anthropic/claude-opus-4.1
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each option. Here, $\varphi_w$ typically denotes the partial computable function computed by the Turing machine whose code is $w$. Option 1: $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ This asks whether the set of codes of Turing machines that compute total functions is decidable. This is the totality problem, which is known to be undecidable. It's not even semi-decidable (r.e.). So this is 0. Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ This asks whether we can decide if a Turing machine with code $w$ outputs 0 on input 0. This is semi-decidable (we can simulate the machine on input 0 and accept if it outputs 0), but not decidable. The complement is not semi-decidable. So this is 0. Option 3: $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ This asks about codes where $\varphi_w$ is computable. But wait - by definition, if $w$ codes a Turing machine, then $\varphi_w$ is the partial computable function computed by that machine. Every partial computable function is "berechenbar" (computable) in the sense that there exists a Turing machine computing it. So this set is actually all valid codes of Turing machines, plus possibly some strings that don't code valid machines (depending on the coding convention). Actually, let me think more carefully. The term "berechenbar" (computable) usually refers to total computable functions. So this would be asking for the codes of machines that compute total functions, which is the same as option 1, hence undecidable. Wait, I need to be more careful about the terminology. The German term "berechenbar" introduces nuanced ambiguity. Its interpretation hinges on whether we mean partial or total computability. If referring to partial computability, the set would encompass all valid machine codes, making it decidable. Conversely, if total computability is implied, the set becomes equivalent to the undecidable totality problem. The linguistic subtlety creates a critical distinction in computational complexity. Examining the specific problem reveals a systematic approach. Checking whether a code represents a valid Turing machine is syntactically decidable. Every valid machine code inherently defines a partial computable function. This leads to a clear resolution: the first option relates to undecidable totality, the second involves undecidable halting conditions, while the third option - verifying machine code validity - remains decidable. The key insight emerges from understanding the fundamental properties of Turing machine representations and their computational characteristics. I'll complete the partial thought from the previous rewritten thinking first: partial computability, in which case it would be decidable. The nuanced interpretation hinges on whether "berechenbar" means partial or total computability. Given the problem's constraint that at least one option must be correct, I deduce that option 3 is decidable. This means the set of Turing machine codes representing partially computable functions can indeed be determined algorithmically. The key insight is recognizing the subtle distinction between partial and total computability, which fundamentally changes the decidability of the language.
Answer
Looking at each option: **Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ This is the totality problem - determining whether a Turing machine computes a total function. This is a well-known undecidable problem (it's not even semi-decidable). **Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ This asks whether a Turing machine with code $w$ halts on input 0 and outputs 0. While we can semi-decide this (simulate and accept if we see output 0), we cannot decide it since we cannot determine if the machine will never halt. **Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ By definition, if $w$ codes a valid Turing machine, then $\varphi_w$ is a partial computable function, hence "berechenbar". The set of valid Turing machine codes is decidable (we can syntactically check if $w$ is a valid encoding). <option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
This is the totality problem - determining whether a Turing machine computes a total function. This is a well-known undecidable problem (it's not even semi-decidable).
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether a Turing machine with code $w$ halts on input 0 and outputs 0. While we can semi-decide this (simulate and accept if we see output 0), we cannot decide it since we cannot determine if the machine will never halt.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
By definition, if $w$ codes a valid Turing machine, then $\varphi_w$ is a partial computable function, hence "berechenbar". The set of valid Turing machine codes is decidable (we can syntactically check if $w$ is a valid encoding).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let's analyze each option: **Option 1:** $\overline L$ ist unentscheidbar If L is undecidable, is its complement $\overline L$ necessarily undecidable? Yes, because if $\overline L$ were decidable, then L would also be decidable (we could decide L by deciding $\overline L$ and negating the result). This contradicts that L is undecidable. **Option 2:** $L^a$ ist unentscheidbar The residual language $L^a = \{w \in \Sigma^* : aw \in L\}$. Is this necessarily undecidable? If $L^a$ were decidable, could we decide L? To decide if $x \in L$: - If $x$ starts with $a$, say $x = ay$, then check if $y \in L^a$ - If $x$ doesn't start with $a$, we need different information Actually, let me think more carefully. L is undecidable. But $L^a$ could potentially be decidable or undecidable. Consider a counterexample: Let L be an undecidable language over $\{0,1\}$. We could construct L' = {0w : w ∈ L} ∪ {1w : w ∈ Σ*}. Then L' is undecidable (if it were decidable, we could decide L). But $(L')^1 = \Sigma^*$ which is decidable. So option 2 is false. **Option 3:** Es gibt keine TM $M$ mit $L(M) = L$ L is undecidable means there is no TM that decides L (halts on all inputs and accepts exactly L). But there could still be a TM that semi-decides L (accepts exactly L but might not halt on strings not in L). A TM M can exist with L(M) = L, just not as a decider. This means option 3 is false. The counterexample for option 2 confirms that $(L')^1 = \Sigma^*$ is indeed decidable. Therefore, option 2 is not necessarily true. The final answer confirms these observations about the language properties.
Answer
Looking at each option: **Option 1:** $\overline L$ ist unentscheidbar If L is undecidable, then $\overline L$ must also be undecidable. If $\overline L$ were decidable, we could decide L by running the decider for $\overline L$ and negating the result, contradicting that L is undecidable. **Option 2:** $L^a$ ist unentscheidbar The residual language $L^a = \{w \in \Sigma^* : aw \in L\}$ is not necessarily undecidable. Counterexample: Let L be any undecidable language. Define $L' = \{0w : w \in L\} \cup \{1w : w \in \Sigma^*\}$. Then L' is undecidable (otherwise we could decide L), but $(L')^1 = \Sigma^*$ which is decidable. **Option 3:** Es gibt keine TM $M$ mit $L(M) = L$ This is false. L being undecidable means there's no TM that *decides* L (halts on all inputs). However, there can still be a TM that *semi-decides* L (accepts exactly L but may not halt on strings not in L). Every recursively enumerable language has such a TM. <option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
This is the totality problem - determining whether a Turing machine computes a total function. This is a well-known undecidable problem (it's not even semi-decidable).
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether a Turing machine with code $w$ halts on input 0 and outputs 0. While we can semi-decide this (simulate and accept if we see output 0), we cannot decide it since we cannot determine if the machine will never halt.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
By definition, if $w$ codes a valid Turing machine, then $\varphi_w$ is a partial computable function, hence "berechenbar". The set of valid Turing machine codes is decidable (we can syntactically check if $w$ is a valid encoding).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\overline L$ ist unentscheidbar
If L is undecidable, then $\overline L$ must also be undecidable. If $\overline L$ were decidable, we could decide L by running the decider for $\overline L$ and negating the result, contradicting that L is undecidable.
**Option 2:** $L^a$ ist unentscheidbar
The residual language $L^a = \{w \in \Sigma^* : aw \in L\}$ is not necessarily undecidable. Counterexample: Let L be any undecidable language. Define $L' = \{0w : w \in L\} \cup \{1w : w \in \Sigma^*\}$. Then L' is undecidable (otherwise we could decide L), but $(L')^1 = \Sigma^*$ which is decidable.
**Option 3:** Es gibt keine TM $M$ mit $L(M) = L$
This is false. L being undecidable means there's no TM that *decides* L (halts on all inputs). However, there can still be a TM that *semi-decides* L (accepts exactly L but may not halt on strings not in L). Every recursively enumerable language has such a TM.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let's analyze each option: **Option 1:** $w \notin L(M)$ If $M$ runs infinitely many steps on input $w$, then $M$ does not halt on $w$. By definition, $w \in L(M)$ if and only if $M$ halts on $w$ and accepts. Since $M$ doesn't halt on $w$, we have $w \notin L(M)$. This is TRUE. **Option 2:** $L(M)$ is unentscheidbar Just because $M$ doesn't halt on some input doesn't mean $L(M)$ is undecidable. For example, consider a TM that accepts the empty string and loops forever on all other inputs. Its language is $\{\epsilon\}$, which is decidable (we can easily build a TM that decides it). So this is FALSE. **Option 3:** $L(M)$ is semi-entscheidbar By definition, if $M$ is a Turing machine, then $L(M)$ is semi-decidable (recursively enumerable). The machine $M$ itself semi-decides $L(M)$ - it accepts exactly the strings in $L(M)$, though it may not halt on strings not in $L(M)$. This is TRUE.
Answer
Looking at each option: **Option 1:** $w \notin L(M)$ If $M$ runs infinitely many steps on input $w$, then $M$ does not halt on $w$. By definition, $w \in L(M)$ if and only if $M$ halts and accepts $w$. Since $M$ doesn't halt on $w$, we have $w \notin L(M)$. **Option 2:** $L(M)$ ist unentscheidbar Just because $M$ doesn't halt on some input doesn't mean $L(M)$ is undecidable. Counterexample: Let $M$ be a TM that accepts $\varepsilon$ and loops forever on all other inputs. Then $L(M) = \{\varepsilon\}$ which is decidable, even though $M$ doesn't halt on many inputs. **Option 3:** $L(M)$ ist semi-entscheidbar By definition, if $M$ is a Turing machine, then $L(M)$ is semi-decidable (recursively enumerable). The machine $M$ itself semi-decides $L(M)$ - it accepts exactly the strings in $L(M)$, though it may not halt on strings not in $L(M)$. <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
This is the totality problem - determining whether a Turing machine computes a total function. This is a well-known undecidable problem (it's not even semi-decidable).
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether a Turing machine with code $w$ halts on input 0 and outputs 0. While we can semi-decide this (simulate and accept if we see output 0), we cannot decide it since we cannot determine if the machine will never halt.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
By definition, if $w$ codes a valid Turing machine, then $\varphi_w$ is a partial computable function, hence "berechenbar". The set of valid Turing machine codes is decidable (we can syntactically check if $w$ is a valid encoding).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\overline L$ ist unentscheidbar
If L is undecidable, then $\overline L$ must also be undecidable. If $\overline L$ were decidable, we could decide L by running the decider for $\overline L$ and negating the result, contradicting that L is undecidable.
**Option 2:** $L^a$ ist unentscheidbar
The residual language $L^a = \{w \in \Sigma^* : aw \in L\}$ is not necessarily undecidable. Counterexample: Let L be any undecidable language. Define $L' = \{0w : w \in L\} \cup \{1w : w \in \Sigma^*\}$. Then L' is undecidable (otherwise we could decide L), but $(L')^1 = \Sigma^*$ which is decidable.
**Option 3:** Es gibt keine TM $M$ mit $L(M) = L$
This is false. L being undecidable means there's no TM that *decides* L (halts on all inputs). However, there can still be a TM that *semi-decides* L (accepts exactly L but may not halt on strings not in L). Every recursively enumerable language has such a TM.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $w \notin L(M)$
If $M$ runs infinitely many steps on input $w$, then $M$ does not halt on $w$. By definition, $w \in L(M)$ if and only if $M$ halts and accepts $w$. Since $M$ doesn't halt on $w$, we have $w \notin L(M)$.
**Option 2:** $L(M)$ ist unentscheidbar
Just because $M$ doesn't halt on some input doesn't mean $L(M)$ is undecidable. Counterexample: Let $M$ be a TM that accepts $\varepsilon$ and loops forever on all other inputs. Then $L(M) = \{\varepsilon\}$ which is decidable, even though $M$ doesn't halt on many inputs.
**Option 3:** $L(M)$ ist semi-entscheidbar
By definition, if $M$ is a Turing machine, then $L(M)$ is semi-decidable (recursively enumerable). The machine $M$ itself semi-decides $L(M)$ - it accepts exactly the strings in $L(M)$, though it may not halt on strings not in $L(M)$.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each option: **Option 1:** Jede reguläre Sprache ist in $\text{NP}$. Regular languages can be recognized by DFAs in linear time. Therefore, every regular language is in P. Since P ⊆ NP, every regular language is also in NP. This is TRUE. **Option 2:** Jede kontextfreie Sprache ist in $\text{P}$. Context-free languages can be recognized by the CYK algorithm in O(n³) time for a fixed grammar. This is polynomial time, so every context-free language is in P. This is TRUE. **Option 3:** Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$. If L ∈ P, then we can decide L in polynomial time. To decide $\overline L$, we can run the same polynomial-time algorithm and negate the result. So $\overline L \in \text{P}$. Since P ⊆ NP, we have $\overline L \in \text{NP}$. This is TRUE.
Answer
Looking at each option: **Option 1:** Jede reguläre Sprache ist in $\text{NP}$. Regular languages can be recognized by deterministic finite automata (DFAs) in linear time. Therefore, every regular language is in P. Since P ⊆ NP, every regular language is also in NP. **Option 2:** Jede kontextfreie Sprache ist in $\text{P}$. Context-free languages can be recognized in polynomial time using algorithms like the CYK algorithm, which runs in O(n³) time for a fixed grammar. Therefore, every context-free language is in P. **Option 3:** Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$. If L ∈ P, then we can decide L in polynomial time. To decide $\overline L$, we simply run the same polynomial-time algorithm and negate the result. Thus $\overline L \in \text{P}$. Since P ⊆ NP, we have $\overline L \in \text{NP}$. <option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
This is the totality problem - determining whether a Turing machine computes a total function. This is a well-known undecidable problem (it's not even semi-decidable).
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether a Turing machine with code $w$ halts on input 0 and outputs 0. While we can semi-decide this (simulate and accept if we see output 0), we cannot decide it since we cannot determine if the machine will never halt.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
By definition, if $w$ codes a valid Turing machine, then $\varphi_w$ is a partial computable function, hence "berechenbar". The set of valid Turing machine codes is decidable (we can syntactically check if $w$ is a valid encoding).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\overline L$ ist unentscheidbar
If L is undecidable, then $\overline L$ must also be undecidable. If $\overline L$ were decidable, we could decide L by running the decider for $\overline L$ and negating the result, contradicting that L is undecidable.
**Option 2:** $L^a$ ist unentscheidbar
The residual language $L^a = \{w \in \Sigma^* : aw \in L\}$ is not necessarily undecidable. Counterexample: Let L be any undecidable language. Define $L' = \{0w : w \in L\} \cup \{1w : w \in \Sigma^*\}$. Then L' is undecidable (otherwise we could decide L), but $(L')^1 = \Sigma^*$ which is decidable.
**Option 3:** Es gibt keine TM $M$ mit $L(M) = L$
This is false. L being undecidable means there's no TM that *decides* L (halts on all inputs). However, there can still be a TM that *semi-decides* L (accepts exactly L but may not halt on strings not in L). Every recursively enumerable language has such a TM.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $w \notin L(M)$
If $M$ runs infinitely many steps on input $w$, then $M$ does not halt on $w$. By definition, $w \in L(M)$ if and only if $M$ halts and accepts $w$. Since $M$ doesn't halt on $w$, we have $w \notin L(M)$.
**Option 2:** $L(M)$ ist unentscheidbar
Just because $M$ doesn't halt on some input doesn't mean $L(M)$ is undecidable. Counterexample: Let $M$ be a TM that accepts $\varepsilon$ and loops forever on all other inputs. Then $L(M) = \{\varepsilon\}$ which is decidable, even though $M$ doesn't halt on many inputs.
**Option 3:** $L(M)$ ist semi-entscheidbar
By definition, if $M$ is a Turing machine, then $L(M)$ is semi-decidable (recursively enumerable). The machine $M$ itself semi-decides $L(M)$ - it accepts exactly the strings in $L(M)$, though it may not halt on strings not in $L(M)$.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** Jede reguläre Sprache ist in $\text{NP}$.
Regular languages can be recognized by deterministic finite automata (DFAs) in linear time. Therefore, every regular language is in P. Since P ⊆ NP, every regular language is also in NP.
**Option 2:** Jede kontextfreie Sprache ist in $\text{P}$.
Context-free languages can be recognized in polynomial time using algorithms like the CYK algorithm, which runs in O(n³) time for a fixed grammar. Therefore, every context-free language is in P.
**Option 3:** Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.
If L ∈ P, then we can decide L in polynomial time. To decide $\overline L$, we simply run the same polynomial-time algorithm and negate the result. Thus $\overline L \in \text{P}$. Since P ⊆ NP, we have $\overline L \in \text{NP}$.
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
Let's analyze each option: We have: - $A \in \text{NP}$ (arbitrary NP language) - $B$ is NP-complete - Assumption: $\text{P} \neq \text{NP}$ **Option 1:** $A \subseteq B$ This is not necessarily true. A and B are just arbitrary languages, one in NP and one NP-complete. There's no reason they must have a subset relationship. For example, A could be {0} and B could be SAT, and clearly {0} is not a subset of SAT. **Option 2:** $B \subseteq A$ This is also not necessarily true for the same reason as option 1. **Option 3:** $A \leq_p B$ Since B is NP-complete, by definition, every language in NP is polynomial-time reducible to B. Since $A \in \text{NP}$, we have $A \leq_p B$. This is true. **Option 4:** $B \leq_p A$ This is not necessarily true. If B is NP-complete and $B \leq_p A$, then A would also be NP-hard (since we could reduce any NP problem to B, then to A). But A is just an arbitrary language in NP, not necessarily NP-hard. In fact, if P ≠ NP and A ∈ P, then B cannot reduce to A (otherwise B would be in P, contradicting that P ≠ NP and B is NP-complete).
Answer
Looking at each option: **Option 1:** $A \subseteq B$ There's no reason for an arbitrary NP language A to be a subset of an NP-complete language B. They could be completely disjoint sets. For example, A could be {0} and B could be SAT. **Option 2:** $B \subseteq A$ Similarly, there's no reason for B to be a subset of A. These are independent properties. **Option 3:** $A \leq_p B$ By definition of NP-completeness, B is NP-complete means: 1. B ∈ NP 2. Every language in NP is polynomial-time reducible to B Since A ∈ NP and B is NP-complete, we have $A \leq_p B$ by definition. **Option 4:** $B \leq_p A$ This is not necessarily true. If it were always true, then every language A ∈ NP would be NP-hard (since we could reduce any NP problem to B, then to A). But A is just an arbitrary NP language, not necessarily NP-hard. In fact, if P ≠ NP and A ∈ P, then B cannot reduce to A (otherwise B would be in P, contradicting P ≠ NP). <option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
This is the totality problem - determining whether a Turing machine computes a total function. This is a well-known undecidable problem (it's not even semi-decidable).
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether a Turing machine with code $w$ halts on input 0 and outputs 0. While we can semi-decide this (simulate and accept if we see output 0), we cannot decide it since we cannot determine if the machine will never halt.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
By definition, if $w$ codes a valid Turing machine, then $\varphi_w$ is a partial computable function, hence "berechenbar". The set of valid Turing machine codes is decidable (we can syntactically check if $w$ is a valid encoding).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $\overline L$ ist unentscheidbar
If L is undecidable, then $\overline L$ must also be undecidable. If $\overline L$ were decidable, we could decide L by running the decider for $\overline L$ and negating the result, contradicting that L is undecidable.
**Option 2:** $L^a$ ist unentscheidbar
The residual language $L^a = \{w \in \Sigma^* : aw \in L\}$ is not necessarily undecidable. Counterexample: Let L be any undecidable language. Define $L' = \{0w : w \in L\} \cup \{1w : w \in \Sigma^*\}$. Then L' is undecidable (otherwise we could decide L), but $(L')^1 = \Sigma^*$ which is decidable.
**Option 3:** Es gibt keine TM $M$ mit $L(M) = L$
This is false. L being undecidable means there's no TM that *decides* L (halts on all inputs). However, there can still be a TM that *semi-decides* L (accepts exactly L but may not halt on strings not in L). Every recursively enumerable language has such a TM.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $w \notin L(M)$
If $M$ runs infinitely many steps on input $w$, then $M$ does not halt on $w$. By definition, $w \in L(M)$ if and only if $M$ halts and accepts $w$. Since $M$ doesn't halt on $w$, we have $w \notin L(M)$.
**Option 2:** $L(M)$ ist unentscheidbar
Just because $M$ doesn't halt on some input doesn't mean $L(M)$ is undecidable. Counterexample: Let $M$ be a TM that accepts $\varepsilon$ and loops forever on all other inputs. Then $L(M) = \{\varepsilon\}$ which is decidable, even though $M$ doesn't halt on many inputs.
**Option 3:** $L(M)$ ist semi-entscheidbar
By definition, if $M$ is a Turing machine, then $L(M)$ is semi-decidable (recursively enumerable). The machine $M$ itself semi-decides $L(M)$ - it accepts exactly the strings in $L(M)$, though it may not halt on strings not in $L(M)$.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** Jede reguläre Sprache ist in $\text{NP}$.
Regular languages can be recognized by deterministic finite automata (DFAs) in linear time. Therefore, every regular language is in P. Since P ⊆ NP, every regular language is also in NP.
**Option 2:** Jede kontextfreie Sprache ist in $\text{P}$.
Context-free languages can be recognized in polynomial time using algorithms like the CYK algorithm, which runs in O(n³) time for a fixed grammar. Therefore, every context-free language is in P.
**Option 3:** Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.
If L ∈ P, then we can decide L in polynomial time. To decide $\overline L$, we simply run the same polynomial-time algorithm and negate the result. Thus $\overline L \in \text{P}$. Since P ⊆ NP, we have $\overline L \in \text{NP}$.
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:Looking at each option:
**Option 1:** $A \subseteq B$
There's no reason for an arbitrary NP language A to be a subset of an NP-complete language B. They could be completely disjoint sets. For example, A could be {0} and B could be SAT.
**Option 2:** $B \subseteq A$
Similarly, there's no reason for B to be a subset of A. These are independent properties.
**Option 3:** $A \leq_p B$
By definition of NP-completeness, B is NP-complete means:
1. B ∈ NP
2. Every language in NP is polynomial-time reducible to B
Since A ∈ NP and B is NP-complete, we have $A \leq_p B$ by definition.
**Option 4:** $B \leq_p A$
This is not necessarily true. If it were always true, then every language A ∈ NP would be NP-hard (since we could reduce any NP problem to B, then to A). But A is just an arbitrary NP language, not necessarily NP-hard. In fact, if P ≠ NP and A ∈ P, then B cannot reduce to A (otherwise B would be in P, contradicting P ≠ NP).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let me think about this problem carefully. We have: - A is undecidable - B is arbitrary We need to determine if at least one of $A \cup B$ and $A \cup \overline{B}$ is undecidable. Let me approach this by contradiction. Suppose both $A \cup B$ and $A \cup \overline{B}$ are decidable. If both are decidable, then we can decide their intersection: $(A \cup B) \cap (A \cup \overline{B})$ Let me expand this: $(A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) = A \cup \emptyset = A$ So if both $A \cup B$ and $A \cup \overline{B}$ are decidable, then their intersection A would be decidable (since the intersection of two decidable languages is decidable). But this contradicts the fact that A is undecidable. Therefore, at least one of $A \cup B$ and $A \cup \overline{B}$ must be undecidable. The statement is TRUE.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> **Beweis:** Wir zeigen die Aussage durch Widerspruch. **Annahme:** Beide Sprachen $A \cup B$ und $A \cup \overline{B}$ sind entscheidbar. Wenn beide Sprachen entscheidbar sind, dann ist auch ihr Schnitt entscheidbar (der Schnitt entscheidbarer Sprachen ist entscheidbar). Betrachten wir den Schnitt: \[(A \cup B) \cap (A \cup \overline{B})\] Nach den Distributivgesetzen der Mengenlehre gilt: \[(A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) = A \cup \emptyset = A\] Das bedeutet: Wenn sowohl $A \cup B$ als auch $A \cup \overline{B}$ entscheidbar wären, dann wäre auch $A$ entscheidbar. Dies ist ein **Widerspruch** zur Voraussetzung, dass $A$ unentscheidbar ist. Daher muss mindestens eine der beiden Sprachen $A \cup B$ oder $A \cup \overline{B}$ unentscheidbar sein. Die Aussage ist somit **wahr**. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Beweis: Wir zeigen die Aussage durch Widerspruch. Annahme: Beide Sprachen und sind entscheidbar. Wenn beide Sprachen entscheidbar sind, dann ist auch ihr Schnitt entscheidbar (der Schnitt entscheidbarer Sprachen ist entscheidbar). Betrachten wir den Schnitt: Nach den Distributivgesetzen der Mengenlehre gilt: Das bedeutet: Wenn sowohl als auch entscheidbar wären, dann wäre auch entscheidbar. Dies ist ein Widerspruch zur Voraussetzung, dass unentscheidbar ist. Daher muss mindestens eine der beiden Sprachen oder unentscheidbar sein. Die Aussage ist somit wahr.
anthropic/claude-sonnet-4
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each option for decidability. We have the alphabet $\Sigma = \{0,1\}$, and we're looking at languages involving partial recursive functions $\varphi_w$ where $w$ is an encoding of some program/Turing machine. Option 1: $\{w\in\Sigma^* :\varphi_w \text{ is total}\}$ This is asking whether we can decide if a given program $w$ computes a total function (i.e., the function is defined for all inputs). This is a classic undecidable problem. By Rice's theorem, any non-trivial semantic property of partial recursive functions is undecidable. Being total is a semantic property (it depends on the behavior of the function, not just the syntax), and it's non-trivial (some functions are total, some are not). Alternatively, we can think of this as the totality problem, which is known to be undecidable. If we could decide totality, we could solve the halting problem: given a program P and input x, construct a new program Q that on input y runs P on x, and if P halts, then Q returns some value, otherwise Q doesn't halt. Then Q is total iff P halts on x. So option 1 is NOT decidable (answer: 0). Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ This is asking whether we can decide if a given program $w$ outputs 0 when given input 0. This is also undecidable by Rice's theorem. The property "outputs 0 on input 0" is a semantic property that depends on the behavior of the function. It's non-trivial because some functions satisfy this property and some don't. Alternatively, we can reduce the halting problem to this. Given a program P and input x, we can construct a program Q that on input y (especially on input 0): - First runs P on x - If P halts, then Q outputs 0 - If P doesn't halt, then Q doesn't halt either Then Q satisfies $\varphi_Q(0) = 0$ if and only if P halts on x. Since the halting problem is undecidable, this problem is also undecidable. So option 2 is NOT decidable (answer: 0). Option 3: $\{w \in \Sigma^* :\varphi_w \text{ is computable}\}$ I'll examine whether we can determine if a program computes a computable function. This requires careful analysis of the function's fundamental properties. Every partial recursive function is inherently computable by definition. The set would encompass all possible program encodings, making it decidable. Even programs with undefined or empty functions would technically satisfy the condition of computability. The key insight is that any function generated by a Turing machine is, by its very nature, computable. This means the entire set $\Sigma^*$ represents computable functions. Interpreting $w$ requires understanding its context - whether as a direct machine encoding or as an index in a standard machine enumeration. Both approaches fundamentally preserve the core property of computability. The key observation is that $\varphi_w$ remains a computable function under either interpretation, with the critical distinction being how we map the string $w$ to its corresponding computational representation. I recognize there might be nuanced considerations beyond the initial straightforward analysis, suggesting potential complexity in definitively determining decidability. The fundamental property is that every partial recursive function inherently satisfies computability by definition, which implies the language remains decidable across different encoding approaches. The key distinction lies in understanding computational terminology: "computable" typically encompasses partial recursive functions, not just total functions. This nuanced interpretation suggests option 3 is decidable, confirming the initial reasoning about the problem's computational characteristics.
Answer
Looking at each option, I need to determine which languages are decidable. **Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ is total}\}$ This asks whether we can decide if a program computes a total function. This is the classic **totality problem**, which is undecidable. By Rice's theorem, any non-trivial semantic property of partial recursive functions is undecidable, and being total is such a property. We can also show this by reducing from the halting problem. **Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ This asks whether we can decide if a program outputs 0 on input 0. This is also undecidable by Rice's theorem, as it's a non-trivial semantic property. We can reduce the halting problem to this: given program P and input x, construct program Q that first runs P on x, and if P halts, Q outputs 0, otherwise Q diverges. Then $\varphi_Q(0) = 0$ iff P halts on x. **Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ is computable}\}$ This asks whether we can decide if a program computes a computable function. However, by definition, $\varphi_w$ represents the partial recursive function computed by program w, and **all partial recursive functions are computable by definition**. Therefore, this property is trivially satisfied by all valid program encodings, making this language decidable (it's either $\Sigma^*$ or the set of valid encodings, both decidable). <option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine which languages are decidable.
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ is total}\}$
This asks whether we can decide if a program computes a total function. This is the classic **totality problem**, which is undecidable. By Rice's theorem, any non-trivial semantic property of partial recursive functions is undecidable, and being total is such a property. We can also show this by reducing from the halting problem.
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether we can decide if a program outputs 0 on input 0. This is also undecidable by Rice's theorem, as it's a non-trivial semantic property. We can reduce the halting problem to this: given program P and input x, construct program Q that first runs P on x, and if P halts, Q outputs 0, otherwise Q diverges. Then $\varphi_Q(0) = 0$ iff P halts on x.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ is computable}\}$
This asks whether we can decide if a program computes a computable function. However, by definition, $\varphi_w$ represents the partial recursive function computed by program w, and **all partial recursive functions are computable by definition**. Therefore, this property is trivially satisfied by all valid program encodings, making this language decidable (it's either $\Sigma^*$ or the set of valid encodings, both decidable).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me think about each option carefully. Let $L$ be an arbitrary undecidable language and $a \in \Sigma = \{0,1\}$. **Option 1:** $\overline{L}$ is undecidable If $L$ is undecidable, is $\overline{L}$ (the complement of $L$) necessarily undecidable? Well, if $\overline{L}$ were decidable, then there would be a Turing machine that decides $\overline{L}$. But then we could decide $L$ by running this machine and flipping the answer. So if $L$ is undecidable, then $\overline{L}$ must also be undecidable. Actually, let me be more careful. A language $L$ is decidable if there exists a TM that halts on all inputs and accepts exactly the strings in $L$. If $L$ is undecidable, then no such TM exists. Now, suppose $\overline{L}$ is decidable. Then there exists a TM $M$ that halts on all inputs and accepts exactly the strings in $\overline{L}$. We can construct a TM $M'$ that on input $w$: 1. Run $M$ on $w$ 2. If $M$ accepts, reject 3. If $M$ rejects, accept Then $M'$ decides $L$, contradicting the assumption that $L$ is undecidable. Therefore, if $L$ is undecidable, then $\overline{L}$ is also undecidable. So option 1 is TRUE. **Option 2:** $L^a$ is undecidable $L^a$ is the residual language of $L$ with respect to $a$, which is defined as: $L^a = \{w \in \Sigma^* : aw \in L\}$ I'm exploring whether $L^a$ is necessarily undecidable when $L$ is undecidable. I'll investigate by examining the halting problem as a potential counterexample. The halting problem $H$ provides an interesting case to test this property. I need to carefully analyze how the residual language behaves with an undecidable language like $H$. By constructing a specific language $L$ that includes halting problem strings and other strings, I can demonstrate an intriguing relationship between $L$ and $L^a$. The key is finding a strategic way to manipulate the language to reveal its decidability characteristics. The approach involves carefully defining $L$ to include halting problem strings starting with $a$ and all strings starting with $b$, which creates an interesting decision problem. By examining how we might decide membership in $L$, we can explore its computational properties. The key challenge emerges when attempting to check membership for strings beginning with $a$, which requires solving the undecidable halting problem. This fundamental obstacle proves $L$ itself is undecidable. Consequently, $L^a$ directly corresponds to $H$, remaining undecidable, while $L^b$ encompasses all possible strings, highlighting the language's complex structure. Exploring alternative constructions reveals the nuanced relationship between language decidability and prefix transformations. I'm investigating whether an undecidable language can have a decidable prefix variant, carefully examining different language constructions and their computational properties. The challenge involves finding a precise language construction that demonstrates this specific decidability relationship. By exploring concrete examples like $L = \{1\} \cup \{0w : w \in H\}$, I'm seeking a systematic approach to understand the potential decidability interactions between $L$ and $L^a$. The key observation emerges when considering $L^0$: its structure reveals critical insights about set membership and computational complexity. Specifically, by manipulating the language definition and examining prefix conditions, I can uncover nuanced relationships between membership criteria. When $L$ includes specific structural constraints like $H \cup \{0\Sigma^*\}$, the resulting $L^0$ transforms dramatically - in this case, expanding to $\Sigma^*$, which suggests fundamental limitations in decidability. The critical reasoning demonstrates that while $L$ remains undecidable, its prefix language $L^0$ becomes decidable, challenging conventional expectations about language properties. A TM can indeed accept the halting problem $H$ through simulation, revealing that undecidability does not preclude recursive enumerability. By carefully tracking $M$'s execution on $w$, we expose the nuanced relationship between computability and acceptance mechanisms. The definitions of decidability and recursive enumerability highlight subtle computational distinctions, showing how a language can simultaneously be undecidable yet accepted by a Turing machine. Critically, if $\overline{L}$ were decidable, $L$ would become decidable by complementation, proving option 1's truth and demonstrating the intricate logical connections in computational complexity.
Answer
Looking at each option where $L$ is an arbitrary undecidable language and $a \in \Sigma$: **Option 1:** $\overline{L}$ is undecidable If $L$ is undecidable, then $\overline{L}$ (the complement of $L$) must also be undecidable. Here's why: Suppose $\overline{L}$ were decidable. Then there exists a TM $M$ that decides $\overline{L}$. We could then construct a TM $M'$ that decides $L$ by running $M$ and flipping the answer. This would contradict the assumption that $L$ is undecidable. Therefore, $\overline{L}$ is undecidable. **Option 2:** $L^a$ is undecidable This is not necessarily true. Counterexample: Let $L = H \cup \{a\Sigma^*\}$ where $H$ is the halting problem (undecidable). Then: - $L$ is undecidable (deciding $L$ would require deciding $H$ for strings not starting with $a$) - $L^a = \{w : aw \in L\} = \{w : aw \in H \cup \{a\Sigma^*\}\} = \{w : aw \in H \text{ or } w \in \Sigma^*\} = \Sigma^*$ Since $L^a = \Sigma^*$ is decidable, we have a counterexample. **Option 3:** There is no TM $M$ with $L(M) = L$ This is false. A language can be recursively enumerable (accepted by some TM) while still being undecidable. The halting problem is a classic example: it's undecidable but recursively enumerable. A TM can accept the halting problem by simulating the given machine on the given input and accepting if it halts. <option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine which languages are decidable.
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ is total}\}$
This asks whether we can decide if a program computes a total function. This is the classic **totality problem**, which is undecidable. By Rice's theorem, any non-trivial semantic property of partial recursive functions is undecidable, and being total is such a property. We can also show this by reducing from the halting problem.
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether we can decide if a program outputs 0 on input 0. This is also undecidable by Rice's theorem, as it's a non-trivial semantic property. We can reduce the halting problem to this: given program P and input x, construct program Q that first runs P on x, and if P halts, Q outputs 0, otherwise Q diverges. Then $\varphi_Q(0) = 0$ iff P halts on x.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ is computable}\}$
This asks whether we can decide if a program computes a computable function. However, by definition, $\varphi_w$ represents the partial recursive function computed by program w, and **all partial recursive functions are computable by definition**. Therefore, this property is trivially satisfied by all valid program encodings, making this language decidable (it's either $\Sigma^*$ or the set of valid encodings, both decidable).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option where $L$ is an arbitrary undecidable language and $a \in \Sigma$:
**Option 1:** $\overline{L}$ is undecidable
If $L$ is undecidable, then $\overline{L}$ (the complement of $L$) must also be undecidable. Here's why: Suppose $\overline{L}$ were decidable. Then there exists a TM $M$ that decides $\overline{L}$. We could then construct a TM $M'$ that decides $L$ by running $M$ and flipping the answer. This would contradict the assumption that $L$ is undecidable. Therefore, $\overline{L}$ is undecidable.
**Option 2:** $L^a$ is undecidable
This is not necessarily true. Counterexample: Let $L = H \cup \{a\Sigma^*\}$ where $H$ is the halting problem (undecidable). Then:
- $L$ is undecidable (deciding $L$ would require deciding $H$ for strings not starting with $a$)
- $L^a = \{w : aw \in L\} = \{w : aw \in H \cup \{a\Sigma^*\}\} = \{w : aw \in H \text{ or } w \in \Sigma^*\} = \Sigma^*$
Since $L^a = \Sigma^*$ is decidable, we have a counterexample.
**Option 3:** There is no TM $M$ with $L(M) = L$
This is false. A language can be recursively enumerable (accepted by some TM) while still being undecidable. The halting problem is a classic example: it's undecidable but recursively enumerable. A TM can accept the halting problem by simulating the given machine on the given input and accepting if it halts.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each option where $M$ is a deterministic TM and there exists some input $w$ such that $M$ makes infinitely many steps on $w$. **Option 1:** $w \notin L(M)$ If $M$ makes infinitely many steps on $w$, this means $M$ does not halt on $w$. For a TM, $L(M)$ consists of strings that cause $M$ to halt and accept. Since $M$ doesn't halt on $w$, it cannot accept $w$, so $w \notin L(M)$. This is true. **Option 2:** $L(M)$ is undecidable This is not necessarily true. Just because $M$ doesn't halt on some input doesn't mean $L(M)$ is undecidable. For example, consider a TM $M$ that: - On input "0", loops forever - On any other input, immediately accepts Then $M$ doesn't halt on "0", but $L(M) = \Sigma^* \setminus \{0\}$ which is decidable (we can construct a decider that rejects "0" and accepts everything else). **Option 3:** $L(M)$ is semi-entscheidable By definition, $L(M)$ is the language accepted by TM $M$. Any language accepted by a TM is semi-entscheidable (recursively enumerable). This is true by definition - the TM $M$ itself is the semi-decider for $L(M)$.
Answer
Looking at each option where $M$ is a deterministic TM and there exists input $w$ such that $M$ makes infinitely many steps on $w$: **Option 1:** $w \notin L(M)$ If $M$ makes infinitely many steps on $w$, then $M$ does not halt on $w$. For a Turing machine, $L(M)$ consists of strings on which $M$ halts and accepts. Since $M$ doesn't halt on $w$, it cannot accept $w$, therefore $w \notin L(M)$. This is true. **Option 2:** $L(M)$ is undecidable This is not necessarily true. The fact that $M$ doesn't halt on some input doesn't imply that $L(M)$ is undecidable. Counterexample: Consider TM $M$ that: - On input "0", loops forever - On any other input, immediately accepts Then $M$ doesn't halt on "0" (satisfying our condition), but $L(M) = \Sigma^* \setminus \{0\}$ which is decidable - we can construct a decider that rejects "0" and accepts everything else. **Option 3:** $L(M)$ is semi-entscheidable By definition, $L(M)$ is the language accepted by Turing machine $M$. Any language accepted by a TM is semi-entscheidable (recursively enumerable) by definition. The TM $M$ itself serves as the semi-decider for $L(M)$. This is always true. <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine which languages are decidable.
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ is total}\}$
This asks whether we can decide if a program computes a total function. This is the classic **totality problem**, which is undecidable. By Rice's theorem, any non-trivial semantic property of partial recursive functions is undecidable, and being total is such a property. We can also show this by reducing from the halting problem.
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether we can decide if a program outputs 0 on input 0. This is also undecidable by Rice's theorem, as it's a non-trivial semantic property. We can reduce the halting problem to this: given program P and input x, construct program Q that first runs P on x, and if P halts, Q outputs 0, otherwise Q diverges. Then $\varphi_Q(0) = 0$ iff P halts on x.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ is computable}\}$
This asks whether we can decide if a program computes a computable function. However, by definition, $\varphi_w$ represents the partial recursive function computed by program w, and **all partial recursive functions are computable by definition**. Therefore, this property is trivially satisfied by all valid program encodings, making this language decidable (it's either $\Sigma^*$ or the set of valid encodings, both decidable).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option where $L$ is an arbitrary undecidable language and $a \in \Sigma$:
**Option 1:** $\overline{L}$ is undecidable
If $L$ is undecidable, then $\overline{L}$ (the complement of $L$) must also be undecidable. Here's why: Suppose $\overline{L}$ were decidable. Then there exists a TM $M$ that decides $\overline{L}$. We could then construct a TM $M'$ that decides $L$ by running $M$ and flipping the answer. This would contradict the assumption that $L$ is undecidable. Therefore, $\overline{L}$ is undecidable.
**Option 2:** $L^a$ is undecidable
This is not necessarily true. Counterexample: Let $L = H \cup \{a\Sigma^*\}$ where $H$ is the halting problem (undecidable). Then:
- $L$ is undecidable (deciding $L$ would require deciding $H$ for strings not starting with $a$)
- $L^a = \{w : aw \in L\} = \{w : aw \in H \cup \{a\Sigma^*\}\} = \{w : aw \in H \text{ or } w \in \Sigma^*\} = \Sigma^*$
Since $L^a = \Sigma^*$ is decidable, we have a counterexample.
**Option 3:** There is no TM $M$ with $L(M) = L$
This is false. A language can be recursively enumerable (accepted by some TM) while still being undecidable. The halting problem is a classic example: it's undecidable but recursively enumerable. A TM can accept the halting problem by simulating the given machine on the given input and accepting if it halts.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option where $M$ is a deterministic TM and there exists input $w$ such that $M$ makes infinitely many steps on $w$:
**Option 1:** $w \notin L(M)$
If $M$ makes infinitely many steps on $w$, then $M$ does not halt on $w$. For a Turing machine, $L(M)$ consists of strings on which $M$ halts and accepts. Since $M$ doesn't halt on $w$, it cannot accept $w$, therefore $w \notin L(M)$. This is true.
**Option 2:** $L(M)$ is undecidable
This is not necessarily true. The fact that $M$ doesn't halt on some input doesn't imply that $L(M)$ is undecidable.
Counterexample: Consider TM $M$ that:
- On input "0", loops forever
- On any other input, immediately accepts
Then $M$ doesn't halt on "0" (satisfying our condition), but $L(M) = \Sigma^* \setminus \{0\}$ which is decidable - we can construct a decider that rejects "0" and accepts everything else.
**Option 3:** $L(M)$ is semi-entscheidable
By definition, $L(M)$ is the language accepted by Turing machine $M$. Any language accepted by a TM is semi-entscheidable (recursively enumerable) by definition. The TM $M$ itself serves as the semi-decider for $L(M)$. This is always true.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each option: **Option 1:** Every regular language is in NP. A regular language can be recognized by a finite automaton in linear time. Since finite automata can be simulated by Turing machines in linear time, every regular language is in P. Since P ⊆ NP, every regular language is also in NP. This is true. **Option 2:** Every context-free language is in P. This is false. There are context-free languages that are not in P. While the CYK algorithm can parse any context-free language in O(n³) time, there are context-free languages that require more than polynomial time to decide membership. Actually, wait - CYK algorithm runs in O(n³) time, which is polynomial, so this would suggest that context-free languages are in P. Let me think more carefully. The CYK algorithm can determine if a string is in a context-free language in O(n³) time given the grammar in Chomsky Normal Form. This is polynomial time. So actually, every context-free language should be in P. Wait, let me double-check this. The CYK algorithm works for any context-free grammar and runs in O(n³) time. So yes, every context-free language is decidable in polynomial time, meaning CFL ⊆ P. This statement is true. **Option 3:** If L ∈ P, then L̄ ∈ NP. If L ∈ P, then there's a polynomial-time deterministic algorithm to decide L. To decide L̄, we can run this algorithm and flip the answer, which still takes polynomial time. So L̄ ∈ P. Since P ⊆ NP, we have L̄ ∈ NP. This is true. Wait, let me double-check option 2 again. I want to make sure about CFL ⊆ P. The CYK algorithm can parse any context-free language in O(n³) time. I confirm that the CYK algorithm's polynomial time complexity supports the claim that context-free languages are in P. The O(n³) runtime ensures efficient decision-making for these languages, making option 2 definitively true.
Answer
Looking at each option: **Option 1:** Every regular language is in NP. Regular languages can be recognized by finite automata in linear time O(n). Since finite automata can be simulated by Turing machines in linear time, every regular language is in P. Since P ⊆ NP, every regular language is also in NP. This is true. **Option 2:** Every context-free language is in P. Context-free languages can be decided using the CYK (Cocke-Younger-Kasami) algorithm, which runs in O(n³) time for any context-free grammar in Chomsky Normal Form. Since O(n³) is polynomial time, every context-free language can be decided in polynomial time, meaning CFL ⊆ P. This is true. **Option 3:** If L ∈ P, then L̄ ∈ NP. If L ∈ P, then there exists a polynomial-time deterministic algorithm that decides L. To decide the complement L̄, we can run this same algorithm and flip the answer (accept if the original algorithm rejects, and vice versa). This still takes polynomial time, so L̄ ∈ P. Since P ⊆ NP, we have L̄ ∈ NP. This is true. <option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine which languages are decidable.
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ is total}\}$
This asks whether we can decide if a program computes a total function. This is the classic **totality problem**, which is undecidable. By Rice's theorem, any non-trivial semantic property of partial recursive functions is undecidable, and being total is such a property. We can also show this by reducing from the halting problem.
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether we can decide if a program outputs 0 on input 0. This is also undecidable by Rice's theorem, as it's a non-trivial semantic property. We can reduce the halting problem to this: given program P and input x, construct program Q that first runs P on x, and if P halts, Q outputs 0, otherwise Q diverges. Then $\varphi_Q(0) = 0$ iff P halts on x.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ is computable}\}$
This asks whether we can decide if a program computes a computable function. However, by definition, $\varphi_w$ represents the partial recursive function computed by program w, and **all partial recursive functions are computable by definition**. Therefore, this property is trivially satisfied by all valid program encodings, making this language decidable (it's either $\Sigma^*$ or the set of valid encodings, both decidable).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option where $L$ is an arbitrary undecidable language and $a \in \Sigma$:
**Option 1:** $\overline{L}$ is undecidable
If $L$ is undecidable, then $\overline{L}$ (the complement of $L$) must also be undecidable. Here's why: Suppose $\overline{L}$ were decidable. Then there exists a TM $M$ that decides $\overline{L}$. We could then construct a TM $M'$ that decides $L$ by running $M$ and flipping the answer. This would contradict the assumption that $L$ is undecidable. Therefore, $\overline{L}$ is undecidable.
**Option 2:** $L^a$ is undecidable
This is not necessarily true. Counterexample: Let $L = H \cup \{a\Sigma^*\}$ where $H$ is the halting problem (undecidable). Then:
- $L$ is undecidable (deciding $L$ would require deciding $H$ for strings not starting with $a$)
- $L^a = \{w : aw \in L\} = \{w : aw \in H \cup \{a\Sigma^*\}\} = \{w : aw \in H \text{ or } w \in \Sigma^*\} = \Sigma^*$
Since $L^a = \Sigma^*$ is decidable, we have a counterexample.
**Option 3:** There is no TM $M$ with $L(M) = L$
This is false. A language can be recursively enumerable (accepted by some TM) while still being undecidable. The halting problem is a classic example: it's undecidable but recursively enumerable. A TM can accept the halting problem by simulating the given machine on the given input and accepting if it halts.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option where $M$ is a deterministic TM and there exists input $w$ such that $M$ makes infinitely many steps on $w$:
**Option 1:** $w \notin L(M)$
If $M$ makes infinitely many steps on $w$, then $M$ does not halt on $w$. For a Turing machine, $L(M)$ consists of strings on which $M$ halts and accepts. Since $M$ doesn't halt on $w$, it cannot accept $w$, therefore $w \notin L(M)$. This is true.
**Option 2:** $L(M)$ is undecidable
This is not necessarily true. The fact that $M$ doesn't halt on some input doesn't imply that $L(M)$ is undecidable.
Counterexample: Consider TM $M$ that:
- On input "0", loops forever
- On any other input, immediately accepts
Then $M$ doesn't halt on "0" (satisfying our condition), but $L(M) = \Sigma^* \setminus \{0\}$ which is decidable - we can construct a decider that rejects "0" and accepts everything else.
**Option 3:** $L(M)$ is semi-entscheidable
By definition, $L(M)$ is the language accepted by Turing machine $M$. Any language accepted by a TM is semi-entscheidable (recursively enumerable) by definition. The TM $M$ itself serves as the semi-decider for $L(M)$. This is always true.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** Every regular language is in NP.
Regular languages can be recognized by finite automata in linear time O(n). Since finite automata can be simulated by Turing machines in linear time, every regular language is in P. Since P ⊆ NP, every regular language is also in NP. This is true.
**Option 2:** Every context-free language is in P.
Context-free languages can be decided using the CYK (Cocke-Younger-Kasami) algorithm, which runs in O(n³) time for any context-free grammar in Chomsky Normal Form. Since O(n³) is polynomial time, every context-free language can be decided in polynomial time, meaning CFL ⊆ P. This is true.
**Option 3:** If L ∈ P, then L̄ ∈ NP.
If L ∈ P, then there exists a polynomial-time deterministic algorithm that decides L. To decide the complement L̄, we can run this same algorithm and flip the answer (accept if the original algorithm rejects, and vice versa). This still takes polynomial time, so L̄ ∈ P. Since P ⊆ NP, we have L̄ ∈ NP. This is true.
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
We're given that P ≠ NP, A ∈ NP, and B is NP-complete. Let me analyze each option: **Option 1: A ⊆ B** This is asking whether every element of A is also in B. This is not necessarily true. A and B could be completely different languages. For example, A could be the language of satisfiable Boolean formulas and B could be the language of Hamiltonian paths in graphs. Both are in NP (B is NP-complete), but they don't have a subset relationship. **Option 2: B ⊆ A** This is asking whether every element of B is also in A. This is also not necessarily true for the same reasons as option 1. **Option 3: A ≤_p B** This is asking whether A is polynomial-time reducible to B. Since B is NP-complete, by definition, every language in NP is polynomial-time reducible to B. Since A ∈ NP, we have A ≤_p B. This is true. **Option 4: B ≤_p A** This is asking whether B is polynomial-time reducible to A. Since B is NP-complete and A ∈ NP, if B ≤_p A were true, then by the transitivity of polynomial-time reductions, every language in NP would be reducible to A (since B is NP-complete means every NP language reduces to B, and if B reduces to A, then every NP language reduces to A). This would make A NP-complete as well. But we're not told that A is NP-complete. A could be any language in NP. If A ∈ P (which is possible since P ⊆ NP), then having B ≤_p A would imply B ∈ P (since polynomial-time reductions preserve membership in P). But B is NP-complete, so under the assumption P ≠ NP, we know B ∉ P. If A ∈ P, then B ≤_p A would lead to a contradiction. This means we cannot have B polynomial-time reducible to A if A is in P, as this would imply P = NP, which contradicts our initial assumption. The key constraint is maintaining the separation between P and NP. When A is NP-complete and not in P, B can indeed be polynomial-time reducible to A. This reveals that option 4 is not universally true and depends on A's complexity class. For NP-complete languages, polynomial-time equivalence holds. Option 3 is confirmed true: since B is NP-complete, every NP language, including A, can be reduced to B in polynomial time.
Answer
Looking at each option where P ≠ NP, A ∈ NP, and B is NP-complete: **Option 1:** A ⊆ B This is not necessarily true. Set inclusion is not related to computational complexity classes or polynomial reductions. A and B could be completely disjoint languages. For example, A could be some specific NP language and B could be SAT - they have no reason to have a subset relationship. **Option 2:** B ⊆ A This is also not necessarily true for the same reasons as option 1. There's no requirement that NP-complete languages be subsets of arbitrary NP languages. **Option 3:** A ≤_p B This is true. By definition of NP-completeness, B is NP-complete means: 1. B ∈ NP 2. For every language L ∈ NP, we have L ≤_p B Since A ∈ NP, we have A ≤_p B by the definition of NP-completeness. **Option 4:** B ≤_p A This is not necessarily true. If this were true, then since B is NP-complete, we would have that every language in NP reduces to A (by transitivity of polynomial reductions). This would make A NP-complete as well. However, A could be in P (since P ⊆ NP). If A ∈ P and B ≤_p A, then B ∈ P (polynomial reductions preserve membership in P). Since B is NP-complete, if B ∈ P, then P = NP. But we assumed P ≠ NP, which gives us a contradiction. Therefore, B ≤_p A is not always true. <option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine which languages are decidable.
**Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ is total}\}$
This asks whether we can decide if a program computes a total function. This is the classic **totality problem**, which is undecidable. By Rice's theorem, any non-trivial semantic property of partial recursive functions is undecidable, and being total is such a property. We can also show this by reducing from the halting problem.
**Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
This asks whether we can decide if a program outputs 0 on input 0. This is also undecidable by Rice's theorem, as it's a non-trivial semantic property. We can reduce the halting problem to this: given program P and input x, construct program Q that first runs P on x, and if P halts, Q outputs 0, otherwise Q diverges. Then $\varphi_Q(0) = 0$ iff P halts on x.
**Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ is computable}\}$
This asks whether we can decide if a program computes a computable function. However, by definition, $\varphi_w$ represents the partial recursive function computed by program w, and **all partial recursive functions are computable by definition**. Therefore, this property is trivially satisfied by all valid program encodings, making this language decidable (it's either $\Sigma^*$ or the set of valid encodings, both decidable).
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option where $L$ is an arbitrary undecidable language and $a \in \Sigma$:
**Option 1:** $\overline{L}$ is undecidable
If $L$ is undecidable, then $\overline{L}$ (the complement of $L$) must also be undecidable. Here's why: Suppose $\overline{L}$ were decidable. Then there exists a TM $M$ that decides $\overline{L}$. We could then construct a TM $M'$ that decides $L$ by running $M$ and flipping the answer. This would contradict the assumption that $L$ is undecidable. Therefore, $\overline{L}$ is undecidable.
**Option 2:** $L^a$ is undecidable
This is not necessarily true. Counterexample: Let $L = H \cup \{a\Sigma^*\}$ where $H$ is the halting problem (undecidable). Then:
- $L$ is undecidable (deciding $L$ would require deciding $H$ for strings not starting with $a$)
- $L^a = \{w : aw \in L\} = \{w : aw \in H \cup \{a\Sigma^*\}\} = \{w : aw \in H \text{ or } w \in \Sigma^*\} = \Sigma^*$
Since $L^a = \Sigma^*$ is decidable, we have a counterexample.
**Option 3:** There is no TM $M$ with $L(M) = L$
This is false. A language can be recursively enumerable (accepted by some TM) while still being undecidable. The halting problem is a classic example: it's undecidable but recursively enumerable. A TM can accept the halting problem by simulating the given machine on the given input and accepting if it halts.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option where $M$ is a deterministic TM and there exists input $w$ such that $M$ makes infinitely many steps on $w$:
**Option 1:** $w \notin L(M)$
If $M$ makes infinitely many steps on $w$, then $M$ does not halt on $w$. For a Turing machine, $L(M)$ consists of strings on which $M$ halts and accepts. Since $M$ doesn't halt on $w$, it cannot accept $w$, therefore $w \notin L(M)$. This is true.
**Option 2:** $L(M)$ is undecidable
This is not necessarily true. The fact that $M$ doesn't halt on some input doesn't imply that $L(M)$ is undecidable.
Counterexample: Consider TM $M$ that:
- On input "0", loops forever
- On any other input, immediately accepts
Then $M$ doesn't halt on "0" (satisfying our condition), but $L(M) = \Sigma^* \setminus \{0\}$ which is decidable - we can construct a decider that rejects "0" and accepts everything else.
**Option 3:** $L(M)$ is semi-entscheidable
By definition, $L(M)$ is the language accepted by Turing machine $M$. Any language accepted by a TM is semi-entscheidable (recursively enumerable) by definition. The TM $M$ itself serves as the semi-decider for $L(M)$. This is always true.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option:
**Option 1:** Every regular language is in NP.
Regular languages can be recognized by finite automata in linear time O(n). Since finite automata can be simulated by Turing machines in linear time, every regular language is in P. Since P ⊆ NP, every regular language is also in NP. This is true.
**Option 2:** Every context-free language is in P.
Context-free languages can be decided using the CYK (Cocke-Younger-Kasami) algorithm, which runs in O(n³) time for any context-free grammar in Chomsky Normal Form. Since O(n³) is polynomial time, every context-free language can be decided in polynomial time, meaning CFL ⊆ P. This is true.
**Option 3:** If L ∈ P, then L̄ ∈ NP.
If L ∈ P, then there exists a polynomial-time deterministic algorithm that decides L. To decide the complement L̄, we can run this same algorithm and flip the answer (accept if the original algorithm rejects, and vice versa). This still takes polynomial time, so L̄ ∈ P. Since P ⊆ NP, we have L̄ ∈ NP. This is true.
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:Looking at each option where P ≠ NP, A ∈ NP, and B is NP-complete:
**Option 1:** A ⊆ B
This is not necessarily true. Set inclusion is not related to computational complexity classes or polynomial reductions. A and B could be completely disjoint languages. For example, A could be some specific NP language and B could be SAT - they have no reason to have a subset relationship.
**Option 2:** B ⊆ A
This is also not necessarily true for the same reasons as option 1. There's no requirement that NP-complete languages be subsets of arbitrary NP languages.
**Option 3:** A ≤_p B
This is true. By definition of NP-completeness, B is NP-complete means:
1. B ∈ NP
2. For every language L ∈ NP, we have L ≤_p B
Since A ∈ NP, we have A ≤_p B by the definition of NP-completeness.
**Option 4:** B ≤_p A
This is not necessarily true. If this were true, then since B is NP-complete, we would have that every language in NP reduces to A (by transitivity of polynomial reductions). This would make A NP-complete as well.
However, A could be in P (since P ⊆ NP). If A ∈ P and B ≤_p A, then B ∈ P (polynomial reductions preserve membership in P). Since B is NP-complete, if B ∈ P, then P = NP. But we assumed P ≠ NP, which gives us a contradiction.
Therefore, B ≤_p A is not always true.
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let me think about this problem step by step. We have two languages A and B over Σ*, where A is undecidable. We need to determine whether at least one of the languages A ∪ B and A ∪ B̄ is undecidable. Let me try to prove this by contradiction. Suppose both A ∪ B and A ∪ B̄ are decidable. Since A ∪ B is decidable, there exists a TM M₁ that decides A ∪ B. Since A ∪ B̄ is decidable, there exists a TM M₂ that decides A ∪ B̄. Now, let's think about what this means for deciding A. For any string w ∈ Σ*: - w ∈ A ∪ B iff w ∈ A or w ∈ B - w ∈ A ∪ B̄ iff w ∈ A or w ∈ B̄ Now, let's consider a string w. We have several cases: Case 1: w ∈ A Then w ∈ A ∪ B (since w ∈ A) and w ∈ A ∪ B̄ (since w ∈ A). So M₁(w) = accept and M₂(w) = accept. Case 2: w ∉ A and w ∈ B Then w ∈ A ∪ B (since w ∈ B) and w ∉ A ∪ B̄ (since w ∉ A and w ∉ B̄). So M₁(w) = accept and M₂(w) = reject. Case 3: w ∉ A and w ∉ B (i.e., w ∈ B̄) When w is outside A and B, it falls in the complement of B. This creates a unique scenario where the machines M₁ and M₂ provide different results. I can construct a decider for A by running both machines and comparing their outputs. This allows me to determine membership in A through a simple decision procedure. The key insight is that the different acceptance patterns of M₁ and M₂ provide enough information to conclusively decide A's membership, which contradicts A's undecidability. I see the contradiction in the case where both machines reject. Every string must be in either B or its complement, making the impossible case impossible. This reveals a decider for set A that contradicts its undecidability. By showing that the assumption of decidability for both A ∪ B and A ∪ B̄ leads to a contradiction, the statement is proven true.
Answer
Looking at this problem, I need to prove or disprove that at least one of A ∪ B and A ∪ B̄ is undecidable, given that A is undecidable. I'll prove this by contradiction. **Proof:** Assume for contradiction that both A ∪ B and A ∪ B̄ are decidable. Since A ∪ B is decidable, there exists a TM M₁ that decides A ∪ B. Since A ∪ B̄ is decidable, there exists a TM M₂ that decides A ∪ B̄. Now I'll construct a decider for A using M₁ and M₂: For any string w ∈ Σ*, exactly one of the following cases holds: **Case 1:** w ∈ A Then w ∈ A ∪ B and w ∈ A ∪ B̄, so M₁(w) = accept and M₂(w) = accept. **Case 2:** w ∉ A and w ∈ B Then w ∈ A ∪ B and w ∉ A ∪ B̄, so M₁(w) = accept and M₂(w) = reject. **Case 3:** w ∉ A and w ∉ B (i.e., w ∈ B̄) Then w ∉ A ∪ B and w ∈ A ∪ B̄, so M₁(w) = reject and M₂(w) = accept. Note that the case M₁(w) = reject and M₂(w) = reject is impossible, since it would require w ∉ B and w ∉ B̄, which contradicts the fact that B̄ is the complement of B. Therefore, I can construct the following decider for A: **Algorithm for deciding A:** Given input w: 1. Run M₁ on w to get result r₁ 2. Run M₂ on w to get result r₂ 3. If r₁ = accept and r₂ = accept, then accept (w ∈ A) 4. Otherwise, reject (w ∉ A) This algorithm correctly decides A, which contradicts the assumption that A is undecidable. Therefore, our assumption was false, and at least one of A ∪ B and A ∪ B̄ must be undecidable. <option id="1">1</option> <option id="2">0</option> <answer id="3"> The statement is **true**. **Proof by contradiction:** Assume both A ∪ B and A ∪ B̄ are decidable. Then there exist TMs M₁ and M₂ that decide these languages respectively. For any string w ∈ Σ*, we have exactly three possible cases: - Case 1: w ∈ A → M₁(w) = accept, M₂(w) = accept - Case 2: w ∉ A, w ∈ B → M₁(w) = accept, M₂(w) = reject - Case 3: w ∉ A, w ∉ B → M₁(w) = reject, M₂(w) = accept We can construct a decider for A: given input w, run both M₁ and M₂, then accept iff both accept. This contradicts the undecidability of A. Therefore, at least one of A ∪ B and A ∪ B̄ is undecidable. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
The statement is **true**. **Proof by contradiction:** Assume both A ∪ B and A ∪ B̄ are decidable. Then there exist TMs M₁ and M₂ that decide these languages respectively. For any string w ∈ Σ*, we have exactly three possible cases: - Case 1: w ∈ A → M₁(w) = accept, M₂(w) = accept - Case 2: w ∉ A, w ∈ B → M₁(w) = accept, M₂(w) = reject - Case 3: w ∉ A, w ∉ B → M₁(w) = reject, M₂(w) = accept We can construct a decider for A: given input w, run both M₁ and M₂, then accept iff both accept. This contradicts the undecidability of A. Therefore, at least one of A ∪ B and A ∪ B̄ is undecidable.
deepseek/deepseek-chat-v3.1
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Zuerst muss ich die Fragen zu den Sprachen beantworten, die entscheidbar sind oder nicht. Es gibt drei Optionen, und ich muss für jede angeben, ob sie entscheidbar ist (1) oder nicht (0). Die Begründung ist nicht gefordert, aber ich sollte trotzdem überlegen, warum. Option 1: $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ – Das ist die Sprache aller Programme, die totale Funktionen berechnen. Die Frage, ob ein Programm für jede Eingabe hält, ist unentscheidbar. Das ist das Halteproblem, aber für Totalität. Das Totality-Problem ist unentscheidbar, da man nicht für jedes Programm entscheiden kann, ob es auf allen Eingaben hält. Also sollte diese Sprache unentscheidbar sein. Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ – Hier geht es um Programme, die bei Eingabe 0 den Wert 0 ausgeben. Das ist eine spezifische Eigenschaft. Man könnte ein Programm schreiben, das simuliert, was φ_w(0) tut. Wenn φ_w(0) definiert ist und 0 ausgibt, dann akzeptiere, sonst nicht. Aber wenn φ_w(0) nicht hält, dann wissen wir das nicht. Also ist es nicht entscheidbar, ob φ_w(0) = 0, weil wir nicht wissen, ob es überhaupt hält. Das Äquivalenzproblem oder spezifische Ausgabeprobleme sind unentscheidbar. Aber hier ist es nur für eine feste Eingabe 0. Trotzdem, da wir nicht entscheiden können, ob das Programm auf 0 hält, können wir nicht sicher sagen, ob es 0 ausgibt. Also unentscheidbar. Wait, aber für eine feste Eingabe könnte man argumentieren, dass man das Programm auf Eingabe 0 laufen lässt und wenn es hält und 0 ausgibt, akzeptiere, sonst ablehne. Aber das Problem ist, wenn es nicht hält, dann hält unser Entscheider nicht, also ist es nicht entscheidbar. Ja, das ist korrekt. Also unentscheidbar. Option 3: $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ – φ_w ist immer berechenbar, da es durch das Programm w definiert ist. Jede partielle berechenbare Funktion ist berechenbar, aber die Frage ist, ob die Funktion berechenbar ist. Eigentlich ist φ_w per Definition eine berechenbare Funktion (wenn w ein gültiger Index ist). Aber nicht alle w sind gültige Programme; in der Standardnummerierung sind alle w Indizes für berechenbare Funktionen, auch wenn sie nicht total sind. In der Berechenbarkeitstheorie wird angenommen, dass jede natürliche Zahl w einen berechenbaren Funktion φ_w entspricht, auch wenn sie nicht definiert ist. Also ist φ_w immer berechenbar, da es durch das Programm w berechnet wird. Daher ist diese Menge einfach alle w, also Σ^*, was entscheidbar ist. Wait, ist das richtig? In der klassischen Berechenbarkeitstheorie ist jede Funktion φ_w berechenbar, by definition, weil w ein Index für eine berechenbare Funktion ist. Also die Sprache ist {w : φ_w ist berechenbar}, aber da φ_w immer berechenbar ist, ist dies gleich Σ^*, was eine entscheidbare Sprache ist. Aber es gibt Nummerierungen, wo nicht alle w gültige Programme sind, aber typischerweise in diesem Kontext, wir nehmen an, dass jedes w ein Programm beschreibt, auch wenn es syntaktisch falsch ist, aber oft wird angenommen, dass ungültige Programme eine feste Funktion berechnen, wie die nirgends definierte Funktion. Aber selbst dann, die nirgends definierte Funktion ist berechenbar? Nein, eine partielle Funktion ist berechenbar, wenn es einen Algorithmus gibt, der sie berechnet. Die nirgends definierte Funktion ist berechenbar, da man ein Programm schreiben kann, das für keine Eingabe hält. Also ja, alle φ_w sind berechenbar. In manchen Definitionen: Wenn w kein gültiges Programm ist, dann ist φ_w undefiniert für alle Eingaben, aber das ist immer noch eine berechenbare partielle Funktion, da es einen Algorithmus gibt (der nie hält). Also ist die Menge aller w, für die φ_w berechenbar ist, tatsächlich alle w, also Σ^*, was entscheidbar ist. Also für Option 3: entscheidbar. Jetzt zurück zu Option 2: Ist {w : φ_w(0) = 0} entscheidbar? Angenommen, wir haben einen Entscheider für diese Sprache. Dann könnten wir das Halteproblem lösen. Für ein gegebenes Programm w und Eingabe x, konstruiere ein Programm w', das ignoriert seine Eingabe, simuliert w auf x, und wenn es hält, gibt es 0 aus. Dann φ_w'(0) = 0 genau dann, wenn w auf x hält. Also wenn wir entscheiden könnten, ob φ_w'(0) = 0, könnten wir das Halteproblem entscheiden. Da das Halteproblem unentscheidbar ist, ist auch {w : φ_w(0) = 0} unentscheidbar. Ja, also unentscheidbar. Option 1: {w : φ_w ist total} – unentscheidbar, wie das Totality-Problem. Option 3: entscheidbar, wie argumentiert. Also Antworten: Option 1: 0 (nicht entscheidbar) Option 2: 0 (nicht entscheidbar) Option 3: 1 (entscheidbar) Jetzt muss ich das im angegebenen Format ausgeben.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
First, I need to answer subproblem b. The question is about an arbitrary undecidable language L and a symbol a in Σ. Σ is {0,1}, so a is either 0 or 1. I need to evaluate three statements. Statement 1: The complement of L, denoted as \overline L, is undecidable. I know that if L is undecidable, its complement might or might not be undecidable. But in general, for recursive languages, the complement is also recursive, but for undecidable languages, it's not necessarily true that the complement is undecidable. Actually, if L is undecidable, \overline L could be decidable or undecidable. But I recall that if both L and \overline L are semi-decidable, then L is decidable. Since L is undecidable, it cannot be that both are semi-decidable. But \overline L could be decidable even if L is not. For example, the halting problem is undecidable, and its complement is also undecidable. But there might be languages where L is undecidable but \overline L is decidable. Is that possible? I think yes. For instance, consider a language that is not semi-decidable. If L is not semi-decidable, then \overline L might be semi-decidable or not. But in standard examples, like the halting problem, both are undecidable. However, theoretically, there are undecidable languages whose complement is decidable? No, that can't be right because if \overline L is decidable, then L would be decidable too, since decidability is closed under complement. Yes! That's a key point. Decidability is closed under complement. That means if L is decidable, then \overline L is decidable, and vice versa. Therefore, if L is undecidable, then \overline L must also be undecidable. Because if \overline L were decidable, then L would be decidable by closure under complement, contradiction. So, statement 1 should be true: if L is undecidable, then \overline L is undecidable. Now, statement 2: L^a is unentscheidbar. L^a is the residual language with respect to a, which I believe means the set of strings w such that a w is in L. In other words, L^a = { w ∈ Σ^* | a w ∈ L }. Is L^a necessarily undecidable? Not necessarily. For example, if L is undecidable, but the residual might be decidable. Consider a language where the first symbol determines something. For instance, suppose L is such that if the string starts with 0, it's in some undecidable set, and if it starts with 1, it's always out or something. But L^a is for a specific a. Let a be fixed. L^a could be decidable even if L is undecidable. For example, take L to be the halting problem, but encoded in a way that strings starting with a are handled differently. Actually, the residual of an undecidable language might be decidable. I recall that if L is undecidable, and we fix a prefix, the residual might not be undecidable. For instance, consider L = { w | w represents a Turing machine that halts on empty input }, which is undecidable. Now, L^a for a particular a: if a is 0 or 1, L^a is the set of strings w such that a w is in L. But a w is just a string that starts with a, and it might be that for some a, L^a is decidable. But is that true? Actually, for the halting problem, if we fix the first symbol, it doesn't change the undecidability because the encoding of Turing machines might start with any symbol. Typically, in standard encodings, the set of all codes for TMs might include strings starting with 0 or 1, so L^a for any a might still be undecidable because it's essentially the same as L but with a prefix, which doesn't affect computability. But the question is about arbitrary undecidable L, so I need to see if it's always true. I think it's not always true. For example, suppose L is undecidable, but only for strings starting with a certain prefix. But since L is arbitrary, I can define L such that L^a is decidable. For instance, let L be a language that is undecidable, but only contains strings that start with b, where b is not a. Then for a, if a ≠ b, then L^a might be empty or something. Specifically, if L contains no strings starting with a, then L^a is empty, which is decidable. Yes! So if L is undecidable but no string in L starts with a, then L^a = ∅, which is decidable. Therefore, L^a is not necessarily undecidable. So statement 2 is false. Now, statement 3: There is no Turing machine M with L(M) = L. But L is undecidable, which means that there is no Turing machine that decides L, but there might be a Turing machine that semi-decides L, i.e., L is semi-decidable. Undecidable means not decidable, but it might be semi-decidable or not. For example, the halting problem is undecidable but semi-decidable. So there is a TM M such that L(M) = L, but M may not halt on all inputs. The statement says "es gibt keine TM M mit L(M) = L", which means there is no TM M such that L(M) = L. But if L is undecidable, it could be that L is not semi-decidable, so no TM accepts L, or it could be semi-decidable. For instance, if L is not recursively enumerable, then there is no TM M with L(M) = L. But if L is undecidable but recursively enumerable, then there is such a TM. Since L is arbitrary undecidable language, it could be either not RE or RE. Therefore, it is not necessarily true that there is no TM with L(M) = L; it depends on whether L is RE or not. The statement says "es gibt keine", meaning there is no, but for undecidable L that is RE, there is a TM that accepts it. So statement 3 is false because it's not always true; only if L is not RE, but undecidable includes both cases. Therefore, for statement 1: true, statement 2: false, statement 3: false. But let me confirm statement 1. Is it always true that if L is undecidable, then \overline L is undecidable? Yes, due to closure under complement for decidability. For statement 2, as I thought, L^a can be decidable. For statement 3, it's not always true. So answers should be: <option id="1">1</option> <option id="2">0</option> <option id="3">0</option> Now, the format is to put 0 or 1 for each option. I think that's it.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
First, the user has given me a series of subproblems from a quiz on computability and complexity. I need to answer each subproblem by selecting the correct options (0 or 1 for each option id). For subproblem a, b, and c, I've already provided answers, but now I need to handle subproblem c. Subproblem c: "Sei M eine beliebige deterministische Turingmaschine, sodass es eine Eingabe w ∈ Σ* gibt, auf der M unendlich viele Schritte macht. Welche Aussagen sind wahr?" Translated: "Let M be an arbitrary deterministic Turing machine such that there is an input w ∈ Σ* on which M makes infinitely many steps. Which statements are true?" The options are: <option id="1">w ∉ L(M)</option> <option id="2">L(M) is undecidable</option> <option id="3">L(M) is semi-decidable</option> I need to evaluate each one. Starting with option 1: "w ∉ L(M)". If M makes infinitely many steps on input w, that means M does not halt on w. For a language L(M), w is in L(M) only if M accepts w, which requires M to halt and accept. If M loops infinitely on w, it never accepts, so w is not in L(M). Therefore, this statement is true. So, option id="1" should be 1. Now, option 2: "L(M) is undecidable". Just because M loops on one input w, does that make L(M) undecidable? Not necessarily. L(M) could still be decidable if there is another Turing machine that decides it. For example, M might be a poorly designed TM that loops on some inputs, but the language itself might be decidable. Undecidability means that no TM can decide the language, but here M is just one TM that recognizes L(M) (since L(M) is the set of inputs M accepts). If M does not halt on some inputs, it might not be a decider, but L(M) could still be decidable if there exists a decider for it. However, the fact that M loops on w doesn't force L(M) to be undecidable. For instance, consider a TM that recognizes a recursive language but has a bug causing it to loop on one input. The language might still be decidable. So, this statement is not necessarily true. Therefore, option id="2" should be 0. Option 3: "L(M) is semi-decidable". L(M) is always semi-decidable because M itself is a semi-decider for L(M). By definition, L(M) is the set of words that M accepts, and since M is a TM, it semi-decides L(M). Even if M loops on some inputs, it still semi-decides L(M) because for inputs in L(M), M eventually accepts (halts), and for inputs not in L(M), M might reject or loop. Semi-decidability requires that if w is in L(M), M halts and accepts, which is true by definition. The fact that M loops on w (which is not in L(M)) doesn't affect semi-decidability. So, this statement is true. Therefore, option id="3" should be 1. So, for subproblem c, the answers should be: <option id="1">1</option> <option id="2">0</option> <option id="3">1</option> Now, I need to output this in the specified format.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
First, I need to answer each subproblem correctly. For subproblem d, I have three options about complexity classes. Option 1: "Jede reguläre Sprache ist in NP." That means "Every regular language is in NP." Regular languages are a subset of context-free languages, and since P is a subset of NP, and regular languages are in P (because they can be recognized by deterministic finite automata in linear time, which is polynomial time), so yes, regular languages are in NP. So this should be true. I'll mark it as 1. Option 2: "Jede kontextfreie Sprache ist in P." That means "Every context-free language is in P." But context-free languages can be recognized by pushdown automata, and the best known algorithm for context-free language recognition is the CYK algorithm, which runs in O(n^3) time, so it's polynomial. But wait, is every context-free language in P? Context-free languages are decidable in polynomial time, yes, because CYK or Earley's algorithm can parse them in polynomial time. So, generally, context-free languages are in P. But there might be nuances. I think it's accepted that CFLs are in P. So this should be true. I'll mark it as 1. Option 3: "Sei L ∈ P. Dann gilt L̅ ∈ NP." That means "If L is in P, then the complement of L is in NP." Since P is closed under complement, if L is in P, then L̅ is also in P. And since P is a subset of NP, L̅ is in NP. So this should be true. I'll mark it as 1. But let me double-check. For option 2, is every context-free language in P? I think yes, because we can parse them in polynomial time. However, there might be context-free languages that are not deterministic, but still, the recognition is polynomial. Yes, I believe so. For option 3, P is closed under complement, so yes. So all three seem true. But the problem says "mindestens eine Antwortmöglichkeit richtig" meaning at least one is correct, but it could be more. So I'll set all to 1. But let me confirm option 2. Is it true that every context-free language is in P? Actually, the CYK algorithm works for any context-free grammar in Chomsky normal form, and it runs in O(n^3) time, so yes, context-free languages are in P. There's no known context-free language that requires more than polynomial time. So yes. Similarly, for option 1 and 3, they seem correct. So for subproblem d, all options are true. Now, I need to output in the format. So for subproblem d: <option id="1">1</option> <option id="2">1</option> <option id="3">1</option> But the user is sending one subproblem at a time, so I should respond to each as it comes. The user just sent subproblem d, so I need to answer only for d. In the previous messages, I answered a, b, c, and now d. So for d, I think all are true.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
First, I need to answer these multiple-choice questions about computability and complexity theory. The answers should be 0 or 1 for each option, and I don't need to provide explanations, but I should think through them to ensure correctness. Starting with subproblem a: Which languages are decidable? - Option 1: {w ∈ Σ* : φ_w is total}. This is the set of indices of total computable functions. The totality problem is undecidable because there's no algorithm to determine if a given Turing machine halts on all inputs. So, this language is not decidable. Answer should be 0. - Option 2: {w ∈ Σ* : φ_w(0) = 0}. This is asking if the function encoded by w returns 0 on input 0. This is essentially a special case of the halting problem. We can't decide if φ_w(0) halts and returns 0 because we don't know if it halts at all. So, undecidable. Answer should be 0. - Option 3: {w ∈ Σ* : φ_w is computable}. φ_w is always a partial computable function by definition, since w is an index of a TM. So, for every w, φ_w is computable (though it may not be total). Therefore, this language is actually all of Σ*, which is decidable. Because for any string w, it encodes some TM, and thus φ_w is computable. So, this language is decidable. Answer should be 1. So for a: option 1: 0, option 2: 0, option 3: 1. Now subproblem b: Let L be an arbitrary undecidable language, a ∈ Σ. L^a is the residual language with respect to a, which I believe means L^a = {w | a w ∈ L}. We need to see which statements are true. - Option 1: complement of L is undecidable. Yes, because if L is undecidable, then its complement is also undecidable. Decidable languages are closed under complement, so if complement were decidable, L would be decidable, contradiction. So true. Answer 1. - Option 2: L^a is undecidable. Is this always true? Not necessarily. For example, if L is undecidable, but L^a might be decidable. Consider L that is undecidable, but for a particular a, L^a could be empty or something decidable. For instance, if a is not a prefix of any word in L, then L^a is empty, which is decidable. So, it's not necessarily undecidable. False. Answer 0. - Option 3: There is no TM M with L(M) = L. But L is undecidable, but it might be semi-decidable. Undecidable means there is no TM that decides it, but there might be a TM that semi-decides it if it's recursively enumerable. But the statement says "no TM with L(M) = L", which would imply that L is not recursively enumerable. However, not all undecidable languages are not recursively enumerable; some are, like the halting problem. So, for an arbitrary undecidable L, it might be recursively enumerable, so there could be a TM that accepts it (semi-decides it). Therefore, the statement is false. Answer 0. So for b: option 1: 1, option 2: 0, option 3: 0. Now subproblem c: Let M be a deterministic TM such that there exists an input w on which M makes infinitely many steps (i.e., loops). Which statements are true? - Option 1: w ∉ L(M). If M loops on w, it never accepts, so w is not in L(M). True. Answer 1. - Option 2: L(M) is undecidable. Not necessarily. M might loop on some inputs, but L(M) could still be decidable. For example, if M loops on w but accepts all other inputs, and if we can decide for other inputs, but since we don't know about M, it could be that L(M) is decidable. For instance, if M is a TM that accepts all inputs except w, and on w it loops, then L(M) is all words except w, which might be decidable if we can decide whether an input is w or not. But wait, if M loops on w, we might not be able to decide that w is not accepted, but in terms of the language, if we have another way to decide, but typically, if M is given, L(M) is the set it accepts, and if M loops on w, we know w is not in L(M), but to decide L(M), we need a TM that always halts. But since M itself doesn't halt on w, we can't use M to decide. However, there might be another TM that decides L(M). For example, if L(M) is finite or has some structure, it might be decidable. But in general, if M loops on some input, it doesn't imply that L(M) is undecidable. Consider M that on input 0 loops, and on input 1 halts and accepts. Then L(M) = {1}, which is decidable. So, L(M) can be decidable. Thus, option 2 is false. Answer 0. - Option 3: L(M) is semi-decidable. Since M is a TM, L(M) is recursively enumerable by definition, because M semi-decides it. Even if M loops on some inputs, for the inputs it accepts, it halts, and for others, it may not halt, but that's exactly semi-decidability. So, L(M) is always semi-decidable for any TM M. True. Answer 1. So for c: option 1: 1, option 2: 0, option 3: 1. Now subproblem d: Which statements are true? - Option 1: Every regular language is in NP. Regular languages are in P, and since P ⊆ NP, yes, they are in NP. True. Answer 1. - Option 2: Every context-free language is in P. Is that true? Well, context-free languages can be parsed in polynomial time, like with CYK algorithm, which is O(n^3), so yes, they are in P. True. Answer 1. - Option 3: Let L ∈ P. Then complement of L is in NP. Since P is closed under complement, if L is in P, then complement of L is also in P, and since P ⊆ NP, yes, complement of L is in NP. True. Answer 1. So for d: all 1. Now subproblem e: Assume P ≠ NP. Let A and B be languages such that A ∈ NP and B is NP-complete. Which statements are true? - Option 1: A ⊆ B. This is not necessarily true. A and B could be different languages. For example, A could be SAT and B could be 3-SAT, but they are not subsets necessarily. In general, NP-complete languages are not necessarily subsets of each other. False. Answer 0. - Option 2: B ⊆ A. Similarly, not true. B is NP-complete, A is in NP, but B doesn't have to be a subset of A. False. Answer 0. - Option 3: A ≤_p B. This means A is polynomial-time reducible to B. Since B is NP-complete, and A is in NP, by definition of NP-completeness, every language in NP is polynomial-time reducible to B. So yes, A ≤_p B. True. Answer 1. - Option 4: B ≤_p A. This would mean B is reducible to A. But A is in NP, and B is NP-complete. If B ≤_p A, then since A is in NP, B would be in NP, which it is, but is it necessarily true? Not unless A is NP-hard. But A is just in NP, not necessarily NP-hard. Since P ≠ NP, A might not be NP-complete, so B might not be reducible to A. For example, if A is in P, and B is NP-complete, then if B ≤_p A, since A is in P, B would be in P, but if P ≠ NP, B is not in P, contradiction. So, unless A is NP-hard, which it might not be, B ≤_p A is false. So, answer 0. Thus for e: option 1: 0, option 2: 0, option 3: 1, option 4: 0. Now, I need to output the answers in the specified format.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="1">1</option> <option id="2">0</option> <option id="3">0</option> <option id="1">1</option> <option id="2">0</option> <option id="3">1</option> <option id="1">1</option> <option id="2">1</option> <option id="3">1</option> <option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
First, I need to answer subproblem f. The question is: Given that A is undecidable, show or disprove that at least one of A ∪ B or A ∪ ¬B is undecidable. I have to choose between "Wahr" (true) or "Falsch" (false) and then provide an explanation. The options are: <option id="1">Wahr</option> <option id="2">Falsch</option> And I need to output an answer in the format with <option> and then <answer>. I think this statement is true. Let me reason why. Suppose, for contradiction, that both A ∪ B and A ∪ ¬B are decidable. If both are decidable, then their intersection might also be decidable under certain conditions, but let's think about what A ∪ B and A ∪ ¬B represent. Notice that A ∪ B and A ∪ ¬B together cover all elements because for any x, if x is in B, then x is in A ∪ B, and if x is not in B, then x is in A ∪ ¬B. But more importantly, consider the intersection of A ∪ B and A ∪ ¬B. Actually, (A ∪ B) ∩ (A ∪ ¬B) = A ∪ (B ∩ ¬B) = A ∪ ∅ = A. So A is the intersection of A ∪ B and A ∪ ¬B. If both A ∪ B and A ∪ ¬B are decidable, then since decidable languages are closed under intersection, A should also be decidable. But we know that A is undecidable, so this is a contradiction. Therefore, it cannot be that both are decidable, so at least one must be undecidable. So the statement is true. Now, for the answer format, I need to output: <option id="1">1</option> if I think it's true, or <option id="2">1</option> if false. Since it's true, I should set id="1" to 1 and id="2" to 0. Then, I need to provide an answer in <answer id="3"> with my explanation. So, let me write that.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Angenommen, sowohl \(A \cup B\) als auch \(A \cup \overline{B}\) sind entscheidbar. Da entscheidbare Sprachen unter Schnitt abgeschlossen sind, ist auch \((A \cup B) \cap (A \cup \overline{B})\) entscheidbar. Es gilt: \[ (A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) = A \cup \emptyset = A. \] Somit wäre \(A\) entscheidbar, was ein Widerspruch zur Voraussetzung ist, dass \(A\) unentscheidbar ist. Daher muss mindestens eine der Sprachen \(A \cup B\) oder \(A \cup \overline{B}\) unentscheidbar sein. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Angenommen, sowohl als auch sind entscheidbar. Da entscheidbare Sprachen unter Schnitt abgeschlossen sind, ist auch entscheidbar. Es gilt: Somit wäre entscheidbar, was ein Widerspruch zur Voraussetzung ist, dass unentscheidbar ist. Daher muss mindestens eine der Sprachen oder unentscheidbar sein.
deepseek/deepseek-r1-0528
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Wir betrachten die Sprachen in Bezug auf Entscheidbarkeit. Die Sprachen beziehen sich auf die partiellen berechenbaren Funktionen, die durch Gödelnummern indiziert sind. Hier ist \( \varphi_w \) die partielle berechenbare Funktion mit der Gödelnummer \( w \). **Option 1:** \( \{ w \in \Sigma^* : \varphi_w \text{ ist total} \} \) - Das ist die Menge der Gödelnummern von totalen berechenbaren Funktionen. - Es ist bekannt, dass diese Menge nicht entscheidbar ist. Das folgt aus dem Satz von Rice, da die Eigenschaft "total zu sein" nicht trivial ist (es gibt totale Funktionen und nicht-totale, z.B. die überall undefinierte Funktion). - Nach dem Satz von Rice ist jede nicht-triviale semantische Eigenschaft der berechenbaren Funktionen unentscheidbar. "Total sein" ist eine solche Eigenschaft. - Also ist diese Sprache unentscheidbar. **Option 2:** \( \{ w \in \Sigma^* : \varphi_w(0) = 0 \} \) - Hier geht es um die Menge der Gödelnummern, für die die Funktion bei Eingabe 0 den Wert 0 ausgibt. - Beachte: Diese Sprache ist entscheidbar? Nein, das ist nicht offensichtlich. - Betrachte: Um zu entscheiden, ob \( w \) in der Sprache ist, müsste man prüfen, ob \( \varphi_w(0) = 0 \). - Aber \( \varphi_w(0) \) könnte undefiniert sein, oder sehr lange brauchen. Es gibt keinen Algorithmus, der für jedes w entscheidet, ob die Berechnung von \( \varphi_w(0) \) den Wert 0 ergibt, da das Halteproblem unentscheidbar ist. - Genauer: Die Sprache \( \{ \langle w, x \rangle : \varphi_w(x) = y \} \) ist für festes y im Allgemeinen unentscheidbar. Hier ist x fest (0) und y fest (0). Aber das Problem ist äquivalent zum Halteproblem, denn man muss prüfen, ob die Maschine bei Eingabe 0 hält und 0 ausgibt. - Tatsächlich ist die Sprache \( \{ w : \varphi_w(0) = 0 \} \) unentscheidbar. Warum? Angenommen, sie wäre entscheidbar. Dann könnte man das Halteproblem für Eingabe 0 lösen: Gegeben w, konstruiere eine Maschine, die bei Eingabe 0 hält und 0 ausgibt, falls eine bestimmte Bedingung erfüllt ist. Aber einfacher: Das spezielle Halteproblem \( H_0 = \{ w : \varphi_w(0) \text{ hält} \} \) ist unentscheidbar. Und \( \{ w : \varphi_w(0) = 0 \} \) ist eine Teilmenge davon, aber das reicht nicht. Man kann eine Reduktion vom Halteproblem bauen: Gegeben eine Maschine M und Eingabe x, konstruiere eine Maschine M', die bei Eingabe 0 M auf x simuliert und wenn das hält, gibt sie 0 aus. Dann hält M' bei 0 genau dann, wenn M bei x hält, und in diesem Fall gibt sie 0 aus. Also ist \( w_{M'} \in \{ w : \varphi_w(0) = 0 \} \) gdw. M bei x hält. Da das Halteproblem unentscheidbar ist, ist auch diese Sprache unentscheidbar. - Also: Diese Sprache ist unentscheidbar. **Option 3:** \( \{ w \in \Sigma^* : \varphi_w \text{ ist berechenbar} \} \) - Jede partielle Funktion \( \varphi_w \) ist per Definition berechenbar, da sie durch eine Turingmaschine (mit Gödelnummer w) berechnet wird. Die Funktion \( \varphi_w \) ist die partielle Funktion, die von der Turingmaschine mit Code w berechnet wird. Also ist für jedes w die Funktion \( \varphi_w \) berechenbar (möglicherweise partiell, aber berechenbar im Sinne von partiell berechenbar). - Die Menge aller w ist also \( \Sigma^* \), da jede Zeichenkette w eine Turingmaschine kodiert (möglicherweise eine, die nie hält, aber dennoch berechenbar ist). - Also ist die Sprache \( \{ w : \varphi_w \text{ ist berechenbar} \} = \Sigma^* \), da für jedes w die Funktion \( \varphi_w \) berechenbar ist. - \( \Sigma^* \) ist entscheidbar (trivialerweise). - Also ist diese Sprache entscheidbar. Fazit: - Option 1: unentscheidbar → 0 - Option 2: unentscheidbar → 0 - Option 3: entscheidbar → 1 Aber die Aufgabe sagt: "Es ist immer mindestens eine Antwortmöglichkeit richtig." Hier ist nur Option 3 richtig. Überprüfe Option 2 nochmal: - Ist \( \{ w : \varphi_w(0) = 0 \} \) wirklich unentscheidbar? Ja, wie oben argumentiert. - Man kann auch den Satz von Rice anwenden: Die Eigenschaft \( \{ f : f(0) = 0 \} \) ist eine nicht-triviale semantische Eigenschaft. Denn es gibt Funktionen, die bei 0 den Wert 0 haben, und solche, die es nicht tun (z.B. die konstante Funktion 1, oder undefiniert). Also unentscheidbar. Zu Option 3: - Die Sprache ist die Menge aller w, für die \( \varphi_w \) berechenbar ist. Aber per Definition ist jede Funktion \( \varphi_w \) berechenbar, da sie durch eine Turingmaschine berechnet wird. Also ist die Menge aller w. - Aber was, wenn w keine gültige Gödelnummer ist? In der Standardkodierung ist jede Zeichenkette w eine gültige Beschreibung einer Turingmaschine? Nicht unbedingt. Manche Zeichenketten kodieren möglicherweise keine gültige Turingmaschine. - In der Theorie der Berechenbarkeit wird oft angenommen, dass jede Zeichenkette w eine Turingmaschine beschreibt, wobei manche Maschinen möglicherweise nicht wohldefiniert sind, aber wir betrachten sie trotzdem. Typischerweise wird die partielle Funktion \( \varphi_w \) definiert als: wenn w eine gültige Beschreibung ist, dann die von ihr berechnete Funktion, sonst eine feste nicht haltende Funktion oder ähnlich. Aber in jedem Fall ist \( \varphi_w \) immer berechenbar, denn wenn w keine gültige Kodierung ist, kann man es als eine Maschine auffassen, die nie hält, also die überall undefinierte Funktion, die auch berechenbar ist (durch eine Maschine, die in eine Endlosschleife geht). - Daher ist für jedes w die Funktion \( \varphi_w \) berechenbar. Also ist die Menge aller w, und damit entscheidbar. Also: - Option 1: 0 (nicht entscheidbar) - Option 2: 0 (nicht entscheidbar) - Option 3: 1 (entscheidbar) Antwortformat: <option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Answer
### Antwort für Teilaufgabe (a) Die Entscheidbarkeit der Sprachen wird wie folgt bewertet: - **Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ Diese Sprache ist unentscheidbar, da die Eigenschaft "total sein" eine nicht-triviale semantische Eigenschaft ist (Satz von Rice). Es gibt totale Funktionen (z.B. konstante Funktion) und nicht-totale Funktionen (z.B. undefinierte Funktion). → Antwort: **0** - **Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ Diese Sprache ist unentscheidbar. Die Bedingung $\varphi_w(0) = 0$ erfordert die Überprüfung des Funktionswerts bei Eingabe $0$, was äquivalent zum Halteproblem ist (Reduktion vom speziellen Halteproblem $H_0$). → Antwort: **0** - **Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ Diese Sprache ist entscheidbar. Jede partielle Funktion $\varphi_w$ ist per Definition berechenbar (durch die Turingmaschine mit Gödelnummer $w$). Die Sprache umfasst daher alle $w \in \Sigma^*$ und ist somit trivial entscheidbar. → Antwort: **1** Gemäß Antwortformat: <option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (a)
Die Entscheidbarkeit der Sprachen wird wie folgt bewertet:
- **Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
Diese Sprache ist unentscheidbar, da die Eigenschaft "total sein" eine nicht-triviale semantische Eigenschaft ist (Satz von Rice). Es gibt totale Funktionen (z.B. konstante Funktion) und nicht-totale Funktionen (z.B. undefinierte Funktion).
→ Antwort: **0**
- **Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
Diese Sprache ist unentscheidbar. Die Bedingung $\varphi_w(0) = 0$ erfordert die Überprüfung des Funktionswerts bei Eingabe $0$, was äquivalent zum Halteproblem ist (Reduktion vom speziellen Halteproblem $H_0$).
→ Antwort: **0**
- **Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
Diese Sprache ist entscheidbar. Jede partielle Funktion $\varphi_w$ ist per Definition berechenbar (durch die Turingmaschine mit Gödelnummer $w$). Die Sprache umfasst daher alle $w \in \Sigma^*$ und ist somit trivial entscheidbar.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Wir betrachten die Aussagen für eine beliebige unentscheidbare Sprache L über dem Alphabet Σ = {0,1} und ein festes a ∈ Σ. **Option 1:** \(\overline{L}\) ist unentscheidbar. - Wenn L unentscheidbar ist, dann ist auch das Komplement \(\overline{L}\) unentscheidbar. Denn wenn \(\overline{L}\) entscheidbar wäre, dann wäre auch L entscheidbar (da die Entscheidbarkeit unter Komplementbildung abgeschlossen ist). Also ist diese Aussage wahr. - Antwort: **1** **Option 2:** \(L^a\) ist unentscheidbar. - \(L^a\) ist die Residualsprache bezüglich a, definiert als \(L^a = \{ w \in \Sigma^* : a w \in L \}\). - Es ist nicht notwendigerweise wahr, dass \(L^a\) unentscheidbar ist. Es gibt unentscheidbare Sprachen, bei denen die Residualsprachen entscheidbar sind. Zum Beispiel sei L eine unentscheidbare Sprache, die nur Wörter einer bestimmten Länge enthält. Dann könnte \(L^a\) leer sein oder eine einfache Struktur haben. Ein konkretes Gegenbeispiel: Sei K eine unentscheidbare Sprache, und definiere L = { a w | w ∈ K } ∪ { b v | v ∈ Σ^* und v hat gerade Länge }, wobei b ≠ a. Dann ist L unentscheidbar (weil K unentscheidbar ist), aber \(L^a = K\) (unentscheidbar) und \(L^b\) ist entscheidbar (da die Menge der Wörter gerader Länge entscheidbar ist). Aber die Aussage sagt, dass \(L^a\) unentscheidbar ist, was nicht immer zutrifft. In meinem Beispiel ist \(L^a = K\) unentscheidbar, aber das ist nicht allgemein gültig. Wir brauchen ein Beispiel, wo \(L^a\) entscheidbar ist. - Ein besseres Gegenbeispiel: Sei L eine unentscheidbare Sprache, die nur Wörter enthält, die mit b beginnen (also kein Wort beginnt mit a). Dann ist \(L^a = \emptyset\), was entscheidbar ist. Aber ist L unentscheidbar? Ja, wenn wir L so wählen, dass es aus allen Wörtern, die mit b beginnen, und die ohne b unentscheidbar sind. Zum Beispiel sei K eine unentscheidbare Sprache über Σ, und definiere L = { b w | w ∈ K }. Dann ist L unentscheidbar (Reduktion von K auf L: w ↦ b w). Aber \(L^a = \{ w : a w \in L \} = \emptyset\), da kein Wort in L mit a beginnt. Also ist \(L^a\) entscheidbar (leere Sprache). Daher ist die Aussage falsch: Es gibt unentscheidbare Sprachen L, für die \(L^a\) entscheidbar ist. - Also: Die Aussage ist nicht immer wahr. Antwort: **0** **Option 3:** Es gibt keine TM M mit L(M) = L. - Das ist falsch. Denn per Definition ist eine Sprache genau dann rekursiv aufzählbar (oder semi-entscheidbar), wenn es eine TM gibt, die sie akzeptiert. Aber hier ist L unentscheidbar, aber das bedeutet nicht, dass es keine TM gibt, die L akzeptiert. Es könnte semi-entscheidbar sein. Zum Beispiel ist das Halteproblem K unentscheidbar, aber es gibt eine TM, die K akzeptiert (semi-entscheidbar). Also gibt es sehr wohl eine TM M mit L(M)=L, auch wenn L unentscheidbar ist. Die Aussage behauptet "Es gibt keine TM", was falsch ist, denn unentscheidbare Sprachen können semi-entscheidbar sein. - Also: Antwort **0** Zusammenfassung: - Option 1: 1 (wahr) - Option 2: 0 (falsch, da Gegenbeispiel existiert) - Option 3: 0 (falsch, denn es gibt eine TM für L, auch wenn unentscheidbar) Antwortformat: <option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Answer
### Antwort für Teilaufgabe (b) Wir betrachten eine beliebige unentscheidbare Sprache \(L\) über \(\Sigma = \{0,1\}\) und ein festes \(a \in \Sigma\). Die Residualsprache \(L^a\) ist definiert als \(L^a = \{ w \in \Sigma^* : aw \in L \}\). - **Option 1:** \(\overline{L}\) ist unentscheidbar. Diese Aussage ist **wahr**. Da \(L\) unentscheidbar ist, muss auch \(\overline{L}\) unentscheidbar sein. Wäre \(\overline{L}\) entscheidbar, so wäre auch \(L\) entscheidbar (Entscheidbarkeit ist unter Komplementbildung abgeschlossen), was der Voraussetzung widerspricht. → Antwort: **1** - **Option 2:** \(L^a\) ist unentscheidbar. Diese Aussage ist **falsch**. Es gibt unentscheidbare Sprachen \(L\), für die \(L^a\) entscheidbar ist. Beispiel: Sei \(K \subseteq \Sigma^*\) unentscheidbar (z. B. das Halteproblem), und sei \(L = \{bw \mid w \in K\}\) für ein \(b \neq a\). Dann ist \(L\) unentscheidbar (da \(K\) auf \(L\) reduzierbar ist via \(w \mapsto bw\)), aber \(L^a = \{ w \mid aw \in L\} = \emptyset\) (da kein Wort in \(L\) mit \(a\) beginnt). Die leere Sprache ist entscheidbar. → Antwort: **0** - **Option 3:** Es gibt keine TM \(M\) mit \(L(M) = L\). Diese Aussage ist **falsch**. Eine Sprache ist genau dann semi-entscheidbar, wenn es eine Turingmaschine gibt, die sie akzeptiert. Unentscheidbare Sprachen können semi-entscheidbar sein (z. B. das Halteproblem \(K\)). Für jede solche Sprache existiert also eine TM \(M\) mit \(L(M) = L\). → Antwort: **0** Gemäß Antwortformat: <option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (a)
Die Entscheidbarkeit der Sprachen wird wie folgt bewertet:
- **Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
Diese Sprache ist unentscheidbar, da die Eigenschaft "total sein" eine nicht-triviale semantische Eigenschaft ist (Satz von Rice). Es gibt totale Funktionen (z.B. konstante Funktion) und nicht-totale Funktionen (z.B. undefinierte Funktion).
→ Antwort: **0**
- **Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
Diese Sprache ist unentscheidbar. Die Bedingung $\varphi_w(0) = 0$ erfordert die Überprüfung des Funktionswerts bei Eingabe $0$, was äquivalent zum Halteproblem ist (Reduktion vom speziellen Halteproblem $H_0$).
→ Antwort: **0**
- **Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
Diese Sprache ist entscheidbar. Jede partielle Funktion $\varphi_w$ ist per Definition berechenbar (durch die Turingmaschine mit Gödelnummer $w$). Die Sprache umfasst daher alle $w \in \Sigma^*$ und ist somit trivial entscheidbar.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (b)
Wir betrachten eine beliebige unentscheidbare Sprache \(L\) über \(\Sigma = \{0,1\}\) und ein festes \(a \in \Sigma\). Die Residualsprache \(L^a\) ist definiert als \(L^a = \{ w \in \Sigma^* : aw \in L \}\).
- **Option 1:** \(\overline{L}\) ist unentscheidbar.
Diese Aussage ist **wahr**. Da \(L\) unentscheidbar ist, muss auch \(\overline{L}\) unentscheidbar sein. Wäre \(\overline{L}\) entscheidbar, so wäre auch \(L\) entscheidbar (Entscheidbarkeit ist unter Komplementbildung abgeschlossen), was der Voraussetzung widerspricht.
→ Antwort: **1**
- **Option 2:** \(L^a\) ist unentscheidbar.
Diese Aussage ist **falsch**. Es gibt unentscheidbare Sprachen \(L\), für die \(L^a\) entscheidbar ist. Beispiel: Sei \(K \subseteq \Sigma^*\) unentscheidbar (z. B. das Halteproblem), und sei \(L = \{bw \mid w \in K\}\) für ein \(b \neq a\). Dann ist \(L\) unentscheidbar (da \(K\) auf \(L\) reduzierbar ist via \(w \mapsto bw\)), aber \(L^a = \{ w \mid aw \in L\} = \emptyset\) (da kein Wort in \(L\) mit \(a\) beginnt). Die leere Sprache ist entscheidbar.
→ Antwort: **0**
- **Option 3:** Es gibt keine TM \(M\) mit \(L(M) = L\).
Diese Aussage ist **falsch**. Eine Sprache ist genau dann semi-entscheidbar, wenn es eine Turingmaschine gibt, die sie akzeptiert. Unentscheidbare Sprachen können semi-entscheidbar sein (z. B. das Halteproblem \(K\)). Für jede solche Sprache existiert also eine TM \(M\) mit \(L(M) = L\).
→ Antwort: **0**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Wir betrachten eine deterministische Turingmaschine \( M \), für die es mindestens eine Eingabe \( w \in \Sigma^* \) gibt, auf der \( M \) unendlich viele Schritte macht (d.h., sie hält auf \( w \) nicht). - **Option 1:** \( w \notin L(M) \) Diese Aussage ist nicht notwendigerweise wahr. Die Definition von \( L(M) \) (der von \( M \) akzeptierten Sprache) hängt davon ab, ob \( M \) auf einer Eingabe akzeptiert oder nicht. Wenn \( M \) auf \( w \) unendlich läuft, dann kann sie \( w \) weder akzeptieren noch ablehnen. Per Definition ist \( w \) nur dann in \( L(M) \), wenn \( M \) auf \( w \) in einem akzeptierenden Zustand hält. Da \( M \) auf \( w \) nicht hält, ist \( w \) nicht in \( L(M) \). Also ist \( w \notin L(M) \) immer wahr. → Antwort: **1** Erklärung: Wenn eine TM auf einer Eingabe nicht hält, dann akzeptiert sie diese Eingabe nicht. Also ist \( w \) nicht in \( L(M) \). - **Option 2:** \( L(M) \) ist unentscheidbar. Diese Aussage muss nicht wahr sein. Es gibt TMs, die auf einigen Eingaben unendlich laufen, aber deren Sprache trotzdem entscheidbar ist. Beispiel: Betrachte eine TM, die auf der Eingabe "0" unendlich läuft, aber auf allen anderen Eingaben (z.B. "1", "00", etc.) in endlicher Zeit hält und korrekt akzeptiert oder ablehnt. Dann ist \( L(M) \) entscheidbar, weil wir für jede Eingabe \( x \neq 0 \) in endlicher Zeit entscheiden können, ob \( x \in L(M) \), und für \( x = 0 \) wissen wir, dass \( 0 \notin L(M) \) (da die TM nicht hält). Allerdings: Um \( L(M) \) zu entscheiden, müsste man für jede Eingabe entscheiden können, ob sie in \( L(M) \) ist. Für \( w = 0 \) hält die TM nicht, aber wir wissen, dass sie nicht akzeptiert, also \( 0 \notin L(M) \). Für andere Eingaben hält sie. Also können wir eine TM bauen, die für jede Eingabe \( x \): - Wenn \( x = 0 \), dann lehne ab. - Sonst simuliere \( M \) auf \( x \) und akzeptiere/lehne ab, je nachdem, was \( M \) tut. Diese TM hält immer, also ist \( L(M) \) entscheidbar. → Antwort: **0** Wichtig: Die Tatsache, dass \( M \) auf einem Wort unendlich läuft, macht die Sprache nicht automatisch unentscheidbar. Es könnte sein, dass wir diese eine Eingabe "ausnahmsweise" behandeln können. - **Option 3:** \( L(M) \) ist semi-entscheidbar. Diese Aussage ist **wahr**. Die Sprache \( L(M) \) ist per Definition semi-entscheidbar, weil \( M \) selbst ein Semi-Entscheidungsverfahren für \( L(M) \) ist: Für jedes Wort \( x \in L(M) \) hält \( M \) auf \( x \) in endlicher Zeit und akzeptiert. Für Wörter nicht in \( L(M) \) kann \( M \) entweder ablehnen (halten und ablehnen) oder unendlich laufen. Das ist genau die Definition von semi-entscheidbar. → Antwort: **1** Beachte: Die Tatsache, dass es ein \( w \) gibt, auf dem \( M \) unendlich läuft, ändert nichts daran, dass \( M \) ein Semi-Entscheider für \( L(M) \) ist. Zusammenfassung: - Option 1: 1 (wahr) - Option 2: 0 (falsch) - Option 3: 1 (wahr) Gemäß Antwortformat: <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Answer
### Antwort für Teilaufgabe (c) Wir betrachten eine deterministische Turingmaschine \(M\), für die es mindestens eine Eingabe \(w \in \Sigma^*\) gibt, auf der \(M\) unendlich viele Schritte macht (d. h., sie hält auf \(w\) nicht). - **Option 1:** \(w \notin L(M)\) Diese Aussage ist **wahr**. Da \(M\) auf \(w\) nicht hält, kann \(w\) nicht akzeptiert werden. Per Definition ist \(w\) nur in \(L(M)\), wenn \(M\) auf \(w\) in einem akzeptierenden Zustand hält. → Antwort: **1** - **Option 2:** \(L(M)\) ist unentscheidbar Diese Aussage ist **falsch**. Die Existenz einer Eingabe, auf der \(M\) nicht hält, impliziert nicht, dass \(L(M)\) unentscheidbar ist. Beispiel: Sei \(M\) eine TM, die auf Eingabe \(0\) unendlich läuft und auf allen anderen Eingaben \(x \neq 0\) in endlicher Zeit hält und korrekt entscheidet. Dann ist \(L(M)\) entscheidbar, da eine alternative TM \(M'\) existiert: - Für \(x = 0\): Lehne ab (da \(M\) nicht hält und somit nicht akzeptiert). - Für \(x \neq 0\): Simuliere \(M\) auf \(x\) und gib das Ergebnis aus. \(M'\) entscheidet \(L(M)\). → Antwort: **0** - **Option 3:** \(L(M)\) ist semi-entscheidbar Diese Aussage ist **wahr**. Die Sprache \(L(M)\) ist per Definition semi-entscheidbar, da \(M\) selbst ein Semi-Entscheidungsverfahren für \(L(M)\) ist: Für jedes \(x \in L(M)\) hält \(M\) und akzeptiert; für \(x \notin L(M)\) hält \(M\) entweder ablehnend oder nie. Die Existenz einer Eingabe, auf der \(M\) nicht hält, ändert dies nicht. → Antwort: **1** Gemäß Antwortformat: <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (a)
Die Entscheidbarkeit der Sprachen wird wie folgt bewertet:
- **Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
Diese Sprache ist unentscheidbar, da die Eigenschaft "total sein" eine nicht-triviale semantische Eigenschaft ist (Satz von Rice). Es gibt totale Funktionen (z.B. konstante Funktion) und nicht-totale Funktionen (z.B. undefinierte Funktion).
→ Antwort: **0**
- **Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
Diese Sprache ist unentscheidbar. Die Bedingung $\varphi_w(0) = 0$ erfordert die Überprüfung des Funktionswerts bei Eingabe $0$, was äquivalent zum Halteproblem ist (Reduktion vom speziellen Halteproblem $H_0$).
→ Antwort: **0**
- **Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
Diese Sprache ist entscheidbar. Jede partielle Funktion $\varphi_w$ ist per Definition berechenbar (durch die Turingmaschine mit Gödelnummer $w$). Die Sprache umfasst daher alle $w \in \Sigma^*$ und ist somit trivial entscheidbar.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (b)
Wir betrachten eine beliebige unentscheidbare Sprache \(L\) über \(\Sigma = \{0,1\}\) und ein festes \(a \in \Sigma\). Die Residualsprache \(L^a\) ist definiert als \(L^a = \{ w \in \Sigma^* : aw \in L \}\).
- **Option 1:** \(\overline{L}\) ist unentscheidbar.
Diese Aussage ist **wahr**. Da \(L\) unentscheidbar ist, muss auch \(\overline{L}\) unentscheidbar sein. Wäre \(\overline{L}\) entscheidbar, so wäre auch \(L\) entscheidbar (Entscheidbarkeit ist unter Komplementbildung abgeschlossen), was der Voraussetzung widerspricht.
→ Antwort: **1**
- **Option 2:** \(L^a\) ist unentscheidbar.
Diese Aussage ist **falsch**. Es gibt unentscheidbare Sprachen \(L\), für die \(L^a\) entscheidbar ist. Beispiel: Sei \(K \subseteq \Sigma^*\) unentscheidbar (z. B. das Halteproblem), und sei \(L = \{bw \mid w \in K\}\) für ein \(b \neq a\). Dann ist \(L\) unentscheidbar (da \(K\) auf \(L\) reduzierbar ist via \(w \mapsto bw\)), aber \(L^a = \{ w \mid aw \in L\} = \emptyset\) (da kein Wort in \(L\) mit \(a\) beginnt). Die leere Sprache ist entscheidbar.
→ Antwort: **0**
- **Option 3:** Es gibt keine TM \(M\) mit \(L(M) = L\).
Diese Aussage ist **falsch**. Eine Sprache ist genau dann semi-entscheidbar, wenn es eine Turingmaschine gibt, die sie akzeptiert. Unentscheidbare Sprachen können semi-entscheidbar sein (z. B. das Halteproblem \(K\)). Für jede solche Sprache existiert also eine TM \(M\) mit \(L(M) = L\).
→ Antwort: **0**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (c)
Wir betrachten eine deterministische Turingmaschine \(M\), für die es mindestens eine Eingabe \(w \in \Sigma^*\) gibt, auf der \(M\) unendlich viele Schritte macht (d. h., sie hält auf \(w\) nicht).
- **Option 1:** \(w \notin L(M)\)
Diese Aussage ist **wahr**. Da \(M\) auf \(w\) nicht hält, kann \(w\) nicht akzeptiert werden. Per Definition ist \(w\) nur in \(L(M)\), wenn \(M\) auf \(w\) in einem akzeptierenden Zustand hält.
→ Antwort: **1**
- **Option 2:** \(L(M)\) ist unentscheidbar
Diese Aussage ist **falsch**. Die Existenz einer Eingabe, auf der \(M\) nicht hält, impliziert nicht, dass \(L(M)\) unentscheidbar ist. Beispiel: Sei \(M\) eine TM, die auf Eingabe \(0\) unendlich läuft und auf allen anderen Eingaben \(x \neq 0\) in endlicher Zeit hält und korrekt entscheidet. Dann ist \(L(M)\) entscheidbar, da eine alternative TM \(M'\) existiert:
- Für \(x = 0\): Lehne ab (da \(M\) nicht hält und somit nicht akzeptiert).
- Für \(x \neq 0\): Simuliere \(M\) auf \(x\) und gib das Ergebnis aus.
\(M'\) entscheidet \(L(M)\).
→ Antwort: **0**
- **Option 3:** \(L(M)\) ist semi-entscheidbar
Diese Aussage ist **wahr**. Die Sprache \(L(M)\) ist per Definition semi-entscheidbar, da \(M\) selbst ein Semi-Entscheidungsverfahren für \(L(M)\) ist: Für jedes \(x \in L(M)\) hält \(M\) und akzeptiert; für \(x \notin L(M)\) hält \(M\) entweder ablehnend oder nie. Die Existenz einer Eingabe, auf der \(M\) nicht hält, ändert dies nicht.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Wir betrachten die Aussagen in Teilaufgabe (d): - **Option 1:** Jede reguläre Sprache ist in NP. Reguläre Sprachen sind in P enthalten, da sie von deterministischen endlichen Automaten erkannt werden und in polynomieller Zeit entschieden werden können (sogar in linearer Zeit). Da P ⊆ NP, folgt, dass jede reguläre Sprache in NP ist. → Antwort: **1** - **Option 2:** Jede kontextfreie Sprache ist in P. Dies ist falsch. Es gibt kontextfreie Sprachen, die nicht in P liegen. Zum Beispiel ist das Wortproblem für kontextfreie Grammatiken in O(n³) Zeit lösbar (CYK-Algorithmus), also in P. Aber es gibt kontextfreie Sprachen, die nicht deterministisch kontextfrei sind und möglicherweise höhere Komplexität haben? Nein, alle kontextfreien Sprachen sind in P, da der CYK-Algorithmus in O(n³) Zeit läuft, was polynomiell ist. Korrektur: Tatsächlich ist jede kontextfreie Sprache in P, da der CYK-Algorithmus in O(n³) Zeit arbeitet und P die Klasse der in polynomieller Zeit entscheidbaren Sprachen ist. Also müsste diese Aussage wahr sein? Aber Achtung: Es gibt kontextfreie Sprachen, die nicht deterministisch kontextfrei sind, aber der CYK-Algorithmus entscheidet alle kontextfreien Sprachen in polynomieller Zeit. Also ja, jede kontextfreie Sprache ist in P. → Antwort: **1**? Doch Vorsicht: Die Aussage ist "jede kontextfreie Sprache ist in P". Da P die Klasse der Sprachen ist, die in polynomieller Zeit von einer deterministischen Turingmaschine entschieden werden können, und der CYK-Algorithmus (eine deterministische TM) jede kontextfreie Sprache in O(n³) Zeit entscheidet, ist die Aussage korrekt. Also: **1** - **Option 3:** Sei L ∈ P. Dann gilt \(\overline{L} \in \text{NP}\). Da L in P ist, gibt es eine deterministische Turingmaschine, die L in polynomieller Zeit entscheidet. Dann kann man eine Maschine für \(\overline{L}\) bauen, indem man die Ausgabe der Maschine für L umdreht. Das geht in derselben Zeit, also ist \(\overline{L}\) auch in P. Da P ⊆ NP, folgt \(\overline{L} \in \text{NP}\). → Antwort: **1** Aber Achtung: Die Aussage ist, dass \(\overline{L} \in \text{NP}\). Da P unter Komplement abgeschlossen ist und P ⊆ NP, ist dies korrekt. Also alle wahr? Aber das scheint zu einfach. Überprüfen wir Option 2 noch einmal. Zu Option 2: Gibt es kontextfreie Sprachen, die nicht in P sind? Nein, denn der CYK-Algorithmus zeigt, dass jede kontextfreie Sprache in P liegt. Die kontextfreien Sprachen sind sogar in P. Also: <option id="1">1</option> <option id="2">1</option> <option id="3">1</option> Aber die Aufgabe sagt "Es ist immer mindestens eine Antwortmöglichkeit richtig", und hier sind alle richtig. Das ist möglich. Doch ich erinnere mich: Es gibt kontextfreie Sprachen, die nicht deterministisch kontextfrei sind, aber das beeinflusst nicht die Zugehörigkeit zu P, da der CYK-Algorithmus deterministisch und polynomiell ist. Also denke ich, dass alle drei Aussagen wahr sind. Aber überprüfen wir Option 3: Wenn L in P ist, dann ist \(\overline{L}\) auch in P, also in NP. Das ist korrekt. Also: Gemäß Antwortformat: <option id="1">1</option> <option id="2">1</option> <option id="3">1</option> Doch ich habe einen Zweifel bei Option 2: Die kontextsensitive Grammatik? Nein, hier geht es um kontextfreie Sprachen. Es ist bekannt, dass alle kontextfreien Sprachen in P liegen. Zum Beispiel wird das Wortproblem für kontextfreie Grammatiken in O(n³) gelöst. Also ist die Antwort für alle 1. Aber die Aufgabe könnte eine Falle sein: Option 2 sagt "jede kontextfreie Sprache ist in P". Das ist korrekt, aber man könnte an die mehrdeutigen oder inhärent mehrdeutigen Sprachen denken, aber das beeinflusst die Entscheidbarkeit in polynomieller Zeit nicht. Daher: <option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Answer
### Antwort für Teilaufgabe (d) Wir bewerten die Aussagen: - **Option 1:** Jede reguläre Sprache ist in $\text{NP}$. Reguläre Sprachen sind in $\text{P}$ enthalten (da sie linearzeit-entscheidbar sind). Da $\text{P} \subseteq \text{NP}$, folgt, dass jede reguläre Sprache in $\text{NP}$ liegt. → Antwort: **1** - **Option 2:** Jede kontextfreie Sprache ist in $\text{P}$. Kontextfreie Sprachen sind in $\text{P}$ entscheidbar, da der CYK-Algorithmus (oder Earley-Parser) das Wortproblem in $O(n^3)$-Zeit löst (deterministisch polynomiell). → Antwort: **1** - **Option 3:** Sei $L \in \text{P}$. Dann gilt $\overline{L} \in \text{NP}$. Da $L \in \text{P}$, ist $\overline{L}$ ebenfalls in $\text{P}$ (da $\text{P}$ unter Komplement abgeschlossen ist). Wegen $\text{P} \subseteq \text{NP}$ folgt $\overline{L} \in \text{NP}$. → Antwort: **1** Gemäß Antwortformat: <option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (a)
Die Entscheidbarkeit der Sprachen wird wie folgt bewertet:
- **Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
Diese Sprache ist unentscheidbar, da die Eigenschaft "total sein" eine nicht-triviale semantische Eigenschaft ist (Satz von Rice). Es gibt totale Funktionen (z.B. konstante Funktion) und nicht-totale Funktionen (z.B. undefinierte Funktion).
→ Antwort: **0**
- **Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
Diese Sprache ist unentscheidbar. Die Bedingung $\varphi_w(0) = 0$ erfordert die Überprüfung des Funktionswerts bei Eingabe $0$, was äquivalent zum Halteproblem ist (Reduktion vom speziellen Halteproblem $H_0$).
→ Antwort: **0**
- **Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
Diese Sprache ist entscheidbar. Jede partielle Funktion $\varphi_w$ ist per Definition berechenbar (durch die Turingmaschine mit Gödelnummer $w$). Die Sprache umfasst daher alle $w \in \Sigma^*$ und ist somit trivial entscheidbar.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (b)
Wir betrachten eine beliebige unentscheidbare Sprache \(L\) über \(\Sigma = \{0,1\}\) und ein festes \(a \in \Sigma\). Die Residualsprache \(L^a\) ist definiert als \(L^a = \{ w \in \Sigma^* : aw \in L \}\).
- **Option 1:** \(\overline{L}\) ist unentscheidbar.
Diese Aussage ist **wahr**. Da \(L\) unentscheidbar ist, muss auch \(\overline{L}\) unentscheidbar sein. Wäre \(\overline{L}\) entscheidbar, so wäre auch \(L\) entscheidbar (Entscheidbarkeit ist unter Komplementbildung abgeschlossen), was der Voraussetzung widerspricht.
→ Antwort: **1**
- **Option 2:** \(L^a\) ist unentscheidbar.
Diese Aussage ist **falsch**. Es gibt unentscheidbare Sprachen \(L\), für die \(L^a\) entscheidbar ist. Beispiel: Sei \(K \subseteq \Sigma^*\) unentscheidbar (z. B. das Halteproblem), und sei \(L = \{bw \mid w \in K\}\) für ein \(b \neq a\). Dann ist \(L\) unentscheidbar (da \(K\) auf \(L\) reduzierbar ist via \(w \mapsto bw\)), aber \(L^a = \{ w \mid aw \in L\} = \emptyset\) (da kein Wort in \(L\) mit \(a\) beginnt). Die leere Sprache ist entscheidbar.
→ Antwort: **0**
- **Option 3:** Es gibt keine TM \(M\) mit \(L(M) = L\).
Diese Aussage ist **falsch**. Eine Sprache ist genau dann semi-entscheidbar, wenn es eine Turingmaschine gibt, die sie akzeptiert. Unentscheidbare Sprachen können semi-entscheidbar sein (z. B. das Halteproblem \(K\)). Für jede solche Sprache existiert also eine TM \(M\) mit \(L(M) = L\).
→ Antwort: **0**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (c)
Wir betrachten eine deterministische Turingmaschine \(M\), für die es mindestens eine Eingabe \(w \in \Sigma^*\) gibt, auf der \(M\) unendlich viele Schritte macht (d. h., sie hält auf \(w\) nicht).
- **Option 1:** \(w \notin L(M)\)
Diese Aussage ist **wahr**. Da \(M\) auf \(w\) nicht hält, kann \(w\) nicht akzeptiert werden. Per Definition ist \(w\) nur in \(L(M)\), wenn \(M\) auf \(w\) in einem akzeptierenden Zustand hält.
→ Antwort: **1**
- **Option 2:** \(L(M)\) ist unentscheidbar
Diese Aussage ist **falsch**. Die Existenz einer Eingabe, auf der \(M\) nicht hält, impliziert nicht, dass \(L(M)\) unentscheidbar ist. Beispiel: Sei \(M\) eine TM, die auf Eingabe \(0\) unendlich läuft und auf allen anderen Eingaben \(x \neq 0\) in endlicher Zeit hält und korrekt entscheidet. Dann ist \(L(M)\) entscheidbar, da eine alternative TM \(M'\) existiert:
- Für \(x = 0\): Lehne ab (da \(M\) nicht hält und somit nicht akzeptiert).
- Für \(x \neq 0\): Simuliere \(M\) auf \(x\) und gib das Ergebnis aus.
\(M'\) entscheidet \(L(M)\).
→ Antwort: **0**
- **Option 3:** \(L(M)\) ist semi-entscheidbar
Diese Aussage ist **wahr**. Die Sprache \(L(M)\) ist per Definition semi-entscheidbar, da \(M\) selbst ein Semi-Entscheidungsverfahren für \(L(M)\) ist: Für jedes \(x \in L(M)\) hält \(M\) und akzeptiert; für \(x \notin L(M)\) hält \(M\) entweder ablehnend oder nie. Die Existenz einer Eingabe, auf der \(M\) nicht hält, ändert dies nicht.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (d)
Wir bewerten die Aussagen:
- **Option 1:** Jede reguläre Sprache ist in $\text{NP}$.
Reguläre Sprachen sind in $\text{P}$ enthalten (da sie linearzeit-entscheidbar sind). Da $\text{P} \subseteq \text{NP}$, folgt, dass jede reguläre Sprache in $\text{NP}$ liegt.
→ Antwort: **1**
- **Option 2:** Jede kontextfreie Sprache ist in $\text{P}$.
Kontextfreie Sprachen sind in $\text{P}$ entscheidbar, da der CYK-Algorithmus (oder Earley-Parser) das Wortproblem in $O(n^3)$-Zeit löst (deterministisch polynomiell).
→ Antwort: **1**
- **Option 3:** Sei $L \in \text{P}$. Dann gilt $\overline{L} \in \text{NP}$.
Da $L \in \text{P}$, ist $\overline{L}$ ebenfalls in $\text{P}$ (da $\text{P}$ unter Komplement abgeschlossen ist). Wegen $\text{P} \subseteq \text{NP}$ folgt $\overline{L} \in \text{NP}$.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
Wir nehmen an, dass P ≠ NP. Gegeben sind Sprachen A und B über Σ*, wobei A in NP liegt und B NP-vollständig ist. - **Option 1:** A ⊆ B Dies ist nicht notwendigerweise wahr. A und B können beliebige Sprachen sein, die die Bedingungen erfüllen. Zum Beispiel könnte A eine Sprache in P sein (da P ⊆ NP) und B eine NP-vollständige Sprache wie SAT. Es gibt Sprachen in P, die nicht Teilmenge von SAT sind, z.B. die leere Sprache oder eine andere Sprache. → Antwort: **0** - **Option 2:** B ⊆ A Ebenso ist dies nicht notwendigerweise wahr. B ist NP-vollständig, A ist in NP, aber B muss nicht in A enthalten sein. Zum Beispiel könnte A eine endliche Sprache sein, während B unendlich ist. → Antwort: **0** - **Option 3:** A ≤ₚ B Dies bedeutet, dass A auf B polynomiell reduzierbar ist. Da B NP-vollständig ist, ist jede Sprache in NP auf B reduzierbar. Da A in NP liegt, folgt A ≤ₚ B. → Antwort: **1** - **Option 4:** B ≤ₚ A Dies wäre nur wahr, wenn A ebenfalls NP-hart wäre. Aber A ist nur in NP, nicht notwendigerweise NP-vollständig. Unter der Annahme P ≠ NP gibt es Sprachen in NP, die nicht NP-vollständig sind (Satz von Ladner). Für solche A ist B nicht auf A reduzierbar, da sonst A NP-hart wäre. → Antwort: **0** Gemäß Antwortformat: <option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Answer
### Antwort für Teilaufgabe (e) Unter der Annahme \(\text{P} \neq \text{NP}\) betrachten wir Sprachen \(A, B \subseteq \Sigma^*\) mit \(A \in \text{NP}\) und \(B\) \(\text{NP}\)-vollständig. - **Option 1:** \(A \subseteq B\) Diese Aussage ist **falsch**. Es gibt keine allgemeine Teilmengenbeziehung zwischen \(A\) und \(B\). Beispiel: Sei \(A = \emptyset\) (in \(\text{P} \subseteq \text{NP}\)) und \(B = \text{SAT}\) (\(\text{NP}\)-vollständig). Dann gilt \(A \not\subseteq B\), da \(\emptyset\) keine Elemente enthält, die in \(B\) sein könnten. → Antwort: **0** - **Option 2:** \(B \subseteq A\) Diese Aussage ist **falsch**. Analog gibt es keine Inklusion in dieser Richtung. Beispiel: Sei \(A = \text{SAT}\) (selbst \(\text{NP}\)-vollständig) und \(B\) eine andere \(\text{NP}\)-vollständige Sprache wie \(\text{3SAT}\). Dann ist \(B \not\subseteq A\), da die syntaktisch verschiedenen Formeln unterschiedliche Sprachen definieren. → Antwort: **0** - **Option 3:** \(A \leq_p B\) Diese Aussage ist **wahr**. Da \(B\) \(\text{NP}\)-vollständig ist, ist jede Sprache in \(\text{NP}\) polynomiell auf \(B\) reduzierbar. Wegen \(A \in \text{NP}\) gilt also \(A \leq_p B\). → Antwort: **1** - **Option 4:** \(B \leq_p A\) Diese Aussage ist **falsch**. Unter \(\text{P} \neq \text{NP}\) gibt es Sprachen in \(\text{NP}\), die nicht \(\text{NP}\)-vollständig sind (Satz von Ladner). Für ein solches \(A\) wäre \(B \leq_p A\) nur möglich, wenn \(A\) \(\text{NP}\)-hart wäre, was nicht der Fall ist. → Antwort: **0** Gemäß Antwortformat: <option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (a)
Die Entscheidbarkeit der Sprachen wird wie folgt bewertet:
- **Option 1:** $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$
Diese Sprache ist unentscheidbar, da die Eigenschaft "total sein" eine nicht-triviale semantische Eigenschaft ist (Satz von Rice). Es gibt totale Funktionen (z.B. konstante Funktion) und nicht-totale Funktionen (z.B. undefinierte Funktion).
→ Antwort: **0**
- **Option 2:** $\{w\in\Sigma^* :\varphi_w(0) = 0\}$
Diese Sprache ist unentscheidbar. Die Bedingung $\varphi_w(0) = 0$ erfordert die Überprüfung des Funktionswerts bei Eingabe $0$, was äquivalent zum Halteproblem ist (Reduktion vom speziellen Halteproblem $H_0$).
→ Antwort: **0**
- **Option 3:** $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$
Diese Sprache ist entscheidbar. Jede partielle Funktion $\varphi_w$ ist per Definition berechenbar (durch die Turingmaschine mit Gödelnummer $w$). Die Sprache umfasst daher alle $w \in \Sigma^*$ und ist somit trivial entscheidbar.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (b)
Wir betrachten eine beliebige unentscheidbare Sprache \(L\) über \(\Sigma = \{0,1\}\) und ein festes \(a \in \Sigma\). Die Residualsprache \(L^a\) ist definiert als \(L^a = \{ w \in \Sigma^* : aw \in L \}\).
- **Option 1:** \(\overline{L}\) ist unentscheidbar.
Diese Aussage ist **wahr**. Da \(L\) unentscheidbar ist, muss auch \(\overline{L}\) unentscheidbar sein. Wäre \(\overline{L}\) entscheidbar, so wäre auch \(L\) entscheidbar (Entscheidbarkeit ist unter Komplementbildung abgeschlossen), was der Voraussetzung widerspricht.
→ Antwort: **1**
- **Option 2:** \(L^a\) ist unentscheidbar.
Diese Aussage ist **falsch**. Es gibt unentscheidbare Sprachen \(L\), für die \(L^a\) entscheidbar ist. Beispiel: Sei \(K \subseteq \Sigma^*\) unentscheidbar (z. B. das Halteproblem), und sei \(L = \{bw \mid w \in K\}\) für ein \(b \neq a\). Dann ist \(L\) unentscheidbar (da \(K\) auf \(L\) reduzierbar ist via \(w \mapsto bw\)), aber \(L^a = \{ w \mid aw \in L\} = \emptyset\) (da kein Wort in \(L\) mit \(a\) beginnt). Die leere Sprache ist entscheidbar.
→ Antwort: **0**
- **Option 3:** Es gibt keine TM \(M\) mit \(L(M) = L\).
Diese Aussage ist **falsch**. Eine Sprache ist genau dann semi-entscheidbar, wenn es eine Turingmaschine gibt, die sie akzeptiert. Unentscheidbare Sprachen können semi-entscheidbar sein (z. B. das Halteproblem \(K\)). Für jede solche Sprache existiert also eine TM \(M\) mit \(L(M) = L\).
→ Antwort: **0**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (c)
Wir betrachten eine deterministische Turingmaschine \(M\), für die es mindestens eine Eingabe \(w \in \Sigma^*\) gibt, auf der \(M\) unendlich viele Schritte macht (d. h., sie hält auf \(w\) nicht).
- **Option 1:** \(w \notin L(M)\)
Diese Aussage ist **wahr**. Da \(M\) auf \(w\) nicht hält, kann \(w\) nicht akzeptiert werden. Per Definition ist \(w\) nur in \(L(M)\), wenn \(M\) auf \(w\) in einem akzeptierenden Zustand hält.
→ Antwort: **1**
- **Option 2:** \(L(M)\) ist unentscheidbar
Diese Aussage ist **falsch**. Die Existenz einer Eingabe, auf der \(M\) nicht hält, impliziert nicht, dass \(L(M)\) unentscheidbar ist. Beispiel: Sei \(M\) eine TM, die auf Eingabe \(0\) unendlich läuft und auf allen anderen Eingaben \(x \neq 0\) in endlicher Zeit hält und korrekt entscheidet. Dann ist \(L(M)\) entscheidbar, da eine alternative TM \(M'\) existiert:
- Für \(x = 0\): Lehne ab (da \(M\) nicht hält und somit nicht akzeptiert).
- Für \(x \neq 0\): Simuliere \(M\) auf \(x\) und gib das Ergebnis aus.
\(M'\) entscheidet \(L(M)\).
→ Antwort: **0**
- **Option 3:** \(L(M)\) ist semi-entscheidbar
Diese Aussage ist **wahr**. Die Sprache \(L(M)\) ist per Definition semi-entscheidbar, da \(M\) selbst ein Semi-Entscheidungsverfahren für \(L(M)\) ist: Für jedes \(x \in L(M)\) hält \(M\) und akzeptiert; für \(x \notin L(M)\) hält \(M\) entweder ablehnend oder nie. Die Existenz einer Eingabe, auf der \(M\) nicht hält, ändert dies nicht.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:### Antwort für Teilaufgabe (d)
Wir bewerten die Aussagen:
- **Option 1:** Jede reguläre Sprache ist in $\text{NP}$.
Reguläre Sprachen sind in $\text{P}$ enthalten (da sie linearzeit-entscheidbar sind). Da $\text{P} \subseteq \text{NP}$, folgt, dass jede reguläre Sprache in $\text{NP}$ liegt.
→ Antwort: **1**
- **Option 2:** Jede kontextfreie Sprache ist in $\text{P}$.
Kontextfreie Sprachen sind in $\text{P}$ entscheidbar, da der CYK-Algorithmus (oder Earley-Parser) das Wortproblem in $O(n^3)$-Zeit löst (deterministisch polynomiell).
→ Antwort: **1**
- **Option 3:** Sei $L \in \text{P}$. Dann gilt $\overline{L} \in \text{NP}$.
Da $L \in \text{P}$, ist $\overline{L}$ ebenfalls in $\text{P}$ (da $\text{P}$ unter Komplement abgeschlossen ist). Wegen $\text{P} \subseteq \text{NP}$ folgt $\overline{L} \in \text{NP}$.
→ Antwort: **1**
Gemäß Antwortformat:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:### Antwort für Teilaufgabe (e)
Unter der Annahme \(\text{P} \neq \text{NP}\) betrachten wir Sprachen \(A, B \subseteq \Sigma^*\) mit \(A \in \text{NP}\) und \(B\) \(\text{NP}\)-vollständig.
- **Option 1:** \(A \subseteq B\)
Diese Aussage ist **falsch**. Es gibt keine allgemeine Teilmengenbeziehung zwischen \(A\) und \(B\). Beispiel: Sei \(A = \emptyset\) (in \(\text{P} \subseteq \text{NP}\)) und \(B = \text{SAT}\) (\(\text{NP}\)-vollständig). Dann gilt \(A \not\subseteq B\), da \(\emptyset\) keine Elemente enthält, die in \(B\) sein könnten.
→ Antwort: **0**
- **Option 2:** \(B \subseteq A\)
Diese Aussage ist **falsch**. Analog gibt es keine Inklusion in dieser Richtung. Beispiel: Sei \(A = \text{SAT}\) (selbst \(\text{NP}\)-vollständig) und \(B\) eine andere \(\text{NP}\)-vollständige Sprache wie \(\text{3SAT}\). Dann ist \(B \not\subseteq A\), da die syntaktisch verschiedenen Formeln unterschiedliche Sprachen definieren.
→ Antwort: **0**
- **Option 3:** \(A \leq_p B\)
Diese Aussage ist **wahr**. Da \(B\) \(\text{NP}\)-vollständig ist, ist jede Sprache in \(\text{NP}\) polynomiell auf \(B\) reduzierbar. Wegen \(A \in \text{NP}\) gilt also \(A \leq_p B\).
→ Antwort: **1**
- **Option 4:** \(B \leq_p A\)
Diese Aussage ist **falsch**. Unter \(\text{P} \neq \text{NP}\) gibt es Sprachen in \(\text{NP}\), die nicht \(\text{NP}\)-vollständig sind (Satz von Ladner). Für ein solches \(A\) wäre \(B \leq_p A\) nur möglich, wenn \(A\) \(\text{NP}\)-hart wäre, was nicht der Fall ist.
→ Antwort: **0**
Gemäß Antwortformat:
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Wir haben die Aussage: Seien \(A, B \subseteq \Sigma^*\) beliebige Sprachen, sodass \(A\) unentscheidbar ist. Dann ist mindestens eine der Sprachen \(A \cup B\) und \(A \cup \overline{B}\) unentscheidbar. Zuerst müssen wir entscheiden, ob diese Aussage wahr oder falsch ist. Dazu betrachten wir ein Gegenbeispiel, falls möglich. Nehmen wir an, dass \(A\) unentscheidbar ist. Wir müssen zeigen, dass entweder \(A \cup B\) oder \(A \cup \overline{B}\) unentscheidbar ist, oder ein Beispiel finden, in dem beide entscheidbar sind. Beachte, dass \(A \subseteq (A \cup B)\) und \(A \subseteq (A \cup \overline{B})\). Aber das garantiert nicht, dass die Vereinigung unentscheidbar ist, da die Vereinigung größer ist. Erinnern wir uns: Wenn eine Sprache \(L\) entscheidbar ist und \(C\) entscheidbar, dann ist \(L \cup C\) entscheidbar. Aber hier ist \(A\) unentscheidbar. Angenommen, sowohl \(A \cup B\) als auch \(A \cup \overline{B}\) sind entscheidbar. Dann können wir versuchen, \(A\) zu entscheiden, was ein Widerspruch wäre. Betrachten wir die charakteristische Funktion. Sei \(\chi_{A \cup B}\) die charakteristische Funktion von \(A \cup B\), und \(\chi_{A \cup \overline{B}}\) die von \(A \cup \overline{B}\). Beide seien berechenbar. Nun ist \(A = (A \cup B) \cap (A \cup \overline{B})\), denn: - Wenn \(x \in A\), dann ist \(x \in A \cup B\) und \(x \in A \cup \overline{B}\). - Umgekehrt, wenn \(x \in (A \cup B) \cap (A \cup \overline{B})\), dann ist \(x \in A \cup B\) und \(x \in A \cup \overline{B}\). Wenn \(x \notin A\), dann muss \(x \in B\) und \(x \in \overline{B}\), was unmöglich ist. Also \(x \in A\). Also \(A = (A \cup B) \cap (A \cup \overline{B})\). Wenn \(A \cup B\) und \(A \cup \overline{B}\) beide entscheidbar sind, dann ist auch ihr Schnitt entscheidbar, da die entscheidbaren Sprachen unter Schnitt abgeschlossen sind. Also wäre \(A\) entscheidbar, was ein Widerspruch zur Voraussetzung ist. Daher kann nicht sein, dass beide \(A \cup B\) und \(A \cup \overline{B}\) entscheidbar sind. Also muss mindestens eine unentscheidbar sein. Die Aussage ist also wahr. In der Aufgabe gibt es <option id="1"> für "Wahr" und <option id="2"> für "Falsch". Wir müssen also <option id="1"> auf 1 setzen und <option id="2"> auf 0. Zusätzlich gibt es ein <answer id="3">, in dem wir die Begründung angeben müssen. Die Antwort sollte also sein: <option id="1">1</option> <option id="2">0</option> <answer id="3"> Die Aussage ist wahr. Wir beweisen dies durch Widerspruch. Angenommen, sowohl \(A \cup B\) als auch \(A \cup \overline{B}\) sind entscheidbar. Da \(A = (A \cup B) \cap (A \cup \overline{B})\) (denn für jedes \(x\): wenn \(x \in A\), dann in beiden; und wenn \(x\) in beiden, dann muss \(x \in A\), da sonst \(x \in B \cap \overline{B}\) widersprüchlich ist), und da die entscheidbaren Sprachen unter Schnitt abgeschlossen sind, folgt dass \(A\) entscheidbar ist. Dies widerspricht der Voraussetzung, dass \(A\) unentscheidbar ist. Daher muss mindestens eine der Sprachen \(A \cup B\) oder \(A \cup \overline{B}\) unentscheidbar sein. </answer>
Answer
### Antwort für Teilaufgabe (f) <option id="1">1</option> <option id="2">0</option> <answer id="3"> Die Aussage ist wahr. Wir beweisen dies durch Widerspruch. Angenommen, sowohl \(A \cup B\) als auch \(A \cup \overline{B}\) sind entscheidbar. Dann gilt: \[ A = (A \cup B) \cap (A \cup \overline{B}). \] Begründung: - Ist \(x \in A\), so ist \(x \in A \cup B\) und \(x \in A \cup \overline{B}\), also \(x \in (A \cup B) \cap (A \cup \overline{B})\). - Ist \(x \in (A \cup B) \cap (A \cup \overline{B})\), so folgt: Wäre \(x \notin A\), dann müsste \(x \in B\) (aus \(x \in A \cup B\)) und \(x \in \overline{B}\) (aus \(x \in A \cup \overline{B}\)) gelten, was unmöglich ist. Also ist \(x \in A\). Da die entscheidbaren Sprachen unter Schnitt abgeschlossen sind, ist \((A \cup B) \cap (A \cup \overline{B})\) entscheidbar. Somit wäre \(A\) entscheidbar, im Widerspruch zur Voraussetzung. Daher muss mindestens eine der Sprachen \(A \cup B\) oder \(A \cup \overline{B}\) unentscheidbar sein. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Die Aussage ist wahr. Wir beweisen dies durch Widerspruch. Angenommen, sowohl als auch sind entscheidbar. Dann gilt: Begründung: - Ist , so ist und , also . - Ist , so folgt: Wäre , dann müsste (aus ) und (aus ) gelten, was unmöglich ist. Also ist . Da die entscheidbaren Sprachen unter Schnitt abgeschlossen sind, ist entscheidbar. Somit wäre entscheidbar, im Widerspruch zur Voraussetzung. Daher muss mindestens eine der Sprachen oder unentscheidbar sein.
google/gemini-2.5-pro
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
**Examining Decidable Languages** I'm now evaluating the options to pinpoint the decidable language. Considering $\Sigma = \{0, 1\}$ and the partial recursive function $\varphi_w$ for a Turing machine with the Gödel number $w$, I'm systematically assessing each choice against the principles of decidability. My current approach involves examining whether each language can be determined by an algorithm that halts on every input. **Defining Undecidability** I've begun with the first option, $TOTAL = \{w \in \Sigma^* \mid \varphi_w \text{ is a total function}\}$, recognizing its direct link to the Halting Problem. The core of my proof by contradiction centers on a reduction from the Halting Problem to $TOTAL$. I'm carefully constructing a new machine, $M'$, and assessing its behavior in relation to $M_{TOTAL}$'s output. **Dissecting Option One** Now, I've rigorously demonstrated the undecidability of $TOTAL$ using a reduction from the Halting Problem. The construction of $M'$ was key, designed to create a link between halting on a specific input and the totality of a modified Turing machine. My focus is now shifting towards confirming this against Rice's Theorem. **Considering Rice's Theorem** I'm now turning to Rice's Theorem for option one, specifically examining the property of totality. The existing proof by reduction is solid, but I am double-checking. This approach seems more direct in confirming the undecidability of the language. I now have a better understanding of the implication. **Analyzing Option Two** I've shifted focus to the second option, $\{w \in \Sigma^* : \varphi_w(0) = 0\}$. My goal is to determine if Rice's Theorem directly applies to this case, noting the output condition is vital. I'm now constructing a proof using the Halting Problem as my reference. I've observed how this may work, as I go through. **Evaluating Option Two** I'm now focused on a direct proof. Constructing a machine $M'$ that simulates machine $w$ with a specific input. I've determined a method to ensure the modified machine outputs the appropriate value. The main challenge is to ensure halting only when $x=0$. **Confirming the Halting Problem** I'm back to examining option two, considering how to implement the proof. I'm crafting the construction of $M'$ more clearly, especially focusing on the halting conditions based on whether $\varphi_w(0)$ halts. The process is still challenging me. **Evaluating Computability** I'm now confident that the third option, defining computability, is decidable. My reasoning hinges on the definition of $\varphi_w$ being the partial recursive function computed by the Turing machine encoded by $w$. Therefore, every $w$ produces a computable function. **Confirming Computability** I'm now confident in the conclusion for each option. I've reevaluated the nuances of the computability and decidability. Option three seems correct, since every Turing machine defined by a valid Gödel number is computable. **Confirming Computability's Decidability** I've thoroughly analyzed the third option, and the conclusion remains unchanged: it is decidable. The function $\varphi_w$ represents a computable function by definition, meaning any $w$ results in a computable function. **Revisiting Computability** I'm still satisfied with the answer for computability being decidable. I've thoroughly reviewed the definition: $\varphi_w$ being computable. Since all Turing machines, defined by a code $w$, compute a function, the definition must be decidable. **Reviewing the Results** I've finished my analysis of all three options and am ready to provide a definitive answer. I've solidified my arguments using both Rice's Theorem and proof by reduction, especially focusing on options one and two. I'm now confident that I have identified the decidable language. **Verifying Final Answer** I've now completed my analysis and can confidently proceed with answering the question. All three options have been investigated thoroughly with the applications of Rice's Theorem and reductions from the Halting Problem, as necessary. The correct answer is now clear. **Reflecting on Solutions** I've reviewed all three options: option one concerns total functions, option two involves a specific output, and the third pertains to computability. My analysis, utilizing Rice's Theorem and proof by reduction, confirms my understanding of the decidability/undecidability properties of each language. I've solidified the approach. **Formulating Final Response** I've reviewed all my previous arguments and reasoning. I'm now certain of the decidability or undecidability of each language. I will now answer based on my analysis.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
**Contemplating Undecidability** I've been mulling over this question about undecidable languages. Currently, I'm focused on option 1, the statement about the complement of L. I'm working on clarifying the properties of the complement of an undecidable language and determining whether it too must be undecidable. I am beginning to form a solid answer. **Examining Residual Languages** I'm now considering option 2, the residual language. I'm working to understand if the residual of an undecidable language is also undecidable. It seems like I will need a deeper grasp of the properties of residual languages. I am attempting to find if this particular statement is true or false and will be making a determination soon. **Evaluating Residuals' Decidability** I've been grappling with the residual language question. My approach involves attempting a reduction from the halting problem, but the construction is proving difficult. It's becoming apparent that a direct approach might not be the most effective. I am leaning towards trying to show that the residual language can be decidable. **Confirming Option Truth** I've now confirmed option 1 to be true, following the steps I laid out. If the complement were decidable, I could construct a decider for the original undecidable language, leading to a contradiction. I'm now focused on examining option 2 more closely. **Dissecting the Residual** I've now confirmed option 1 to be true, following the steps I laid out. If the complement were decidable, I could construct a decider for the original undecidable language, leading to a contradiction. I'm now focused on examining option 2 more closely. I have constructed the counter example using the empty language, and have confirmed the statement to be false. **Assessing All Options** I'm now moving to the last remaining section of the question. It seems like I have already constructed the answer and have all of the required properties. I have performed the necessary evaluation to determine whether or not the options are true or false. **Reviewing All Answers** I've reviewed the previous answers and found no errors in my reasoning. My analysis of each option is sound, and I'm satisfied with the final determination of true/false for each. **Revisiting Final Answer** I've revisited my analysis for this question one last time. Everything checks out. Option 1 is correct: the complement of an undecidable language is undecidable. Options 2 and 3 are false due to counterexamples. I am content with my conclusion. **Confirming Final Conclusions** I've reviewed the question and my detailed analysis one final time. The answers I arrived at appear sound. The properties of undecidable languages and residual languages have been thoroughly examined, and counterexamples, when necessary, have been constructed. I am now comfortable with my assessment.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
**Assessing the Options** I'm currently focused on the multiple-choice question regarding Turing machines. Analyzing each statement is the next step, considering the implications of a Turing machine running indefinitely on a specific input. I'm aiming to identify the true statements based on this behavior. **Deconstructing the Statements** I've begun to break down the multiple-choice options systematically. Focusing on Option 1, I've reasoned that if a Turing machine doesn't halt on an input *w*, it certainly can't accept *w*. This clarifies that *w* isn't within the machine's accepted language. Now, I'm moving onto Option 2 and constructing a counterexample to challenge the claim of undecidability. **Evaluating Each Statement** I've now thoroughly analyzed each option provided. I've confirmed that Option 1 is true due to the direct consequence of the Turing machine running infinitely on an input. Options 2 and 3, however, needed closer examination. I've generated a concrete counterexample to disprove Option 2, showing how a decidable language can still have an input resulting in an infinite loop. **Concluding the Proof** I've re-evaluated the definitions for decidable and semi-decidable languages. This solidifies my understanding that Option 1 and 3 are the correct choices. Therefore, the correct answer is that statements 1 and 3 are true, which is now completely confirmed. **Refining the Reasoning** I've re-examined the key definitions, particularly those for decidable and semi-decidable languages. I've constructed and verified a solid counterexample demonstrating how a decidable language can exhibit infinite loops on specific inputs, disproving Option 2. I am now confident in my analysis. **Finalizing the Answer** I've meticulously reviewed all options, ensuring my reasoning aligns with the definitions of decidability and semi-decidability. I am confident in identifying the correct choices, and I have solidified the proof to validate that statements 1 and 3 are unequivocally true. Therefore, the final answer is ready. **Final Confirmation of Proof** I've carefully re-examined the multiple-choice question and the constraints it presents. With this, I have arrived at a solid conclusion on all options. After double-checking each step and ensuring that the definitions align, I am confident in the proof for statements 1 and 3 being correct. **Reiterating the Logic** I've reviewed the definitions of decidability and semi-decidability again, to make sure I have all the important details. With that, I can confirm that the solution for statements 1 and 3 are correct. I'm absolutely sure that is true.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
**Analyzing Complexity Questions** I'm currently dissecting the multiple-choice question on complexity classes. Option 1, "Every regular language is in NP," is under scrutiny. I'm leaning towards confirming its truth. Regular languages are efficiently decidable, and thus, a proof can be verified in polynomial time. **Examining Option 3's Logic** I'm now deep in thought regarding the complement of languages within P and NP. The closure properties of P, specifically its closure under complementation, feel key here. Since P is closed under complement, if L is in P, then its complement, L-bar, is also in P, and thus, in NP. This aligns with the question. **Assessing Final Conclusions** I've reviewed all the options now. Confirmed the CYK algorithm for CFLs, confirming option 2's truth, and also confirmed the closure under complement property for P to solidify option 3. All three statements are indeed true, the correct answer has been identified. **Revising Proofs and Summary** I've re-evaluated my justification, specifically the implications between the complexity classes. I'm particularly focused on ensuring the inclusion of P and NP, and how closure properties affect the complement of languages in P. I'm working through the CYK algorithm's application to context-free languages, refining the proofs for each option. I believe I am close to completing the task.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
**Considering Quiz Question** I've been wrestling with this quiz question. I'm starting with the core assumption that P doesn't equal NP. Now, given that and some NP/NP-complete language parameters, I must evaluate the validity of four statements. I'm focused on breaking down the properties to verify the statements, and will go from there. **Dissecting the Statements** I've just finished dissecting the first two statements, and the reasoning behind their falsity is clear. Statement 1 is false because any language in NP isn't necessarily a subset of any NP-complete language. Statement 2 is similarly false because any NP-complete language isn't always a subset of any language in NP. I will move onto analyzing statements 3 and 4, armed with these initial analyses. **Examining the Last Statements** I've rigorously examined statement 3, and the definition of NP-completeness confirms its truth. Statement 4 is the last item. I'm now strategizing my approach. If $B \leq_p A$, then all of NP is NP-hard. However, I've got to pick a language A in NP. Let $A$ be a language in P. Then, I will determine if B (which is SAT) is reducible to A. **Evaluating the Reductions** Okay, I'm now at the final statement, $B \leq_p A$. I'm seeing that if $A$ is in P, then $B$ (which is an NP-complete language, like SAT) cannot be reduced to $A$. It fails the requirements of polynomial time reductions. Therefore, the last statement is demonstrably false as well. My conclusion is that statement 1, 2 and 4 are false, while statement 3 is true. **Synthesizing a Solution** I've reviewed all the statements now. I'm confident in declaring statements 1, 2, and 4 as false, based on the logic of set theory and reduction impossibilities. Statement 3, as a direct consequence of NP-completeness, is the only true one. **Formulating Final Answer** I've meticulously reviewed all the prior analyses and am ready to finalize the quiz's subproblem. I am satisfied with the conclusions drawn after all the thorough analysis. I'll present my findings as a set of binary options, as requested.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
**Tackling the Problem** I'm currently grappling with the user's decidability question. It's clear that A is undecidable, and the challenge lies in proving or disproving the undecidability of the unions. My focus is on exploring the implications of B and its complement in relation to A's inherent undecidability. I'm trying to find the key relationship. **Examining the Proof Strategy** Now, I'm focusing on proving the overall undecidability claim by contradiction. Assuming both $A \cup B$ and $A \cup \overline{B}$ are decidable, and using their intersection to isolate $A$, appears promising. The critical piece is establishing that if the unioned sets are decidable, then A must be, leading to a conflict. **Formulating a Solution** I'm now applying the closure property of decidable languages under intersection to this specific problem. Because the intersection of $A \cup B$ and $A \cup \overline{B}$ yields $A$, and I assumed both unions are decidable, this logically leads to the conclusion that $A$ must be decidable. This directly contradicts the given condition that $A$ is undecidable. **Confirming the Undecidability** I've now formalized the proof. Assuming both unions are decidable leads directly to the conclusion that A is decidable, a contradiction. Therefore, at least one of the languages, $A \cup B$ or $A \cup \overline{B}$, must be undecidable, which confirms the initial statement as true. **Concluding the Argument** I've successfully completed the proof, selecting "Wahr" and providing the logical reasoning. The proof hinges on demonstrating that assuming both unions are decidable leads to a contradiction, proving that at least one of the unions must be undecidable. The format requirement is complete. **Summarizing the Proof** I've now refined the proof and verified its correctness, also ensuring adherence to all format requirements. The formal, contradiction-based proof is complete. I'm ready to provide the correct German proof, selecting "Wahr" as the answer, including the necessary set operations and closure properties. **Synthesizing the Answer** I've reviewed the German proof and confirmation. I'm ready to select "Wahr" and append the complete, formalized proof using a contradiction-based strategy, leveraging closure under intersection to derive the contradiction, meeting all format requirements. **Preparing the Final Response** I'm now translating the final argument into German, maintaining the formal tone of a proof. I've structured it to directly answer the question's requirements: selecting "Wahr" followed by a detailed, contradiction-based proof. I'll ensure all elements, including set notation and closure properties, are accurately presented.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Die Aussage ist **wahr**. **Beweis:** Wir führen einen Widerspruchsbeweis. Angenommen, die Aussage sei falsch. Das würde bedeuten, dass es eine unentscheidbare Sprache $A$ und eine Sprache $B$ gibt, für die *sowohl* $A \cup B$ *als auch* $A \cup \overline{B}$ entscheidbar sind. Seien $L_1 = A \cup B$ und $L_2 = A \cup \overline{B}$. Nach unserer Annahme sind $L_1$ und $L_2$ entscheidbare Sprachen. Die Klasse der entscheidbaren Sprachen ist unter der Schnittmengenbildung abgeschlossen. Das bedeutet, wenn $L_1$ und $L_2$ entscheidbar sind, dann ist auch ihre Schnittmenge $L_1 \cap L_2$ entscheidbar. Betrachten wir nun die Menge $L_1 \cap L_2$. Mithilfe der Distributivgesetze der Mengenlehre können wir den Ausdruck vereinfachen: \[ L_1 \cap L_2 = (A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) \] Der Schnitt einer Sprache $B$ mit ihrem Komplement $\overline{B}$ ist immer die leere Menge, d.h. $B \cap \overline{B} = \emptyset$. Somit gilt: \[ L_1 \cap L_2 = A \cup \emptyset = A \] Wir haben also gezeigt, dass die Sprache $A$ identisch ist mit der Sprache $L_1 \cap L_2$. Da $L_1$ und $L_2$ entscheidbar sind, muss auch ihr Schnitt $A$ entscheidbar sein. Dies steht jedoch im Widerspruch zur Voraussetzung, dass $A$ unentscheidbar ist. Unsere Annahme, dass sowohl $A \cup B$ als auch $A \cup \overline{B}$ entscheidbar sind, muss daher falsch sein. Folglich muss mindestens eine der beiden Sprachen unentscheidbar sein. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Die Aussage ist wahr. Beweis: Wir führen einen Widerspruchsbeweis. Angenommen, die Aussage sei falsch. Das würde bedeuten, dass es eine unentscheidbare Sprache und eine Sprache gibt, für die sowohl als auch entscheidbar sind. Seien und . Nach unserer Annahme sind und entscheidbare Sprachen. Die Klasse der entscheidbaren Sprachen ist unter der Schnittmengenbildung abgeschlossen. Das bedeutet, wenn und entscheidbar sind, dann ist auch ihre Schnittmenge entscheidbar. Betrachten wir nun die Menge . Mithilfe der Distributivgesetze der Mengenlehre können wir den Ausdruck vereinfachen: Der Schnitt einer Sprache mit ihrem Komplement ist immer die leere Menge, d.h. . Somit gilt: Wir haben also gezeigt, dass die Sprache identisch ist mit der Sprache . Da und entscheidbar sind, muss auch ihr Schnitt entscheidbar sein. Dies steht jedoch im Widerspruch zur Voraussetzung, dass unentscheidbar ist. Unsere Annahme, dass sowohl als auch entscheidbar sind, muss daher falsch sein. Folglich muss mindestens eine der beiden Sprachen unentscheidbar sein.
openai/gpt-5
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
**Analyzing decidability in German lecture** In my German lecture, I’m considering the term "berechenbar," which often means "partially computable." The distinction between "partially computable" and "decidable" is emphasized in many courses. I find it interesting that "φ_w is computable" is always true, but it feels overly simplistic—they wouldn’t raise it unless there’s a trick. I’m contemplating options: Total is undecidable; some value relationships might be undecidable, but I suspect option three is decidable. I think I'll mark my answers as 1:0, 2:0, and 3:1. Let's finalize this!
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
**Analyzing quiz options** I need to tackle these quiz questions and focus on subproblem c. Here, we have a deterministic Turing machine M, which causes an infinite loop for input w. Let's figure out which statements are true: For option 1, if M loops on w, then w can't be in L(M), so that's valid; w is not accepted, confirming option 1 is true. As for option 2, saying L(M) is undecidable isn't necessarily correct since M has some language, and there could be a decider for it. Thus, L(M) is recursively enumerable, not undecidable.**Evaluating decidability and semi-decidability** I’m considering the nature of L(M), which could be either decidable or undecidable. If M loops on certain inputs, that doesn't automatically make L(M) undecidable. For instance, M can accept only the empty language while looping on input 0. Therefore, the statement "L(M) is undecidable" isn't necessarily correct, so option 2 would be marked as false. For option 3, the existence of a looping input doesn’t affect semi-decidability; L(M) remains recursively enumerable since M semi-decides it by halting and accepting specific strings in L(M).**Determining semi-decidability** I’ve concluded that L(M) is indeed semi-decidable. Here's the thing: semi-decidable means there’s a Turing machine that halts for instances where it accepts inputs, but it may loop for non-members. If M loops on a member, it doesn’t change its acceptance in those cases—since members must lead to M halting. Thus, I can confirm option 3 as true. So the final answers are: option 1 is 1, option 2 is 0, and option 3 is 1. I need to ensure the format is correct in my responses too!**Clarifying acceptance conventions** In German courses, L(M) typically refers to the set of accepted words by the Turing machine M. If there's a loop, that means an input isn't in L(M), making option 1 true. For option 3, it’s always semi-decidable by definition, so that's also a yes. I think I've got a solid understanding here; it’s clear that the conventions about acceptance and rejection are guiding my responses!
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
**Evaluating language complexity options** I'm considering the implications of language complexity and taking a closer look at the statements regarding P and NP. The statement about the complement of L being in NP holds because P is closed under complement. It seems all three options presented are true, so I believe I should respond with "1 1 1". For option 2, I'm also noting that every context-free language is in P and that membership for CFLs is indeed manageable in O(n^3), even with ambiguous grammars. Alright, let's finalize this!
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
**Analyzing decidability of languages** I realize that if L consists only of strings not starting with 'a,' then L^a would only include K', making it decidable. If K' is decidable, then L itself becomes decidable, since I can decide strings starting with 'a' and the others would accept automatically. However, I need a different S that includes some strings starting with 'a' to keep L undecidable while making L^a decidable. For L^a to be decidable, membership in L must only depend on w through some decidable property, but L can still be undecidable due to the complexities of non-'a' starting strings.**Exploring language construction** I'm considering setting L as the union of T and U, where T contains strings with a decidable pattern and U consists of undecidable strings that don't start with 'a.' This would make L overall undecidable. To make U undecidable, I can embed an undecidable set through a mapping that targets strings not starting with 'a,' perhaps beginning with 'b' instead. If 'Σ' is {0, 1} and I set 'a' to 0, then U could be defined using an undecidable set K to form U through a mapping function. That seems interesting!**Clarifying decidability concepts** I'm thinking about how to ensure U is truly undecidable. The preimage of an undecidable set under a bijection can help maintain that. For L^a, since every string starts with 'a,' it depends on T, meaning if T is decidable, then L^a is also decidable. However, L becomes undecidable because of U. This leads me to conclude that earlier conclusions are correct. Regarding Option 3, I realize that undecidable languages can still be recognized by Turing Machines, so that statement may not hold for every undecidable language.**Reassessing language properties** I've realized that not all undecidable languages are non-recursively enumerable; for example, the HALT problem is a classic case of an undecidable but RE language. So, my earlier statement about selecting 0 stands corrected. Looking at subproblem c, if a machine M diverges on input w, that means w isn't in L(M) under my definition, since machines that don't halt don't accept either. However, some conventions differ. For Option 2, the statement “L(M) is undecidable” isn't necessarily true just because there's a nonhalting input. For Option 3, though, I recognize that any language recognized by a Turing Machine is semi-decidable by definition, which is true!**Reviewing language properties and implications** For semi-decidable languages, L(M) is indeed semi-decidable because there's a machine M, and the halting requirement only applies to accepted inputs. Moving on to subproblem d, my prior answers about regular languages in NP are accurate because P is a subset of NP. For context-free languages, they belong to P due to the CYK algorithm. In subproblem e, I must clarify that just because A is in NP and B is NP-complete, it doesn't mean A is strictly a subset of B. Similarly, the reverse doesn’t hold. I note that I'll move forward with subproblem f now, ensuring I check the formatting and include the appropriate LaTeX as needed.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Beweis: Angenommen, sowohl $A \cup B$ als auch $A \cup \overline{B}$ seien entscheidbar. Dann ist auch ihr Durchschnitt entscheidbar. Es gilt \[ (A \cup B) \cap (A \cup \overline{B}) \;=\; A \cup (B \cap \overline{B}) \;=\; A. \] Damit wäre $A$ entscheidbar — Widerspruch zur Voraussetzung. Also können nicht beide Vereinigungen entscheidbar sein; mindestens eine von ihnen ist unentscheidbar. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Beweis: Angenommen, sowohl als auch seien entscheidbar. Dann ist auch ihr Durchschnitt entscheidbar. Es gilt Damit wäre entscheidbar — Widerspruch zur Voraussetzung. Also können nicht beide Vereinigungen entscheidbar sein; mindestens eine von ihnen ist unentscheidbar.
openai/gpt-oss-120b
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We have to determine which languages are decidable (recursive). Using standard computability theory: Let φ_w denote the partial computable function computed by Turing machine encoded by w. Language 1: { w : φ_w is total } i.e., the totality problem. This is known to be undecidable (not recursive). So answer 0. Language 2: { w : φ_w(0) = 0 }. This is the set of programs that output 0 on input 0. This is semi-decidable? It is decidable? The problem of checking output equals a specific value is generally undecidable because you need to know whether the program halts with that output; halting problem reduces. Indeed, consider language L = { w | φ_w(0) halts with output 0 }. This is equivalent to halting problem with a particular output, which is still undecidable. So answer 0 (undecidable). Not decidable. Language 3: { w : φ_w is computable }. But every partial computable function is computable (by definition). Probably they mean "total computable"? But phrase "ist berechenbar" could mean "computable" maybe meaning "total computable" or "partial computable"? Usually "berechenbar" means total computable (i.e., recursive). If they ask language of indices of total computable functions. That is same as totality problem, undecidable. If they meant just "computable" (including partial), then all w correspond to some partial computable function, so language is Σ* which is decidable (trivially). However they likely intend the same as total, making it undecidable? Let's interpret: Given typical theory, "partial computable" is called "partial recursive", "computable" refers to total recursive functions. So language of indices whose φ_w is total recursive (i.e., total). That is same as #1, undecidable. But they maybe want to test understanding: #1 asks "φ_w is total" (i.e., total function, but not necessarily computable? Actually total implies computable since φ_w is a partial computable function; if it's total, then it's a total computable function). #3 says "φ_w is computable", which is always true because φ_w is by definition a computable (partial) function. So language = Σ*, decidable. Provide 1. Which interpretation is likely? In many textbooks, "computable" refers to total functions. They might ask difference between "total" and "computable". But a partial computable function may not be total; but still it's "computable" (partial). But they might mean "berechenbar" = "computable" = "partial computable". I'd lean that they intend total computable, but then it's same as #1, making a trick? maybe they want to see that #1 is about totality (undecidable) while #3 is trivial (everything is computable) thus decidable. I think that is the intention: they want to highlight that any index w defines a partial computable function, so language of "computable" is Σ* thus decidable. So answer 1 for #3. Thus final: option1 0, option2 0, option3 1.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need decide statements about any undecidable language L. 1. Complement of undecidable language is also undecidable? Not always; if L is undecidable, complement could be decidable? For recursively enumerable vs co-RE. Undecidable language could have decidable complement? Actually if L is undecidable, its complement cannot be decidable because if complement decidable then L would be decidable (since decidable languages are closed under complement). So complement of an undecidable language is also undecidable. Wait: If L is undecidable, maybe L is not decidable but complement could be decidable? Suppose L is not decidable, but complement is decidable; then we could decide L by complementing the decision, which would make L decidable. So impossible. Therefore complement is also undecidable. So statement 1 true. 2. Residual language L^a: defined as { w | aw ∈ L }. If L is undecidable, is L^a necessarily undecidable? Not necessarily; there could be a undecidable L such that after fixing a prefix, the residual becomes decidable. Example: Let L = {a} ∪ K where K is undecidable set of strings not starting with a. Then L^a = { ε } ∪ { w | aw ∈ K }. Since K strings never start with a, aw not in K, so L^a = { ε } which is decidable. But is L undecidable? Since we have K undecidable and L includes K plus maybe a. Membership in L for strings not starting with a is same as membership in K, so L undecidable. So residual could be decidable. Hence statement 2 not always true, so false. 3. "There exists no TM M with L(M)=L". For any language (possibly non-recursive), there exists a TM that recognizes it (i.e., semi-decidable) iff language is recursively enumerable. But undecidable language could be not RE (i.e., not semidecidable). However statement says there is no TM whose language equals L (i.e., recognizes exactly L). This is false because there are undecidable languages that are RE (e.g., Halting problem). So there exists TM for those. So statement false in general. So answer: 1 true, 2 false, 3 false. Thus output: <option id="1">1</option> <option id="2">0</option> <option id="3">0</option>.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need to answer subproblem c. Determine statements. Given M is a deterministic TM, and there exists an input w such that M runs infinitely many steps (i.e., does not halt) on w. We need evaluate truth: 1. "$w \notin L(M)$". L(M) is language accepted by M (presumably by halting in accept state). Since deterministic TM runs infinitely many steps on w, it never halts, thus cannot accept (accept requires halting in accepting state). So w is not in L(M). True. Unless definition of language includes infinite loops as rejection? Usually language of TM: set of inputs for which TM halts in accept. If it loops, it's not in the language. So statement 1 true. 2. "$L(M)$ is unentscheidbar". Does existence of at least one non-halting input imply language is undecidable? Not necessarily. Example: M could be a TM that accepts all strings (halts accept) except on one particular input where it loops. That language is Σ*, which is decidable. Indeed we can decide by just accept all inputs; but original M doesn't decide it (it may not halt on that one input). However the language L(M) is Σ* which is decidable. So statement 2 is false. 3. "$L(M)$ is semi-entscheidbar". Does any deterministic TM define a semi-decidable language? Yes, languages recognized by TMs (even partial) are recursively enumerable (semi-decidable). The definition of semi-decidable: there exists a TM that halts accept for strings in language, may loop otherwise. M itself is such a recognizer: for strings in L(M) it halts accept; for others maybe reject or loop; but that is exactly property of r.e. So L(M) is semi-decidable. However careful: If M may reject by halting reject on some inputs, that's fine. If it loops on others, still in r.e. So true. Thus answers: option1=1, option2=0, option3=1. Provide format: <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need to evaluate statements. 1: Every regular language is in NP. NP includes all languages decidable in nondeterministic polynomial time. Regular languages are decidable in linear time deterministic, thus also in NP. So true -> 1. 2: Every context-free language is in P. Not all CFL are in P? Actually CFL membership can be decided in O(n^3) via CYK, which is polynomial. Yes, CFL ∈ P. However some context-free languages are maybe not known to be in P? All CFL are decidable in O(n^3) deterministic, so yes they are in P. So true -> 1. 3: If L in P, then complement L in NP. Since P ⊆ NP, and complement of a language in P is also in P (since deterministic polynomial time can be complemented by flipping accept/reject). So complement is also in P, thus also in NP. So true -> 1. Thus all three true. Provide 1 for each. Check subtlety: statement 2 says "Every context-free language is in P." Formal: CFL ∈ P? It's known that CFL membership is in O(n^3) deterministic, so yes. So answer all ones.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
We need to determine correct true statements. We have P != NP assumption. A is any language in NP, possibly not NP-complete. B is-complete. Which statements must be true? Options: 1. A ⊆ B: Not necessarily; A could be any NP language not subset of B. Not required. So false. 2. B ⊆ A: Not necessarily; B could be NP-complete, A could be a smaller NP language. So false. 3. A ≤_p B (polynomial-time many-one reduction): Since B is NP-complete, every language in reduces to B. So yes, for any A ∈ NP, there is a polynomial-time reduction A ≤_p B. So true. 4. B ≤_p A: Since B is NP-complete, B reduces to any NP-hard language? Actually NP-complete means it's NP-hard (all NP languages reduce to it) and B ∈ NP. For B ≤_p A to hold, A must be NP-hard as well (or B reduces to A). Not guaranteed. Unless A is NP-hard; but not given. So false in general. Thus answers: 0,0,1,0. Check if any nuance: Under P != NP, still NP-complete languages are not in P (assuming standard). But reduction direction doesn't depend on P!=NP. Thus final.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need decide if statement true or false, and provide proof or counterexample. Statement: For any languages A (undecidable) and B arbitrary, at least one of A∪B and A∪ complement B is undecidable. Is this always true? Consider A undecidable. Choose B = complement of A. Then A∪B = Σ* (decidable). Also A∪ complement B = A ∪ A = A (undecidable). So at least one is undecidable (true). Need a case where both become decidable? Let's attempt B such that both unions are decidable. Need A∪B decidable and A∪ complement B decidable. That would imply both Σ*? Actually if both unions are decidable, they could be decidable languages, maybe not Σ*. Could we have A∪B = Σ*? Not necessary. But think: Suppose we let B be a decidable language that together with A gives Σ*? For A∪ complement B to be decidable, we need complement B maybe complement of decidable => also decidable. Since complement of decidable is decidable. So both unions are unions of undecidable A with decidable languages; could become decidable? Example: Let A be an undecidable set, e.g., the halting problem K. Choose B = complement of A (which is undecidable). But B needs to be arbitrary, can be undecidable too. Then A∪B = Σ* (decidable). Complement B = A, so A∪ complement B = A (undecidable). So statement holds. But need counterexample where both unions are decidable. Is that possible? Suppose both unions equal Σ*. That would require B such that complement B also contains complement of A? Actually A∪B = Σ* and A∪ complement B = Σ* implies that for any string x, either x∈A or x∈B, and also either x∈A or x∈ complement B. For strings not in A, first condition forces x∈B, second forces x∈ complement B. Can't both be true unless those strings are both in B and complement B, impossible. So can't have both equal Σ*. Could both be decidable but not Σ*? Need to see if there can be B such that both unions are decidable but not necessarily Σ*. Could we make both unions equal some decidable language D that contains A? Since A is subset of both unions, D must contain A. But if D is decidable and contains A (undecidable), then D is undecidable because containing A doesn't make D undecidable; a superset of an undecidable set can be decidable (e.g., Σ*). So D could be Σ*. That fails as above. So maybe there is no B making both unions decidable. Consider B = Σ*. Then A∪B = Σ* (decidable). Complement B = ∅. Then A∪ complement B = A (undecidable). So still at least one undecidable. Thus seems statement is true. Provide proof: Suppose both A∪B and A∪¬B are decidable. Then their intersection? compute? Intersection (A∪B) ∩ (A∪¬B) = A ∪ (B ∩ ¬B) = A ∪ ∅ = A. Since class of decidable languages closed under intersection, A would be decidable, contradiction. Therefore at least one of the unions must be undecidable. So statement true. Thus answer: option 1 true, option 2 false. Provide explanation.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> **Beweis (Wahrheit der Aussage).** Seien \(A,B\subseteq\Sigma^{*}\) beliebig und sei \(A\) **unentscheidbar**. Wir zeigen, dass es **unmöglich** ist, dass beide Sprachen \[ A\cup B \qquad\text{und}\qquad A\cup\overline{B} \] entscheidbar sind. Angenommen, sowohl \(A\cup B\) als auch \(A\cup\overline{B}\) seien entscheidbar. Die Klasse der entscheidbaren Sprachen ist unter Schnitt (Intersection) abgeschlossen. Betrachte daher den Schnitt beider Mengen: \[ \begin{aligned} (A\cup B)\;\cap\;(A\cup\overline{B}) &= A\;\cup\;(B\cap\overline{B}) \\ &= A\;\cup\;\varnothing \\ &= A . \end{aligned} \] Da beide Ausgangssprachen nach Annahme entscheidbar sind, wäre ihr Schnitt ebenfalls entscheidbar. Damit wäre \(A\) entscheidbar – ein Widerspruch zur Voraussetzung, dass \(A\) unentscheidbar ist. Folglich kann **nicht** gleichzeitig gelten, dass \(A\cup B\) und \(A\cup\overline{B}\) entscheidbar sind. Damit ist garantiert, dass mindestens **eine** der beiden Sprachen unentscheidbar ist. \[ \boxed{\text{Die Aussage ist wahr.}} \] </answer> --- **Zusammenfassung:** - Option 1 („Wahr“) ist korrekt. - Option 2 („Falsch“) ist nicht korrekt.
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Beweis (Wahrheit der Aussage). Seien beliebig und sei unentscheidbar. Wir zeigen, dass es unmöglich ist, dass beide Sprachen entscheidbar sind. Angenommen, sowohl als auch seien entscheidbar. Die Klasse der entscheidbaren Sprachen ist unter Schnitt (Intersection) abgeschlossen. Betrachte daher den Schnitt beider Mengen: Da beide Ausgangssprachen nach Annahme entscheidbar sind, wäre ihr Schnitt ebenfalls entscheidbar. Damit wäre entscheidbar – ein Widerspruch zur Voraussetzung, dass unentscheidbar ist. Folglich kann nicht gleichzeitig gelten, dass und entscheidbar sind. Damit ist garantiert, dass mindestens eine der beiden Sprachen unentscheidbar ist.
qwen/qwen3-235b-a22b
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Okay, let's tackle this question about decidability. So, we have three options, and we need to determine which of these languages are decidable. Let's go through each one step by step. Starting with option 1: {w ∈ Σ* : φ_w ist total}. Hmm, φ_w here refers to the partial computable function computed by the Turing machine with code w, right? So, this language is the set of all Turing machine codes that are total, meaning they halt on every input. Wait, but isn't the problem of determining whether a Turing machine halts on all inputs undecidable? I remember that this is related to the halting problem, which is undecidable. The set of total functions isn't recursive. So this language should be undecidable. So option 1 would be 0. Moving to option 2: {w ∈ Σ* : φ_w(0) = 0}. This is the set of Turing machines that, when run on input 0, output 0. Wait, but how do we decide this? Well, there's the problem that some machines might not halt on input 0. But if we could check whether φ_w(0) is defined and equals 0, then maybe. But this seems similar to the halting problem. For example, if we have a machine that loops forever on 0, then φ_w(0) is undefined, so it wouldn't be in the set. But determining whether φ_w(0) equals 0 would require knowing if the machine halts on 0 and outputs 0. Since the halting problem is undecidable, this language might also be undecidable. But wait, is there a way to semi-decide this? Like, we can simulate the machine on 0 and check if it halts and outputs 0, but if it doesn't, we might never know. So this is recursively enumerable but not necessarily decidable. So option 2 is probably undecidable, so 0. Option 3: {w ∈ Σ* : φ_w ist berechenbar}. Wait, φ_w is the function computed by the Turing machine w. But every φ_w is by definition a computable function, right? Because the code w represents a Turing machine, which computes a computable function. So this language is just all possible strings over Σ*, since every w in Σ* is a code for a Turing machine, which computes a computable function. Therefore, this language is trivially decidable because it's the entire Σ* set. Wait, but wait a second. Wait, the set of all w such that φ_w is computable. But φ_w is always computable by definition, because it's the function computed by a Turing machine. So this set is all Turing machines, which is Σ*, which is decidable. So option 3 is 1. Wait, but hold on. What if the question is phrased differently? Like, maybe φ_w is a computable function. But every φ_w is computable, because it's defined as the function computed by a Turing machine. So the language is Σ*, which is trivially decidable. So option 3 is 1. So putting it all together: option 1 is 0, option 2 is 0, option 3 is 1. Therefore, the answers are 0, 0, 1.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Okay, let's tackle subproblem b. So, we have L as an arbitrary undecidable language and a symbol a in the alphabet Σ. The question is about which statements are true. The options are about the complement of L, the residual language L^a, and whether there exists a TM that recognizes L. First, option 1 says that the complement of L is undecidable. Hmm. I remember that the class of decidable languages is closed under complementation. That means if a language is decidable, its complement is also decidable. But here, L is undecidable. Does that mean its complement is also undecidable? Wait, yes! Because if the complement were decidable, then L would be decidable too, since the complement of a decidable language is decidable. So if L is undecidable, its complement must also be undecidable. So option 1 should be true, which would be 1. Option 2: L^a is undecidable. The residual language L^a is defined as {w | a·w ∈ L}, right? Now, if L is undecidable, does that mean L^a must also be undecidable? Not necessarily. Let me think of a counterexample. Suppose L is some undecidable language, but maybe after taking the residual, it becomes simpler. For example, suppose L is the union of a undecidable language and a decidable one. If we take a prefix that leads into the decidable part, then L^a could be decidable. Wait, but how to formalize this? Alternatively, take L as the halting problem, and a specific a. Suppose that a is the first symbol of the encoding of a Turing machine. Then L^a would be all the suffixes such that the entire string (starting with a) is in L. But if L is undecidable, does that make L^a undecidable? Not necessarily. For example, if we take L = {a} ∪ H, where H is the halting problem. Then L^a would be {w | a·w ∈ L}. If a is the first symbol, then L^a would be {w | a·w is in L}. But since L includes all words starting with a (if the example is constructed that way), then L^a could be Σ*, which is decidable. Wait, but in this case, L would be undecidable because H is part of it. So in this case, L is undecidable, but L^a is Σ*, which is decidable. Therefore, option 2 could be false. Therefore, option 2 is not necessarily true, so answer 0. Option 3: There exists no TM M such that L(M) = L. Wait, but L is a language, which by definition is a set of strings. A Turing machine can recognize any recursively enumerable language. However, if L is undecidable, that doesn't mean it's not recursively enumerable. For example, the halting problem is semi-decidable (r.e.) but not decidable. So if L is undecidable, but r.e., then there exists a TM that accepts it. However, if L is not even r.e., then there is no TM that accepts it. Since the question says L is an arbitrary undecidable language, which could be either not r.e. or co-r.e. So the statement in option 3 is "there exists no TM M with L(M) = L". But if L is r.e., then there is such a TM. So for example, if L is the halting problem, then there is a TM that accepts it. Therefore, option 3 is false in that case. However, if L is not r.e., then option 3 would be true. But since the question says "L is any undecidable language", and since undecidable languages can be either r.e. or not, the statement "there exists no TM M" would not hold in general. Therefore, option 3 is not necessarily true. So the answer for option 3 is 0. So putting it all together: option 1 is 1, option 2 is 0, option 3 is 0.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Okay, let's tackle subproblem c. Hmm, the question is about a deterministic Turing machine M that has some input w where it runs infinitely. We need to determine which statements are true. First, the options are: 1. w ∉ L(M) 2. L(M) is undecidable 3. L(M) is semi-decidable Let me break this down. Starting with option 1: If M runs infinitely on w, then M doesn't halt on w. Since M is deterministic, L(M) is the set of inputs where M halts and accepts. So if M doesn't halt on w, then w is not in L(M). That makes option 1 true. So option 1 should be 1. Option 2: L(M) being undecidable. Wait, but L(M) could be any recursively enumerable language. For example, even if M loops on some input, L(M) could still be decidable. Like, if M accepts all other inputs except w, and loops on w. Then L(M) would be Σ* minus {w}, which is decidable. So the fact that M loops on some input doesn't make L(M) undecidable. So option 2 is false. So 0. Option 3: L(M) is semi-decidable. Since M is a Turing machine, by definition, the language it accepts (the set of inputs where it halts and accepts) is semi-decidable (recursively enumerable). Even if it loops on some inputs, the language is still semi-decidable. So option 3 is true. So 1. Wait, but wait. The problem states that M is deterministic. So L(M) is semi-decidable regardless. So yes, option 3 is correct. Therefore, the answers should be 1 for option 1, 0 for 2, and 1 for 3.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Okay, let's tackle this problem step by step. The question is about complexity classes and which statements are true regarding them. Let's go through each option one by one. Option 1: "Every regular language is in NP." I remember that regular languages can be decided by finite automata, which are much simpler than Turing machines. Since P is a subset of NP (as any problem solvable in polynomial time can be verified in polynomial time), and regular languages are in P (they can be decided in linear time), this should be true. So option 1 is correct. Option 2: "Every context-free language is in P." Hmm, context-free languages are recognized by pushdown automata. The standard parsing algorithm for context-free grammars is CYK, which runs in polynomial time, O(n^3). So context-free languages are indeed in P. Wait, but wait—what about inherently ambiguous CFLs? Oh, right, even if a language is inherently ambiguous, the CYK algorithm still works for it because it's based on dynamic programming and doesn't care about ambiguity. So any CFL can be decided in polynomial time, making option 2 true. But wait, I need to be careful. Are there CFLs that aren't in P? No, because the CYK algorithm works for all CFLs. So option 2 should be true. But wait, the problem says "jede kontextfreie Sprache", so all context-free languages. Since all CFLs are decidable in polynomial time, this would be correct. But wait, maybe there's a trick here. Wait, the class P consists of languages decidable in polynomial time by a deterministic Turing machine. Since a pushdown automaton's behavior can be simulated by a TM in polynomial time, yes. So option 2 is true. So option 2 should be 1. Option 3: "Let L be in P. Then the complement of L is in NP." Well, since P is closed under complementation (because you can just flip the answer of the deterministic TM), the complement of L is also in P. And since P is a subset of NP, then the complement is in NP. So this statement is true. Therefore, option 3 is correct. Wait, but wait again. The third option says that if L is in P, then its complement is in NP. Since P is closed under complement, and P is a subset of NP, then yes. So all three options are true. But wait, in the options, the user might have a different answer. Wait, but let me double-check. Option 1: Regular languages are in P, and since P is a subset of NP, yes. So option 1 is correct. Option 2: CFLs are in P, as CYK algorithm shows. So option 2 is correct. Option 3: If L is in P, then its complement is also in P, hence in NP. So option 3 is correct. But wait, the user's answer format requires 0 or 1 for each option. So according to this, all three options should be 1. But wait, maybe I made a mistake with option 2. Wait, there's a catch here. Context-free languages are not necessarily in P if we consider that some context-free languages might require more than polynomial time. Wait, no. Wait, the membership problem for context-free languages (i.e., given a string w, is it in the CFL) can be decided in O(n^3) time using the CYK algorithm. Therefore, all context-free languages are in P. Therefore, option 2 is correct. So all three options are true. But wait, I'm a bit confused because sometimes there's a nuance. Wait, but the question is about the language itself being in P. Since a context-free language can be decided by a deterministic TM in polynomial time, yes, so option 2 is true. Therefore, all three options are correct. But wait, maybe the user's answer is different. Let me check again. Wait, the problem says "jede kontextfreie Sprache ist in P". But the class P is for decision problems decidable in polynomial time. Since every CFL can be decided by a TM in O(n^3) time, which is polynomial, then yes, all CFLs are in P. Therefore, option 2 is correct. So all three options (1, 2, 3) should be marked as 1. But wait, I'm not sure. Let me check again. Wait, the CYK algorithm works for grammars in Chomsky Normal Form. Any CFG can be converted into CNF, but sometimes the conversion might introduce some issues. However, even if the grammar is ambiguous, the CYK algorithm can still parse it, though it might not resolve the ambiguity. But for the purpose of deciding membership, it's okay. So the membership problem for CFLs is in P. Therefore, every CFL is in P. Therefore, option 2 is true. So all three options are correct. But wait, I'm a bit confused because sometimes people think that some CFLs are not in P, but actually, they are. Because the CYK algorithm works for all CFLs. Therefore, the answer should be 1 for all three options. But I need to confirm. Alternatively, maybe there's a mistake here. Wait, the statement in option 2 is that every context-free language is in P. Since the CYK algorithm runs in polynomial time, this is correct. Therefore, option 2 is correct. Therefore, all three options are correct. But maybe I'm missing something. Let me think again. Another approach: P is the class of languages decidable in polynomial time. Regular languages are a subset of P (since a DFA can be simulated by a TM in linear time), so option 1 is correct. Context-free languages are also decidable in polynomial time (CYK algorithm), so option 2 is correct. And since P is closed under complement, option 3 is correct. Therefore, all three options are 1. But wait, the user's answer for subproblem d in the previous examples might have different answers. Wait, but according to the current analysis, all three are correct. However, I need to check if there's any exception. Wait, are there context-free languages that are not in P? No, because the CYK algorithm can decide any CFL in polynomial time. Therefore, option 2 is definitely correct. Therefore, all three options are correct. But wait, perhaps the user's answer here would have 1 for each. But let me check again. Wait, another angle: Context-free languages are in P, but what about the time hierarchy? Suppose there's a CFL that requires exponential time. But no, the CYK algorithm works in cubic time. Therefore, all CFLs are in P. So option 2 is correct. Therefore, all three options are correct. But I'm a bit unsure because sometimes people might think that some CFLs are inherently ambiguous and thus hard to parse, but even inherently ambiguous CFLs can be parsed in polynomial time. So yes, option 2 is correct. Therefore, the answer should be 1 for all three options. But wait, in the previous subproblems, the user's answers were correct. Let me proceed with this conclusion.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
Okay, let's tackle this problem step by step. The question is about computational complexity, specifically under the assumption that P ≠ NP. We have two languages, A and B. A is in NP, and B is NP-complete. We need to evaluate four statements regarding their relationships. First, let's recall some definitions. NP-complete problems are the hardest problems in NP. Every problem in NP can be reduced to an NP-complete problem in polynomial time. Also, since B is NP-complete, it's in NP, and because A is also in NP, there might be some reductions possible. Looking at statement 1: A ⊆ B. This would mean every string in A is also in B. But since A can be any NP problem and B is NP-complete, this isn't necessarily true. For example, if A is SAT (which is NP-complete) and B is another NP-complete problem like 3-SAT, they aren't subsets of each other unless they are exactly the same, which they aren't. So statement 1 is false. Statement 2: B ⊆ A. Similarly, this would mean every instance of B is in A. But since B is NP-complete, and A is in NP, unless A is also NP-hard (which it isn't necessarily, unless A is NP-complete), this inclusion doesn't hold. For example, if A is in P (which is a subset of NP), and B is NP-complete, then B can't be a subset of A because that would imply P = NP, which contradicts our assumption. So statement 2 is false. Statement 3: A ≤ₚ B. This is saying there's a polynomial-time reduction from A to B. Since B is NP-complete, by definition, every problem in NP (including A) can be reduced to B in polynomial time. That's exactly the definition of NP-completeness. So this should be true. So statement 3 is correct. Statement 4: B ≤ₚ A. This would mean that B can be reduced to A. But since B is NP-complete, if we can reduce it to A in polynomial time, then A must be NP-hard. However, A is only known to be in NP. Unless A is NP-complete, which isn't given here, this reduction isn't guaranteed. In fact, if P ≠ NP, there are problems in NP that aren't NP-complete. For example, if A is in P, then reducing an NP-complete problem to it would imply P = NP. Since we're assuming P ≠ NP, this reduction can't happen. Therefore, statement 4 is false. So putting it all together: statements 3 is true, others are false. The options 1, 2, 4 are 0, and option 3 is 1.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, let's tackle this problem step by step. The question is asking whether, given that A is undecidable, at least one of the languages A ∪ B or A ∪ ¬B (which is A ∪ complement of B) must also be undecidable. We need to prove or disprove this statement. First, let me recall some basic concepts. A language is decidable if there exists a Turing machine that can determine membership for any input string in finite time. If a language is undecidable, such a Turing machine doesn't exist. Now, the problem states that A is undecidable, but B could be any language. The union of two languages combines all elements from both, and the complement of B (¬B) consists of all strings not in B. The claim is that at least one of A ∪ B or A ∪ ¬B must be undecidable. To approach this, maybe I can assume the opposite and look for a contradiction. Suppose both A ∪ B and A ∪ ¬B are decidable. If both are decidable, then their intersection should also be decidable, since decidable languages are closed under intersection. Let's compute the intersection of A ∪ B and A ∪ ¬B. The intersection of (A ∪ B) and (A ∪ ¬B) is A ∪ (B ∩ ¬B), which simplifies to A, because B ∩ ¬B is the empty set. Therefore, A would be the intersection of two decidable languages, implying that A is decidable. But this contradicts the given condition that A is undecidable. Therefore, our assumption that both A ∪ B and A ∪ ¬B are decidable must be false. Hence, at least one of them must be undecidable. Wait, but I need to make sure that the closure properties hold here. Decidable languages are indeed closed under intersection. So if both A ∪ B and A ∪ ¬B are decidable, their intersection is decidable. But their intersection is A, which is given as undecidable. That's a contradiction. Therefore, the original assumption that both unions are decidable can't hold. Therefore, the statement is true: at least one of A ∪ B or A ∪ ¬B must be undecidable. Alternatively, maybe there's a case where B is chosen such that both unions end up being decidable. But according to the above reasoning, that would lead to A being decidable, which it's not. So the conclusion must hold. Therefore, the answer should be "Wahr" (True), which corresponds to option 1 being 1 and option 2 being 0. The detailed answer would explain this contradiction using closure properties.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> **Beweis durch Widerspruch:** Angenommen, sowohl $A \cup B$ als auch $A \cup \overline{B}$ sind entscheidbar. 1. **Schnitt der Sprachen:** Der Schnitt $(A \cup B) \cap (A \cup \overline{B})$ ist gleich $A \cup (B \cap \overline{B}) = A \cup \emptyset = A$. 2. **Abschlusseigenschaft:** Da entscheidbare Sprachen unter Durchschnitt abgeschlossen sind, folgt aus der Entscheidbarkeit von $A \cup B$ und $A \cup \overline{B}$ auch die Entscheidbarkeit von $A$. 3. **Widerspruch:** Dies widerspricht der Voraussetzung, dass $A$ unentscheidbar ist. **Fazit:** Mindestens eine der Sprachen $A \cup B$ oder $A \cup \overline{B}$ muss unentscheidbar sein. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Beweis durch Widerspruch: Angenommen, sowohl als auch sind entscheidbar. 1. Schnitt der Sprachen: Der Schnitt ist gleich . 2. Abschlusseigenschaft: Da entscheidbare Sprachen unter Durchschnitt abgeschlossen sind, folgt aus der Entscheidbarkeit von und auch die Entscheidbarkeit von . 3. Widerspruch: Dies widerspricht der Voraussetzung, dass unentscheidbar ist. Fazit: Mindestens eine der Sprachen oder muss unentscheidbar sein.
qwen/qwen3-235b-a22b-thinking-2507
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
This question is asking about which of the given languages are decidable. Let me analyze each option carefully: First, let's understand the notation: - $\Sigma = \{0,1\}$ is the alphabet - $\varphi_w$ refers to the partial computable function computed by the Turing machine whose description (code) is $w$ Now let's examine each option: **Option 1: $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$** This language consists of all descriptions $w$ of Turing machines that compute total functions (i.e., functions that halt on all inputs). This is asking whether a given Turing machine halts on all inputs, which is the famous "totality problem". This is a well-known undecidable problem. In fact, it's not even recursively enumerable. We can prove this by reduction from the halting problem: given a machine $M$ and input $x$, we can construct a machine $M'$ that ignores its input and simulates $M$ on $x$. Then $M'$ is total iff $M$ halts on $x$. Since the halting problem is undecidable, so is the totality problem. So this language is NOT decidable. **Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$** This language consists of all descriptions $w$ of Turing machines that, when run on input 0, produce output 0. This is asking whether a given Turing machine, when run on input 0, produces output 0. This is related to the halting problem. In fact, it's a specific case of the halting problem where we're checking a specific input (0) and a specific output (0). The halting problem is: Given a machine $M$ and input $x$, does $M$ halt on $x$? We know this is undecidable. Our problem is: Given a machine $M$, does $M$ halt on input 0 and produce output 0? This is a special case of the halting problem where the input is fixed to 0 and we're additionally checking that the output is 0. The halting problem with a fixed input is still undecidable (we can easily reduce the general halting problem to this by constructing a machine that first writes $x$ on its tape and then simulates $M$). So this language is NOT decidable. Wait, let me reconsider. The question is whether $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ is decidable. Actually, this is the problem of determining whether a specific Turing machine $M_w$ outputs 0 when run on input 0. We can compute this by simulating $M_w$ on input 0. If $M_w$ halts and outputs 0, then $w$ is in the language. If $M_w$ halts and outputs something else, then $w$ is not in the language. But if $M_w$ doesn't halt on input 0, then we can't determine whether $w$ is in the language or not. This is very similar to the halting problem. In fact, it's equivalent to the halting problem with a specific input. Given a machine $M$ and input 0, we can construct a machine $M'$ that simulates $M$ on 0 and then outputs 0 if $M$ halts. Then $M'$ is in our language iff $M$ halts on 0. So this language is NOT decidable. **Option 3: $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$** This language consists of all descriptions $w$ of Turing machines that compute computable functions. Actually, by definition, $\varphi_w$ is the function computed by the Turing machine with description $w$, so $\varphi_w$ is always computable (by the machine with description $w$ itself). This means that for any $w \in \Sigma^*$, $\varphi_w$ is computable. So this language is just $\Sigma^*$ itself, which is clearly decidable. Wait, let me double-check this. The notation $\varphi_w$ typically refers to the partial function computed by the Turing machine with index $w$. In standard computability theory, any such function is by definition computable (that is, partial computable). So yes, every $w$ corresponds to a computable function (possibly partial), which means $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\} = \Sigma^*$. Actually, I'm not entirely sure about this interpretation. Sometimes "berechenbar" might specifically mean "total computable" in some contexts. But in standard terminology, "berechenbar" usually means "computable", which includes partial computable functions. Given the context of the other options, I think "berechenbar" here means "computable" in the general sense (including partial functions). If that's the case, then indeed $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\} = \Sigma^*$, which is decidable. But let me reconsider. In some contexts, "berechenbar" might specifically mean "total computable". If that's the case, then this would be the same as option 1, which is undecidable. Looking at the German terminology: "berechenbar" generally means "computable" in the sense of "partial computable" in theoretical computer science. However, I've seen some contexts where it means "total computable". Actually, I think I need to be more precise. In computability theory: - A function is "computable" (or "partial computable") if there exists a Turing machine that computes it (possibly not halting for some inputs). - A function is "total computable" if there exists a Turing machine that computes it and halts for all inputs. When we say $\varphi_w$, it typically refers to the partial function computed by the Turing machine with index $w$. So $\varphi_w$ is partial computable by definition. So if "ist berechenbar" means "is (partial) computable", then every $\varphi_w$ is (partial) computable by definition, so the language is $\Sigma^*$, which is decidable. If "ist berechenbar" means "is total computable", then we're back to option 1, which is undecidable. Let me check the German usage. In German theoretical computer science literature, "berechenbar" typically means "computable" in the sense of "partial computable". For instance, the classical book "Berechenbarkeit, Komplexität, Theorie der neuronalen Netze" by Ebbinghaus, Flum, and Thomas uses "berechenbar" to mean "computable" (including partial functions). So I think "ist berechenbar" here means "is (partial) computable", which means that $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\} = \Sigma^*$, which is decidable. Let's summarize: - Option 1: Undecidable (totality problem) - Option 2: Undecidable (halting problem with fixed input) - Option 3: Decidable (all descriptions correspond to computable functions by definition) Actually, let me reconsider option 2. Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ This is asking whether the machine with description $w$ outputs 0 when run on input 0. If we could decide this language, then we could also decide the halting problem with input 0. Given a machine $M$, we could construct a machine $M'$ that simulates $M$ on 0 and then outputs 0 if $M$ halts. Then $M'$ is in our language iff $M$ halts on 0. This shows that if our language were decidable, then the halting problem with fixed input 0 would also be decidable. But we know the halting problem is undecidable, even with a fixed input. So our language is undecidable. Actually, it's even more straightforward: the question of whether a specific machine halts on a specific input is undecidable, and our language is undecidable for the same reason. Now, let's reconsider option 3 one more time. Option 3: $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ As I said, $\varphi_w$ is the function computed by the Turing machine with index $w$. By definition, this function is always partial computable. So for any $w$, $\varphi_w$ is partial computable (i.e., "berechenbar"). But what if $w$ is not a valid description of a Turing machine? What if $w$ doesn't correspond to any Turing machine? This is a crucial detail. If $w$ must be a valid description of a Turing machine, then $\varphi_w$ is defined for all valid $w$, and by definition, $\varphi_w$ is computable. So the language would include all valid descriptions of Turing machines. However, if $w$ can be any string over $\Sigma$ (not necessarily a valid description of a Turing machine), then we need to determine whether $w$ is a valid description of a Turing machine. But the set of valid descriptions of Turing machines is decidable (we can check if $w$ is a valid encoding of a Turing machine). So assuming that $w$ is interpreted as a potential encoding of a Turing machine, then $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ is the set of all valid encodings of Turing machines (since for any valid encoding $w$, $\varphi_w$ is computable, and for any invalid encoding $w$, $\varphi_w$ is not defined, so presumably not "berechenbar"). But whether this set is decidable depends on the encoding. Typically, the encoding of Turing machines is designed to be decidable (we can check if a string is a valid encoding of a Turing machine). Actually, I'm overcomplicating this. In standard computability theory: - The index $w$ is assumed to be from a Gödel numbering of all Turing machines. - In a standard Gödel numbering, not all strings $w \in \Sigma^*$ correspond to valid Turing machines. - However, the set of valid indices (i.e., the set of strings that correspond to valid Turing machines) is decidable. So if "ist berechenbar" means "is (partial) computable", then a string $w$ is in our language if and only if $w$ is a valid index (because if $w$ is a valid index, then $\varphi_w$ is partial computable; and if $w$ is not a valid index, then $\varphi_w$ is not defined, so not "berechenbar"). Given that the set of valid indices is decidable, our language is decidable. But another perspective: sometimes in computability theory, we extend the definition so that if $w$ is not a valid index, then $\varphi_w$ is the nowhere-defined function, which is still partial computable (since the nowhere-defined function is computable by a Turing machine that immediately goes into an infinite loop). In this case, all $w \in \Sigma^*$ would correspond to partial computable functions, so the language would be $\Sigma^*$, which is decidable. So either way (depending on the precise technical setup), this language seems to be decidable. Let's go with: - Option 1: Undecidable - Option 2: Undecidable - Option 3: Decidable But let me check if there's any possibility that option 3 is undecidable. Actually, I think there's a misunderstanding in my analysis. The question is not about whether $w$ is a valid description of a Turing machine. It's about whether $\varphi_w$ is "berechenbar" (computable). But $\varphi_w$ is defined as the function computed by the Turing machine with description $w$. So by definition, if $w$ is a valid description of a Turing machine, then $\varphi_w$ is computable. If $w$ is not a valid description, then $\varphi_w$ is not defined, so it's not "berechenbar". But the set of valid descriptions of Turing machines is decidable (we can check if $w$ is a valid encoding). So the language $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ is decidable. In fact, there's a simpler way to see this: the function $w \mapsto \varphi_w$ is not computable because we can't determine if $w$ encodes a valid Turing machine (wait, no - we can determine if $w$ encodes a valid Turing machine; that's decidable). Wait, let me give a clearer explanation: 1. The question is about the decidability of the set $L = \{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$. 2. How is $\varphi_w$ defined for a string $w \in \Sigma^*$? - Usually, there is a Gödel numbering $\langle \cdot \rangle$ that assigns a unique string $\langle M \rangle$ to each Turing machine $M$. - The set of all Gödel numbers is decidable because we can check if a string encodes a valid Turing machine (depending on the specific encoding scheme). - For $w$ that is not a Gödel number of a Turing machine, $\varphi_w$ is usually defined to be the nowhere-defined function. 3. Now, is the nowhere-defined function "berechenbar"? Yes, it is partial computable (it's computed by a Turing machine that immediately goes into an infinite loop). 4. This means that for any $w \in \Sigma^*$, $\varphi_w$ is partial computable (by construction of the enumeration). 5. Therefore, $L = \Sigma^*$, which is clearly decidable. Actually, I think there's a subtlety here. In many texts, $\varphi_w$ is only defined for $w$ that is a Gödel number of a Turing machine. For $w$ that is not a Gödel number, $\varphi_w$ is undefined. If "ist berechenbar" requires that $\varphi_w$ is defined, then $L$ would be the set of all Gödel numbers. And since the set of Gödel numbers is decidable (under a reasonable encoding), $L$ would still be decidable. So either way, whether $\varphi_w$ is defined for all $w$ or only for valid Gödel numbers, the language $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ seems to be decidable. Let's ask a different question: what if "berechenbar" means "total computable"? Then we'd be back to option 1, which is undecidable. But as I've said, in German terminology (at least in standard theoretical computer science), "berechenbar" usually means "computable" (partial computable). If they wanted to say "total computable", they'd probably say "total berechenbar" or something similar. For example, in the book "Berechenbarkeit und Logik" by Boolos, Burgess, and Jeffrey (in German translation), "berechenbar" refers to partial computable functions. So I believe "ist berechenbar" here means "is (partial) computable", which means the language is decidable. Now, let's reconsider option 2 once more. Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ This is equivalent to asking whether the machine with index $w$ halts on input 0 and outputs 0. This involves both the halting problem and checking the output. We know that the halting problem is undecidable, and the specific halting problem (does machine $M$ halt on input 0?) is also undecidable (it's actually Turing-equivalent to the general halting problem). So this language is undecidable. Actually, here's a more formal proof: Let's reduce the halting problem to this language. Given a machine $M$ and input $x$, we construct a machine $M'$ that does the following: 1. Ignores its input. 2. Simulates $M$ on input $x$. 3. If the simulation halts, outputs 0. Now, let $w'$ be the description of $M'$. We have: - $M'$ halts on input 0 and outputs 0 iff $M$ halts on input $x$. Therefore, $w' \in \{w\in\Sigma^* :\varphi_w(0) = 0\}$ iff $M$ halts on input $x$. Since the halting problem is undecidable, so is $\{w\in\Sigma^* :\varphi_w(0) = 0\}$. So option 2 is undecidable. Let me also provide a formal proof for option 1: The language in option 1 is $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$. We can reduce the halting problem to this language as well: Given a machine $M$ and input $x$, construct a machine $M'$ that does: 1. Takes an arbitrary input $y$. 2. Simulates $M$ on input $x$. 3. If the simulation halts, outputs 0 (or any fixed value). Now, let $w'$ be the description of $M'$. We have: - $M'$ is total iff $M$ halts on input $x$. Therefore, $w' \in \{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ iff $M$ halts on input $x$. Since the halting problem is undecidable, so is $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$. For option 3, we have two possible interpretations: Interpretation A: "berechenbar" means "partial computable" If "berechenbar" means "partial computable", then for any $w$, $\varphi_w$ is partial computable (by definition of the enumeration $\varphi_w$). So the language is $\Sigma^*$, which is decidable. Interpretation B: "berechenbar" means "total computable" If "berechenbar" means "total computable", then this is the same as option 1, which is undecidable. I'm fairly confident that "berechenbar" here means "partial computable", so Interpretation A is correct. Therefore, option 3 is decidable. But wait, I'm not 100% sure about this. Let me think of another way. Actually, there's a different way to understand option 3. What if "ist berechenbar" means "is computable as a function", and there's some interpretation where $\varphi_w$ could be non-computable? This doesn't make sense. $\varphi_w$ is defined as the function computed by the Turing machine with description $w$. So by definition, if $w$ is a valid description, then $\varphi_w$ is computable. If $w$ is not a valid description, then $\varphi_w$ might be undefined, but in standard enumerations of partial computable functions, every string $w$ corresponds to a partial computable function. In the standard construction of an acceptable Gödel numbering, every string $w$ encodes a Turing machine (possibly with some canonical way of handling invalid encodings), so every $w$ corresponds to a partial computable function. Therefore, $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\} = \Sigma^*$, which is decidable. Actually, let's consider another perspective. The function $w \mapsto \varphi_w$ might not be computable, but that's not what's being asked. The question is whether the language $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ is decidable. If "berechenbar" means "partial computable", then this language is just all strings $w$ for which $\varphi_w$ is partial computable. But in the standard setup, all $\varphi_w$ are partial computable by definition. So the language is $\Sigma^*$ (or possibly the set of valid Gödel numbers, which is decidable). Either way, the language is decidable. So my final answer is: - Option 1: 0 (undecidable) - Option 2: 0 (undecidable) - Option 3: 1 (decidable) Actually, I want to make sure about option 3. Let me try to understand what this means mathematically. The language in question is $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$. As I've said, there are two plausible interpretations: Interpretation A: "berechenbar" means "partial computable" - In most contexts, when listing the properties of partial computable functions, "berechenbar" means "partial computable". - Under this interpretation, every $\varphi_w$ is partial computable by definition. - So $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\} = \Sigma^*$. - $\Sigma^*$ is decidable. Interpretation B: "berechenbar" means "total computable" - In some contexts, "berechenbar" might mean "total computable". - But usually, to emphasize "total", there would be an adjective like "total". - If "berechenbar" means "total computable", then we have the totality problem, which we know is undecidable. - Under this interpretation, $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\} = \{w\in\Sigma^* :\varphi_w \text{ ist total}\}$, which is the language from option 1, which is undecidable. Now, let's consider the context: 1. Option 1 explicitly says "ist total". 2. Option 3 says "ist berechenbar". This suggests that "berechenbar" and "total" are being used in different senses. If "berechenbar" already implied "total", then option 1 would be redundant. Also, in standard German terminology, "berechenbar" usually means "computable" (i.e., partial computable), while "total berechenbar" means "total computable". For example, in the book "Theoretische Informatik - kurz gefasst" by Uwe Schöning, "berechenbar" refers to partial computable functions, and "total berechenbar" refers to total computable functions. Therefore, "berechenbar" in option 3 must mean "partial computable", which means the language is decidable. Actually, I just remembered something. In the standard setup of computability theory: - The index $w$ ranges over all natural numbers or over all strings in $\Sigma^*$. - The partial function $\varphi_w$ is defined for all $w$ (using a default for invalid encodings). - Every $\varphi_w$ is partial computable by construction. Therefore, $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\} = \Sigma^*$, which is decidable. If it were otherwise, the standard setup wouldn't make sense. After all, the whole point of the enumeration $\varphi_w$ is that it enumerates all partial computable functions. So I'm confident that option 3 is decidable. Final analysis: - Option 1: Undecidable (0) - Option 2: Undecidable (0) - Option 3: Decidable (1) I should double-check option 2 one more time. Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ This is a specific instance of a "functional problem". To determine membership, we need to check if the machine halts on input 0 and outputs 0. This is equivalent to the problem: "Does machine $w$ halt on input 0 with output 0?" Let's reduce the general halting problem to this. Given a machine $M$ and input $x$, we construct a machine $M'$ that does: 1. Takes any input. 2. Simulates $M$ on input $x$. 3. If $M$ halts on $x$, outputs 0. Now, $\varphi_{M'}(0) = 0$ iff $M$ halts on $x$. Therefore, if we could decide $\{w\in\Sigma^* :\varphi_w(0) = 0\}$, we could decide the halting problem. Since the halting problem is undecidable, so is $\{w\in\Sigma^* :\varphi_w(0) = 0\}$. Actually, while this reduction is correct, it only shows that $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ is undecidable if the halting problem is undecidable. But there's a minor issue: it shows that the halting problem reduces to our problem, which means our problem is at least as hard as the halting problem. Since the halting problem is undecidable, our problem must also be undecidable. So option 2 is undecidable. Actually, I just realized something. What if $w$ doesn't encode a valid Turing machine? How is $\varphi_w(0)$ defined then? This doesn't matter for decidability. Whether we define $\varphi_w(0)$ for invalid encodings $w$ or not, the problem remains undecidable. The reduction I provided only considers valid encodings of machines (we can always create a valid encoding for $M'$ from a valid encoding of $M$), so the undecidability stands. Therefore, option 2 is undecidable. Let's get final confirmation for all three options: Option 1: $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ - This is the totality problem. - It's undecidable. There's no algorithm to determine if a given Turing machine halts on all inputs. - Assumes interpretation where "ist total" means "halts on all inputs." Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ - This is asking if the machine with index $w$ halts on input 0 and outputs 0. - It's undecidable because it's equivalent to a special case of the halting problem. - If we could solve this, we could solve the halting problem with input 0, which is undecidable. Option 3: $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ - Assuming "berechenbar" means "partial computable" (the standard interpretation), every $\varphi_w$ is partial computable by definition. - So this language is either $\Sigma^*$ or a decidable subset of $\Sigma^*$ (the set of valid Gödel numbers), both of which are decidable. - Hence, this language is decidable. So my final answer is: - Option 1: 0 (undecidable) - Option 2: 0 (undecidable) - Option 3: 1 (decidable) I just noticed a potential misunderstanding: what if "$\varphi_w$ ist berechenbar" is saying something different? Actually, let's think about it differently. In computability theory, we enumerate all partial computable functions as $\varphi_0, \varphi_1, \varphi_2, \ldots$. Each $\varphi_w$ is, by definition, partial computable. So the statement "$\varphi_w$ ist berechenbar" is always true. Therefore, the language $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ is just $\Sigma^*$ (or possibly the set of all valid indices, which is decidable), and hence decidable. This confirms that option 3 is decidable. Actually, I should clarify one more thing. In some contexts, $\varphi_w$ might not be defined for problematic $w$. But even then, the set of problematic $w$ is decidable, and for those $w$, $\varphi_w$ would not be "berechenbar" for trivial reasons. The key point is that determining if $w$ is valid (and hence if $\varphi_w$ is "berechenbar") is decidable. So there's no way for option 3 to be undecidable under standard interpretations of computability theory. For option 2, I'll give a concrete proof: Let's define a reduction from the halting problem to $\{w\in\Sigma^* :\varphi_w(0) = 0\}$. Let HALT be the halting problem: HALT = $\{(w, x) | \varphi_w(x) \text{ halts}\}$. We know HALT is undecidable. Now, define a function $f: \Sigma^* \times \Sigma^* \to \Sigma^*$ such that $f(w, x)$ is the index of the machine that: 1. Takes any input. 2. Simulates $\varphi_w$ on $x$. 3. If the simulation halts, outputs 0. We have: $(w, x) \in HALT$ iff $f(w, x) \in \{w\in\Sigma^* :\varphi_w(0) = 0\}$. Since there's a computable function $f$ that reduces HALT to $\{w\in\Sigma^* :\varphi_w(0) = 0\}$, and HALT is undecidable, it follows that $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ is undecidable. For option 1, a similar reduction applies: Define a function $g: \Sigma^* \times \Sigma^* \to \Sigma^*$ such that $g(w, x)$ is the index of the machine that: 1. Takes any input $y$. 2. Simulates $\varphi_w$ on $x$. 3. If the simulation halts, outputs 0. We have: $(w, x) \in HALT$ iff $g(w, x) \in \{w\in\Sigma^* :\varphi_w \text{ ist total}\}$. Since there's a computable function $g$ that reduces HALT to $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$, and HALT is undecidable, it follows that $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ is undecidable. Actually, for option 1, there's a subtlety. The reduction $(w, x) \in HALT$ iff $g(w, x) \in \{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ is not quite right. Let me correct: - $(w, x) \in HALT$ iff $g(w, x)$ is total. So $(w, x) \in HALT$ iff $g(w, x) \in \{z\in\Sigma^* :\varphi_z \text{ ist total}\}$. So $g$ is a reduction from HALT to $\{z\in\Sigma^* :\varphi_z \text{ ist total}\}$. For option 2, the reduction was: - $(w, x) \in HALT$ iff $f(w, x) \in \{z\in\Sigma^* :\varphi_z(0) = 0\}$. These reductions confirm that options 1 and 2 are undecidable. And for option 3, as we've discussed, the language is the set of all strings (or all valid Gödel numbers), which is decidable. So, to summarize: - Option 1: 0 (undecidable) - Option 2: 0 (undecidable) - Option 3: 1 (decidable) I think this is the correct answer.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Okay, let's tackle subproblem b. The question is about undecidable languages and which statements are true given that L is an arbitrary undecidable language and a is a symbol in Σ. First, let's recall some basic concepts. The complement of an undecidable language: if a language L is undecidable, does that mean its complement is also undecidable? Well, I remember that for decidable languages, the complement is also decidable. But for undecidable languages, it's possible that the complement is decidable or not. Wait, no—if L is undecidable, can its complement be decidable? Suppose the complement of L is decidable. Then L would be the complement of a decidable language, which would make L decidable as well. But L is given as undecidable, so the complement must also be undecidable. Because if the complement were decidable, L would be decidable. So statement 1: $\overline{L}$ is undecidable. That should be true, so option 1 is 1. Wait, let me verify. Suppose L is undecidable. Then $\overline{L}$ is decidable iff L is decidable, because you can just flip the accept/reject states. So if L is undecidable, $\overline{L}$ must also be undecidable. So yes, statement 1 is true. So option 1 should be 1. Option 2: $L^a$ is the residual language with respect to a. The residual language $L^a$ is defined as { w | a w ∈ L }. Is the residual of an undecidable language also undecidable? Hmm. Let's think. Suppose L is undecidable. Does that imply that for some a, L^a is undecidable? Or could it be that even if L is undecidable, some residuals are decidable? Wait, for example, take the halting problem H. Let L = H, which is undecidable. Let's take a=0. Then L^0 is { w | 0w ∈ H }, which is the set of w such that when you prepend a 0, it's in H. But H is the set of all pairs (M, x) where M halts on x. Maybe the residual here is also undecidable. But maybe there's a case where residual is decidable. Alternatively, suppose L is an undecidable language, but for a particular a, L^a is empty. But if L^a is empty, then it's decidable (by a machine that rejects everything). But can L^a be empty even if L is undecidable? Yes. For example, take L = { a w | w ∈ H }, so the language is the halting problem with an a prepended. Then L is undecidable. Then L^a (if a is the symbol, say a=0) would be { w | 0w ∈ L }, but L = {0w | w ∈ H }, so L^0 = H, which is undecidable. Wait, but maybe another example. Suppose L = { 0 } ∪ { 1 w | w ∈ H }, where H is the halting problem. Then L is undecidable because the part with 1w is H. Now, take a=0. Then L^0 = { w | 0w ∈ L } = { ε } (since 0w ∈ L iff 0w is 0, so w=ε). So L^0 is { ε }, which is decidable. So here, L is undecidable, but L^a for a=0 is decidable. Therefore, statement 2 says "L^a is undecidable", but in this example, it's decidable. Therefore, statement 2 is not necessarily true. So option 2 is 0. Wait, but the question says "Sei L eine beliebige unentscheidbare Sprache und a ∈ Σ. Welche der folgenden Aussagen sind wahr?" So for arbitrary undecidable L and a in Σ, is L^a undecidable? From my previous example, L = {0} ∪ {1w | w ∈ H }, which is undecidable. Take a=0. Then L^0 = { w | 0w ∈ L }, which is { ε }, since 0w is 0 followed by w. For 0w to be in L, 0w must be 0 (when w=ε) or 1... but it starts with 0. So L^0 = { ε }, which is decidable. Therefore, for this L and a=0, L^a is decidable. So statement 2 is not always true. Therefore, option 2 is 0. Option 3: "Es gibt keine TM M mit L(M) = L". But L is given as an undecidable language. By definition, a language is undecidable if there is no Turing machine that decides it, but it could be recognizable. Wait, the question says "L ist eine beliebige unentscheidbare Sprache". Now, in computability theory, "unentscheidbar" means undecidable, which is that there's no decider for it. However, a language can still be recognizable (a.k.a. semi-decidable), meaning there exists a TM that accepts exactly the strings in the language, but doesn't halt on others. So the statement says "Es gibt keine TM M mit L(M) = L". But if L is recognizable, then such a TM exists. However, if L is not recognizable, then there is no such TM. But the problem states that L is "beliebige unentscheidbare Sprache". So undecidable languages can be either recognizable or not. For example, the halting problem is recognizable and undecidable. Its complement is unrecognizable and undecidable. So the statement 3 claims that there is no TM M with L(M) = L. But since L is undecidable, it's possible that L is recognizable (like the halting problem), so there does exist a TM M with L(M)=L (the semi-decider). Therefore, statement 3 is false. For example, if L is the halting problem, then there is a TM that recognizes it, so the statement "es gibt keine TM..." is false. So option 3 is 0. Wait, but the question says "L ist eine beliebige unentscheidbare Sprache". So it's possible that for some undecidable languages, there is no TM that recognizes it (like the complement of the halting problem), but the question says "beliebige", meaning for any undecidable L. The statement 3 says "Es gibt keine TM...", but since there exist undecidable languages that are recognizable, like the halting problem, then for those L, there does exist a TM. Hence, statement 3 is not true for all undecidable L. Therefore, option 3 should be 0. So the answers are: 1: 1 (since complement of undecidable is undecidable) 2: 0 (as shown by example) 3: 0 (since some undecidable languages are recognizable)
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Okay, let's tackle subproblem c. So the question is: Given a deterministic Turing machine M that has some input w where it runs infinitely (i.e., doesn't halt), which of the statements 1, 2, 3 are true? First, let me recall the options. Option 1: w is not in L(M). Well, L(M) is the set of inputs that M accepts. If M runs infinitely on w, then it doesn't halt on w. For a deterministic TM, if it doesn't halt on w, then w isn't in L(M) because acceptance requires halting in an accepting state. So yes, if M loops on w, then w ∉ L(M). So option 1 should be true (1). Option 2: L(M) is undecidable. Hmm. Wait, any language recognized by a deterministic TM is recursively enumerable (semi-decidable). But does having some input where it loops make L(M) undecidable? Not necessarily. For example, take a TM that loops on some input but still decides a decidable language. Wait, but if a language is decidable, the TM must halt on all inputs. So if M is a decider (decides a decidable language), it can't loop on any input. But the problem says M is a deterministic TM that loops on at least one input. Therefore, L(M) is semi-decidable but not decidable. Wait, no. Wait, the question says "M ist eine beliebige deterministische Turingmaschine, sodass es eine Eingabe w ∈ Σ^* gibt, auf der M unendlich viele Schritte macht." So M is a deterministic TM that loops on at least one input. Therefore, M does not decide L(M), because to decide, it must halt on all inputs. But L(M) is the language accepted by M, i.e., the set of inputs where M halts in an accepting state. So L(M) is semi-decidable (as all TM-accepted languages are), but since M loops on some input, L(M) may or may not be decidable. Wait, but if L(M) were decidable, there would exist some other TM that decides it (halts on all inputs). However, the given M isn't that decider. So the fact that M loops on some input doesn't necessarily mean that L(M) is undecidable. Wait, no. Wait, if a language is decidable, then there exists a TM that halts on all inputs. But the given TM M might not be that one. So L(M) could still be decidable even if M loops on some input. Wait, but L(M) is defined as the language accepted by M. If M loops on some input, does that affect whether L(M) is decidable? Wait, if L(M) is decidable, then there's a TM that decides it (halts on all inputs). But M itself might not be that TM. However, the question is about L(M), which is the language accepted by M. So even if M loops on some input, L(M) could still be decidable. For example, take a TM M that for some input w, loops, but for all other inputs, it halts and accepts or rejects correctly. But if the language L(M) is actually decidable, then there's another TM that decides it. However, the existence of M that loops on some input doesn't prevent L(M) from being decidable. Wait, but if L(M) is decidable, then the complement is also semi-decidable, but maybe that's not directly relevant here. Wait, let's think of a concrete example. Suppose L(M) is Σ*, which is decidable. Let M be a TM that on input w, if w is "0", it enters an infinite loop; otherwise, it accepts. Then L(M) would be all strings except "0", but wait no. Wait, if M loops on "0", then "0" is not in L(M). But if for all other inputs it accepts, then L(M) = Σ* \ {0}, which is decidable. However, M is not a decider for L(M) because it loops on "0", but L(M) itself is decidable. So in this case, L(M) is decidable even though M loops on some input. Therefore, option 2 ("L(M) is unentscheidbar") is not necessarily true. So answer for option 2 is 0. Option 3: L(M) is semi-entscheidbar. Well, by definition, any language recognized by a Turing machine is semi-decidable (recursively enumerable). Since M is a Turing machine, L(M) is semi-decidable. So option 3 is true (1). So the correct answers should be option 1:1, option 2:0, option3:1. Wait, let me double-check. Option1: if M runs infinitely on w, then w ∉ L(M). Yes, because L(M) is the set of inputs where M halts in an accepting state. If it doesn't halt, it's not in L(M). So 1 is correct (1). Option2: L(M) is unentscheidbar. As per the example, L(M) could be decidable (like Σ* \ {0}), so 2 is not necessarily true. So 0. Option3: L(M) is semi-entscheidbar. Yes, because all TM-accepted languages are semi-decidable. So 1. So the answers are 1:1, 2:0, 3:1.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Okay, let me try to work through problem d. So, the question is about which statements are true regarding regular languages, context-free languages, and complements of P languages in NP. First, option 1: "Jede reguläre Sprache ist in NP." I know that regular languages are recognized by finite automata, and they are a subset of deterministic context-free languages, which in turn are in P. Since P is a subset of NP, any language in P is also in NP. So regular languages, being in P, should be in NP. But wait, is P actually a subset of NP? Yes, because any deterministic polynomial time machine can be considered a non-deterministic one that just doesn't use any non-determinism. So NP contains all problems solvable in polynomial time by a non-deterministic Turing machine, which includes P. Therefore, regular languages are in P, hence in NP. So option 1 should be true, so 1. Option 2: "Jede kontextfreie Sprache ist in P." Hmm. Context-free languages (CFLs) are recognized by pushdown automata. The standard parsing algorithm for CFLs is the CYK algorithm, which runs in O(n^3) time for a string of length n, assuming the grammar is in Chomsky normal form. So for deterministic CFLs, there are even linear time parsers. But wait, the general CFL recognition problem is in P. However, there's a catch: not all CFLs are in P? Wait, actually, all context-free languages are in P because of the CYK algorithm. Wait, CYK is O(n^3), so yes, polynomial time. So any context-free language is decidable in polynomial time, hence in P. But wait, I thought there are some context-free languages that might not be in P. Wait no, according to the standard results, context-free languages can be parsed in O(n^3) time, so they are all in P. Therefore, option 2 should be true. Wait, but wait: there are some context-free grammars that might lead to exponential time, but the CYK algorithm works for any CFG in O(n^3). Wait, no. Wait, CYK works for any CFG in Chomsky normal form, and converting to CNF is possible. So yes, all context-free languages are in P. Therefore, option 2 should be 1? But wait, some sources say that the class of context-free languages is a subset of P. Wait, actually, the membership problem for context-free languages is in P, which is why option 2 would be correct. But wait, wait—I think there's a mistake here. Wait, the class of context-free languages is not entirely contained within P. Wait, no. Wait, P is a class of languages decided by deterministic Turing machines in polynomial time. The question is whether every CFL is in P. Wait, the CYK algorithm runs in O(n^3), so for any context-free language, there exists a polynomial time algorithm (like CYK) that decides membership. Therefore, all CFLs are in P. So option 2 should be true. Wait, but I remember that some CFLs might require more than polynomial time, but no, that's not the case. Wait, the standard result is that CFLs are decidable in polynomial time. So option 2: yes, so 1. Wait, but wait—there's a problem. For example, the language {a^n b^n c^n | n ≥ 0} is not context-free. So context-free languages are things like {a^n b^n | n ≥ 0}, which can be parsed in O(n^3) time. So yes, all CFLs are in P. Therefore, option 2 is true. Option 3: "Sei L ∈ P. Dann gilt L̅ ∈ NP." Since L is in P, its complement is also in P (because P is closed under complementation). And since P is a subset of NP, the complement would be in NP. Therefore, option 3 is true. Wait, but the problem states that L ∈ P, so L̅ is also in P, which is a subset of NP, so L̅ ∈ NP. Therefore, option 3 is true. Wait, but let me check each again. Option 1: Regular languages are in P, which is a subset of NP. So yes, they are in NP. So option 1: 1. Option 2: All context-free languages are in P. As per CYK algorithm, which is polynomial time. So yes, option 2: 1. Option 3: If L is in P, then its complement is also in P (since P is closed under complement), and since P ⊆ NP, then complement is in NP. So option 3: 1. Wait, but wait, are all three options correct? Let me check standard knowledge. Wait, sometimes people get confused between recognition and decision. But in this case, the class P is the set of languages decidable in polynomial time. CFLs are languages for which membership can be decided in polynomial time (O(n^3)), so yes, CFLs are in P. So option 2 should be correct. Wait, but wait—some context-free languages might not be in P? No, the standard result is that context-free language recognition is in P. For example, the CYK algorithm is O(n^3), and there are more efficient algorithms like Earley, which for unambiguous grammars run in O(n^3) but maybe higher for ambiguous. However, all CFLs can be parsed in polynomial time. So yes, option 2: 1. Wait, but according to some references, the class CFL is contained within P. For example, on Wikipedia: "The set of all context-free languages is identical to the set of languages processed by pushdown automata (PDA). Context-free languages have many applications in programming languages; for example, the language of all properly matched parentheses is generated by the grammar S → SS | (S) | ε, and is important in parsing. [...] but in practice deterministic context-free languages are used..."; but regarding complexity: "Context-free parsing can be done in O(n^3)-time using dynamic programming (for example, the CYK algorithm)...". So yes, CFLs are decidable in polynomial time, hence all CFLs are in P. So option 2 is true. But wait, option 2 says "jede kontextfreie Sprache ist in P", which would be correct. So 1. Option 3: If L is in P, then complement is in P, hence in NP. So yes, option 3 is true. So all three options are correct? But the problem states "Es ist immer mindestens eine Antwortmöglichkeit richtig." So maybe all three are correct here. But wait, let me think again. Wait, wait—option 2: "Jede kontextfreie Sprache ist in P." Is this actually true? Wait, the class P is defined as languages decidable in polynomial time by a deterministic Turing machine. The standard CYK algorithm runs in O(n^3) time, which is polynomial. So yes, all CFLs are in P. Therefore, option 2 is correct. But wait, some sources state that not all context-free languages are in P. Wait, no—I think that's not the case. Wait, maybe confusion with context-sensitive languages. CFLs are a proper subset of CSLs, which include problems that are PSPACE-complete. But CFLs themselves are in P. Wait, let me check another angle. The class P contains languages that can be decided in polynomial time. Since there exists a polynomial time algorithm (CYK) that decides any CFL, then all CFLs are in P. Therefore, option 2 is correct. So all three statements (1, 2, 3) are correct? Let's see. Option 1: Yes. Regular ⊂ P ⊂ NP. Option 2: Yes. CFLs ⊂ P. Option 3: Yes. If L is in P, then complement is in P, hence in NP. Wait, but the standard knowledge is that P is closed under complement, so L̅ is in P, which is a subset of NP, so L̅ is in NP. So yes. But wait, wait—some people might think that option 3 is vacuously true because NP is not known to be closed under complement, but the question says if L is in P, then complement is in NP. Since complement is in P, which is inside NP, it's true. So all three options are correct. But wait, the problem in some contexts might have options that are not all correct. Let me verify each again. Option 1: Regular languages are in NP. Yes, since regular languages are in P and P ⊆ NP. Option 2: All CFLs are in P. As per CYK algorithm being polynomial time, yes. Option 3: If L ∈ P, then L̅ ∈ NP. Since L̅ ∈ P ⊆ NP, yes. So all three options should be 1. Wait, but wait—earlier in the course, was there a point where maybe CFLs aren't all in P? I don't think so. CYK is O(n^3), so yes. Wait, but there's a caveat: the exponent depends on the grammar, but no—for any fixed CFG, the CYK algorithm for membership runs in O(n^3). So the problem is in P. So yes, option 2 is true. Hmm. So for d, the answers would be 1,1,1. Wait, but I'm a bit unsure. Let me check some example. The standard example of a CFL is {a^n b^n | n ≥ 0}, which is in P. Another example, the set of all balanced parentheses, is also in P. So yes, all CFLs are in P. Another check: according to complexity theory, the class P includes all problems solvable in polynomial time, and CFL recognition is one such problem. So yes. Therefore, option 2: 1. Option 3: Correct. So all three options should be checked. However, let me recall if there's any exception. Wait, option 2 says "jede kontextfreie Sprache ist in P". But is this true? Yes. The membership problem for context-free languages is in P. So every CFL is in P. Therefore, options 1,2,3 are all true. So the answer should be 1 for all. Wait, but I've heard before that deterministic context-free languages are in P, but some non-deterministic CFLs might take longer. Wait, no—CYK handles all CFLs, regardless of determinism. Wait, no. Wait, the CYK algorithm works for any CFG, which generates CFLs. So regardless of whether the grammar is ambiguous or not, CYK runs in O(n^3) time. Wait, but the time complexity is O(n^3) regardless of the grammar, right? Yes. Wait, no, actually, the CYK algorithm's time complexity is O(n^3) times the size of the grammar. So for any fixed grammar, it's O(n^3). So yes, the membership problem for any fixed CFL is in P. Therefore, all CFLs are in P. So option 2 is correct. So for subproblem d, the answers would be 1 for all three options. Wait, but I'm a bit confused because I recall that there are context-free languages that are not deterministic, and DCFL is a subset of CFL which is in P (with linear time algorithms), but general CFLs need O(n^3). But O(n^3) is still polynomial, so yes, they are in P. Yes, so option 2 is correct. Thus, all three options are correct. So all three answers should be 1. Wait, but the problem states "Es ist immer mindestens eine Antwortmöglichkeit richtig." So it's possible that all three are right. Hmm. Let me check another angle. What about option 3? If L is in P, then its complement is in P (because P is closed under complement), and since P is subset of NP, then yes, the complement is in NP. So option 3 is correct. So the answer for d is 1,1,1. Wait, but I'm now second-guessing option 2. Let me look up "are all context-free languages in P". Upon checking, yes. The class of context-free languages is a subset of P. The membership problem can be solved in polynomial time via CYK algorithm. So option 2 is true. Therefore, all three options are correct.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☐Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
wrong answer for choice (1)
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
Okay, let's tackle subproblem e. The question is about assuming P ≠ NP and considering two languages A and B where A is in NP and B is NP-complete. We need to determine which statements are true. First, the options: 1. A ⊆ B 2. B ⊆ A 3. A ≤ₚ B 4. B ≤ₚ A Starting with statement 1: A ⊆ B. Hmm, A is in NP, and B is NP-complete. But being NP-complete means B is in NP and every NP problem reduces to it. However, A could be any NP language. For example, A could be a simple language like the empty set (which is in P, hence in NP), but B is NP-complete, like SAT. The empty set isn't a subset of SAT unless all instances of A are in B, but since A is arbitrary, this doesn't hold. So 1 is false. Statement 2: B ⊆ A. Similarly, B is NP-complete, so unless A is also NP-complete (but A is just in NP), this doesn't hold. For example, if A is a problem in P (which is a subset of NP), then B (NP-complete) can't be a subset of A unless P=NP, which we're assuming it's not. So 2 is false. Statement 3: A ≤ₚ B. Since B is NP-complete, by definition every problem in NP poly-time reduces to B. A is in NP, so yes, A should reduce to B. That's the definition of NP-completeness. So 3 should be true. Statement 4: B ≤ₚ A. This would mean that A is NP-hard, but A is only known to be in NP. If B reduces to A, then A would be NP-complete. But since we're assuming P ≠ NP, and A is arbitrary in NP (could be in P), this isn't necessarily true. For example, if A is in P, then unless P=NP, B can't reduce to A. So 4 is false. So the answers should be 1:0, 2:0, 3:1, 4:0.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, let's tackle this problem. So, the task is to prove or disprove that if A is an undecidable language, then at least one of A ∪ B or A ∪ B̄ is undecidable. Hmm. First, let me recall some basics. A language is decidable if there's a Turing machine that halts on all inputs and correctly accepts or rejects each string. If a language is undecidable, no such machine exists. Given that A is undecidable. We need to consider two languages: A ∪ B and A ∪ (complement of B), which is A ∪ B̄. The claim is that at least one of these is undecidable. Wait, but how do B and B̄ relate here? Let me think. Suppose B is some arbitrary language. Maybe choosing B in a certain way can make both A ∪ B and A ∪ B̄ decidable? If that's possible, then the statement would be false. Otherwise, it's true. Let me try to find a counterexample. Suppose A is undecidable. Let's try to pick B such that both A ∪ B and A ∪ B̄ are decidable. Let's think: If B is such that A ∪ B is decidable and A ∪ B̄ is also decidable, then that would contradict the statement, meaning the answer is "Falsch" (False). Alternatively, maybe it's impossible, so the statement is true. Wait, let's take a specific example. Let A be the halting problem, which is undecidable. Let B be the complement of A, so B = Ā. Then: A ∪ B = A ∪ Ā = Σ*, which is decidable. A ∪ B̄ = A ∪ (Ā̄) = A ∪ A = A, which is undecidable. So in this case, one of them (A ∪ B) is decidable, the other (A ∪ B̄) is undecidable. So the statement holds here. But maybe there's a different B where both are decidable? Wait, let's try B = Σ*. Then: A ∪ B = Σ*, decidable. A ∪ B̄ = A ∪ ∅ = A, undecidable. So again, one is decidable, one isn't. If B = ∅, then: A ∪ B = A, undecidable. A ∪ B̄ = A ∪ Σ* = Σ*, decidable. Same as before. Hmm. What if B is something else? Let's see. Suppose B is a decidable language. Let's say B is any decidable language. Let's see: Suppose A is undecidable. Let's define B as follows. Let's take B = Ā ∩ D, where D is a decidable language. Wait, maybe this is getting too complicated. Wait, another approach. Suppose that both A ∪ B and A ∪ B̄ are decidable. Then, is A decidable? Because A = (A ∪ B) ∩ (A ∪ B̄). Because: (A ∪ B) ∩ (A ∪ B̄) = A ∪ (B ∩ B̄) = A ∪ ∅ = A. So if both A ∪ B and A ∪ B̄ are decidable, then their intersection is decidable (since decidable languages are closed under intersection). But since A is undecidable, this would lead to a contradiction. Wait, this is a key point. If A can be written as the intersection of two decidable languages, then A would have to be decidable. But A is given as undecidable. Therefore, it's impossible for both A ∪ B and A ∪ B̄ to be decidable. Ah! That's the crux. So, suppose that both A ∪ B and A ∪ B̄ are decidable. Then their intersection is A ∪ B ∩ A ∪ B̄ = A (because B and B̄ are complements, their intersection is empty, so the intersection of A∪B and A∪B̄ is A ∪ (B ∩ B̄) = A ∪ ∅ = A). Wait, no. Wait, the intersection of (A ∪ B) and (A ∪ B̄) is A ∪ (B ∩ B̄) by distributive law. But B ∩ B̄ is empty, so it's A ∪ ∅ = A. Therefore, A = (A ∪ B) ∩ (A ∪ B̄). Since decidable languages are closed under intersection, if both A ∪ B and A ∪ B̄ are decidable, then A must be decidable. But A is given as undecidable. Therefore, the assumption that both are decidable leads to a contradiction. Therefore, it's impossible for both A ∪ B and A ∪ B̄ to be decidable. Hence, at least one of them must be undecidable. Wait, but the problem states "Mindestens eine der Sprachen A ∪ B und A ∪ B̄ ist unentscheidbar." Which translates to "At least one of the languages A ∪ B and A ∪ B̄ is undecidable." From the argument above, since assuming both are decidable leads to A being decidable (which it's not), then at least one must be undecidable. Therefore, the statement is true. So the answer should be "Wahr" (True), which is option id="1" as 1. Wait, but in the options for subproblem f, the first option is "Wahr", so id="1" should be 1, id="2" 0. Yes, that seems right. Let me check the logic again. Assume both A ∪ B and A ∪ B̄ are decidable. Then A = (A ∪ B) ∩ (A ∪ B̄). Since decidable languages are closed under intersection, A would be decidable. But A is given as undecidable. Contradiction. Therefore, at least one of A ∪ B or A ∪ B̄ must be undecidable. Therefore, the statement is true.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Angenommen, sowohl $A \cup B$ als auch $A \cup \overline{B}$ wären entscheidbar. Da entscheidbare Sprachen unter Schnitt abgeschlossen sind, wäre auch die Sprache $(A \cup B) \cap (A \cup \overline{B})$ entscheidbar. Durch Anwendung des Distributivgesetzes gilt: \[ (A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) = A \cup \emptyset = A. \] Dies impliziert, dass $A$ entscheidbar ist, was im Widerspruch zur Voraussetzung steht, dass $A$ unentscheidbar ist. Daher muss mindestens eine der Sprachen $A \cup B$ oder $A \cup \overline{B}$ unentscheidbar sein. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Angenommen, sowohl als auch wären entscheidbar. Da entscheidbare Sprachen unter Schnitt abgeschlossen sind, wäre auch die Sprache entscheidbar. Durch Anwendung des Distributivgesetzes gilt: Dies impliziert, dass entscheidbar ist, was im Widerspruch zur Voraussetzung steht, dass unentscheidbar ist. Daher muss mindestens eine der Sprachen oder unentscheidbar sein.
x-ai/grok-4
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Sei $A \subseteq \Sigma^*$ unentscheidbar und $B \subseteq \Sigma^*$ beliebig. Angenommen, sowohl $C := A \cup B$ als auch $D := A \cup \overline{B}$ sind entscheidbar. Dann ist auch $C \cap D$ entscheidbar, da die entscheidbaren Sprachen unter Schnitt abgeschlossen sind. Es gilt jedoch \[ C \cap D = (A \cup B) \cap (A \cup \overline{B}) = A \cup (B \cap \overline{B}) = A \cup \emptyset = A. \] Dies steht im Widerspruch zur Unentscheidbarkeit von $A$. Also kann nicht $C$ und $D$ beide entscheidbar sein, d.h. mindestens eine der Sprachen $A \cup B$ und $A \cup \overline{B}$ ist unentscheidbar. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Sei unentscheidbar und beliebig. Angenommen, sowohl als auch sind entscheidbar. Dann ist auch entscheidbar, da die entscheidbaren Sprachen unter Schnitt abgeschlossen sind. Es gilt jedoch Dies steht im Widerspruch zur Unentscheidbarkeit von . Also kann nicht und beide entscheidbar sein, d.h. mindestens eine der Sprachen und ist unentscheidbar.
z-ai/glm-4.5
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each of the options to determine which languages are decidable. First, let's understand what each language represents: - $\varphi_w$ represents the function computed by the Turing machine with encoding $w$. - A language is decidable if there exists a Turing machine that halts on all inputs and correctly decides whether any given input belongs to the language. Option 1: $\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$ This is the language of all encodings of Turing machines that compute total functions (i.e., functions that are defined for all inputs). This is known as the totality problem. The totality problem is not decidable - it's actually $\Pi_2$-complete in the arithmetical hierarchy. This is a well-known result in computability theory. So this language is not decidable. Option 2: $\{w\in\Sigma^* :\varphi_w(0) = 0\}$ This is the language of all encodings of Turing machines that, when run on input 0, output 0. To decide this language, we would need to simulate the Turing machine encoded by $w$ on input 0 and check if it outputs 0. However, we have the halting problem here - the Turing machine might not halt on input 0, and we can't decide whether it will halt. So this language is not decidable. Option 3: $\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$ This is the language of all encodings of Turing machines that compute computable functions. But every Turing machine computes a computable function by definition. So this language is actually equal to $\Sigma^*$, the set of all strings over $\{0,1\}$. And $\Sigma^*$ is decidable - we can easily construct a Turing machine that accepts all inputs. So this language is decidable. Wait, let me double-check my reasoning for option 3. The language consists of all encodings $w$ such that $\varphi_w$ is computable. But every Turing machine computes a computable function. So indeed, this language is just $\Sigma^*$, which is decidable. So, to summarize: - Option 1: Not decidable (0) - Option 2: Not decidable (0) - Option 3: Decidable (1) Let me provide the answer in the requested format:
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let's analyze each option: Option 1: $\overline L$ ist unentscheidbar If $L$ is undecidable, then its complement $\overline L$ is also undecidable. This is because if $\overline L$ were decidable, then we could decide $L$ by simply running the decider for $\overline L$ and negating the result. So this statement is true. Option 2: $L^a$ ist unentscheidbar $L^a$ is the residual language of $L$ with respect to $a$, which is defined as $L^a = \{w \in \Sigma^* : aw \in L\}$. If $L^a$ were decidable, then we could decide $L$ as follows: For any input $w$, we check if $w$ starts with $a$. If it does, we remove $a$ and run the decider for $L^a$ on the remaining string. If $w$ doesn't start with $a$, we reject. This would give us a decider for $L$, contradicting the assumption that $L$ is undecidable. Therefore, $L^a$ must be undecidable. So this statement is true. Option 3: Es gibt keine TM $M$ mit $L(M) = L$ This statement is saying that there is no Turing machine that recognizes $L$. But this is not necessarily true. An undecidable language is one for which there is no Turing machine that always halts and correctly decides membership in the language. However, there could still be a Turing machine that recognizes $L$ (i.e., accepts all strings in $L$ and either rejects or loops on strings not in $L$). In fact, by definition, a language is recursively enumerable if and only if there is a Turing machine that recognizes it. And there are undecidable languages that are recursively enumerable (like the halting problem). So this statement is false. Therefore, the answers are: <option id="1">1</option> <option id="2">1</option> <option id="3">0</option>
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☒ ist unentscheidbar☐Es gibt keine TM mit
wrong answer for choice (1)
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let's analyze each option for subproblem c: **Option 1:** $w \notin L(M)$ If $M$ makes infinitely many steps on input $w$, then $M$ does not halt on input $w$. By definition, $w \in L(M)$ if and only if $M$ accepts $w$, which means $M$ halts in an accepting state. Since $M$ does not halt on $w$, it cannot accept $w$. Therefore, $w \notin L(M)$. So this option is true. **Option 2:** $L(M)$ is unentscheidbar (undecidable) A language $L(M)$ is undecidable if there is no Turing machine that decides it. However, the fact that $M$ does not halt on some input $w$ doesn't necessarily mean that $L(M)$ is undecidable. For example, consider a Turing machine $M$ that on input $w$: - If $w = 0$, enters an infinite loop - If $w = 1$, accepts - If $w$ is anything else, rejects Then $L(M) = \{1\}$, which is clearly decidable. Yet $M$ doesn't halt on input $0$. So this option is false. **Option 3:** $L(M)$ is semi-entscheidbar (semi-decidable) A language is semi-decidable if there exists a Turing machine that accepts all strings in the language and either rejects or loops on strings not in the language. By definition, $L(M)$ is the language accepted by $M$, which means $M$ accepts all strings in $L(M)$. For strings not in $L(M)$, $M$ either rejects or loops. This is exactly the definition of a semi-decidable language. So this option is true. Therefore, options 1 and 3 are true, while option 2 is false. <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let's analyze each option for subproblem d: **Option 1: "Jede reguläre Sprache ist in NP."** - Regular languages are a subset of context-free languages, which are a subset of recursive languages, which are a subset of recursively enumerable languages. - Regular languages can be decided in linear time (or even constant time for some) by a deterministic finite automaton. - Since P is the class of languages decidable in polynomial time, and regular languages can be decided in linear time, all regular languages are in P. - Since P ⊆ NP, all regular languages are in NP. - Therefore, this statement is true. **Option 2: "Jede kontextfreie Sprache ist in P."** - Context-free languages can be recognized by pushdown automata. - The CYK algorithm can decide membership in a context-free language in O(n³) time, where n is the length of the input. - Since O(n³) is polynomial time, all context-free languages are in P. - Therefore, this statement is true. **Option 3: "Sei L ∈ P. Dann gilt $\overline{L} \in NP$."** - If L ∈ P, then L can be decided in polynomial time by a deterministic Turing machine. - The complement of L, denoted $\overline{L}$, can also be decided in polynomial time by simply swapping the accept and reject states of the Turing machine for L. - Therefore, if L ∈ P, then $\overline{L} \in P$. - Since P ⊆ NP, if $\overline{L} \in P$, then $\overline{L} \in NP$. - Therefore, this statement is true. So all three options are true.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
Let's analyze each option carefully: **Option 1: $A \subseteq B$** This states that language A is a subset of language B. This is not necessarily true. A is any language in NP, and B is NP-complete. There's no reason why every string in A must also be in B. For example, if A is a language in P (which is a subset of NP) and B is SAT (an NP-complete language), there's no reason why every string in A would be in SAT. **Option 2: $B \subseteq A$** This states that language B is a subset of language A. This is also not necessarily true. B is NP-complete and A is in NP. There's no reason why every string in B would be in A. For example, if A is a simple language in P and B is SAT, there's no reason why every satisfiable Boolean formula would be in A. **Option 3: $A \leq_p B$** This states that A is polynomial-time reducible to B. Since B is NP-complete and A is in NP, this is true by definition of NP-completeness. An NP-complete language B is, by definition, a language in NP such that every language in NP is polynomial-time reducible to B. Since A is in NP, we have $A \leq_p B$. **Option 4: $B \leq_p A$** This states that B is polynomial-time reducible to A. This would mean that A is NP-hard. But A is just any language in NP, not necessarily NP-hard. If A were NP-hard, then since A is also in NP, A would be NP-complete. But we're only given that A is in NP, not that it's NP-complete. And since we're assuming P ≠ NP, there exist languages in NP that are not NP-complete (by Ladner's theorem). So this is not necessarily true. Therefore, only option 3 is true. So my answer is: <option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let's analyze this problem carefully. We have: - $A$ is an undecidable language - $B$ is an arbitrary language - We need to determine if at least one of $A \cup B$ or $A \cup \overline{B}$ is undecidable Let's think about this systematically. We need to either prove that the statement is true (at least one of these languages is undecidable) or provide a counterexample where both $A \cup B$ and $A \cup \overline{B}$ are decidable. Let's try to find a counterexample where both $A \cup B$ and $A \cup \overline{B}$ are decidable, despite $A$ being undecidable. Suppose both $A \cup B$ and $A \cup \overline{B}$ are decidable. Then we can construct a decider for $A$ as follows: For any input $w$: 1. Check if $w \in A \cup B$ (which is decidable by our assumption) 2. Check if $w \in A \cup \overline{B}$ (which is decidable by our assumption) Now, let's analyze the possible cases: - If $w \in A$, then $w \in A \cup B$ and $w \in A \cup \overline{B}$. - If $w \notin A$, then $w \in A \cup B$ if and only if $w \in B$, and $w \in A \cup \overline{B}$ if and only if $w \in \overline{B}$. So, if $w \notin A$, then exactly one of $w \in A \cup B$ or $w \in A \cup \overline{B}$ is true (since $B$ and $\overline{B}$ partition $\Sigma^*$). Therefore, we can decide $A$ as follows: - If $w \in A \cup B$ and $w \in A \cup \overline{B}$, then $w \in A$. - If $w \in A \cup B$ but $w \notin A \cup \overline{B}$, then $w \notin A$. - If $w \notin A \cup B$ but $w \in A \cup \overline{B}$, then $w \notin A$. - If $w \notin A \cup B$ and $w \notin A \cup \overline{B}$, then $w \notin A$. This gives us a decider for $A$, which contradicts the fact that $A$ is undecidable. Therefore, our assumption that both $A \cup B$ and $A \cup \overline{B}$ are decidable must be false. This means that at least one of $A \cup B$ or $A \cup \overline{B}$ must be undecidable. So the statement is true. Let me double-check this reasoning: If both $A \cup B$ and $A \cup \overline{B}$ were decidable, then we could decide membership in $A$ by checking membership in both unions. If an element is in both unions, it must be in $A$. If it's in exactly one of the unions, it cannot be in $A$. This would give us a decision procedure for $A$, contradicting its undecidability. Therefore, the statement is true: at least one of $A \cup B$ or $A \cup \overline{B}$ must be undecidable.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Die Aussage ist wahr. Wir beweisen dies durch Widerspruch. Angenommen, beide Sprachen $A \cup B$ und $A \cup \overline{B}$ sind entscheidbar. Dann können wir einen Entscheider für $A$ konstruieren: Für eine Eingabe $w \in \Sigma^*$: 1. Prüfe, ob $w \in A \cup B$ (entscheidbar nach Annahme) 2. Prüfe, ob $w \in A \cup \overline{B}$ (entscheidbar nach Annahme) Fallunterscheidung: - Wenn $w \in A$, dann gilt $w \in A \cup B$ und $w \in A \cup \overline{B}$. - Wenn $w \notin A$, dann gilt $w \in A \cup B$ genau dann, wenn $w \in B$, und $w \in A \cup \overline{B}$ genau dann, wenn $w \in \overline{B}$. Da $B$ und $\overline{B}$ eine Partition von $\Sigma^*$ bilden, gilt für $w \notin A$: - Wenn $w \in B$, dann $w \in A \cup B$ aber $w \notin A \cup \overline{B}$. - Wenn $w \notin B$, dann $w \notin A \cup B$ aber $w \in A \cup \overline{B}$. Daraus folgt: - Wenn $w \in A \cup B$ und $w \in A \cup \overline{B}$, dann $w \in A$. - Wenn $w$ in genau einer der beiden Mengen liegt, dann $w \notin A$. Dies ergibt einen Entscheidungsalgorithmus für $A$, was im Widerspruch zur Voraussetzung steht, dass $A$ unentscheidbar ist. Daher muss mindestens eine der Sprachen $A \cup B$ oder $A \cup \overline{B}$ unentscheidbar sein. </answer>
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Die Aussage ist wahr. Wir beweisen dies durch Widerspruch. Angenommen, beide Sprachen und sind entscheidbar. Dann können wir einen Entscheider für konstruieren: Für eine Eingabe : 1. Prüfe, ob (entscheidbar nach Annahme) 2. Prüfe, ob (entscheidbar nach Annahme) Fallunterscheidung: - Wenn , dann gilt und . - Wenn , dann gilt genau dann, wenn , und genau dann, wenn . Da und eine Partition von bilden, gilt für : - Wenn , dann aber . - Wenn , dann aber . Daraus folgt: - Wenn und , dann . - Wenn in genau einer der beiden Mengen liegt, dann . Dies ergibt einen Entscheidungsalgorithmus für , was im Widerspruch zur Voraussetzung steht, dass unentscheidbar ist. Daher muss mindestens eine der Sprachen oder unentscheidbar sein.