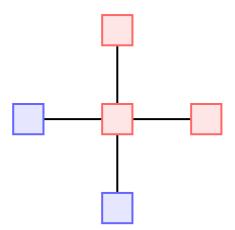
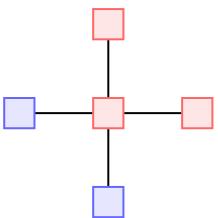

Decision Power of Weak Asynchronous Models of Distributed Computing

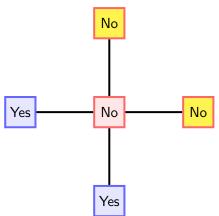

Philipp Czerner Roland Guttenberg Javier Esparza Martin Helfrich

Technische Universität München

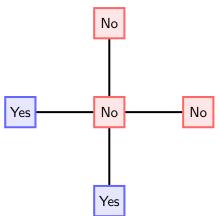
Every node executes identical finite-state machine.



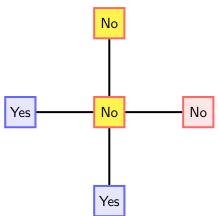
Every node executes identical finite-state machine. Nodes decide property of graph or initial labeling by consensus.


Every node executes identical finite-state machine.

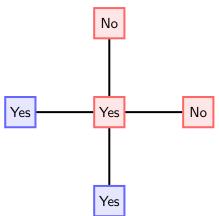
Nodes decide property of graph or initial labeling by consensus.


Every node executes identical finite-state machine.

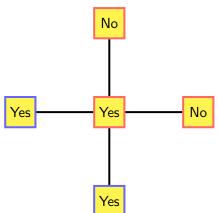
Nodes decide property of graph or initial labeling by consensus.


Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.

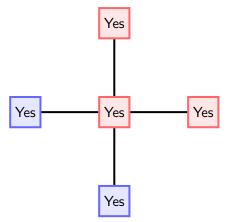

Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


Every node executes identical finite-state machine.

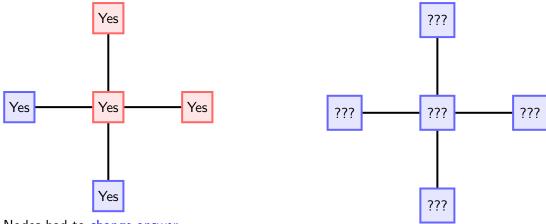
Nodes decide property of graph or initial labeling by consensus.

Every node executes identical finite-state machine.


Nodes decide property of graph or initial labeling by consensus.

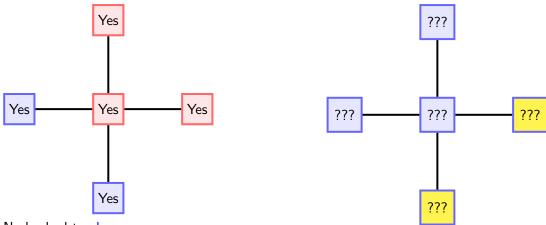
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

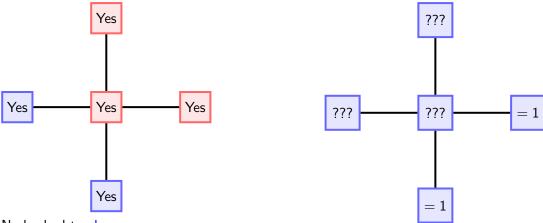
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

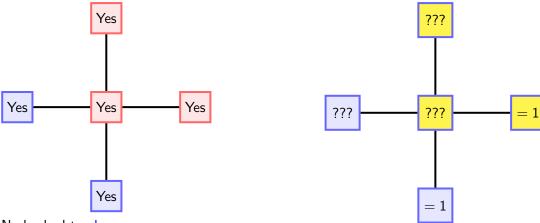
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

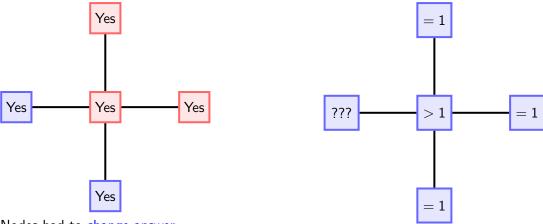
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

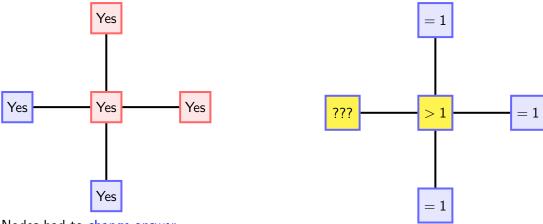
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

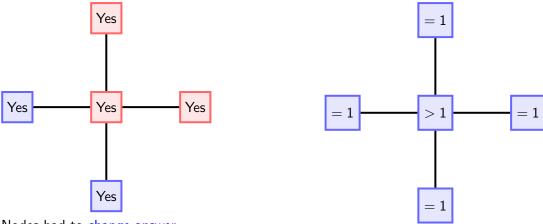
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

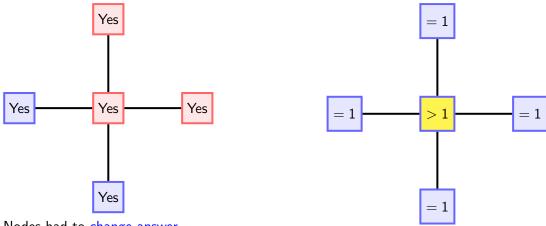
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

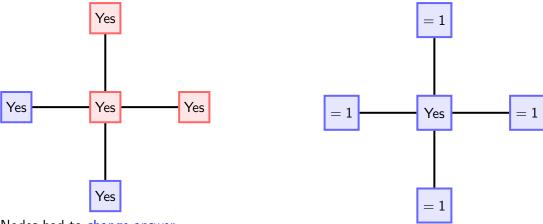
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

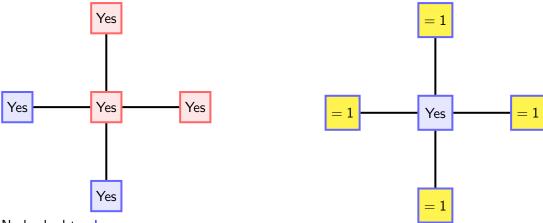
Every node executes identical finite-state machine.

Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

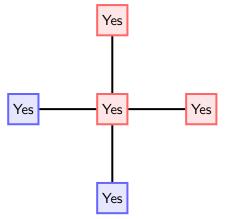
Every node executes identical finite-state machine.

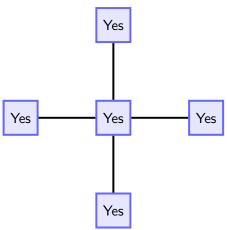
Nodes decide property of graph or initial labeling by consensus.


For example: (existence of blue node) or (graph is a star).

Every node executes identical finite-state machine.

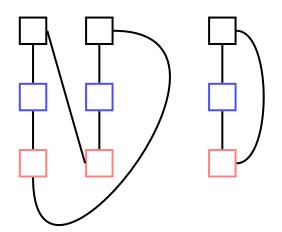
Nodes decide property of graph or initial labeling by consensus.

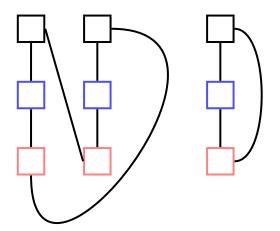

For example: (existence of blue node) or (graph is a star).

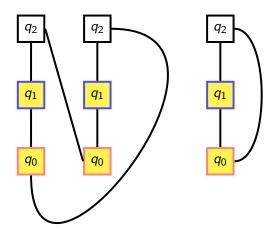

Every node executes identical finite-state machine.

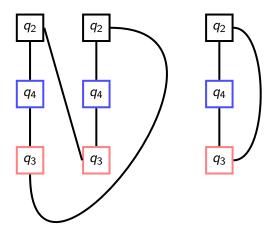
Nodes decide property of graph or initial labeling by consensus.

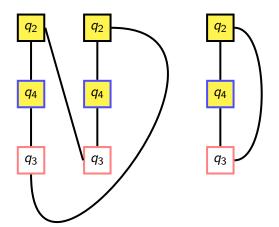
For example: (existence of blue node) or (graph is a star).

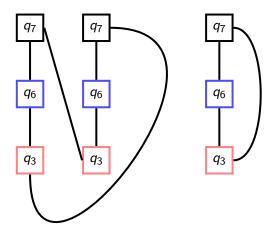


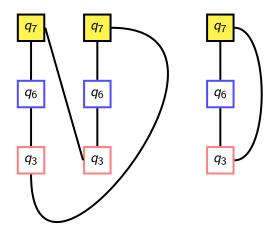

Nodes had to change answer.

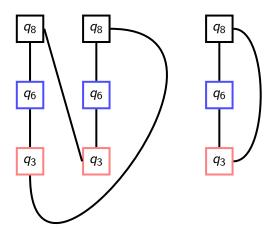


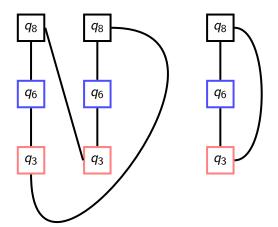

Nodes had to count their neighbors.


Is it possible to distinguish different length cycles?









Is it possible to distinguish different length cycles?

Another assumption comes into play: Nodes are anonymous.

Not if same color nodes are always selected at same time. \rightarrow Fairness.

Detection	Acceptance	Selection	Fairness

Detection	Acceptance	Selection	Fairness
Non-Counting: $\{A, B\}$. B Main A			

Detection	Acceptance	Selection	Fairness
Non-Counting: {A, B}. A B Main A			
Counting: $\{\{A, A, B\}\}$. A B Main A			

Detection	Acceptance	Selection	Fairness
Non-Counting: {A, B}. A B - Main - A	Halting: Nodes cannot change answer. ? - ? - Yes		
Counting: $\{\{A, A, B\}\}$. B Main A			

Detection	Acceptance	Selection	Fairness
Non-Counting: {A, B}. A B - Main - A	Halting: Nodes cannot change answer. ? - ? - Yes		
Counting: $\{\{A, A, B\}\}$. A B Main A	Stable Consensus: Nodes can change their answer. No - No - Yes		

Detection	Acceptance	Selection	Fairness
Non-Counting: {A, B}. A B - Main - A	Halting: Nodes cannot change answer. ? - ? - Yes	Synchronous:	
Counting: $\{\{A, A, B\}\}$. A B Main A	Stable Consensus: Nodes can change their answer. No - No - Yes		

Detection	Acceptance	Selection	Fairness
Non-Counting: {A, B}. A B - Main - A	Halting: Nodes cannot change answer. ? - ? - Yes	Synchronous:	
Counting: $\{\{A, A, B\}\}$. A B - Main - A	Stable Consensus: Nodes can change their answer. No - No - Yes	Exclusive:	

Detection	Acceptance	Selection	Fairness
Non-Counting: {A, B}. A B - Main - A	Halting: Nodes cannot change answer. ? - ? - Yes	Synchronous:	
Counting: $\{\{A, A, B\}\}$. A B - Main - A	Stable Consensus: Nodes can change their answer. No - No - Yes	Exclusive:	
		Liberal:	

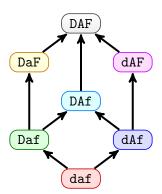
Detection	Acceptance	Selection	Fairness
Non-Counting: {A, B}. A B - Main - A	Halting: Nodes cannot change answer. ? - ? - Yes	Synchronous:	Adversarial Scheduling: Every node v is selected infinitely often.
Counting: {{A, A, B}}. A B - Main - A	Stable Consensus: Nodes can change their answer. No - No - Yes	Exclusive:	
		Liberal:	

Detection	Acceptance	Selection	Fairness
Non-Counting: {A, B}. A B - Main - A	Halting: Nodes cannot change answer. ? - ? - Yes	Synchronous:	Adversarial Scheduling: Every node v is selected infinitely often.
Counting: $\{\{A, A, B\}\}$. A B - Main - A	Stable Consensus: Nodes can change their answer. No - No - Yes	Exclusive:	Pseudo-Stochastic: Every finite sequence of selections occurs infinitely often.
		Liberal:	

Classification

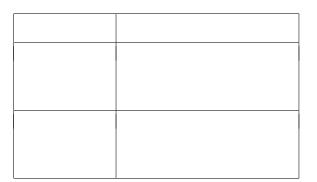
Prior Research: Choice in Selection Aspect does not influence decision power.

Classification

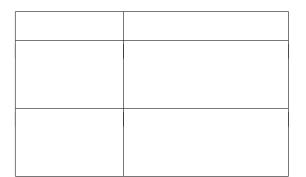

Prior Research: Choice in Selection Aspect does not influence decision power.

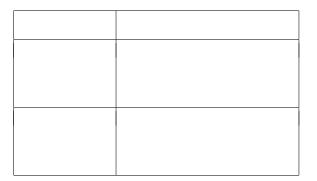
Detection	Acceptance	Fairness
d: non-counting	a: halting	f: adversarial scheduling
D: counting	A: stable consensus	F: pseudo-stochastic scheduling

Classification

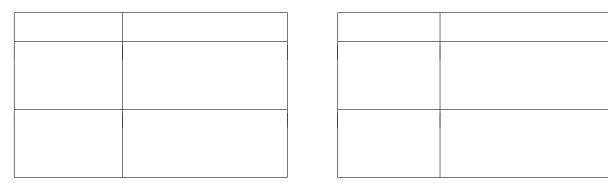

Prior Research: Choice in Selection Aspect does not influence decision power.

Detection	Acceptance	Fairness
d: non-counting	a: halting	f: adversarial scheduling
D: counting	A: stable consensus	F: pseudo-stochastic scheduling


We determine the decision power for labeling properties.



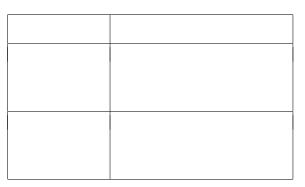
We determine the decision power for labeling properties.


For every colored graph: color count = function assigning to a color the number of nodes.

We determine the decision power for labeling properties.

For every colored graph: color count = function assigning to a color the number of nodes.

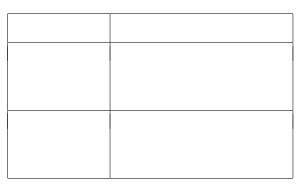
We determine the decision power for labeling properties.


For every colored graph: color count = function assigning to a color the number of nodes.

Non-Example	The graph is a star.

We determine the decision power for labeling properties.

For every colored graph: color count = function assigning to a color the number of nodes.


Non-Example	The graph is a star.
Accepted	

We determine the decision power for labeling properties.

For every colored graph: color count = function assigning to a color the number of nodes.

Non-Example	The graph is a star.
Accepted	
Rejected	

We determine the decision power for labeling properties.

For every colored graph: color count = function assigning to a color the number of nodes.

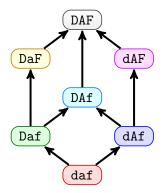
Non-Example	The graph is a star.
Accepted	
Rejected	

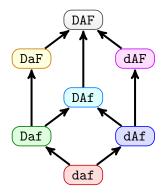
Example	There exists a blue node.

We determine the decision power for labeling properties.

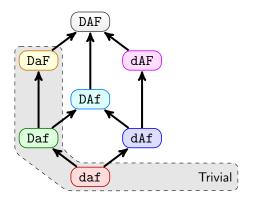
For every colored graph: color count = function assigning to a color the number of nodes.

Non-Example	The graph is a star.
Accepted	
Rejected	

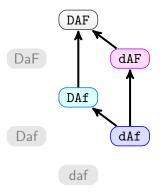

Example	There exists a blue node.
Accepted	

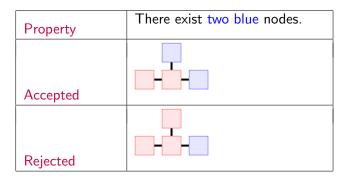

We determine the decision power for labeling properties.

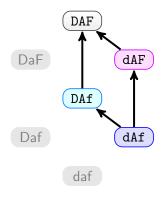
For every colored graph: color count = function assigning to a color the number of nodes.

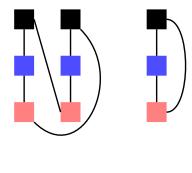

Non-Example	The graph is a star.
Accepted	
Rejected	

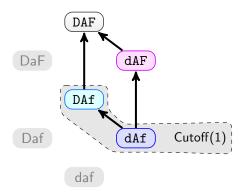
Example	There exists a blue node.
Accepted	
Rejected	

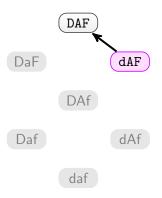


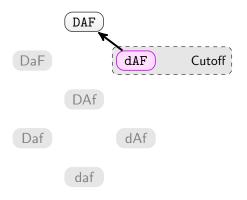



Property	There exists one blue node.
Accepted	
Rejected	




Class	Trivial
includes	True, False

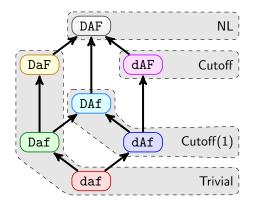




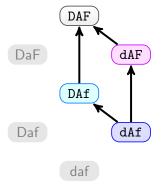
Class	Cutoff(1)
included	There exists both one red and one blue node.
not included	There exist two blue nodes.

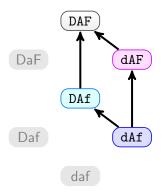
Property	There exist more blue nodes than red nodes.
Accepted	
Rejected	

Class	Cutoff
included	There exist three blue nodes and there exist two red nodes.
not included	There exist more blue nodes than red nodes.

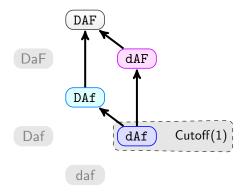


Where is the Limit? What about PRIMES?

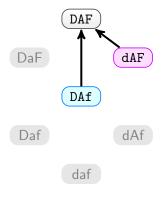

Property	The number of blue nodes is a prime number.
Accepted	
Rejected	

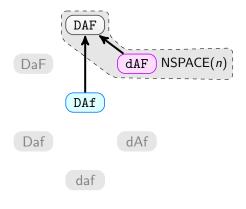


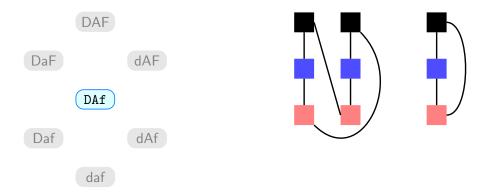
Class	$NL = NSPACE(\log n)$
inputs	<i>n</i> blue nodes means input size
	$\Theta(n)$, i.e. input in unary!
includes	There exist more blue nodes
	than red nodes.
	The number of blue nodes
	is a prime number.

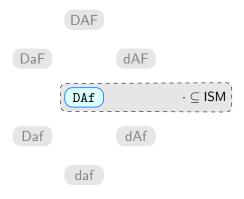


Class	Distinguishing Property
Cutoff(1)	There exists one blue node.
Cutoff	There exist two blue nodes.
NL	There exist more blue nodes than red nodes.

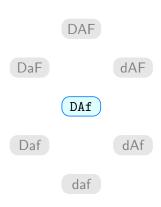



Property	There exist more blue nodes than red nodes.
Accepted	
Rejected	

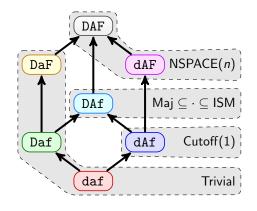

Class	Cutoff(1)
included	There exists both one red
	and one blue node.
not included	There are two blue nodes.
	There are more blue nodes
	than red nodes.



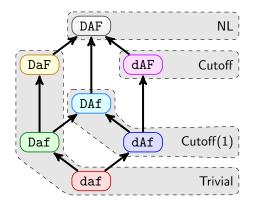
What is the new limit for the strongest model? Has to be at least NL.

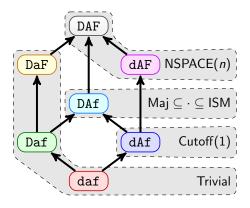


Class	NSPACE(n)
How huge?	gigantic. theoretical maximum.


Class	Invariant under Scalar Multiplication
Definition	$\varphi \in ISM \Leftrightarrow \forall \lambda \in \mathbb{N}_{>0} :$ $\varphi(L) = \varphi(\lambda \cdot L).$
included	There exist more blue nodes than red nodes.
not included	There exist two blue nodes.

Priority: Can we decide Majority with DAf?


Property	There exist more blue nodes than red nodes.
Accepted	
Rejected	



Class	Distinguishing Property
Cutoff(1)	There exists one blue node.
ISM	There exist more blue nodes
	than red nodes.
NSPACE(n)	The number of blue nodes
	is a prime number.

Thank you for your Attention!

