
Lower Bounds on the State Complexity
of Population Protocols

Philipp Czerner, Javier Esparza
Department of Informatics, TU Munich

June 23, 2021

Introduction

The Setting

I population protocols

I population of agents
I agents are finite-state

machines
I random interactions
I want to decide if initial

configuration satisfies a
property
I computation by stable

consensus

3

The Setting

I population protocols
I population of agents

I agents are finite-state
machines

I random interactions
I want to decide if initial

configuration satisfies a
property
I computation by stable

consensus

4

The Setting

I population protocols
I population of agents
I agents are finite-state

machines

I random interactions
I want to decide if initial

configuration satisfies a
property
I computation by stable

consensus

q1

q2

q3
q4

q2

q2

q4

q4

q1

q1

q3 q2

5

The Setting

I population protocols
I population of agents
I agents are finite-state

machines
I random interactions

I want to decide if initial
configuration satisfies a
property
I computation by stable

consensus

q1

q2

q3
q4

q2

q2

q4

q4

q1

q1

q3 q2q2
q4

6

The Setting

I population protocols
I population of agents
I agents are finite-state

machines
I random interactions

I want to decide if initial
configuration satisfies a
property
I computation by stable

consensus

q1

q2

q3
q4

q2

q2

q4

q4

q1

q1

q3 q2q2
q4q1
q5

7

The Setting

I population protocols
I population of agents
I agents are finite-state

machines
I random interactions
I want to decide if initial

configuration satisfies a
property

I computation by stable
consensus

q1

q2

q3
q4

q2

q2

q4

q4

q1

q1

q3 q2q2
q4q1
q5

8

The Setting

I population protocols
I population of agents
I agents are finite-state

machines
I random interactions
I want to decide if initial

configuration satisfies a
property
I computation by stable

consensus

q1

q1

q1
q5

q1

q1

q5

q1

q1

q1

q5 q1

9

Population Protocols

I finite set of states Q

I pairwise transitions T : Q2 → Q2

I initial state q0 ∈ Q
I output function O : Q → {0, 1}
I compute exactly semi-linear (or Presburger) predicates
I can compute threshold: x ≥ k, for any k ∈ N

10

Population Protocols

I finite set of states Q
I pairwise transitions T : Q2 → Q2

I initial state q0 ∈ Q
I output function O : Q → {0, 1}
I compute exactly semi-linear (or Presburger) predicates
I can compute threshold: x ≥ k, for any k ∈ N

11

Population Protocols

I finite set of states Q
I pairwise transitions T : Q2 → Q2

I initial state q0 ∈ Q

I output function O : Q → {0, 1}
I compute exactly semi-linear (or Presburger) predicates
I can compute threshold: x ≥ k, for any k ∈ N

12

Population Protocols

I finite set of states Q
I pairwise transitions T : Q2 → Q2

I initial state q0 ∈ Q
I output function O : Q → {0, 1}

I compute exactly semi-linear (or Presburger) predicates
I can compute threshold: x ≥ k, for any k ∈ N

13

Population Protocols

I finite set of states Q
I pairwise transitions T : Q2 → Q2

I initial state q0 ∈ Q
I output function O : Q → {0, 1}
I compute exactly semi-linear (or Presburger) predicates

I can compute threshold: x ≥ k, for any k ∈ N

14

Population Protocols

I finite set of states Q
I pairwise transitions T : Q2 → Q2

I initial state q0 ∈ Q
I output function O : Q → {0, 1}
I compute exactly semi-linear (or Presburger) predicates
I can compute threshold: x ≥ k, for any k ∈ N

15

The question:

How many states do we need for x ≥ k ,
if k grows large?

16

The question:
How many states do we need for x ≥ k ,

if k grows large?

17

State Complexity
of Population Protocols

I Two natural questions: time complexity and space complexity

I time: how long until consensus is achieved?
I space: how much memory is needed?

I Time complexity is well studied
I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,

Vojnović 2012], [Kosowski, Uznański 2018] ...
I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],

[Alistarh, Aspnes, Gelashvili 2018]
I Only little is known about space

I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.
2020]

I no lower bounds!

19

I Two natural questions: time complexity and space complexity
I time: how long until consensus is achieved?

I space: how much memory is needed?
I Time complexity is well studied

I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,
Vojnović 2012], [Kosowski, Uznański 2018] ...

I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],
[Alistarh, Aspnes, Gelashvili 2018]

I Only little is known about space
I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.

2020]
I no lower bounds!

20

I Two natural questions: time complexity and space complexity
I time: how long until consensus is achieved?
I space: how much memory is needed?

I Time complexity is well studied
I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,

Vojnović 2012], [Kosowski, Uznański 2018] ...
I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],

[Alistarh, Aspnes, Gelashvili 2018]
I Only little is known about space

I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.
2020]

I no lower bounds!

21

I Two natural questions: time complexity and space complexity
I time: how long until consensus is achieved?
I space: how much memory is needed?

I Time complexity is well studied

I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,
Vojnović 2012], [Kosowski, Uznański 2018] ...

I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],
[Alistarh, Aspnes, Gelashvili 2018]

I Only little is known about space
I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.

2020]
I no lower bounds!

22

I Two natural questions: time complexity and space complexity
I time: how long until consensus is achieved?
I space: how much memory is needed?

I Time complexity is well studied
I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,

Vojnović 2012], [Kosowski, Uznański 2018] ...

I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],
[Alistarh, Aspnes, Gelashvili 2018]

I Only little is known about space
I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.

2020]
I no lower bounds!

23

I Two natural questions: time complexity and space complexity
I time: how long until consensus is achieved?
I space: how much memory is needed?

I Time complexity is well studied
I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,

Vojnović 2012], [Kosowski, Uznański 2018] ...
I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],

[Alistarh, Aspnes, Gelashvili 2018]

I Only little is known about space
I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.

2020]
I no lower bounds!

24

I Two natural questions: time complexity and space complexity
I time: how long until consensus is achieved?
I space: how much memory is needed?

I Time complexity is well studied
I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,

Vojnović 2012], [Kosowski, Uznański 2018] ...
I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],

[Alistarh, Aspnes, Gelashvili 2018]
I Only little is known about space

I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.
2020]

I no lower bounds!

25

I Two natural questions: time complexity and space complexity
I time: how long until consensus is achieved?
I space: how much memory is needed?

I Time complexity is well studied
I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,

Vojnović 2012], [Kosowski, Uznański 2018] ...
I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],

[Alistarh, Aspnes, Gelashvili 2018]
I Only little is known about space

I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.
2020]

I no lower bounds!

26

I Two natural questions: time complexity and space complexity
I time: how long until consensus is achieved?
I space: how much memory is needed?

I Time complexity is well studied
I upper bounds [Angluin, Aspnes, Eisenstat 2008], [Draief,

Vojnović 2012], [Kosowski, Uznański 2018] ...
I lower bounds [Doty, Soloveichik 2015], [Alistarh et al. 2017],

[Alistarh, Aspnes, Gelashvili 2018]
I Only little is known about space

I upper bounds [Blondin, Esparza, Jaax 2018], [Blondin et al.
2020]

I no lower bounds!

27

Remark

I A different model allows states Q to grow with number of
agents n

I Lots of research into time-space tradeoffs in that model
I This considers growth of Q w.r.t. n, whereas we consider

growth of Q w.r.t. the size of the predicate
I For us, Q remains fixed independent of n

28

Remark

I A different model allows states Q to grow with number of
agents n

I Lots of research into time-space tradeoffs in that model

I This considers growth of Q w.r.t. n, whereas we consider
growth of Q w.r.t. the size of the predicate

I For us, Q remains fixed independent of n

29

Remark

I A different model allows states Q to grow with number of
agents n

I Lots of research into time-space tradeoffs in that model
I This considers growth of Q w.r.t. n, whereas we consider

growth of Q w.r.t. the size of the predicate

I For us, Q remains fixed independent of n

30

Remark

I A different model allows states Q to grow with number of
agents n

I Lots of research into time-space tradeoffs in that model
I This considers growth of Q w.r.t. n, whereas we consider

growth of Q w.r.t. the size of the predicate
I For us, Q remains fixed independent of n

31

Measures

I To simplify, consider only threshold predicates x ≥ k

I We investigate lower bounds on state complexity:
“How many states for x ≥ k?”

I Conversely: upper bounds on
“Largest k for given number of states?”

I Busy beaver function for population protocols!

32

Measures

I To simplify, consider only threshold predicates x ≥ k
I We investigate lower bounds on state complexity:

“How many states for x ≥ k?”

I Conversely: upper bounds on
“Largest k for given number of states?”

I Busy beaver function for population protocols!

33

Measures

I To simplify, consider only threshold predicates x ≥ k
I We investigate lower bounds on state complexity:

“How many states for x ≥ k?”
I Conversely: upper bounds on

“Largest k for given number of states?”

I Busy beaver function for population protocols!

34

Measures

I To simplify, consider only threshold predicates x ≥ k
I We investigate lower bounds on state complexity:

“How many states for x ≥ k?”
I Conversely: upper bounds on

“Largest k for given number of states?”
I Busy beaver function for population protocols!

35

Results

Results

Prior results due to [Blondin, Esparza, Jaax 2018].

Leaderless:
I k ∈ Ω(2|Q|)

our result:
I k ∈ O(222|Q|

)
↑

this talk

With Leader:
I k ∈ Ω(22|Q|)

our result:
I k ∈ O(ack(|Q|))

Terms in this talk are only correct up to the number of exponents.

37

Results

Prior results due to [Blondin, Esparza, Jaax 2018].

Leaderless:
I k ∈ Ω(2|Q|)

our result:
I k ∈ O(222|Q|

)
↑

this talk

With Leader:
I k ∈ Ω(22|Q|)

our result:
I k ∈ O(ack(|Q|))

Terms in this talk are only correct up to the number of exponents.

38

Results

Prior results due to [Blondin, Esparza, Jaax 2018].

Leaderless:
I k ∈ Ω(2|Q|)

our result:
I k ∈ O(222|Q|

)

↑
this talk

With Leader:
I k ∈ Ω(22|Q|)

our result:
I k ∈ O(ack(|Q|))

Terms in this talk are only correct up to the number of exponents.

39

Results

Prior results due to [Blondin, Esparza, Jaax 2018].

Leaderless:
I k ∈ Ω(2|Q|)

our result:
I k ∈ O(222|Q|

)

↑
this talk

With Leader:
I k ∈ Ω(22|Q|)

our result:
I k ∈ O(ack(|Q|))

Terms in this talk are only correct up to the number of exponents.

40

Results

Prior results due to [Blondin, Esparza, Jaax 2018].

Leaderless:
I k ∈ Ω(2|Q|)

our result:
I k ∈ O(222|Q|

)
↑

this talk

With Leader:
I k ∈ Ω(22|Q|)

our result:
I k ∈ O(ack(|Q|))

Terms in this talk are only correct up to the number of exponents.

41

Results

Prior results due to [Blondin, Esparza, Jaax 2018].

Leaderless:
I k ∈ Ω(2|Q|)

our result:
I k ∈ O(222|Q|

)
↑

this talk

With Leader:
I k ∈ Ω(22|Q|)

our result:
I k ∈ O(ack(|Q|))

Terms in this talk are only correct up to the number of exponents.

42

A bound for leaderless
protocols

Overview

Techniques used:

1. “Pumping”: adding additional agents to a rejecting run, s.t. it
remains rejecting
I Uses results from the theory of Vector Addition Systems

2. Allowing the protocol to temporarily borrow agents, s.t. the
reachability relation is an integer linear program

3. Showing that long sequences of runs admit linear
combinations with certain properties
I Purely mathematical result, based on linear algebra

44

Overview

Techniques used:
1. “Pumping”: adding additional agents to a rejecting run, s.t. it

remains rejecting

I Uses results from the theory of Vector Addition Systems
2. Allowing the protocol to temporarily borrow agents, s.t. the

reachability relation is an integer linear program
3. Showing that long sequences of runs admit linear

combinations with certain properties
I Purely mathematical result, based on linear algebra

45

Overview

Techniques used:
1. “Pumping”: adding additional agents to a rejecting run, s.t. it

remains rejecting
I Uses results from the theory of Vector Addition Systems

2. Allowing the protocol to temporarily borrow agents, s.t. the
reachability relation is an integer linear program

3. Showing that long sequences of runs admit linear
combinations with certain properties
I Purely mathematical result, based on linear algebra

46

Overview

Techniques used:
1. “Pumping”: adding additional agents to a rejecting run, s.t. it

remains rejecting
I Uses results from the theory of Vector Addition Systems

2. Allowing the protocol to temporarily borrow agents, s.t. the
reachability relation is an integer linear program

3. Showing that long sequences of runs admit linear
combinations with certain properties
I Purely mathematical result, based on linear algebra

47

Overview

Techniques used:
1. “Pumping”: adding additional agents to a rejecting run, s.t. it

remains rejecting
I Uses results from the theory of Vector Addition Systems

2. Allowing the protocol to temporarily borrow agents, s.t. the
reachability relation is an integer linear program

3. Showing that long sequences of runs admit linear
combinations with certain properties

I Purely mathematical result, based on linear algebra

48

Overview

Techniques used:
1. “Pumping”: adding additional agents to a rejecting run, s.t. it

remains rejecting
I Uses results from the theory of Vector Addition Systems

2. Allowing the protocol to temporarily borrow agents, s.t. the
reachability relation is an integer linear program

3. Showing that long sequences of runs admit linear
combinations with certain properties
I Purely mathematical result, based on linear algebra

49

Stable Consensuses

Configuration C : Q → N.

I C is a 0-consensus, if only rejecting states occur
I C is a stable 0-consensus, if C reaches only 0-consensuses

The protocol rejects iff it reaches a stable 0-consensus.

50

Stable Consensuses

Configuration C : Q → N.
I C is a 0-consensus, if only rejecting states occur

I C is a stable 0-consensus, if C reaches only 0-consensuses
The protocol rejects iff it reaches a stable 0-consensus.

51

Stable Consensuses

Configuration C : Q → N.
I C is a 0-consensus, if only rejecting states occur
I C is a stable 0-consensus, if C reaches only 0-consensuses

The protocol rejects iff it reaches a stable 0-consensus.

52

Stable Consensuses

Configuration C : Q → N.
I C is a 0-consensus, if only rejecting states occur
I C is a stable 0-consensus, if C reaches only 0-consensuses

The protocol rejects iff it reaches a stable 0-consensus.

53

Extending Stable Consensuses

Known:1 If C is a stable 0-consensus, and C(q) ≥ 22|Q| , then
C + q is a stable 0-consensus.

(C + q is the configuration C with an additional agent in state q)

Our goal: modify a rejecting run and “smuggle” additional agents
from the initial state q0 to a q with C(q) > 22|Q|

1Follows from Rackoff’s Theorem [Rackoff 1978]
54

Extending Stable Consensuses

Known:1 If C is a stable 0-consensus, and C(q) ≥ 22|Q| , then
C + q is a stable 0-consensus.

(C + q is the configuration C with an additional agent in state q)

Our goal: modify a rejecting run and “smuggle” additional agents
from the initial state q0 to a q with C(q) > 22|Q|

1Follows from Rackoff’s Theorem [Rackoff 1978]
55

Extending Stable Consensuses

Known:1 If C is a stable 0-consensus, and C(q) ≥ 22|Q| , then
C + q is a stable 0-consensus.

(C + q is the configuration C with an additional agent in state q)

Our goal: modify a rejecting run and “smuggle” additional agents
from the initial state q0 to a q with C(q) > 22|Q|

1Follows from Rackoff’s Theorem [Rackoff 1978]
56

Pumping

Goal:
I Find a run ending in stable 0-consensus C

I Let S := {q : C(q) ≥ 22|Q|} denote large components of C ;
we call S colour of C

I Find a way to move agents from initial state q0 to S
(”extension“)
I i.e. a sequence of transitions

I Too hard!

57

Pumping

Goal:
I Find a run ending in stable 0-consensus C
I Let S := {q : C(q) ≥ 22|Q|} denote large components of C ;

we call S colour of C

I Find a way to move agents from initial state q0 to S
(”extension“)
I i.e. a sequence of transitions

I Too hard!

58

Pumping

Goal:
I Find a run ending in stable 0-consensus C
I Let S := {q : C(q) ≥ 22|Q|} denote large components of C ;

we call S colour of C
I Find a way to move agents from initial state q0 to S

(”extension“)

I i.e. a sequence of transitions
I Too hard!

59

Pumping

Goal:
I Find a run ending in stable 0-consensus C
I Let S := {q : C(q) ≥ 22|Q|} denote large components of C ;

we call S colour of C
I Find a way to move agents from initial state q0 to S

(”extension“)
I i.e. a sequence of transitions

I Too hard!

60

Pumping

Goal:
I Find a run ending in stable 0-consensus C
I Let S := {q : C(q) ≥ 22|Q|} denote large components of C ;

we call S colour of C
I Find a way to move agents from initial state q0 to S

(”extension“)
I i.e. a sequence of transitions

I Too hard!

61

Borrowing

I To find an extension, allow “borrowing”

I Transitions may cause the number of agents in a state to go
negative, temporarily

I Finding an extension is now a linear program
I We show: 22j runs partitioned into j colours yield a solution

to the LP for some colour
I Only works for leaderless protocols; linear combination of runs

Only 2|Q| colours
⇒ Every x ≥ k protocol with k ≥ 222|Q|

has a “borrowing
extension”

62

Borrowing

I To find an extension, allow “borrowing”
I Transitions may cause the number of agents in a state to go

negative, temporarily

I Finding an extension is now a linear program
I We show: 22j runs partitioned into j colours yield a solution

to the LP for some colour
I Only works for leaderless protocols; linear combination of runs

Only 2|Q| colours
⇒ Every x ≥ k protocol with k ≥ 222|Q|

has a “borrowing
extension”

63

Borrowing

I To find an extension, allow “borrowing”
I Transitions may cause the number of agents in a state to go

negative, temporarily
I Finding an extension is now a linear program

I We show: 22j runs partitioned into j colours yield a solution
to the LP for some colour
I Only works for leaderless protocols; linear combination of runs

Only 2|Q| colours
⇒ Every x ≥ k protocol with k ≥ 222|Q|

has a “borrowing
extension”

64

Borrowing

I To find an extension, allow “borrowing”
I Transitions may cause the number of agents in a state to go

negative, temporarily
I Finding an extension is now a linear program
I We show: 22j runs partitioned into j colours yield a solution

to the LP for some colour

I Only works for leaderless protocols; linear combination of runs

Only 2|Q| colours
⇒ Every x ≥ k protocol with k ≥ 222|Q|

has a “borrowing
extension”

65

Borrowing

I To find an extension, allow “borrowing”
I Transitions may cause the number of agents in a state to go

negative, temporarily
I Finding an extension is now a linear program
I We show: 22j runs partitioned into j colours yield a solution

to the LP for some colour
I Only works for leaderless protocols; linear combination of runs

Only 2|Q| colours
⇒ Every x ≥ k protocol with k ≥ 222|Q|

has a “borrowing
extension”

66

Borrowing

I To find an extension, allow “borrowing”
I Transitions may cause the number of agents in a state to go

negative, temporarily
I Finding an extension is now a linear program
I We show: 22j runs partitioned into j colours yield a solution

to the LP for some colour
I Only works for leaderless protocols; linear combination of runs

Only 2|Q| colours
⇒ Every x ≥ k protocol with k ≥ 222|Q|

has a “borrowing
extension”

67

Eliminating Borrowing with Liquidity

I Every reachable state can be reached from 2|Q| agents in
initial state

(in leaderless protocols!)
I Thus: we can reach a configuration Cplenty with 2|Q| agents in

every state
I Also: Every LP has a small (≤ 2|Q|) solution

Remove borrowing by executing the solution on top of Cplenty !

68

Eliminating Borrowing with Liquidity

I Every reachable state can be reached from 2|Q| agents in
initial state (in leaderless protocols!)

I Thus: we can reach a configuration Cplenty with 2|Q| agents in
every state

I Also: Every LP has a small (≤ 2|Q|) solution

Remove borrowing by executing the solution on top of Cplenty !

69

Eliminating Borrowing with Liquidity

I Every reachable state can be reached from 2|Q| agents in
initial state (in leaderless protocols!)

I Thus: we can reach a configuration Cplenty with 2|Q| agents in
every state

I Also: Every LP has a small (≤ 2|Q|) solution

Remove borrowing by executing the solution on top of Cplenty !

70

Eliminating Borrowing with Liquidity

I Every reachable state can be reached from 2|Q| agents in
initial state (in leaderless protocols!)

I Thus: we can reach a configuration Cplenty with 2|Q| agents in
every state

I Also: Every LP has a small (≤ 2|Q|) solution

Remove borrowing by executing the solution on top of Cplenty !

71

Eliminating Borrowing with Liquidity

I Every reachable state can be reached from 2|Q| agents in
initial state (in leaderless protocols!)

I Thus: we can reach a configuration Cplenty with 2|Q| agents in
every state

I Also: Every LP has a small (≤ 2|Q|) solution

Remove borrowing by executing the solution on top of Cplenty !

72

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

73

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state

2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

74

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting

3. Solve LP to find borrowing extension
I sequence of transition σ moving agents from initial state to

states S
4. Among the rejecting runs, pick one ending in 0-stable

consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

75

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

76

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

77

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S

I i.e. 22|Q| agents in every state in S
5. Add new agents and execute σ at the beginning, ignore these

agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

78

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

79

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards

I At the end we have C plus some agents in S: still rejecting!
6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

80

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

81

Summary

1. Generate 222|Q|
runs starting in Cplenty with additional agents

in initial state
2. Assume all are rejecting
3. Solve LP to find borrowing extension

I sequence of transition σ moving agents from initial state to
states S

4. Among the rejecting runs, pick one ending in 0-stable
consensus C with colour S
I i.e. 22|Q| agents in every state in S

5. Add new agents and execute σ at the beginning, ignore these
agents afterwards
I At the end we have C plus some agents in S: still rejecting!

6. Repeat 5 to reject arbitrarily high inputs: Contradiction!

82

Conclusion

Conclusion

I Space complexity of population protocols is interesting

I Still a gap for leaderless protocols, and large gap for protocols
with a leader

I Protocols with a leader might be exponentially more succinct
that without (or more!)

I Conjecture: both known lower bounds on k are tight

84

Conclusion

I Space complexity of population protocols is interesting
I Still a gap for leaderless protocols, and large gap for protocols

with a leader

I Protocols with a leader might be exponentially more succinct
that without (or more!)

I Conjecture: both known lower bounds on k are tight

85

Conclusion

I Space complexity of population protocols is interesting
I Still a gap for leaderless protocols, and large gap for protocols

with a leader
I Protocols with a leader might be exponentially more succinct

that without (or more!)

I Conjecture: both known lower bounds on k are tight

86

Conclusion

I Space complexity of population protocols is interesting
I Still a gap for leaderless protocols, and large gap for protocols

with a leader
I Protocols with a leader might be exponentially more succinct

that without (or more!)
I Conjecture: both known lower bounds on k are tight

87

Thank you for
your attention!

88

