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Broadcast consensus protocols (BCPs) are a model of computation, in
which anonymous, identical, finite-state agents compute by sending/receiving
global broadcasts. BCPs are known to compute all number predicates in
NL = NSPACE(logn) where n is the number of agents. They can be considered
an extension of the well-established model of population protocols. This paper
investigates execution time characteristics of BCPs. We show that every
predicate computable by population protocols is computable by a BCP with
expected O(n logn) interactions, which is asymptotically optimal. We further
show that every log-space, randomized Turing machine can be simulated by a
BCP with O(n logn · T ) interactions in expectation, where T is the expected
runtime of the Turing machine. This allows us to characterise polynomial-time
BCPs as computing exactly the number predicates in ZPL, i.e. predicates
decidable by log-space bounded randomised Turing machine with zero-error
in expected polynomial time where the input is encoded as unary.

1. Introduction
In recent years, models of distributed computation following the computation-by-consensus
paradigm attracted considerable interest in research (see for example [9, 26, 27, 8, 13]).
In such models, network agents compute number predicates, i.e. Boolean-valued functions
of the type Nk → {0, 1}, by reaching a stable consensus whose value determines the
outcome of the computation. Perhaps the most prominent model following this paradigm
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are population protocols [5, 6], a model in which anonymous, identical, finite-state agents
interact randomly in pairwise rendezvous to agree on a common Boolean output.

Due to anonymity and locality of interactions, it is an inherent property of population
protocols that agents are generally unable to detect with absolute certainty when the
computation has stabilized. This makes sequential composition of protocols difficult, and
further complicates the implementation of control structures such as loops or branching
statements. To overcome this drawback, two kinds of approaches have been suggested
in the literature: 1.) Let agents guess when the computation has stabilized, leading to
composable, but merely approximately correct protocols [7, 24], or 2.) extend population
protocols by global communication primitives that enable agents to query global properties
of the agent population [13, 8, 27].
Approaches of the first kind are for the most part based on simulations of global

broadcasts by means of epidemics. In epidemics-based approaches the spread of the
broadcast signal is simulated by random pairwise rendezvous, akin to the spread of a
viral epidemic in a population. When the broadcasting agent meets a certain fraction
of “infected” agents, it may decide with reasonable certainty that the broadcast has
propagated throughout the entire population, which then leads to the initiation of the next
computation phase. Of course, the decision to start the next phase may be premature, in
which case the rest of the execution may be faulty. However, epidemics can also be used
to implement phase clocks that help keep the failure probability low (see e.g. [7]).
In [13], Blondin, Esparza, and one of the authors of this paper introduced broadcast

consensus protocols (BCPs), an extension of population protocols by reliable, global, and
atomic broadcasts. BCPs find their precursor in the broadcast protocol model introduced
by Emerson and Namjoshi in [17] to describe bus-based hardware protocols. This model
has been investigated intensely in the literature, see e.g. [18, 19, 15, 29]. Broadcasts also
arise naturally in biological systems. For example, Uhlendorf et al. analyse applications
of broadcasts in the form of an external, global light source for controlling a population
of yeasts [12].
The authors of [13] show that BCPs compute precisely the predicates in NL =

NSPACE(logn), where n is the number of agents. For comparison, it is known that
population protocols compute precisely the Presburger predicates, which are the predi-
cates definable in the first-order theory of the integers with addition and the usual order;
a class much less expressive than the former.
An epidemics-based approach was used in [7] to show that population protocols

can simulate with high probability a step of a virtual register machine with expected
O(n log5(n)) interactions, where n is the number of agents. This result stimulated
further research into time bounds for classical problems such as leader election (see e.g.
[21, 1, 16, 30, 11]) and majority (see e.g. [4, 2]). In their seminal paper [5], Angluin et
al. already showed that population protocols can stably compute Presburger predicates
with O(n2 logn) interactions in expectation. Belleville et al. further showed that
leaderless protocols require a quadratic number of interactions in expectation to stabilize
to the correct output for a wide class of predicates [10]. The aforementioned bounds
apply to stabilisation time: the time it takes to go from an initial configuration to a
stable consensus that cannot be destroyed by future interactions. In [24], Kosowski
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and Uznanski considered the weaker notion of convergence time: the time it takes on
average to ultimately transition to the correct consensus (although this consensus could in
principle be destroyed by future interactions), and they show that sublinear convergence
time is achievable.

By contrast, to the best of our knowledge, time characteristics of BCPs have not been
discussed in the literature. The NL-powerful result presented in [13] does not establish
any time bounds. In fact, [13] only considers a non-probabilistic variant of BCPs with a
global fairness assumption instead of probabilistic choices.

Contributions of the paper This paper initiates the runtime analysis of BCPs in terms
of expected number of interactions to reach a stable consensus. To simplify the definition
of probabilistic execution semantics, we introduce a restricted, deterministic variant of
BCPs without rendezvous transitions. In Section 2, we define probabilistic execution
semantics for the restricted version of BCPs, and we provide an introductory example
for a fast protocol computing majority in Section 3.

In Section 4, we show that these restrictions of our BCP model are inconsequential in
terms of expected number of interactions: both rendezvous and nondeterministic choices
can be simulated with a constant runtime overhead.

In Section 5, we show that every Presburger predicate can be computed by BCPs with
O(n logn) interactions and with constant space, where n denotes the number of agents
in the population. This result is asymptotically optimal.

In more generality, in Section 6, we use BCPs to simulate Turing machines (TMs). In
particular, we show that any randomised, logarithmically space-bound, polynomial-time
TM can be simulated by a BCP with an overhead of O(n logn) interactions per step.
Conversely, any polynomial-time BCP can be simulated by such a TM. This result
can be considered an improvement of the NL bound from [13], now in a probabilistic
setting. We also give a corresponding upper bound, which yields the following succinct
characterisation: polynomial-time BCPs compute exactly the number predicates in ZPL,
which are the languages decidable by randomised log-space polynomial-time TMs with
zero-error (the log-space analogue to ZPP).
Bounding the time requires a careful analysis of each step in the simulation of the

Turing machine. Thus, our proof diverges in significant ways from the proof establishing
the NL lower bound in [13]. Most notably, we now make use of epidemics in order to
implement clocks that help reduce failure rates.

2. Preliminaries
Complexity classes As is usual, we define NL as the class of languages decidable by
a nondeterministic log-space TM. Additionally, by ZPL we denote the set of languages
decided by a randomised log-space TM A, s.t. A only terminates with the correct result
(zero-error) and that it terminates within O(polyn) steps in expectation, as defined by
Nisan in [28].
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Multisets A multiset over a finite set E is a mappingM : E → N. The set of all multisets
over E is denoted NE . For every e ∈ E, M(e) denotes the number of occurrences of
e in M . We sometimes denote multisets using a set-like notation, e.g. Hf, g, gI is the
multiset M such that M(f) = 1, M(g) = 2 and M(e) = 0 for every e ∈ E \ {f, g}.
Addition, comparison and scalar multiplication are extended to multisets componentwise,
i.e. (M +M ′)(e) def= M(e) +M ′(e), (λM)(e) def= λM(e) and M ≤M ′ def⇐⇒ M(e) ≤M ′(e)
for every M,M ′ ∈ NQ, e ∈ E, and λ ∈ N. For M ′ ≤ M we also define componentwise
subtraction, i.e. (M −M ′)(e) def= M(e)−M ′(e) for every e ∈ E. For every e ∈ E, we write
e

def= HeI. We lift functions f : E → E′ to multisets by defining f(M)(e′) def= ∑
f(e)=e′M(e)

for e′ ∈ E′. Finally, we define the support and size of M ∈ NE respectively as JMK def=
{e ∈ E : M(e) > 0} and |M | def= ∑

e∈EM(e).

Broadcast Consensus Protocols A broadcast consensus protocol [13] (BCP) is a tuple
P = (Q,Σ, δ, I, O) where

• Q is a non-empty, finite set of states,

• Σ is a non-empty, finite input alphabet,

• δ is the transition function (defined below),

• I : Σ→ Q is the input mapping, and

• O ⊆ Q is a set of accepting states.

The function δ maps every state q ∈ Q to a pair (r, f) consisting of the successor state
r ∈ Q and the response function f : Q −→ Q.

Configurations A configuration is a multiset C ∈ NQ. Intuitively, a configuration C
describes a collection of identical finite-state agents with Q as set of states, containing
C(q) agents in state q for every q ∈ Q. We say that C ∈ NQ is a 1-consensus if JCK ⊆ O,
and a 0-consensus if JCK ⊆ Q \O.

Step relation A broadcast δ(q) = (r, f) is executed in three steps: (1) an agent at state
q broadcasts a signal and leaves q; (2) all other agents receive the signal and move to the
states indicated by the function f , i.e. an agent in state s moves to f(s); and (3) the
broadcasting agent enters state r.

Formally, for two configurations C,C ′ we write C −→ C ′, whenever there exists a state
q ∈ Q s.t. C(q) ≥ 1, δ(q) = (r, f), and C ′ = f(C − q) + r is the configuration computed
from C by the above three steps. By ∗−→ we denote the reflexive-transitive closure of −→.
For example, consider a configuration C def= Ha, a, bI and a broadcast transition a 7→

b, {a 7→ c, b 7→ d}. To execute this transition, we move an agent from state a to state b
and apply the transition function to all other agents, so we end up in C ′ def= HbI + Hc, dI.
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Broadcast transitions We write broadcast transitions as q 7→ r, S with S a set of
expressions q′ 7→ r′. This refers to δ(q) = (r, f), with f(q′) = r′ for (q′ 7→ r′) ∈ S. We
usually omit identity mappings q′ 7→ q′ when specifying S.
For graphic representations of broadcast protocols we use a different notation, which

separates sending and receiving broadcasts. There we identify a transition δ(q) = (r, f)
with a name α and specify it by writing q !α−→ r and q′ ?α−→ r′ for f(q′) = r′. Intuitively,
q′ ?α−→ r′ can be understood as an agent transitioning from q′ to r′ upon receiving the
signal α, and q !α−→ r means that an agent in state q may transmit the signal α and
simultaneously transition to state r.
As defined, δ is a total function, so each state is associated with a unique broadcast.

If we do not specify a transition δ(q) = (r, f) explicitly, we assume that it simply maps
each state to itself, i.e. q 7→ q, {r 7→ r : r ∈ Q}. We refer to those transitions as silent.

Executions An execution is an infinite sequence π = C0C1C2... of configurations with
Ci −→ Ci+1 for every i. It has some fixed number of agents n def= |C0| = |C1| = ... . Given
a BCP and an initial configuration C0 ∈ NQ, we generate a random execution with the
following Markov chain: to perform a step at configuration Ci, a state q ∈ Q is picked
at random with probability distribution p(q) = Ci(q)/|Ci|, and the (uniquely defined)
transition δ(q) is executed, giving the successor configuration Ci+1. We refer to the
random variable corresponding to the trace of this Markov chain as random execution.

Stable Computation Let π denote an execution and inf(π) the configurations occurring
infinitely often in π. If inf(π) contains only b-consensuses, we say that π stabilises to
b. For a predicate ϕ : NΣ → {0, 1} we say that P (stably) computes ϕ, if for all inputs
X ∈ NΣ, the random execution of P with initial configuration C0 = I(X) stabilises to
ϕ(X) with probability 1.
Finally, for an execution π = C0C1C2... we let Tπ denote the smallest i s.t. all

configurations in CiCi+1... are ϕ(X)-consensuses, or ∞ if no such i exists. We say that a
BCP P computes ϕ within f(n) interactions, if for all initial configurations C0 with n
agents the random execution π starting at C0 has E(Tπ) ≤ f(n) <∞, i.e. P stabilises
within f(n) steps in expectation. If f ∈ O(poly(n)), then we call P a polynomial-time
BCP.

Global States Often, it is convenient to have a shared global state between all agents.
If, for a BCP P = (Q,Σ, δ, I, O) we have Q = S ×G, I(Σ) ⊆ Q × {j} for some j ∈ G,
and f((s, j)) ∈ Q × {j′} for each δ((q, j)) = ((r, j′), f), then we say that P has global
states G. A configuration C has global state j, if JCK ⊆ Q× {j} for j ∈ G. Note that,
starting from a configuration with global state j, P can only reach configurations with a
global state. Hence for P we will generally only consider configurations with a global
state. To make our notation more concise, when specifying a transition δ(q) = (r, f) for
P, we will write f as a mapping from S to S, as q, r already determine the mapping of
global states.
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Figure 1: A fast broadcast consensus protocol computing the majority predicate.

Population Protocols A population protocol [5] replaces broadcasts by local rendezvous.
It can be specified as a tuple (Q,Σ, δ, I, O) where Q, Σ, I, O are defined as in BCPs,
and δ : Q2 → Q2 defines rendezvous transitions. A step of the protocol at C is made by
picking two agents uniformly at random, and applying δ to their states: first q1 ∈ Q is
picked with probability C(q1)/|C|, then q2 ∈ Q is picked with probability C ′(q2)/|C ′|,
where C ′ def= C − Hq1I. The successor configuration then is C − Hq1, q2I + Hr1, r2I where
δ(q1, q2) = (r1, r2).

Broadcast Protocols Later on we will construct BCPs out of smaller building blocks
which we call broadcast protocols (BPs). A BP is a pair (Q, δ), where Q and δ are defined
as for BCPs. We extend the applicable definitions from above to BPs, in particular the
notions of configurations, executions, and global states.

3. Example: Majority
As an introductory example, we construct a broadcast consensus protocol for the ma-
jority predicate ϕ(x, y) = x > y. Figure 1 depicts the protocol graphically. We
have the set of states {x, y, �} × {0, 1}, with global states {0, 1}, where the states
O

def= {(x, 1), (y, 1), (�, 1)} are accepting, and I(x) = (x, 0) and I(y) = (y, 0). The
transitions are

(x, 0) 7→ (�, 1), ∅ (α)
(y, 1) 7→ (�, 0), ∅ (β)

Note that we use the more compact notation for transitions in the presence of global
states, written in long form (α) would be

(x, 0) 7→ (�, 1), {(x, 0) 7→ (x, 1), (y, 0) 7→ (y, 1), (�, 0) 7→ (�, 1)} (α)

To make the presentation of the following sample execution more readable, we shorten
the state (i, j) to ij . For input x = 3 and y = 2, an execution could look like this:

Hx0, x0, x0, y0, y0I α−→ H�1, x1, x1, y1, y1I β−→ H�0, x0, x0, �0, y0I
α−→ H�1, �1, x1, �1, y1I β−→ H�0, �0, x0, �0, �0I α−→ H�1, �1, �1, �1, �1I
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Intuitively, there is a preliminary global consensus, which is stored in the global state.
Initially, it is rejecting, as x > y is false in the case x = y = 0. However, any x agent is
enough to tip the balance, moving to an accepting global state. Now any y agent could
speak up, flipping the consensus again.

The two factions initially belonging to x and y, respectively, alternate in this manner
by sending signals α and β. Strict alternation is ensured as an agent will not broadcast
to confirm the global consensus, only to change it.
After emitting the signal, the agent from the corresponding faction goes into state
�, where it can no longer influence the computation. In the end, the majority faction
remains and determines the final consensus.
Considering these alternations with shrinking factions, the expected number of steps

of the protocol until stabilization can be bounded by 2 ∑n
k=1 n/k = O(n logn). To see

that this holds, we consider the factions separately: let n0 denote the number of agents
the first faction starts with (i.e. agents initially in state (x, 0)), and n1 the number at the
end. When we are waiting for the first transition of this faction all n0 agents are enabled,
so we wait n/n0 steps in expectation until one of them executes a broadcast. For the
next one, we wait n/(n0 − 1) steps. In total, this yields ∑n0

k=n1+1 n/k ≤
∑n
k=1 n/k steps

for the first faction, and via the same analysis for the second as well.
In contrast to the O(n logn) interactions this protocol takes, constant-state population

protocols require n2 interactions in expectation for the computation of majority [4].
However, these numbers are not directly comparable: broadcasts may not be parallelizable,
while it is uncontroversial to assume that n rendez-vous occur in parallel time 1.

4. Comparison with other Models
To facilitate the definition of an execution model, we only consider deterministic BCPs,
in the sense that for each state there is a unique transition to execute. Blondin, Esparza
and Jaax [14] analysed a more general model, i.e. they allow multiple transitions for a
single state, picking one of them uniformly at random when an agent in that state sends
a broadcast. Additionally, as they consider BCPs as an extension of population protocols,
they include rendez-vous transitions. We now show that we can simulate both extensions
within a constant-factor overhead.

4.1. Non-Deterministic Broadcast Protocols
The following construction allows for two broadcast transitions to be executed uniformly
at random from a single state. This can easily be extended to any constant number of
transitions using the usual construction of a binary tree with rejection sampling.
Now assume that we are given a BCP (Q,Σ, δ0, I, F ) with another set of broadcast

transitions δ1 and we want each agent to pick one transition uniformly at random from
δ0 or δ1 whenever it executes a broadcast.

We implement this using a synthetic coin, i.e. we are utilising randomness provided by
the scheduler to enable individual agents to make random choices. This idea has also
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Figure 2: Transition diagram for implementing multiple broadcasts per state, for q ∈ Q,
with (q, i, j) written as qij . Dashed nodes represent multiple states, with j ∈ T .
Transitions resulting from executing the broadcasts in δ0, δ1 are not shown.

been used for population protocols [1, 3]. Compared to these implementations, broadcasts
allow for a simpler approach.

The idea is that we partition the agents into types, so that half of the agents have type
0 and the other half have type 1. Additionally, there is a global coin shared across all
agents. To flip the coin, a random agent announces its type (the coin is set to heads if
the agent is type 0, tails if it is type 1) and a second random agent executes a broadcast
transition from either δ0 or δ1, depending on the state of the global coin that has just
been set. These two steps repeat, the former flipping the coin fairly and the latter then
executing the actual transitions. Figure 2 sketches this procedure.
Intuitively, we start with no agents having either type 0 or 1. When such a typeless

agent is picked by the scheduler to announce its type (to flip the global coin) it instead
broadcasts that it is searching for a partner. Once this has happened twice, these two
agents are matched, one is assigned type 0 and the other type 1. Thus we ensure that
there is the exact same number of type 0 and type 1 agents at all times, meaning that we
get a perfectly fair coin. Additionally we make progress regardless of whether an agent
with or without a type is chosen.

To describe the construction formally, we introduce a set of types T def= {?,+,−, 0, 1},
and choose the set of states Q′ def= Q× T × {∗, 0, 1}, with global states {∗, 0, 1} used to
represent the state of the synthetic coin. We use (q, ?) as initial state instead of q ∈ I,
and start with global state ∗. To pick types, we need transitions

(q, ?, ∗) 7→ (q,+, ∗), {(r, ?) 7→ (r,−) : r ∈ Q} for q ∈ Q (seek)
(q,−, ∗) 7→ (q, 1, ∗), {(r,−) 7→ (r, ?) : r ∈ Q}

∪ {(r,+) 7→ (r, 0) : r ∈ Q}
for q ∈ Q (find)

So an agent of type ? announces that it seeks a partner, moving itself to type + and
the others to type −. Then any type − agent may broadcast that a match has been
found, moving itself to type 1 and the type + agent to type 0. The other type − agents
revert to type ?. This ensures that the number of type 0 and 1 agents is always equal.
Note that there may be an odd number of agents, in which case one agent of type +
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remains.
The following transitions effectively flip the global coin, by having an agent of type

0 or 1 announce that we now execute a broadcast transition from respectively δ0 or δ1.
Here, we have q ∈ Q, ◦ ∈ {0, 1}.

(q, ◦, ∗) 7→ (q, ◦, ◦), ∅ (flip ◦)

Then we actually execute the transition δ◦(q) = (r, f), for each (q, i) ∈ Q× T .

(q, i, ◦) 7→ (r, i, ∗), {(s, j) 7→ (f(s), j) : (s, j) ∈ Q× T} (exec ◦)

As the number of type 0 and 1 agents is equal, we select transitions from δ0 and δ1
uniformly at random. It remains to show that the overhead of this scheme is bounded.
Executing transition (exec 0) or (exec 1) is the goal. Transitions (flip 0) and (flip

1) ensure that the former are executed in the very next step, so they cause at most a
constant-factor slowdown. Transitions (seek) and (find) can be executed at most n times,
as they decrease the number of agent of type ?. All that remains is the implicit silent
transition of states (q,+, j), which occurs with probability at most 1/n in each step.
Hence, to execute m ≥ n steps of the simulated protocol our construction takes at

most (2m+ 2n) · n/(n− 1) ≤ 8m steps in expectation.

4.2. Population Protocols
Another extension to BCPs is the addition of rendez-vous transitions. Here we are given a
map R : Q2 → Q2. At each step, we flip a coin and either execute a broadcast transition
as usual, or pick two distinct agents uniformly at random, in state q and r, respectively.
These interact and move to the two states R(q, r).

Again, we can simulate this extension with only a constant-factor increase in the
expected number of steps. Given a BCP (Q,Σ, B, I, F ), the idea is to add states
{q̃ : q ∈ Q} ∪ {rq : r, q ∈ Q} and insert “activating” transitions q 7→ q̃, {r 7→ rq : r ∈ Q}
for q ∈ Q and “deactivating” transitions rq 7→ s, {q̃ 7→ t} ∪ {uq 7→ u : u ∈ Q} for each
R(q, r) = (s, t). So a state q first signals that it wants to start a rendez-vous transition.
Then, any other state r answers, both executing the transition and signalling to all other
states that it has occurred.
Each state in Q has exactly 2 broadcast transitions, so (using the scheme described

above) the probability of executing any “activating” transition is exactly 1
2 , the same

as doing one of the original broadcast transitions in B. After doing an activating
transition we may do nothing for a few steps by executing the broadcast transition on q̃,
but eventually we execute a “deactivating” transition and go back. The probability of
executing a broadcast on q̃ is 1/n, so simulating a single rendez-vous transition takes
1 + n/(n− 1) ≤ 3 steps in expectation.

5. Protocols for Presburger Arithmetic
While Blondin, Esparza and Jaax [14] show that BCPs are more expressive than population
protocols, they leave the question open whether BCPs provide a runtime speed-up for
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the class of Presburger predicates computable by population protocols. We already saw
that Majority can be computed within O(n logn) interactions in BCPs. This also holds
in general for Presburger predicates:

Theorem 1. Every Presburger predicate is computable by a BCP within at most O(n logn)
interactions.

We remark that the O(n logn) bound is asymptotically optimal: e.g. the stable
consensus for the parity predicate (x = 1 mod 2) must alternate with configuration size,
which clearly requires every agent to perform at least one broadcast in the computation,
and thus yields a lower bound of ∑n

k=1
n
k = Ω(n logn) steps like in the coupon collector’s

problem [20].
It is known [22] that every Presburger predicate can be expressed as Boolean combi-

nation of linear inequalities and linear congruence equations over the integers, i.e. as
Boolean combination of predicates of the form ∑

i αixi < c, and ∑
i αixi = c mod m,

where the αi, c and m are integer constants. In Section 5.1 we construct BCPs that
compute arbitrary linear inequalities, before we sketch the construction for congruences
and Boolean combinations in Section 5.2.

5.1. Linear Inequalities

Proposition 2. Let α1, . . . , αk, c ∈ Z and let ϕ(x1, . . . , xk)
def⇐⇒

∑k
i=1 αixi < c denote

a linear inequality. There exists a broadcast consensus protocol that computes ϕ within
O(n logn) interactions in expectation.

Proof. We assume wlog that αi 6= 0 for i = 1, ..., k and that α1, ..., αk are pairwise
distinct. Let A def= max{|α1|, |α2| . . . , |αk|, |c|}. We define a BCP P = (Q×G,Σ, δ, I, O)
with global states G, where

Q
def= {0, α1, ..., αk} Σ def= {x1, . . . , xk}

G
def= [−2A, 2A] O

def= {(q, v) : v < c}

As inputs we get I(xi)
def= (αi, 0) for each i = 1, ..., k. The transitions δ are constructed

as follows. For every v ∈ [−2A, 2A] and every αi satisfying v + αi ∈ [−2A, 2A], we add
the following transition to T :

(αi, v) 7→ (0, v + αi), ∅ (αi)

Intuitively, in the first component of its state an agent stores its contribution to ∑
i αixi,

the left-hand side of the inequality. The global state is used to store a counter value,
initially set to 0. Each agent adds its contribution to the counter, as long as it does not
overflow. The counter goes from −2A to 2A, which allows it to store the threshold plus
any single contribution. The final counter value then determines the outcome of the
computation.
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Correctness Let ctr(C) denote the global state (and thus current counter value) of
configuration C. Further, let

sum(C) def=
∑

(α,v)∈Q
C(α, v) · α+ ctr(C)

denote the sum of all agents’ contributions and the current value of the counter. Every
initial configuration C0 has ctr(C) = 0 and thus sum(C) = ∑

i αxi. Each transition α
increases the counter by α but sets the agent’s contribution to 0 (from α), so sum(C) is
constant throughout the execution.

Recall that our output mapping depends only on the value of the counter, so our agents
always form a consensus (though not necessarily a stable one). If this consensus and
ϕ(C0) disagree, then, we claim, a non-silent transition is enabled.
To see this, note that the current consensus depends on whether ctr(C) < c. If that

is the case, but ϕ(C0) = 0, then sum(C) ≥ c and some agent with positive contribution
α > 0 exists. Due to ctr(C) < c, transition α is enabled. Conversely, if ctr(C) ≥ c and
ϕ(C0) = 1, some transition α with α < 0 will be enabled.
Finally, note that each non-silent transition increases the number of agents with

contribution 0 by one, so at most n can be executed in total. So the execution converges
and reaches, by the above argument, a correct consensus.

Convergence time Each agent executes at most one non-silent transition. To estimate
the total number of steps, we partition the agents by their current contribution: for
a configuration C let C+ def= C � {(q, v) ∈ Q : q > 0} denote the agents with positive
contribution, and define C− analogously. We have that either ctr(C) < 0 and all
transitions of agents in C+ would be enabled, or ctr(C) ≥ 0 and the transitions of C−
could be executed.
If C+ is enabled, then we have to wait at most n/|C+| steps in expectation until a

transition is executed, which reduces |C+| by one. In total we get n/|C+
0 |+ n/(|C+

0 | −
1) + ... + n/1 ∈ O(n logn). The same holds for C−, yielding our overall bound of
O(n logn).

5.2. Modulo Predicates and Boolean Combinations
Proposition 3. Let ϕ(x1, ..., xk)

def⇐⇒
∑k
i=1 αixi ≡ c (mod l) < c denote a linear

inequality, with α1, . . . , αk, c, l ∈ Z, l ≥ 2. There exists a broadcast consensus protocol
that computes ϕ within O(n logn) interactions in expectation.

Proof sketch. The idea is the same as for Proposition 2, but instead of taking care not
to overflow the counter we simply perform the additions modulo l.

Proposition 4 (Boolean combination of predicates). Let ϕ be a Boolean combina-
tion of predicates ϕ1, ..., ϕk, which are computed by BCPs P1, ...,Pk, respectively, within
O(n logn) interactions. Then there is a protocol computing ϕ within O(n logn) interac-
tions.
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Proof sketch. We do a simple parallel composition of the k BCPs, which is the same
construction as used for ordinary population protocols (see for example [5, Lemma 6]).
A detailed proof can be found in the full version of this paper.

6. Protocols for all Predicates in ZPL
BCPs compute precisely the predicates in NL with input encoded in unary, which
corresponds to NSPACE(n) when encoded in binary. The proof of the NL lower bound by
Blondin, Esparza and Jaax [14] goes through multiple stages of reduction and thus does
not reveal which predicates can be computed efficiently. We will now take a more direct
approach, using a construction similar to the one by Angluin, Aspnes and Eisenstat [7].
A step of a randomised Turing machine (RTM) can be simulated using variants of the
protocols for Presburger predicates from Section 5, which we combine with a clock to
determine whether the step has finished, with high probability.
Instead of simulating RTMs directly, it is more convenient to first reduce them to

counter machines. Here, we will use counter machines that are both randomised and
capable of multiplying and dividing by two, with the latter also determining the remainder.
This ensures that the reduction is performed efficiently, i.e. with overhead of O(n logn)
interactions per step.
We first show the other direction: simulating BCPs with RTMs.

Lemma 5. Polynomial-time BCPs compute at most the predicates in ZPL with input
encoded in unary.

Proof. An RTM can store the number of agents in each state as binary counters. Picking
an agent uniformly at random can be done in O(logn) time by picking a random number
between 1 and n and comparing it to the agents in the different states. Simulating a
transition can also be done with logarithmic overhead. It can further be shown that
stabilization of the execution is decidable in time O(logn) (see the full version of this
paper for details). As the BCP uses only O(polyn) interactions (in expectation) the
RTM is also O(polyn) time-bounded.

Theorem 6. Polynomial-time BCPs compute exactly the predicates in ZPL with input
encoded in unary.

The proof of Theorem 6 will take up the remainder of this section.

Counter machines Let Cmd def= {mul2, inc, divmod2, iszero} denote a set of commands,
and Ret def= {done0, done1} a set of completion statuses. A multiplicative counter machine
with k counters (k-CM) A = (S, T1, T2) consists of a finite set of states S with init, 0, 1 ∈ S
and two transition functions T1, T2 mapping a state q ∈ S to a tuple (i, j, q′0, q′1) where
i ∈ {1, ..., k} refers to a counter, j ∈ Cmd is a command, and q′0, q′1 ∈ S are successor
states (q′1 is not used for mul2 and inc operations). Additionally, we require that T1, T2
map q ∈ {0, 1} to (1, iszero, q, q), effectively executing no operation from those states.
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The idea is that A, starting in state init, picks transitions uniformly at random from
either T1 or T2. Apart from this randomness, the transitions are deterministic. Eventually,
A ends up in either state 0 or 1, at which point it cannot perform further actions, thereby
indicating whether the input is accepted or rejected.

Step-execution function A CM-configuration is a tuple K = (q, x1, ..., xk) ∈ Q× Nk.
We define the step-execution function step as follows, with x ∈ N:

• step(mul2, x) def= (done0, 2x),

• step(inc, x) def= (done0, x+ 1),

• step(divmod, 2x+ b) def= (doneb, x), for b ∈ {0, 1}, and

• step(iszero, x) def= (doneb, x), where b is 1 if x > 0 and 0 else.

For two CM-configurations K = (q, x1, ..., xk) and K ′ = (q′, x′1, ..., x′k) where T◦(q) =
(i, j, q′0, q′1) for ◦ ∈ {1, 2} we write K ◦−→ K ′ if step(j, xi) = (doneb, x′i), q′ = q′b for some
b ∈ {0, 1}, and xr = x′r for r 6= i. Note that for each K and ◦ there is exactly one K ′
with K ◦−→ K ′.

The reasoning for introducing the step-execution function is that we want to construct
a broadcast protocol (BP) which simulates just one step of the CM. Later on we can use
this BP as a building block in a more general protocol.

Computation Let ϕ : Nl → {0, 1} denote a predicate, for l ≤ k, and C ∈ Nl an
input to ϕ. We sample a random (CM-)execution π = K0K1K2... for input C, where
K0, ... are CM-configurations, via a Markov chain. For the initial configuration we have
K0

def= (init, C(1), ..., C(l), 0, ..., 0), and Ki is determined as the unique configuration with
Ki−1

◦−→ Ki, where ◦ ∈ {1, 2} is chosen uniformly at random. (So π is the random variable
defined as trace of the Markov Chain.)
We say that A computes ϕ within f(n) steps if for each C ∈ Nl with |C| = n the

random execution for input C reaches a configuration in {ϕ(C)} ×Nk after at most f(n)
steps in expectation. Finally, A is n-bounded if the random executions for inputs C with
|C| = n can only reach configurations in Q× Nk≤n.

Theorem 7. Let ϕ be a predicate decidable by a log-space bounded RTM within O(f(n))
steps in expectation with unary input encoding. There exists an n-bounded CM that
accepts ϕ within O(f(n) log(n)) steps in expectation.

Proof sketch. This can be shown by first representing the Turing machine by a stack
machine with two stacks that contain the tape content to the left/right of the current
machine head position. In this representation, head movements and tape updates amount
to performing pop/push operations on the stack. Moreover, we can simulate an c · n-
bounded stack by c many n-bounded stacks. An n-bounded stack, in turn, can be
represented in a counter machine with a constant number of 2n-bounded counters. The
stack content is represented as the base-2 number corresponding to the binary sequence
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stored in the stack. Popping then amounts to a divmod2 operation, and pushing amounts
to doubling the counter value, followed by adding 1 or 0, respectively.

A detailed proof can be found in the full version of this paper.

We formally define two types of BPs, ones that simulate a step of the CM, and ones
behaving like a clock.

Definition 1. Let BP P = (Q×G, δ) denote a BP with global states G where 0, 1,⊥∈ Q
and Cmd,Ret ⊆ G. We define the injection ϕ : G × N≤n → NQ×G as ϕ(j, x) def=
x · H(1, j)I + (n− x) · H(0, j)I. The configurations in ϕ(Cmd× N) are called initial, the
ones in ϕ(Ret×N) final. We call a configuration C failing, if C(⊥, i) > 0 for some i ∈ G.

We say that P is CM-simulating if the sets of final and failing configurations are closed
under reachability, and from every initial configuration ϕ(j, w) the only reachable final
configuration is ϕ(step(j, w)), if both are well-defined.

Definition 2. Let P = (Q, δ) denote a BP with 0, 1 ∈ Q and Time(P) the number of
steps until P, starting in configuration H0, ..., 0I, reaches H1, ..., 1I, or ∞ if it does not. If
Time(P) is almost surely finite and no agent is in state 1 before Time(P), then we call
P a clock-BP.

Now we begin by constructing a CM-simulating BP. The value of a given counter
is scattered across the population: each agent stores its contribution to this counter
value in its state. The counter value is the sum of all contributions. Usually, an agent’s
contribution is either 1 or 0, thus n agents can maximally store a counter value equal
to n, which is not problematic, since the counter machine is assumed to be n-bounded.
The difficult part is multiplying and dividing the counter by two. Besides contributions
0 and 1, we will also allow intermediate contributions 1

2 and 2. By executing a single
broadcast, we can multiply (or divide) all the individual contributions by 2, by setting
all contributions of value 1 to 1

2 , or 2, respectively. Then, over time, we “normalise” the
agents to all have contribution 0 or 1 again in a manner which is specified below. This
process takes some time, and we cannot determine with perfect reliability whether it is
finished, so we only bound the time with high probability. Here and in the following, we
say that some event (dependent on the population size n) happens with high probability,
if for all k > 0 the event happens with probability 1−O(n−k).
In this and subsequent lemmata we use G(p), for 0 < p < 1, to denote the geometric

distribution, that is the number of trials until a coin flip with probability p succeeds,
which has expectation 1/p. We start with a statement about the tail distributions of
sums of geometric variables.

Lemma 8. Let n ≥ 3 and X1, ..., Xn denote independent random variables with sum X
and Xi ∼ G(i/n). Then for any k ≥ 1 there is an l s.t.

P(X ≥ l · n lnn) ≤ n−k

Proof. See the full version of this paper.
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Lemma 9. There is a CM-simulating BP s.t. starting from an initial configuration it
reaches a final configuration within O(n logn) steps with high probability.

Proof. Let P = (Q×G, δ) denote our BP, with Q def= {0, 1
2 , 1, 2, ∗} and G

def= Cmd∪Ret∪
{high}. The following transitions initialise the computation, with b ∈ {0, 1}:

(b,mul2) 7→ (2b, done0), {1 7→ 2, 0 7→ 0} (α1)
(b, divmod2) 7→ ( b2 , done0), {1 7→ 1

2 , 0 7→ 0} (α2)
(b, inc) 7→ (b, high), ∅ (α3)

Additionally, we need transitions that move agents back into states 0 and 1.

(0, high) 7→ (1, done0), ∅ (β1)
(2, done0) 7→ (1, high), ∅ (β2)
(1

2 , done0) 7→ (0, done1), ∅ (β3)
(1

2 , done1) 7→ (1, done0), ∅ (β4)

This requires some explanation. Basically, we have the invariant that for a configuration
C the current value of the counter is b+ ∑

i∈Q,j∈G i · C((i, j)), where b is 1 if the global
state is high and 0 else. There is a “canonical” representation of each counter value,
where b = 0 and the individual contributions i ∈ Q are only 0 and 1. The transitions
(α1-α3) update the represented counter value in a single step, but cause a “noncanonical”
representation. The transitions (β1-β4) preserve the value of the counter and cause the
representation to eventually become canonical.

This corresponds to final configurations from Definition 1: as long as the representation
is noncanonical, i.e. an agent with value 1

2 , 2 or ∗ exists, the configuration is not final.
Conversely, once we reach a final configuration our representation is canonical, and, as
the value of the counter is preserved, we reach the correct final configuration.

(1, iszero) 7→ (1, done1), ∅ (α4)
(0, iszero) 7→ (0, done0), {1 7→ ∗} (α5)
(∗, done0) 7→ (1, done1), {∗ 7→ 1} (β5)

For iszero we do something similar, but the value of the counter does not change. If the
initial transition is executed by an agent with value 1, we can go to the global state done1
directly. Otherwise, we replace 1 by ∗ and go to done0, so if no agents with value 1 exist,
we are finished. Else some agent with value ∗ executes (β5) and we move to the correct
final configuration.
Final configurations can only contain states {0, 1} × Ret. As we have no outgoing

transitions from those states, they are indeed closed under reachability.
It remains to be shown that starting from a configuration C0 we reach a final configu-

ration within O(n logn) steps with high probability. Note that transitions (α1-α5) are
executed at most once. Moreover, these are the only transitions enabled at C0, so let C1
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denote the successor configuration after executing (α1-α5), i.e. C0 → C1. From now on,
we consider only transitions (β1-β5).

Let M def= {1
2 , 2, ∗}×G denote the set of “noncanonical” states, and, for a configuration

C, let Φ(C) def= 2 ∑
q∈M C(q) + b denote a potential function, with b being 1 if the global

state of C is high and 0 else. Now we can observe that executing a (β1-β5) transition
strictly decreases Φ, and that 0 ≤ Φ(C) ≤ 2n for any configuration C. So after at most
2n non-silent transitions, we have reached a final configuration.

Fix some transition (βj), let q ∈ Q×G denote the state initiating (βj), and let C,C ′, C ′′
denote configurations with C βj−→ C ′ ∗−→ C ′′, meaning that C ′′ is a configuration reachable
from C after executing (βj). Then, we claim, C(q) > C ′′(q).
To see that this holds for transitions (β2-β5), note that for i ∈ {1

2 , 2, ∗} the number
of agents with value i can only decrease when executing transitions (β1-β5). For (β1)
this is slightly more complicated, as (β3) increases the number of agents with value 0.
However, (β1) is reachable only after (α1) or (α3) has been executed, while (β3) requires
(α2). Thus, our claim follows.

Let Xk denote the number of silent transitions before executing (βj) for the k-th
time, k = 1, ..., l, and let rk denote the number of agents in state q at that time. Then
n ≥ r1 > r2 > ... > rl ≥ 1 and Xk is distributed according to G(rk/n). So we can use
Lemma 8 to show that the sum of Xk is O(n logn) with high probability. There are only
5 transitions (βj), so the same holds for the total number of steps until reaching a final
state.

Our next construction is the clock-BP, which indicates that some amount of time has
passed (with high probability). Angluin, Aspnes and Eisenstat used epidemics for this
purpose [7], as do we. The idea is that one agent initiates an epidemic and waits until it
sees an infected agent. Similar to standard analysis of the coupon collector’s problem,
this is likely to take Θ(n logn) time.

Lemma 10. There is a clock-BP P = (Q, δ) s.t. E(Time(P)) ∈ O(n logn) and Time(P) ∈
Ω(n logn) with probability 1−O(n−1/2).

Proof sketch. For a clock we use states {0, 1, c1, c2, c3, c
+
1 , c

+
2 } and transitions

0 7→ c+
1 , {0 7→ c+

2 } (α)
c+

2 7→ c3, {c+
2 7→ c2, c

+
1 7→ c1} (β)

c3 7→ c3, {c2 7→ c+
2 , c1 7→ c+

1 } (γ)
c+

1 7→ 1, {c+
2 7→ 1, c3 7→ 1} (ω)

State 0 is the initial state, 1 the final state. States c1 and c2 denote “uninfected”
agents, state c3 “infected” ones. The former can become activated (moving to c+

1 and
c+

2 ), causing one of them to become infected. Transition (α) marks a leader c1, once they
are infected the clock ends (via (ω)). In (β), a single activated agent becomes infected,
deactivating the other agents. They get activated again via transition (γ). The state
diagram is shown in Figure 3.
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Figure 3: State diagram of the clock implementation. Nodes with i agents in state c3 are
labelled i or i+, the latter denoting that the other agents are in states c+

1 and
c+

2 . The final state ∗ has all agents in state 1. Arcs are labelled with transition
probabilities.

It remains to show that this protocol fulfils the stated time bounds. We prove
E(Time(P)) ∈ O(n logn) by using that, in expectation, the protocol spends at most n/j
steps in state j and at most n/(n− j) in state j+. For the lower bound we make a case
distinction: either state b

√
nc is not visited (i.e. the leader is one of the first

√
n agents

to be infected), or the total number of steps is at least X1 + ...+Xb
√
nc, where Xj is the

number of steps the protocol spends in state i. As Xj is geometrically distributed with
mean n/j, we apply a tail bound from Janson [23] to get the desired result.

A detailed proof can be found in the full version of the paper.

While the above clock measures some interval of time with some reliability, we want
a clock that measures an “arbitrarily long” interval with “arbitrarily high” reliability.
Constructions for population protocols use phase clocks for this purpose, but broadcasts
allow us to synchronise the agents, so we can directly execute the clock multiple times in
sequence instead.

Lemma 11. Let k ∈ N denote some constant. Then there is a clock-BP P s.t.
E(Time(P)) ∈ O(n logn), and Time(P) < kn logn with probability O(n−k).

Proof sketch. The idea is that we run 28k2 clocks in sequence, in groups of 2k. Then it is
likely that at least one clock in each group works, yielding the overall minimum running
time. A detailed proof can be found in the full version of this paper.

As mentioned earlier, we combine the clock with the construction in Lemma 9. While
we cannot reliably determine whether the operation has finished, we can use a clock
to measure an interval of time long enough for the protocol to terminate with high
probability. The next construction does just that. In particular, in contrast to Lemma 9,
it uses its global state to indicate that it is done.

Lemma 12. There is a CM-simulating BP s.t. starting from an initial configuration
it reaches either a final or a failing configuration C almost surely and within O(n logn)
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steps in expectation, and C is final with high probability. Additionally, all reachable
configurations with global state in Ret are final or failing.

Proof. Fix some k ∈ N and let P = (Q × G, δ) denote the BP we want to construct.
Further, let P1 = (Q1 ×G1, δ1) denote the BP from Lemma 9 and choose some c s.t. P1
reaches a final configuration after at most cn logn steps with probability at least 1−n−k.

Now we use Lemma 11 to get a clock P2 = (Q2, δ2) that runs for at least cn logn steps
with probability at least 1− n−k.

We do a parallel composition of P1 and P2 to get P. In particular, Q def= Q1 × Q2,
G

def= {j◦ : j ∈ G1} ∪Ret, where for Q we identify (i, 0) with i for i ∈ {0, 1 ⊥}, and for G
we identify j with j◦ for j ∈ Cmd.

Intuitively, we use ◦ to rename the global states of P1, meaning that the global state
j ∈ G1 of P1 is now called j◦ in our protocol. We want P1 to start with the same initial
state we have, which is why we identified j with j◦ for j ∈ Cmd. However, we only want
to enter a final configurations once the clock has run out, so the completion statuses of
P1 are renamed into j◦ for j ∈ Ret and we enter a final configuration by setting to global
state to a j ∈ Ret.

For each (q1, j) ∈ Q1×G1 and q2 ∈ Q2 with δ1(q1, j) = ((r1, j
′), f1) and δ2(q2) = (r2, f2)

we get the transition

(q1, q2, j◦) 7→ (r1, r2, j
′
◦), {(t1, t2) 7→ (f1(t1), f(t2)) : t1 ∈ Q1, t2 ∈ Q2} (α)

These transitions, together with the way we identified states, ensure that P1 and P2 run
normally, with the input being passed through to P1 transparently. However, note that
the final configurations of P1 are not final for P, meaning that the protocol never ends.
Hence, for q1 ∈ Q1, j ∈ Ret we add the transition

(q1, 1, j◦) 7→ (q1, 0, j), {(b, 1) 7→ (b, 0) : b ∈ {0, 1}}
∪ {(i, 1) 7→ (⊥, 0) : i ∈ Q1 \ {0, 1}}

(β)

This terminates the protocol once the clock has run out. If P1 was in a final state, we
will now enter a final state as well, else we move into a failing state.

Finally, we use the above BP to simulate the full l-CM.

Lemma 13. Fix some predicate ϕ : Nk → {0, 1} computable by an n-bounded l-CM
within O(f(n)) ⊆ O(polyn) steps. Then there is a BCP computing ϕ in O(f(n)n logn)
steps.

Proof sketch. For each counter we need n agents, so ln in total, but we can simply have
each agent simulate a constant number of agents. To execute a step of the CM, we use
the BP from Lemma 12. It succeeds only with high probability, but in the case of failure
at least one agent will have local state ⊥, from which that agent initiates a restart of the
whole computation.

As the CM takes only a polynomial number of steps, we can fix a k s.t. a computation
of our BCP without failures (i.e. one that succeeds on the first try) takes O(nk) steps. A
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single step succeeds with high probability, so we can require it to fail with probability
at most O(n−k−1). In total, the restarts increase the running time by a factor of
1/(1−O(n−1)), which is only a constant overhead.

A detailed proof can be found in the full version of this paper.

This completes the proof of Theorem 6. By Theorem 7, each predicate in ZPL (with
input encoded in unary) is computable by a bounded l-CM. Lemma 13 then yields a
polynomial-time BCP for that predicate.
We remark that our reductions also enable us to construct efficient BPPs for specific

predicates. The predicate PowerOfTwo for example, as described in [14, Proposition 3],
can trivially be decided by an O(logn)-time bounded RTM with input encoded as binary,
so there is also a BCP computing that predicate within O(n log2 n) interactions.
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A. Proof of Theorem 7: From TMs to Counter Machines
In this section, we sketch the proof that every log-space-bounded probabilistic Turing
machine with expected polynomial run-time can be simulated by an input-bounded,
randomised, multiplicative counter machines with negligible runtime overhead. The proof
is a reduction in several steps:

1. We start with a randomised Turing machine M that takes input in unary encoding
and requires logarithmic space.

2. We then show how to transform M into an equivalent RTM M ′ that takes input in
binary encoding and requires linear space on a single tape.

21

https://projecteuclid.org:443/euclid.pjm/1102994974
https://projecteuclid.org:443/euclid.pjm/1102994974
https://arxiv.org/pdf/1709.08157.pdf
https://dl.acm.org/citation.cfm?id=3212788


3. Then we transform M ′ into an equivalent multi-stack machine S, and S into an
equivalent stack machine S′ where the length of each stack can be bounded precisely
by the length of the input.

4. Finally, we show how to transform S′ into an equivalent counter machine K.

The rest of this section is structured as follows. In Subsection A.1, we formally introduce
randomised Turing machines. In Subsection A.2, we introduce randomised stack machines
and sketch how to simulate randomised Turing machines efficiently in stack machines
whose stacks are bounded by the input size. Finally, in Subsection A.3, we show how to
simulate stack machines in multiplicative counter machines.

A.1. Turing machines
For our reduction, we need to define a Turing machine model.

Definition 3 (Randomised Turing Machine). A randomised Turing machine (RTM) is
a tuple (Q,Σ,Γ, q0, qa, qrδ1, δ2) where

• Q is a finite set of states,

• Γ is the tape alphabet, with �, 0, 1 ∈ Γ,

• q0, qf , qr ∈ Q are the initial, accepting, and rejecting states, respectively.

• δi : Q× Γ 7→ Q× Γ× {−1, 0,+1} are the transition functions.

Additionally, we require that δi(q, α) = (q, α, 0) for all q ∈ {qf , qr}, i ∈ {1, 2} and α ∈ Γ.

So once the RTM has reached qf or qr, it performs no further actions.

Configurations and step relation A configuration of an RTM M is a tuple C = (q, i, τ)
consisting of a control state q ∈ Q, read/write head position i ∈ Z, and tape τ : Z→ Γ.
The configuration C is acceping if q = qf , and rejecting if q = qr. For ◦ ∈ {1, 2} and
two configurations C = (q, i, τ), C ′ = (q′, i′, τ ′), a step C ◦−→ C ′ is valid if and only if the
following holds:

• δ◦(q, τ(i)) = (q′, α, d) for some α and some d,

• i′ = i+ d,

• τ ′(i) = α and τ ′(j) = τ(j) for all j 6= i.

Input encoding For a given input x ∈ Nk and configuration C def= (q0, 0, τ), we say that
C is x encoded as unary (binary) if τ(1)...τ(n) = �1x1�...�1xk� (resp. τ(1)...τ(n) =
�(x1)2�...�(x1)2�), where (r)2 denotes the binary representation of r ∈ N, and τ(i) = 0
for i /∈ {1, ..., n}.
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Random executions We define the random exection for input x encoded as unary
(binary) as a Markov chain π = C0C1C2... where C0, ... are RTM-configurations, C0 is
x encoded as unary (binary), and Ci is determined as the unique configuration with
Ci−1

◦−→ Ci, where ◦ ∈ {1, 2} is chosen uniformly at random.

Acceptance/rejection For a predicate ϕ : Nk → {0, 1}, we say that M computes ϕ
within O(f(n)) steps, if for all x ∈ Nk the random execution C0... for input x reaches
an accepting or rejecting configuration C almost surely and after at most f(n) steps in
expectation, and C is accepting iff ϕ(x) = 1. Such an RTM is called f(n)-time bounded.
We say M is f(n)-space bounded if all configurations (q, i, τ) reachable from C0 satisfy
|i| ≤ f(|x|).

Log-space Turing machines The definition of the Turing machine model given above
does not have a separate reading/writing tape, and is thus not suitable for the definition
of log-space complexity classes. For log-space Turing machines we assume a modified
model, where instead of one tape τ , we have two tapes: An immutable reading tape τread,
and a working tape τwork, and instead of one head we have two heads, one for each tape,
which can be moved independently. A configuration then is a tuple (q, i, j, τread, τwork),
where q is the current state, i is the position of the reading head, and j is the position of
the working head. The other definitions are adapted in the obvious manner.

Lemma 14. Every predicate decidable by an O(logn)-space bounded, O(f(n))-time
bounded RTM with input encoded as unary is decidable by an O(N)-space bounded and
O(N · f(2N ))-time bounded RTM with input encoded as binary.

Proof sketch. Let M be an O(logn)-space bounded, O(f(n))-time bounded RTM with
input encoded as unary. We sketch the construction of an RTM M ′ with binary input
encoding that simulates M in O(N) space and within O(f(2N )) steps in expectation,
where N = log2 n denotes the size of the input of M ′ for clarity.

Movements and updates on the working tape of M can clearly be simulated by M ′
within the given space. Further, M ′ can simulate the movement of the head on the input
tape of M by keeping a single binary counter to encode its position and performing a
constant number of additions/comparisons when M moves the input head. This means
that M ′ simulates a step of M with an overhead of N steps.

As M takes f(n) = f(2N ) steps, we end up with M ′ deciding the predicate in Nf(2N )
steps.

A.2. Stack Machines
We now sketch how a RTMs M can be simulated efficiently with randomised stack
machines.

Definition 4. A (randomised) l-stack-machine M is a tuple (Q, δ1, δ2, q0, qf , qr) where

• Q is a finite set of states,
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• δi : Q→ ([l]× {0, 1} ×Q) ∪ ([l]×Q×Q×Q)) are transition functions

• q0, qf , qr ∈ Q are the initial, accepting, and rejecting states, respectively.

Additionally, we require that δi(q) = (1, q, q, q) for i ∈ {1, 2} and q ∈ {qf , qr}, meaning
that from states qf , qr no (significant) actions are performed.

Configurations and transitions A configuration of the l-stack machine M is a tuple
C = (q, s1, . . . , sl), consisting of a control state q ∈ Q, and l binary stacks s1, . . . , sk ∈
{0, 1}∗. We say C is accepting if q = qf , and rejecting if q = qr. Let C ′ = (q′, s′1, . . . , s′l)
be a configuration of M . We use C push k α−−−−−→◦ C ′ and C pop k−−−→◦ C ′ to denote that C ′
results from pushing α to or popping from the kth stack, respectively, as specified in
δ◦: Formally, we write C push k α−−−−−→◦ C ′ whenever δ◦(q) = (k, α, q′) and s′k = α · sk. We
write C pop k−−−→◦ C ′ whenever δ(q) = (k, q1, q2, q3) and si = s′i for every i 6= k, and one of
following three constraints is satisfied:

q′ = q1 and sk = 0 · s′k, (1)
q′ = q2 and sk = 1 · s′k, (2)
q′ = q3 and sk = s′k = ε. (3)

We write C ◦−→ C ′ to indicate that C push k α−−−−−→◦ C ′ or C pop k−−−→◦ C ′ holds.

Input encoding These encodings are technical artefacts of the reductions we use, hence
they are quite unintuitive. For a given input x ∈ Nk and configuration C def= (q0, s1, ..., sl),
we say that C is x two-symbol encoded if s1 = f(τ(0))...f(τ(n)) and s2 = ... = sl = ε,
where τ are the tape contents of x encoded as binary and f(0) def= 01, f(1) def= 10,
f(�) def= 11. We say that C is x multi-stack encoded if sji = r3(i−1)+j for j ∈ {1, 2, 3} and
i ∈ N with 1 ≤ 3(i− 1) + j ≤ n, where (q0, r, ε, ..., ε) is x two-symbol encoded.

The idea of the multi-stack encoding is that each stack has length at most n, which we
can ensure by distributing the symbols in a round-robin fashion.

Acceptance condition and boundedness Random executions and acceptance are defined
as in RTMs, now for configurations of the stack and the step relation of the stack
machine. An l-stack machine M is f(n)-bounded if any initial configuration given by
an encoded input x can only reach configurations (q, s1, ..., sl) with |s1|, ..., |sl| ≤ f(n),
where n def= log2(x(1) + ...+ x(k)). (So n is roughly the length of x in binary encoding.)

For subsequent propositions, we fix a predicate ϕ : Nk → {0, 1} and a function
f : N→ N. We will now show that every O(n)-bounded stack machine can be simulated
by an n-bounded stack machine.

Proposition 15. Let c ∈ N. For every cn-bounded l-stack machine that decides ϕ in
O(f(n)) steps with input two-symbol encoded, there exists an n-bounded (c(l−1)+3)-stack
machine that decides ϕ in O(f(n)) steps with input multi-stack encoded.
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Proof sketch. The idea is to replace each stack s of the c · n-bounded machine by c
many n-bounded auxiliary stacks s1, ..., sc. For each stack s of the original machine, the
new machine stores in its control state a round counter i ∈ {1, ..., c} that specifies the
currently used auxiliary stack si, starting with i = 1. Pushing some symbol α onto s and
transitioning from states q to q′ is implemented by updating q to q′ and updating i to
its successor i′, where i′ = i + 1, if i < c, else i′ = 1, and by pushing α onto si′ . This
way, the first element of s is pushed onto s1, the second onto s2, and so forth, until the
element c+ 1, which again goes onto s1, and so forth. Symmetrically, popping from s
amounts to popping from si and decrementing i (resp. setting i = c, if i = 1).

For the input stack we use three auxiliary stacks instead of c, as that suffices for those
stacks to be n-bounded. Conveniently, the multi-stack encoding means that we do not
have to perform any work to convert the input.

Proposition 16. Let M be an O(n)-space bounded, O(f(n))-time bounded RTM deciding
ϕ with input encoded as binary. Then there exists an n-bounded stack machine S that
decides ϕ in O(f(n)) steps with input multi-stack encoded.

Proof sketch. We assume wlog that M uses Γ = {�, 0, 1} as tape alphabet. Let C =
(q, i, τ) be a configuration of M . Then C can be represented as triple (q, l, r) where
l, r ∈ {0, 1}ω, l def= f(τ(i− 1))f(τ(i− 2))... represents the side of the tape left to the head,
and r

def= f(τ(i))f(τ(i + 1))... represents the side of the tape to the right of the head,
where f is defined as for the two-symbol encoding. Moving the head to the left and
updating the tape then amounts to removing the first two left-most symbols from l, and
prepending the resulting updated digits to r, and symmetrically for moving the head to
the right.

Since M is O(n)-space bounded, we may represent l and r by linearly bounded stacks
in a stack machine S. Again, the two-symbol input encoding means that we do not have
to perform any work for initialisation, as long as we use r as input stack.
The aforementioned updates can then be performed using corresponding pop/push

operations. This gives an O(n)-bounded stack machine S that decides ϕ in O(f(n)) steps.
By Proposition 15, we can transform S into a n-bounded stack machine that decides ϕ
in O(f(n) + n) steps.

A.3. From Stack Machines to Counter Machines
Proposition 17. Let M be an O(n)-space bounded RTM that decides ϕ in O(f(n))
steps, where the input is given in unary. Then there exists an n-bounded counter machine
that computes ϕ in O(f(n) log(n)) steps.

Proof. By Lemma 14 and Proposition 16, there exists an N -bounded l-stack-machine S
that decides ϕ in O(f(2N )·N) steps with input in multi-stack encoding, where N = log2 n
is roughly the length of the input encoded as binary.

We now describe how the stack content is represented in the counters, how the counters
can be initialized, and how push/pop operations can be implemented efficiently in that
representation.
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Representing stack content Each stack si of S is represented by two counters xi, x′i in
the counter machine, where xi contains the actual symbols of si, and x′i simply contains
a 1 for each symbol in si and serves to determine whether xi is empty. Formally, for
si = w0...wm we get xi = ∑

j wj2j and x′i = ∑
j 2j . As S is N -bounded, each stack has

at most N = log2 n symbols, and thus each of our counters is at most n large. Therefore
we are indeed n-bounded.

Hence we can simply push a symbol b ∈ {0, 1} onto si by performing operations mul2
on xi and x′i, inc on x′i, and if b = 1 also inc on xi. Similarly, to pop from a stack we
determine whether it is empty via iszero on x′i, and do a divmod2 on both xi and x′i if it
is not.
This means that we simulate a single operation with only constant overhead, so we

execute O(f(n) log(n) steps of the stack machine.

Initialization of stacks Recall that S accepts input in the multi-stack encoding, while
the counter machine simply has k counter initialised to the input values.

We can determine bits of the binary representation of the value stored in a counter by
repeatedly performing divmod2, which are straightforward to encode into their two-symbol
encoding, which we then push onto the correct stacks in round-robin fashion to construct
the multi-stack encoding. Here, we use iszero to determine whether any bits are left in
a counter. This initialisation procedure takes O(logn) steps, which is subsumed in the
overall running time.

B. Proof: Stability can be decided in logarithmic time
Call a configuration C stable if it is in a b-consensus for some b ∈ {0, 1}, and every
configuration reachable from C is also in a b-consensus.

Proposition 18. For every BCP P = (Q,Σ, δ, I, O), there exists a (deterministic)
Turing machine TP that decides in constant time whether a given configuration C ∈ NQ
is stable.

Proof. Let U ⊆ NQ be the set of unstable configurations of P. It is straightforward
to see that U is upwards-closed, that is, C ∈ U implies C ′ ∈ U for every C ′ ≥ C (if a
configuration is not stable, then adding additional agents cannot make it stable).

By Dickson’s lemma [25], U has finitely many minimal elements. Since P is not part of
the input, we may assume that the minimal elements are precomputed and TP can iterate
over the minimal elements in constant time. In order to decide whether C ∈ U holds, TP
only needs to verify whether C ′ ≤ C holds for some minimal unstable configuration C ′.
By the previous considerations, this can be done with a constant number of comparisons,
so in time O(logn).
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C. Proof of Proposition 4: Boolean Combinations of Predicates
Proposition 4 (Boolean combination of predicates). Let ϕ be a Boolean combina-
tion of predicates ϕ1, ..., ϕk, which are computed by BCPs P1, ...,Pk, respectively, within
O(n logn) interactions. Then there is a protocol computing ϕ within O(n logn) interac-
tions.

Proof. It suffices to show the statement for k = 2 and ϕ = ¬ϕ1 ∧ ¬ϕ2.
Let Pi =: (Qi,Σ, δi, Ii, Oi), i = 1, 2. We assume that both protocols work on the same

input alphabet Σ. This is without loss of generality, as we can always unify alphabets
by adding missing symbols and identity mappings. We define our resulting protocol
P = (Q,Σ, δ, I, O) as follows:

Q
def= Q1 ×Q2,

δ((q1, q2)) def= ((r1, r2), f) with δi(qi) = (ri, fi) and f((q1, q2)) = (f1(q1), f2(q2))
I(x) def= (I(x), I(x)) for every x ∈ Σ,
O

def= {(q1, q2) : q1 /∈ O1 ∧ q2 /∈ O2}

Every execution of P maps onto one of P1 and one of P2 by projecting onto either
the first of the second element of each state, so every fair execution of P consists of two
executions of P1 and P2 which stabilize to the value of ϕ1 and ϕ2 within O(n logn) steps
in expectation, respectively. Hence P stabilizes to ¬ϕ1(C0) ∧ ¬ϕ2(C0) = ϕ(C0) within
O(n logn) steps in expectation.

D. Sums of Geometric Random Variables
We use the following theorems to estimate lower and upper tail probabilities for sums of
geometrically distributed random variables. As before, we use G(p), for 0 < p < 1, to
denote the geometric distribution (with expectation 1/p).

Theorem 19 (see [23, Theorem 2.1]). Let X1, ..., Xn denote independent random variables
with Xi ∼ G(pi) for i = 1, ..., n and 0 < pi ≤ 1, and set X def= X1 + ...+Xn, µ

def= E(X),
and p∗

def= mini pi. Then, for any λ ≥ 1

P(X ≥ λµ) ≤ e−p∗µ(λ−1−lnλ)

Theorem 20 (see [23, Theorem 3.1]). Let X1, ..., Xn denote independent random variables
with Xi ∼ G(pi) for i = 1, ..., n and 0 < pi ≤ 1, and set X def= X1 + ...+Xn, µ

def= E(X),
and p∗

def= mini pi. Then, for any λ ≤ 1

P(X ≤ λµ) ≤ e−p∗µ(λ−1−lnλ)

In the following lemma we use the first of these bounds to show that the sumX1+...+Xn

with Xi ∼ G(i/n) is in Ω(n logn) with high probability. This is the same analysis as used
for the coupon collector’s problem.
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Lemma 8. Let n ≥ 3 and X1, ..., Xn denote independent random variables with sum X
and Xi ∼ G(i/n). Then for any k ≥ 1 there is an l s.t.

P(X ≥ l · n lnn) ≤ n−k

Proof. First, note that E(X) = nHn, where Hn := 1/1 + ...+ 1/n is the n-th harmonic
number. Using Theorem 19 with λ chosen s.t. λ− 1− lnλ = k we get

P(X ≥ λnHn) ≤ e−1/n ·nHnk = e−kHn

We have lnn ≤ Hn ≤ 1 + lnn ≤ 2 lnn, for n ≥ 3, which yields the desired bound when
choosing l := 2λ.

E. Proof of Lemma 11: Arbitrarily Good Clocks
Lemma 11. Let k ∈ N denote some constant. Then there is a clock-BP P s.t.
E(Time(P)) ∈ O(n logn), and Time(P) < kn logn with probability O(n−k).

Proof. To simplify notation, we will use the precise constants proved in Lemma 10 here,
although the proof does not require them.
Choose l def= 28k2 as the number of clocks we want to run in sequence and let (Q′, δ′)

denote the BP from Lemma 10. We construct our BP P as (Q′×{1, ..., l}, δ), with global
states {1, ..., l} and transitions δ as follows.

(q, i) 7→ (r, i), f for δ(q) = (r, f), i = 1, ..., l (α)
(1, i) 7→ (0, i+ 1), {1 7→ 0} for i = 1, ..., l − 1 (β)

Additionally, we identify state (0, 0) with 0 and (1, l) with 1.
For the analysis, we are going to divide the l clocks into groups of 2k. As shown in

Lemma 10, each clock has at most a 2n−1/2 probability of “failing”, i.e. taking fewer than
n/14 · lnn steps. So the probability that all 2k clocks in a group fail is at most 22kn−k.
By union bound, the probability that there exists a group which has all of its clocks

failing is at most 14 · 22kkn−k. Conversely, if each group has a single non-failing clock,
we take at least kn lnn steps in total.

F. Proof of Lemma 13: Simulating CMs efficiently
Lemma 13. Fix some predicate ϕ : Nk → {0, 1} computable by an n-bounded l-CM
within O(f(n)) ⊆ O(polyn) steps. Then there is a BCP computing ϕ in O(f(n)n logn)
steps.

Proof. Let A = (S, T1, T2) denote the CM. We will construct our BCP assuming to work
with ln agents instead of n, as each agent can simulate a constant number of agents.
Additionally, we will ignore errors for now, and modify the BCP later to deal with them.
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So let P = (Q × G,Σ, δ, I, O) denote our BCP with global states G, where we set
Σ def= {1, ..., k}. We want to use Lemma 12 to simulate the steps of the CM, so let
P ′ = (Q′ × G′, δ′) denote a BP from that Lemma s.t. P ′ reaches a final configuration
with probability 1−O(n−r−1), where r is chosen s.t. f ∈ O(nr).

We use local states Q def= {11, ..., 1k} ∪Q′, where C(1i) represents the value of counter
i ∈ {1, ..., l} of the CM in a configuration C. As global states, we have G def= (G′∪ init)×S.
Note that we have states 0, 1 ∈ Q′ as well, with 1 representing a “working register” in
the same manner as the other counters. Agents not belonging to a counter are in state 0.
This means that the initial states are simply given by I(i) def= 1i for i ∈ {1, ...k}.

To perform a step of the CM, we load the affected counter into the “working register”
represented by state 1 ∈ Q′ and let P ′ run. After it has terminated, we write the
value back into the original counter and move to the next state. We will now describe
these transitions formally, so let T◦(s) = (i, j, s′0, s′1) denote a transition of the CM, with
◦ ∈ {1, 2}, s ∈ S. To initialise the working register, we need

(1i, init, s) 7→ (1, j, s), {1i 7→ 1}
(0, init, s) 7→ (0, j, s), {1i 7→ 1}

(init)

Then we faithfully execute the transitions of P ′.

(q, j, s) 7→ (q′, j′, s), f for δ′(q, j) = ((q′, j′), f) (run)

Once P ′ reaches a final state, we move to the next state of A.

(1, doneb, s) 7→ (1i, init, s′b), {1 7→ 1i}
(0, doneb, s) 7→ (0, init, s′b), {1 7→ 1i}

for b ∈ {0, 1} (finish)

Note that we have two outgoing (init) transitions, one for each ◦. Matching the
execution of CMs, we pick one of these uniformly at random, using our construction from
Section 4.1. We also remark that the BP P ′ is only guaranteed to simulate the CM if
the counter values do not exceed n. This is ensured by A being bounded.

We know that A eventually reaches either state 0 or 1, which determines the result of
its computation. So we define the accepting states of P based on that as O def= {(q, j, s) ∈
Q×G : s = 1}.

As mentioned, the above disregards error conditions. When executing P ′ via transition
(run) it might end up in a failing configuration, meaning that at least one agent has
local state ⊥. There are no transitions which would cause an agent to leave state ⊥ (in
particular, recall that the set of failing configurations is closed under reachability for P ′).
Hence any agent with local state ⊥ remains so, and we can modify P to cause such an
agent to initiate a reset. For this we have each agent remember its initial state, and state
⊥ sends a broadcast which reverts each agent to its initial state, effectively restarting
the computation.

Formally, we do this transformation (as well as simulating l agents by a single one) as
follows. Let P∗ = (Q∗,Σ, δ∗, I∗, O∗) denote the new BCP. We use states Q∗ def= (Q×G)l+1,
where the first component stores the initial state and the latter l components simulate l
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agents. The input mapping is I(i) def= (1i, 1i, 0, ..., 0) for i ∈ {1, ..., k}, and the accepting
states are O∗ def= {(q0, ..., ql) ∈ Q∗ : q1 ∈ O}.
For i ∈ {1, ..., l}, q ∈ Q×G we execute a transition δ(qi) = (q′i, f) of P as

(q0, ..., ql) 7→ (q0, q
′
1, ..., q

′
l), {(r0, ..., rl) 7→ (r0, f(r1), ..., f(rl))}

where q′m
def= f(qm) for m ∈ {1, ..., l} \ {i}. To perform the resets, we add a transition for

each (q0, ..., ql) ∈ Q∗ with qi =⊥ for some i.

(q0, ..., ql) 7→ (q0, q0, 0, ..., 0), {(r0, ..., rl) 7→ (r0, r0, 0, ..., 0)}

We execute one step of the CM every O(n logn) interactions, in expectation. If
no failure occurs, the BCP stabilises after O(nr+1 logn) ⊆ O(f(n)n logn) steps, in
expectation. A single step can fail with probability O(n−r−1), so the probability that
all steps succeed is at least 1 − O(n−1). If a step fails, the computation will restart
(after O(n) steps in expectation), increasing the expected running time by a factor of
1/(1−O(n−1)) ∈ O(1).
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