.pdf
https://doi.org/10.1145/777412.777419
https://doi.org/10.1145/777412.777419
https://dl.acm.org/doi/pdf/10.1145/777412.777419
https://doi.org/10.1017/S096354830300587X
http://math.mit.edu/~fox/paper-antiRamsey.pdf
http://math.mit.edu/~fox/paper-antiRamsey.pdf
https://arxiv.org/abs/1603.01203
https://www.usenix.org/conference/nsdi18/presentation/kumar
https://www.usenix.org/conference/nsdi18/presentation/kumar
https://doi.org/10.1109/SFCS.2002.1181881
https://ttic.uchicago.edu/~harry/pdf/min_congestion.pdf
https://ttic.uchicago.edu/~harry/pdf/min_congestion.pdf
https://doi.org/10.1145/1374376.1374415
http://www.cs.cornell.edu/~abrahao/tdg/papers/p255.pdf
http://www.cs.cornell.edu/~abrahao/tdg/papers/p255.pdf

A. Sum of Squares Inequality
The following inequality is well-known. Intuitively, it states that a sum of squares is
minimised when all summands are equal (assuming that their sum is held constant).

Lemma 16. Let x1, ..., xn ∈ R. Then

∑
i

x2
i ≥

1
n

(∑
i

xi

)2

Proof. We apply the Cauchy-Bunyakovsky-Schwarz inequality, yielding

1
n

(n∑
i=1

1 · xi

)2
≤ 1
n

(n∑
i=1

12
)
·
(n∑

i=1
x2

i

)
=

n∑
i=1

x2
i

B. Sparse Routings
While a semi-oblivious routing scheme S may consist of many flows per node, for any
specific demand it only needs to use a small amount of them. Recall that w denotes the
weights in G.

Lemma 17. Let d denote demands. Then there exists an S-routing R with congestion
cong(S, d) s.t. R(i) =

∑
f∈S(i) λi,ff for each commodity i, and there are at most 2n2

strictly positive λf,i for commodity i and f ∈ S(i).

Proof. Let α := cong(S, d) and let C denote the set of commodities. The space of all
S-routings with congestion α is given by∑

i∈C

∑
f∈S(i)

λf,if(e) ≤ αw(e) ∀e ∈ E

∑
f∈S(i)

λf,i ≥ d(i) ∀i ∈ C

λf,i ≥ 0 ∀i ∈ C ∀f ∈ S(i)

As is known from linear programming, if a solution to this system exists, there is a one
with at most |E|+ |C| ≤ 2n2 nonzero entries.

31

	Introduction
	Related Work
	Preliminaries
	Semi-oblivious Routing Schemes
	Paths or Flows

	Simple Lower Bound
	Arithmetic Progressions in Coloured Finite Fields
	Non-overlapping Colours
	Overlapping Colours

	Strong Lower Bound
	Additional Work
	Counting Arguments
	Cuts
	Graphs with Exponentially Many Paths
	Upper Bounds

	Conclusion
	Sum of Squares Inequality
	Sparse Routings

