anthropic/claude-opus-4.1
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Let me analyze each language and determine whether $(L_i)^*$ is regular or not. $L_1 = \{(ab)^n : n \in \mathbb{N}\}$ This is the language containing strings: $\epsilon, ab, abab, ababab, ...$ So $L_1 = \{\epsilon, ab, abab, ababab, ...\}$ Let's think about $(L_1)^*$. Since $L_1$ contains all strings of the form $(ab)^n$, the Kleene closure $(L_1)^*$ would be the set of all concatenations of such strings. Actually, let me reconsider. If $L_1 = \{(ab)^n : n \in \mathbb{N}\}$, then: - $\epsilon \in L_1$ (when $n = 0$) - $ab \in L_1$ (when $n = 1$) - $abab \in L_1$ (when $n = 2$) - etc. Now $(L_1)^*$ is all concatenations of elements from $L_1$. Since we can concatenate any number of $(ab)^n$ strings, we get all strings that can be formed by concatenating strings of the form $(ab)^n$. But wait, any concatenation of strings of the form $(ab)^n$ is itself of the form $(ab)^m$ for some $m$. For example: - $(ab)^2 \cdot (ab)^3 = ababababab = (ab)^5$ So actually $(L_1)^* = L_1$ itself! And $L_1$ is regular because it can be described by the regular expression $(ab)^*$. $L_2 = \{a^nb^n : n \in \mathbb{N}\}$ This language is fundamentally different. It represents balanced strings with equal numbers of $a$s and $b$s, starting from the empty string. The Kleene closure $(L_2)^*$ allows concatenating these balanced strings in any combination. Interestingly, while individual strings in $L_2$ have equal $a$s and $b$s, their concatenations might not maintain this property. The language $(L_2)^*$ remains non-regular, as concatenating balanced strings can create complex patterns that cannot be recognized by a finite automaton. Exploring $L_3$ reveals strings where $a$s and $b$s have unequal counts, creating intriguing concatenation possibilities. The complement of $L_3$ is $L_2$, which contains strings with equal $a$ and $b$ counts. $(L_3)^*$ encompasses the empty string and all possible concatenations of $L_3$ strings where $a$ and $b$ counts differ. I realize concatenation requires careful examination. Individual strings from $L_3$ are included, but combining them may change their fundamental structure. The key is understanding how string composition affects the underlying pattern of unequal $a$ and $b$ counts. When we join strings from $L_3$, the resulting string can have a more complex arrangement that breaks the original constraint. This means the Kleene star operation creates a much richer language than initially expected. The concatenation reveals intricate possibilities beyond simple $a^*b^*$ patterns, demonstrating the language's unexpected complexity. I see a pattern emerging about string composition. Each block transition can be constructed using specific strings from $L_3$, which allows flexible string generation. By strategically combining strings where the number of $a$'s and $b$'s differ, we can construct virtually any string over $\{a,b\}$. The key observation involves using individual characters from $L_3$ and leveraging their unique property of having unequal $a$ and $b$ counts. This enables constructing complex sequences through careful concatenation. I realize $L_3$ has a specific structure where $a$'s and $b$'s must appear in distinct blocks with unequal counts. When concatenating strings from $L_3$, the resulting structure becomes more complex. Some concatenations maintain the language's constraints, while others might violate them. The key is understanding how these strings combine and whether they preserve the original language's fundamental requirement of unequal $a$ and $b$ block lengths. Examining the concatenation rules reveals nuanced interactions between different strings in $L_3$. The composition of these strings isn't straightforward, and each combination needs careful verification against the language's original definition. I can concatenate strings from $L_2$ in various ways, like $aabb \cdot ab = aabbab$. However, $(L_2)^*$ is not regular. The key insight is that these concatenations require tracking matching $a$'s and $b$'s across multiple segments, which finite automata cannot reliably do. The pumping lemma provides a formal proof, showing how such strings challenge the regularity of the language. By examining a specific constructed string, we can demonstrate the fundamental complexity that prevents this language from being regular. The critical observation involves the distribution of $a$'s and $b$'s, which creates an inherent structural challenge when attempting to partition the string into valid language elements. No matter how we attempt to divide the string, we encounter an irreconcilable imbalance that prevents membership in the language. This structural impossibility demonstrates that $(L_2)^*$ lacks regularity, fundamentally distinguishing it from other languages like $(L_1)^*$ and $(L_3)^*$.
Answer
Looking at each language: **$L_1 = \{(ab)^n : n \in \mathbb{N}\}$**: This language consists of strings like $\epsilon, ab, abab, ababab, ...$. Since any concatenation of strings of the form $(ab)^n$ results in another string of the form $(ab)^m$, we have $(L_1)^* = L_1$, which is regular (described by the regular expression $(ab)^*$). **$L_2 = \{a^nb^n : n \in \mathbb{N}\}$**: This is the classic non-regular language. The Kleene closure $(L_2)^*$ consists of all concatenations of balanced strings. This language is known to be non-regular. **$L_3 = \{a^nb^m : n,m \in \mathbb{N} \wedge n \neq m\}$**: Since $a \in L_3$ (as $a^1b^0$) and $b \in L_3$ (as $a^0b^1$), and we can concatenate any sequence of these, we get $(L_3)^* = \{a,b\}^*$, which is regular. <option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für $i=2$: $(L_2)^*$ ist nicht regulär. Dies kann mit dem Pumping-Lemma gezeigt werden: Angenommen $(L_2)^*$ wäre regulär mit Pumping-Länge $p$. Betrachte $w = a^pb^pa^pb^p \in (L_2)^*$ (Konkatenation zweier Strings aus $L_2$). Nach dem Pumping-Lemma gibt es eine Zerlegung $w = xyz$ mit $|xy| \leq p$ und $|y| > 0$. Da $|xy| \leq p$, besteht $y$ nur aus $a$'s des ersten Blocks, also $y = a^k$ für $k > 0$. Dann ist $xy^0z = a^{p-k}b^pa^pb^p$. Dieser String kann nicht als Konkatenation von Strings aus $L_2$ dargestellt werden, da die erste Gruppe weniger $a$'s als $b$'s hat und die verbleibenden $b$'s nicht mit den folgenden $a$'s zu einem balancierten String kombiniert werden können. Widerspruch! </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☐
Begründung für : ist nicht regulär. Dies kann mit dem Pumping-Lemma gezeigt werden: Angenommen wäre regulär mit Pumping-Länge . Betrachte (Konkatenation zweier Strings aus ). Nach dem Pumping-Lemma gibt es eine Zerlegung mit und . Da , besteht nur aus 's des ersten Blocks, also für . Dann ist . Dieser String kann nicht als Konkatenation von Strings aus dargestellt werden, da die erste Gruppe weniger 's als 's hat und die verbleibenden 's nicht mit den folgenden 's zu einem balancierten String kombiniert werden können. Widerspruch!
Subproblem b (0.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:Looking at each language:
**$L_1 = \{(ab)^n : n \in \mathbb{N}\}$**: This language consists of strings like $\epsilon, ab, abab, ababab, ...$. Since any concatenation of strings of the form $(ab)^n$ results in another string of the form $(ab)^m$, we have $(L_1)^* = L_1$, which is regular (described by the regular expression $(ab)^*$).
**$L_2 = \{a^nb^n : n \in \mathbb{N}\}$**: This is the classic non-regular language. The Kleene closure $(L_2)^*$ consists of all concatenations of balanced strings. This language is known to be non-regular.
**$L_3 = \{a^nb^m : n,m \in \mathbb{N} \wedge n \neq m\}$**: Since $a \in L_3$ (as $a^1b^0$) and $b \in L_3$ (as $a^0b^1$), and we can concatenate any sequence of these, we get $(L_3)^* = \{a,b\}^*$, which is regular.
<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
$(L_2)^*$ ist nicht regulär. Dies kann mit dem Pumping-Lemma gezeigt werden: Angenommen $(L_2)^*$ wäre regulär mit Pumping-Länge $p$. Betrachte $w = a^pb^pa^pb^p \in (L_2)^*$ (Konkatenation zweier Strings aus $L_2$). Nach dem Pumping-Lemma gibt es eine Zerlegung $w = xyz$ mit $|xy| \leq p$ und $|y| > 0$. Da $|xy| \leq p$, besteht $y$ nur aus $a$'s des ersten Blocks, also $y = a^k$ für $k > 0$. Dann ist $xy^0z = a^{p-k}b^pa^pb^p$. Dieser String kann nicht als Konkatenation von Strings aus $L_2$ dargestellt werden, da die erste Gruppe weniger $a$'s als $b$'s hat und die verbleibenden $b$'s nicht mit den folgenden $a$'s zu einem balancierten String kombiniert werden können. Widerspruch!
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Wir suchen eine Grammatik in Chomsky-Normalform (CNF) mit höchstens 6 Produktionen, die die Sprache $L = \{a^{12}, a^9\}$ erzeugt. In CNF haben alle Produktionen die Form: - $A \to BC$ (zwei Nicht-Terminale) - $A \to a$ (ein Terminal) Für einen String der Länge $n$ in CNF benötigt man genau $n-1$ Anwendungen von Regeln der Form $A \to BC$ und $n$ Anwendungen von Regeln der Form $A \to a$. Für $a^{12}$: Wir brauchen 11 Anwendungen von Regeln der Form $A \to BC$. Für $a^9$: Wir brauchen 8 Anwendungen von Regeln der Form $A \to BC$. Das Problem ist, dass wir zwei Strings unterschiedlicher Länge erzeugen müssen. In CNF bedeutet das, dass wir verschiedene Ableitungsbäume brauchen. Lass mich überlegen... Wenn wir eine Grammatik in CNF haben, die beide Strings erzeugt, dann muss es vom Startsymbol $S$ aus zwei verschiedene Ableitungen geben. Eine Möglichkeit wäre: - $S \to AB | CD$ (zwei verschiedene Ableitungen vom Start) Aber warten, ich muss genauer nachdenken über die Anzahl der benötigten Produktionen. Eigentlich, wenn wir $a^{12}$ und $a^9$ erzeugen wollen, könnten wir versuchen, eine Struktur zu finden, die beide ermöglicht. Ich konzentriere mich auf die Ableitungsbaumtiefe. Für $a^{12}$ benötigen wir einen Baum der Tiefe 4, für $a^9$ einen Baum mit ähnlicher Struktur. Die Herausforderung liegt darin, eine kompakte CNF-Grammatik zu konstruieren, die beide Sprachen effizient generiert. Die Strategie zielt darauf ab, binäre Zerlegungen zu nutzen, um die Zeichenketten zu erzeugen. Ich erkenne, dass die Konstruktion einer kontextfreien Grammatik für diese spezifische Sprache eine systematische Herangehensweise erfordert. Die Herausforderung liegt in der präzisen Regelkonstruktion, die sowohl $a^{12}$ als auch $a^9$ generieren kann. Die Überlegung konzentriert sich nun darauf, ob eine solche Grammatik überhaupt möglich ist, wobei die binäre Struktur und die Anzahl der verfügbaren Produktionsregeln kritisch sind. Die Ableitung zeigt, dass der Ansatz mit $S \to AA$ nicht $a^{12}$ oder $a^9$ erzeugt. Die Struktur der Produktionen erlaubt nur bestimmte Längenmuster. Die Herausforderung liegt in der Konstruktion eines binären Ableitungsbaums, der spezifische Wortlängen generiert. Es könnte eine Lösung mit minimaler Anzahl von Nicht-Terminalen existieren. Die vorgeschlagenen Produktionen scheinen zu komplex, um effizient beide Längen zu erzeugen. Ein alternativer Ansatz wird benötigt. Ich sehe eine Möglichkeit, die Sprache durch geschickte Zerlegung der Potenzen zu konstruieren. Die Strategie liegt darin, die Längen $9$ und $12$ durch rekursive Aufteilung zu erreichen. Die Herausforderung besteht darin, die Anzahl der Produktionen zu minimieren und gleichzeitig beide Potenzlängen zu generieren. Die Komplexität liegt in den unterschiedlichen Ableitungsbäumen, die benötigt werden. Es scheint, dass sechs Produktionen nicht ausreichen werden, um die gewünschten Ableitungen zu erzeugen. Die vorherige Konstruktion war zu komplex. Ich versuche eine systematischere Herangehensweise mit weniger Nicht-Terminalen und einer klareren Struktur. Die Herausforderung liegt darin, die spezifischen Längen zu erreichen, ohne zu viele verschiedene Produktionsregeln zu benötigen. Die Idee ist, Nicht-Terminale so zu definieren, dass sie effizient wiederverwendbar sind und die gewünschten Längenunterschiede generieren können. Ich werde die Produktionen weiter vereinfachen und auf ihre Generierungseigenschaften prüfen. Die Herausforderung liegt darin, mit minimaler Anzahl von Produktionen verschiedene Wortlängen zu generieren. Sechs Produktionen reichen nicht aus, um die strukturellen Anforderungen zu erfüllen. Mein Ansatz zeigt, dass ich mehr Flexibilität und Terminalproduktionen benötige, um die gewünschte Grammatik zu konstruieren. Die Komplexität entsteht durch die unterschiedlichen Ableitungsbäume, die für $a^9$ und $a^{12}$ erforderlich sind.
Answer
Looking at this problem, I need to find a context-free grammar in Chomsky Normal Form (CNF) with at most 6 productions that generates exactly $L = \{a^{12}, a^9\}$. In CNF, all productions must be of the form: - $A \to BC$ (two non-terminals) - $A \to a$ (one terminal) Let me try to construct such a grammar: $S \to AB | CD$ $A \to EE$ $B \to EE$ $C \to EF$ $D \to FF$ $E \to FF$ $F \to a$ Wait, that's 7 productions. Let me try a different approach. Actually, after several attempts, I believe it's not possible with only 6 productions. To generate strings of length 9 and 12 in CNF, we need: - For $a^9$: 8 applications of binary rules ($A \to BC$) - For $a^{12}$: 11 applications of binary rules The two derivation trees must diverge from the start symbol, requiring at least two different productions from $S$. Building the remaining structure to achieve exactly these two specific lengths requires additional non-terminals and productions. The structural constraints of CNF, combined with the need to generate exactly these two strings of different lengths, require more than 6 productions. <option id="1">0</option> <option id="2">1</option> <answer id="3"> In CNF benötigt man für einen String der Länge $n$ genau $n-1$ Anwendungen binärer Regeln. Für $a^9$ brauchen wir 8 binäre Regelanwendungen, für $a^{12}$ brauchen wir 11. Die Ableitungsbäume müssen sich strukturell unterscheiden, um diese verschiedenen Längen zu erreichen. Mit nur 6 Produktionen können wir nicht genügend verschiedene Ableitungspfade konstruieren, um genau diese beiden spezifischen Längen zu erzeugen, da wir mehrere Nicht-Terminale mit ihren jeweiligen Produktionen benötigen würden. </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☐Ja, Grammatik:☒Nein, Begründung:
wrong answer for choice (0)
In CNF benötigt man für einen String der Länge genau Anwendungen binärer Regeln. Für brauchen wir 8 binäre Regelanwendungen, für brauchen wir 11. Die Ableitungsbäume müssen sich strukturell unterscheiden, um diese verschiedenen Längen zu erreichen. Mit nur 6 Produktionen können wir nicht genügend verschiedene Ableitungspfade konstruieren, um genau diese beiden spezifischen Längen zu erzeugen, da wir mehrere Nicht-Terminale mit ihren jeweiligen Produktionen benötigen würden.
0: could not parse value In CNF benötigt man für einen String der Länge n genau n-1 Anwendungen binärer Regeln. Für a^9 brauchen wir 8 binäre Regelanwendungen, für a^{12} brauchen wir 11. Die Ableitungsbäume müssen sich strukturell unterscheiden, um diese verschiedenen Längen zu erreichen. Mit nur 6 Produktionen können wir nicht genügend verschiedene Ableitungspfade konstruieren, um genau diese beiden spezifischen Längen zu erzeugen, da wir mehrere Nicht-Terminale mit ihren jeweiligen Produktionen benötigen würden. for type cfg
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:Looking at each language:
**$L_1 = \{(ab)^n : n \in \mathbb{N}\}$**: This language consists of strings like $\epsilon, ab, abab, ababab, ...$. Since any concatenation of strings of the form $(ab)^n$ results in another string of the form $(ab)^m$, we have $(L_1)^* = L_1$, which is regular (described by the regular expression $(ab)^*$).
**$L_2 = \{a^nb^n : n \in \mathbb{N}\}$**: This is the classic non-regular language. The Kleene closure $(L_2)^*$ consists of all concatenations of balanced strings. This language is known to be non-regular.
**$L_3 = \{a^nb^m : n,m \in \mathbb{N} \wedge n \neq m\}$**: Since $a \in L_3$ (as $a^1b^0$) and $b \in L_3$ (as $a^0b^1$), and we can concatenate any sequence of these, we get $(L_3)^* = \{a,b\}^*$, which is regular.
<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
$(L_2)^*$ ist nicht regulär. Dies kann mit dem Pumping-Lemma gezeigt werden: Angenommen $(L_2)^*$ wäre regulär mit Pumping-Länge $p$. Betrachte $w = a^pb^pa^pb^p \in (L_2)^*$ (Konkatenation zweier Strings aus $L_2$). Nach dem Pumping-Lemma gibt es eine Zerlegung $w = xyz$ mit $|xy| \leq p$ und $|y| > 0$. Da $|xy| \leq p$, besteht $y$ nur aus $a$'s des ersten Blocks, also $y = a^k$ für $k > 0$. Dann ist $xy^0z = a^{p-k}b^pa^pb^p$. Dieser String kann nicht als Konkatenation von Strings aus $L_2$ dargestellt werden, da die erste Gruppe weniger $a$'s als $b$'s hat und die verbleibenden $b$'s nicht mit den folgenden $a$'s zu einem balancierten String kombiniert werden können. Widerspruch!
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to find a context-free grammar in Chomsky Normal Form (CNF) with at most 6 productions that generates exactly $L = \{a^{12}, a^9\}$.
In CNF, all productions must be of the form:
- $A \to BC$ (two non-terminals)
- $A \to a$ (one terminal)
Let me try to construct such a grammar:
$S \to AB | CD$
$A \to EE$
$B \to EE$
$C \to EF$
$D \to FF$
$E \to FF$
$F \to a$
Wait, that's 7 productions. Let me try a different approach.
Actually, after several attempts, I believe it's not possible with only 6 productions. To generate strings of length 9 and 12 in CNF, we need:
- For $a^9$: 8 applications of binary rules ($A \to BC$)
- For $a^{12}$: 11 applications of binary rules
The two derivation trees must diverge from the start symbol, requiring at least two different productions from $S$. Building the remaining structure to achieve exactly these two specific lengths requires additional non-terminals and productions. The structural constraints of CNF, combined with the need to generate exactly these two strings of different lengths, require more than 6 productions.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
In CNF benötigt man für einen String der Länge $n$ genau $n-1$ Anwendungen binärer Regeln. Für $a^9$ brauchen wir 8 binäre Regelanwendungen, für $a^{12}$ brauchen wir 11. Die Ableitungsbäume müssen sich strukturell unterscheiden, um diese verschiedenen Längen zu erreichen. Mit nur 6 Produktionen können wir nicht genügend verschiedene Ableitungspfade konstruieren, um genau diese beiden spezifischen Längen zu erzeugen, da wir mehrere Nicht-Terminale mit ihren jeweiligen Produktionen benötigen würden.
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let's analyze each statement: 1. "Es gibt eine unentscheidbare Sprache $L' \subseteq L$" (There exists an undecidable language $L' \subseteq L$) 2. "Jede Sprache $L' \subseteq L$ ist entscheidbar" (Every language $L' \subseteq L$ is decidable) Since $L$ is context-free and not regular, we know that $L$ is decidable (all context-free languages are decidable). Now, let's think about subsets of $L$: - Since $L$ is a subset of $\{0,1\}^*$, it is countably infinite or finite. - If $L$ is infinite, then there are uncountably many subsets of $L$. - There are only countably many decidable languages (since there are only countably many Turing machines). - Therefore, if $L$ is infinite, there must exist undecidable subsets of $L$. Actually, let me be more careful. Even if $L$ is context-free, it could be finite. But the problem states that $L$ is context-free and not regular. Can a finite language be context-free but not regular? No! Every finite language is regular (we can construct a DFA or regular expression for it). So $L$ must be infinite. Since $L$ is infinite, it has uncountably many subsets. But there are only countably many decidable languages. Therefore, there must exist undecidable subsets of $L$. So statement 1 is true, and statement 2 is false. Let me double-check: Statement 2 says "Every language $L' \subseteq L$ is decidable". This would mean all subsets of $L$ are decidable. But as we've shown, there are uncountably many subsets of an infinite set, and only countably many decidable languages, so this is impossible.
Answer
Looking at each statement: **Statement 1**: "Es gibt eine unentscheidbare Sprache $L' \subseteq L$" - This is **true**. **Statement 2**: "Jede Sprache $L' \subseteq L$ ist entscheidbar" - This is **false**. Since $L$ is context-free but not regular, and every finite language is regular, $L$ must be infinite. An infinite language has uncountably many subsets, but there are only countably many decidable languages (since there are only countably many Turing machines). Therefore, most subsets of $L$ must be undecidable. <option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1: Da $L$ kontextfrei aber nicht regulär ist, muss $L$ unendlich sein (jede endliche Sprache ist regulär). Eine unendliche Menge hat überabzählbar viele Teilmengen. Es gibt aber nur abzählbar viele entscheidbare Sprachen, da es nur abzählbar viele Turingmaschinen gibt. Nach dem Schubfachprinzip muss es daher überabzählbar viele unentscheidbare Teilmengen von $L$ geben. Insbesondere existiert mindestens eine unentscheidbare Sprache $L' \subseteq L$. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1: Da kontextfrei aber nicht regulär ist, muss unendlich sein (jede endliche Sprache ist regulär). Eine unendliche Menge hat überabzählbar viele Teilmengen. Es gibt aber nur abzählbar viele entscheidbare Sprachen, da es nur abzählbar viele Turingmaschinen gibt. Nach dem Schubfachprinzip muss es daher überabzählbar viele unentscheidbare Teilmengen von geben. Insbesondere existiert mindestens eine unentscheidbare Sprache .
anthropic/claude-sonnet-4
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Let me analyze each language $L_i$ and determine whether $(L_i)^*$ is regular or not. First, let me recall that a language is regular if and only if it can be recognized by a finite automaton (or equivalently, can be described by a regular expression, or by a regular grammar). The Kleene star operation $L^*$ is the set of all strings that can be formed by concatenating zero or more strings from $L$. That is, $L^* = \{w_1w_2\ldots w_k : k \geq 0, w_i \in L \text{ for all } i\}$, where $k=0$ gives us the empty string $\epsilon$. Let me analyze each language: **$L_1 = \{(ab)^n : n \in \mathbb{N}\}$** This is the language of strings that are powers of $ab$: $\{\epsilon, ab, abab, ababab, \ldots\}$. Note that $\mathbb{N}$ typically includes 0, so $\epsilon \in L_1$. $L_1$ is clearly regular - it can be described by the regular expression $(ab)^*$. Now, what is $(L_1)^*$? $(L_1)^* = \{w_1w_2\ldots w_k : k \geq 0, w_i \in L_1 \text{ for all } i\}$ Since each $w_i \in L_1$ is of the form $(ab)^{n_i}$ for some $n_i \geq 0$, we have: $w_1w_2\ldots w_k = (ab)^{n_1}(ab)^{n_2}\ldots(ab)^{n_k} = (ab)^{n_1+n_2+\ldots+n_k}$ The language $(L_1)^*$ is identical to $L_1$, and remains regular since it can be generated by the same regular expression. **$L_2 = \{a^nb^n : n \in \mathbb{N}\}$** This language consists of strings with equal numbers of $a$'s and $b$'s: $\{\epsilon, ab, aabb, aaabbb, \ldots\}$. $L_2$ is known to be non-regular, which can be demonstrated using the pumping lemma. I'll examine $(L_2)^*$ carefully. It allows concatenating any number of strings from $L_2$, creating complex patterns of balanced $a$'s and $b$'s. The structure suggests potential complexity that might challenge regularity. I can construct multiple valid strings like $abab$, $aabb$, $aaabbb$, and $aaabbbaabb$, each following the balanced $a$-$b$ pattern. These examples demonstrate the language's flexibility in combining different balanced substrings. The systematic exploration hints at potential non-regularity, suggesting this might not be a simple regular language. Critically, not all strings over $\{a,b\}$ are permitted. Strings like $ba$ are excluded, as each component must start with $a$. The language allows $\epsilon$ and balanced strings where each substring maintains equal $a$ and $b$ counts. The precise structure involves concatenating balanced substrings, with potential empty components allowed. The language consists of concatenated strings from $L_2$, where each string follows the pattern $a^nb^n$ and can include the empty string. These strings are formed by combining zero or more blocks of balanced $a$ and $b$ sequences. I'll analyze whether this language can be recognized by a finite automaton, considering the constraints on string formation. I'm exploring the properties of the language $L_2 = \{a^nb^n : n \geq 0\}$ and its Kleene star $(L_2)^*$. The theorem suggests conditions for regularity of $L^*$, so I'll investigate whether $(L_2)^*$ meets these criteria. I'll use the pumping lemma to analyze its structure. I'm constructing a specific string $w = (a^pb^p)^p$ within $(L_2)^*$, which contains $p$ repetitions of balanced $a$ and $b$ strings. This will help me understand its complexity. The string has a specific pattern of $a$'s and $b$'s that reveals interesting structural properties about the language's potential regularity. I'll analyze the string $w$ and its properties under the pumping lemma conditions. The key observation is that $xy$ consists entirely of $a$'s within the first block, which creates a critical constraint when attempting to pump the string. By removing $k$ $a$'s from the initial block, the resulting string disrupts the balanced structure of $a$'s and $b$'s in each block. This means $xy^0z$ will no longer maintain the equal count of $a$'s and $b$'s required by the language definition. The strategic choice of $w$ reveals a fundamental limitation in the pumping lemma's ability to preserve the language's structural integrity. Each manipulation of the string breaks the essential symmetry that defines the language. Consequently, this contradiction demonstrates that $(L_3)^*$ cannot be a regular language, establishing a powerful proof technique for showing non-regularity. The key insight reveals that concatenating strings from $L_3$ creates complex patterns with interleaved $a$'s and $b$'s, fundamentally breaking the simple structure required for regularity. By combining different strings like $ab^2$, $a^2b$, and $ab^3$, we generate intricate sequences that cannot be captured by a finite state machine, suggesting $(L_3)^*$ is likely not regular. I'm exploring whether this set contains all possible strings over $\{a,b\}$ by carefully examining how strings from $L_3$ can be concatenated. The challenge lies in understanding the constraints of these combinations. Specifically, I'm investigating whether a simple string like $ab$ can be constructed using only strings from $L_3$, which requires each component to have unequal $a$ and $b$ counts. By analyzing the individual components $a$ and $b$, I confirm they both satisfy $L_3$'s requirements. This suggests $ab$ might indeed be part of $(L_3)^*$. I need to verify this reasoning carefully. I see the pattern of strings in $L_3$ requires unequal numbers of $a$'s and $b$'s. Each string must have a different count of $a$ and $b$. The concatenation of these strings creates an interesting constraint where the total $a$ and $b$ counts across the concatenated strings must maintain this unequal relationship. I'm carefully tracing how these strings combine, noting the critical requirement that $n \neq m$ for each component string. The key observation is that every concatenation preserves the fundamental property of $L_3$: unequal $a$ and $b$ counts. This means $(L_3)^*$ maintains the core characteristic of its constituent strings through repeated concatenation. Therefore, $(L_3)^*$ is indeed regular, following from the closure properties of the language. I'm examining how strings in $L_3$ can be concatenated, focusing on the structure where each component has unequal $a$ and $b$ counts. The key observation is the ability to break down complex strings into consistent substrings. By directly multiplying $a$ and $b$ symbols, I can demonstrate that each substring maintains the core property of $L_3$. This reveals a fundamental decomposition method for the language's elements. The proof shows that any string in the language can be systematically constructed through careful concatenation of individual components. Critically, the subset relationship between $\{a,b\}^*$ and $(L_3)^*$ emerges from the specific constraints defining $L_3$. Since every string in $(L_3)^*$ uses the alphabet $\{a,b\}$ and satisfies the condition that $n \neq m$, the sets are equivalent. This confirms $(L_3)^*$ is regular, distinguishing it from $L_2$'s non-regular star closure. I'll verify the proof for $L_2$ using the pumping lemma. I chose a specific string $w = (a^pb^p)^p$ within $(L_2)^*$, demonstrating its structure involves $p$ repetitions of $a^pb^p$. The pumping lemma reveals a critical constraint: when decomposing $w$ into $xyz$, the substring $xy$ contains only $a$'s from the initial block. This positioning becomes crucial for proving non-regularity. Pumping down by removing $k$ $a$'s transforms the first block, creating $a^{p-k}b^p$. The key insight emerges when examining whether this modified string remains in the language. For membership in $(L_2)^*$, $k$ must equal zero, but this contradicts the initial constraint that $k \geq 1$. This fundamental inconsistency proves $(L_2)^*$ cannot be a regular language.
Answer
Looking at each language, I need to determine whether $(L_i)^*$ is regular or not. Let me analyze each case: **For $L_1 = \{(ab)^n : n \in \mathbb{N}\}$:** This language is already regular (described by $(ab)^*$). Since each string in $L_1$ has the form $(ab)^n$, any concatenation of strings from $L_1$ gives us $(ab)^{n_1}(ab)^{n_2}\cdots(ab)^{n_k} = (ab)^{n_1+n_2+\cdots+n_k}$. Therefore $(L_1)^* = L_1$, which is regular. **For $L_2 = \{a^nb^n : n \in \mathbb{N}\}$:** This is the classic non-regular language. Let me check if $(L_2)^*$ is regular using the pumping lemma. Assume $(L_2)^*$ is regular with pumping length $p$. Consider the string $w = (a^pb^p)^p \in (L_2)^*$ (concatenation of $p$ copies of $a^pb^p$). Since $|w| = 2p^2 \geq p$ and $|xy| \leq p$, the substring $xy$ must lie entirely within the first $a^p$ portion of $w$. So $x = a^j$ and $y = a^k$ where $j \geq 0$, $k \geq 1$, and $j + k \leq p$. When we pump down to get $xy^0z = xz$, we remove $k$ $a$'s from the first block, giving us $a^{p-k}b^p$ as the first block. For this to be in $L_2$, we need $p-k = p$, which implies $k = 0$. But the pumping lemma requires $k \geq 1$. This contradiction shows $(L_2)^*$ is not regular. **For $L_3 = \{a^nb^m : n,m \in \mathbb{N} \wedge n \neq m\}$:** Note that $a = a^1b^0 \in L_3$ (since $1 \neq 0$) and $b = a^0b^1 \in L_3$ (since $0 \neq 1$). Since $\{a,b\} \subseteq L_3$, we have $\{a,b\}^* \subseteq (L_3)^*$. Conversely, every string in $(L_3)^*$ is over alphabet $\{a,b\}$, so $(L_3)^* \subseteq \{a,b\}^*$. Therefore $(L_3)^* = \{a,b\}^*$, which is regular. <option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für $i=2$: $(L_2)^*$ ist nicht regulär. Beweis mit Pumping-Lemma: Sei $p$ die Pumping-Länge und betrachte $w = (a^pb^p)^p \in (L_2)^*$. Da $|xy| \leq p$ liegt $xy$ vollständig im ersten $a^p$-Teil, also $x = a^j, y = a^k$ mit $k \geq 1$. Beim Herunterpumpen ($i=0$) erhalten wir $xz$ mit erstem Block $a^{p-k}b^p$. Für $(L_2)^*$-Zugehörigkeit müsste $p-k = p$ gelten, also $k = 0$, Widerspruch zu $k \geq 1$. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☐
Begründung für : ist nicht regulär. Beweis mit Pumping-Lemma: Sei die Pumping-Länge und betrachte . Da liegt vollständig im ersten -Teil, also mit . Beim Herunterpumpen () erhalten wir mit erstem Block . Für -Zugehörigkeit müsste gelten, also , Widerspruch zu .
Subproblem b (0.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:Looking at each language, I need to determine whether $(L_i)^*$ is regular or not.
Let me analyze each case:
**For $L_1 = \{(ab)^n : n \in \mathbb{N}\}$:**
This language is already regular (described by $(ab)^*$). Since each string in $L_1$ has the form $(ab)^n$, any concatenation of strings from $L_1$ gives us $(ab)^{n_1}(ab)^{n_2}\cdots(ab)^{n_k} = (ab)^{n_1+n_2+\cdots+n_k}$. Therefore $(L_1)^* = L_1$, which is regular.
**For $L_2 = \{a^nb^n : n \in \mathbb{N}\}$:**
This is the classic non-regular language. Let me check if $(L_2)^*$ is regular using the pumping lemma.
Assume $(L_2)^*$ is regular with pumping length $p$. Consider the string $w = (a^pb^p)^p \in (L_2)^*$ (concatenation of $p$ copies of $a^pb^p$).
Since $|w| = 2p^2 \geq p$ and $|xy| \leq p$, the substring $xy$ must lie entirely within the first $a^p$ portion of $w$. So $x = a^j$ and $y = a^k$ where $j \geq 0$, $k \geq 1$, and $j + k \leq p$.
When we pump down to get $xy^0z = xz$, we remove $k$ $a$'s from the first block, giving us $a^{p-k}b^p$ as the first block. For this to be in $L_2$, we need $p-k = p$, which implies $k = 0$. But the pumping lemma requires $k \geq 1$. This contradiction shows $(L_2)^*$ is not regular.
**For $L_3 = \{a^nb^m : n,m \in \mathbb{N} \wedge n \neq m\}$:**
Note that $a = a^1b^0 \in L_3$ (since $1 \neq 0$) and $b = a^0b^1 \in L_3$ (since $0 \neq 1$). Since $\{a,b\} \subseteq L_3$, we have $\{a,b\}^* \subseteq (L_3)^*$. Conversely, every string in $(L_3)^*$ is over alphabet $\{a,b\}$, so $(L_3)^* \subseteq \{a,b\}^*$. Therefore $(L_3)^* = \{a,b\}^*$, which is regular.
<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
$(L_2)^*$ ist nicht regulär. Beweis mit Pumping-Lemma: Sei $p$ die Pumping-Länge und betrachte $w = (a^pb^p)^p \in (L_2)^*$. Da $|xy| \leq p$ liegt $xy$ vollständig im ersten $a^p$-Teil, also $x = a^j, y = a^k$ mit $k \geq 1$. Beim Herunterpumpen ($i=0$) erhalten wir $xz$ mit erstem Block $a^{p-k}b^p$. Für $(L_2)^*$-Zugehörigkeit müsste $p-k = p$ gelten, also $k = 0$, Widerspruch zu $k \geq 1$.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need to check if there's a context-free grammar $G$ in Chomsky Normal Form with at most 6 productions such that $L(G) = \{a^{12}, a^9\}$. In Chomsky Normal Form, all productions are of the form: - $A \to BC$ where $A, B, C$ are non-terminals - $A \to a$ where $A$ is a non-terminal and $a$ is a terminal Let me think about how to generate $a^{12}$ and $a^9$. For generating strings of only one terminal symbol, we need productions that eventually lead to terminals. Let's think about this systematically. To generate $a^9$, we need a derivation tree that has exactly 9 leaves, all labeled $a$. To generate $a^{12}$, we need a derivation tree that has exactly 12 leaves, all labeled $a$. In CNF, each non-terminal production $A \to BC$ increases the number of non-terminals by 1 (from 1 to 2). So if we start with the start symbol $S$, to get $n$ leaves, we need exactly $n-1$ non-terminal productions (since we start with 1 non-terminal and need to end up with $n$ terminals). So for $a^9$, we need exactly 8 non-terminal productions. For $a^{12}$, we need exactly 11 non-terminal productions. But wait, we also need terminal productions. For each leaf in the derivation tree, we need a production $X \to a$ for some non-terminal $X$. Let me think about this more carefully. If we have a derivation tree for a string of length $n$ using only terminal symbols, then: - We have exactly $n$ leaves (all labeled with terminals) - We have exactly $n-1$ internal nodes (labeled with non-terminals) - Each internal node corresponds to a production $A \to BC$ - Each leaf corresponds to a production $A \to a$ So for a string $a^n$, we need exactly $(n-1)$ productions of the form $A \to BC$ and some productions of the form $A \to a$. But here's the key insight: different derivation trees can use different non-terminals. If we want to generate both $a^9$ and $a^{12}$, we need to be able to share some structure. I'll explore ways to construct a grammar that can generate both strings efficiently. The challenge is creating building blocks that can flexibly generate different lengths of $a$ sequences while maintaining Chomsky Normal Form constraints. I need to think about how non-terminals can be strategically combined to achieve this goal. The key will be finding a systematic approach that allows sharing of productions while still generating specific string lengths precisely. My current strategy involves exploring how to construct a grammar where the start symbol can derive multiple string lengths through careful non-terminal combinations and derivation paths. The challenge is creating a Chomsky Normal Form (CNF) grammar that precisely generates $a^9$ and $a^{12}$ through strategic binary productions. I need to consider how different non-terminal combinations might enable multiple derivation routes while maintaining CNF constraints. The key insight is finding a way for the start symbol's productions to branch into paths that uniquely generate these specific string lengths, potentially through carefully designed intermediate non-terminals. My approach will involve constructing separate derivation paths for $a^9$ and $a^{12}$ that split from the initial symbol $S$, ensuring each path follows strict binary production rules. I'll explore creating flexible non-terminals that can generate different $a$ lengths through recursive compositions, potentially using combinations like $A \to a$, $B \to AA$, and $C \to BB$ to efficiently generate exponential $a$ sequences. The goal is finding a strategy that allows multiple production paths while maintaining a compact set of grammar rules. My current approach involves carefully designing non-terminals that can derive multiple $a$ lengths without excessive redundancy, seeking an elegant way to generate sequences like $a^3$, $a^6$, and $a^{12}$ with minimal productions. I'm exploring how to construct a context-free grammar where each production systematically increases the string length, while ensuring the start symbol can generate different $a$ string lengths through strategic combinations. The challenge is maintaining Chomsky Normal Form constraints while allowing flexible derivation paths. I'm methodically breaking down the problem, considering how binary productions can incrementally build strings of specific lengths like $a^9$ and $a^{12}$, with multiple potential start symbol strategies. My current focus is developing a precise production rule set that allows controlled string generation under CNF restrictions. By leverting the greatest common divisor of 9 and 12, which is 3, I can potentially construct a more elegant solution involving base productions that can be recursively combined. The key insight involves creating a base non-terminal that derives $a^3$, then systematically building larger exponential strings through strategic binary productions. I'm exploring how to construct $a^9$ and $a^{12}$ efficiently by combining these base productions, while ensuring the grammar remains structured and compact. I've tried several factorizations, realizing each approach has subtle constraints around Chomsky Normal Form requirements. The challenge is creating productions that generate specific power sequences without introducing epsilon transitions. My current strategy involves carefully designing start symbol productions that can derive different exponent sequences through strategic binary decompositions. I'm now focusing on constructing a direct grammar representation, specifically examining binary tree structures that could generate the desired language. The key constraint is ensuring each non-terminal follows CNF rules: either deriving two non-terminals or a single terminal symbol. I'm exploring a structured approach to represent 9 $a$'s by splitting the derivation into two parts: a sequence of 5 $a$'s and another of 4 $a$'s. This requires carefully designing production rules that maintain Chomsky Normal Form's strict requirements. The strategy involves creating a hierarchical structure where $S$ splits into two branches, each progressively breaking down into smaller non-terminals until reaching terminal $a$ symbols. I'm attempting to minimize the number of production rules by cleverly reusing non-terminals and creating recursive derivation paths that efficiently generate the desired $a$ sequence. The current challenge is finding an elegant way to construct exactly 9 $a$'s without introducing unnecessary complexity in the grammar's structure. By strategically combining existing productions like $D \to BB$ (which generates $a^4$) and $E \to DD$ (which generates $a^8$), I can construct $a^9$ by adding a final $A \to a$ rule. The key insight is decomposing the target length ($9 = 4 + 4 + 1$) and mapping each component to a specific production rule that generates the corresponding $a$ count. For $a^{12}$, I recognize a similar pattern: $12 = 4 + 4 + 4$, which allows me to use $G \to DE$ to multiply $a^4$ and $a^8$ precisely. I'm exploring ways to derive different string lengths with the start symbol, considering multiple productions might be necessary. The challenge involves creating Chomsky Normal Form (CNF) rules that can generate specific string lengths without epsilon productions. My current approach involves carefully constructing rules that can generate $a^9$ and $a^{12}$ systematically, while maintaining the constraints of CNF grammar. I'm investigating how to structure the start symbol $S$ to potentially split derivation paths, potentially using two non-terminals $A$ and $B$ that could independently control string generation. By allowing $A$ to have multiple production rules deriving different string lengths ($a^4$ or $a^7$) and $B$ consistently deriving $a^5$, I can create flexible derivation strategies. This approach permits non-deterministic behavior in the production rules, which is acceptable in context-free grammars. The key insight involves creating production rules for $A$ that enable multiple length derivations while maintaining a consistent companion non-terminal $B$. I'm exploring systematic ways to generate specific string lengths through strategic production rules. By carefully defining how non-terminals derive strings, I can create precise exponential patterns. The goal is finding an efficient grammar that generates targeted string lengths with minimal production rules, potentially reusing non-terminals to optimize the derivation process. The current approach reveals complexity in ensuring exact string generation without unintended intermediate lengths. Precise control over derivation becomes critical to maintaining the desired language constraints. I'm exploring potential non-terminal configurations that could generate specific exponent combinations while preventing unwanted intermediate strings. The challenge involves carefully defining production rules that strictly limit derivation paths. Investigating whether shared non-terminals could simplify the grammar, I'm noting the constraints on potential symbol reuse based on their specific derivation capabilities. The goal is to construct precise derivation rules for $a^4$, $a^5$, and $a^6$ using minimal building blocks, recognizing that their greatest common divisor is 1, which suggests $a^1$ as the fundamental unit. My current approach involves systematically defining production rules to generate specific exponent values, while being cautious about potential redundancies in derivation paths. I'm exploring strategies to optimize the production rules, seeking a more elegant method to generate these exponential values efficiently. By decomposing $9$ and $12$ into $3 \times 3$ and $3 \times 4$, I can create non-terminals representing specific power increments. This approach allows generating $a^9$ and $a^{12}$ through strategic combinations of base productions. The key insight involves creating intermediate non-terminals that represent exponential growth, enabling more compact rule generation while maintaining precise derivation capabilities. I'm carefully tracking how each production maps to specific string lengths and exponential representations, ensuring the grammar's consistency. The derivation of $C$ as $aaa$ and the subsequent expansion of $S$ to $CC$ requires precise calculation of string generation. Each $C$ independently produces $a^3$, so $S$ will generate $a^6$ through this process. The key is understanding how individual productions combine to create the final string representation. I explore generating specific string lengths using non-terminal productions. By carefully defining rules for $X$, $Y$, and $Z$, I can construct precise derivations for powers of $a$. The key is creating systematic rules that allow controlled string generation, mapping each non-terminal to a specific exponent through recursive productions. My strategy involves building incrementally from single $a$ to increasingly complex non-terminals representing different string lengths. Each production carefully controls the resulting string's length through strategic combinations. I'm now considering alternative approaches to constructing derivation trees, particularly focusing on generating $a^9$ with a valid binary structure that meets Chomsky Normal Form requirements. The challenge involves creating a precise binary tree with 9 terminal leaves, which necessitates 8 internal non-terminal nodes. Each node must strictly follow CNF rules: deriving either two non-terminals or a single terminal. My current exploration involves systematically mapping out potential tree configurations that satisfy these constraints, carefully examining how different non-terminal productions could generate the desired sequence. The key insight is maintaining a strict binary branching structure while ensuring each internal node follows the CNF grammar's fundamental rules. I'm exploring how to construct a derivation tree for $a^9$ that systematically generates nine $a$ symbols. The challenge is creating an unbalanced binary tree where one branch produces $a^4$ and the other $a^5$. For the $a^4$ branch, I'm carefully tracing how each production rule transforms symbols. Starting with $A \to CD$, I derive $a$ from $C$ and then expand $D$ into $EF$, gradually building up the sequence of $a$ symbols through recursive substitutions. The goal is to methodically construct a derivation that generates exactly nine $a$ symbols through strategic branching and symbol replacement. The current approach generates multiple productions for deriving powers of $a$, becoming increasingly complex with each exponent. The goal is to minimize the number of productions while maintaining the ability to generate different powers efficiently. Exploring ways to reduce non-terminals and streamline the grammar, focusing on reusing existing rules to create more compact derivations. The strategy involves finding clever combinations of existing non-terminals to represent different exponents with fewer production rules. The key challenge is creating a concise set of productions that can generate multiple powers of $a$ without exponentially increasing the number of rules. Potential optimization involves strategic reuse of non-terminals and finding elegant transformations between different exponent representations. I explore combining production rules to derive $a^9$ more efficiently. By using $E \to CF$ and $F \to CA$, I can generate $a^4 \cdot a^5 = a^9$. This approach requires careful construction of intermediate rules to maintain Chomsky Normal Form while achieving the desired exponent combinations. For $a^{12}$, I consider using $G \to DD$ to directly derive the power, potentially simplifying the derivation strategy. The goal remains creating a concise grammar that can generate specific exponential sequences. I'm investigating alternative start symbol structures like $S \to AB$ to introduce controlled non-determinism in the derivation process, allowing flexible string generation while maintaining grammatical constraints. By carefully correlating derivation choices between $A$ and $B$, I might create a mechanism where specific string lengths emerge systematically. The goal is engineering precise derivation paths that generate exactly $a^9$ and $a^{12}$ through strategic rule interactions. The challenge involves designing intricate production rules that limit possible combinations while ensuring desired outcomes. I'm exploring alternative strategies for constructing a compact context-free grammar that can generate these specific string lengths efficiently. By using a minimal set of non-terminals and carefully designing binary productions, I can potentially create a concise grammar for generating $a^n$ strings. The key insight involves strategically combining non-terminals to build the desired string length with minimal overhead. For instance, with just three productions, I can generate $a^3$ by recursively combining non-terminals and using a single terminal production. This approach suggests a systematic method for constructing grammars with a small number of rules. The challenge lies in designing these productions to maximize flexibility while maintaining a compact representation. I'm exploring ways to minimize productions while generating specific power sequences of $a$. My current strategy involves carefully combining non-terminal rules to efficiently derive longer sequences. I'm investigating whether I can reduce the number of productions by strategically combining existing rules, particularly focusing on eliminating $E$ and $F$ while still achieving the desired $a^9$ and $a^{12}$ derivations. The challenge is finding a compact set of rules that can generate multiple power sequences without unnecessary repetition. I need a clever way to combine existing non-terminals to create longer sequences efficiently. I need a strategy to construct a context-free grammar that generates precisely $a^9$ and $a^{12}$. The key constraint is ensuring every possible derivation results in one of these two specific strings. My approach involves creating non-terminals that can generate specific power sequences of $a$. I'm considering a decomposition where $A$ generates $a^3$ and $B$ generates either $a^6$ or $a^9$, which would allow combinations producing the desired strings. The challenge is designing non-terminals with extremely precise derivation capabilities while maintaining the CNF requirement and staying within six total productions. I'm exploring grammar structures to generate specific string patterns efficiently. My current approach involves carefully designing non-terminal productions to minimize complexity while targeting precise string generation. I'm strategically mapping out potential grammar rules using a limited set of non-terminals - $S, A, B, C$ - and constraining myself to six total productions. The goal is finding an elegant way to generate strings with specific length requirements. My current strategy involves splitting string generation across different non-terminals, trying to create a compact yet flexible production system that can generate $a^n$ strings with minimal overhead. The challenge is creating a tight, constrained grammar that can generate exactly the strings I want without unnecessary complexity. I'm methodically testing different production rule combinations to see how I can achieve this efficiently. I'm exploring strategies to construct a context-free grammar that generates a specific language with precise string lengths. The challenge involves creating productions that can derive $a^9$ and $a^{12}$ efficiently. My current approach involves carefully designing non-terminal productions to generate specific string lengths, but I'm encountering complexity in managing the derivation rules. I recognize that simply adding more non-terminals won't solve the fundamental constraint of generating exact string lengths. I'm considering more sophisticated techniques like strategic reuse of non-terminals and exploring production rules that can generate multiple string lengths through clever combinations. The goal is to find an elegant solution that minimizes the number of productions while achieving the desired language generation. The problem requires creative thinking about how non-terminals can interact to produce precise string lengths without excessive complexity. I'll systematically derive non-terminals for different exponents using recursive productions. By carefully constructing rules for $a^1$, $a^2$, $a^4$, $a^5$, and $a^6$, I can generate specific power sequences. The key strategy involves creating base rules like $X \to a$ and building increasingly complex non-terminals that represent exponential growth. Each production carefully constructs the desired power through strategic combinations. I'll focus on generating $a^9$ by combining $a^4$ and $a^5$, and $a^{12}$ by combining two $a^6$ sequences. The grammar allows precise control over exponent generation through recursive rule definitions. The goal is to minimize productions while maintaining the ability to generate specific power sequences efficiently. I'm exploring alternative ways to construct $a^{12}$ by strategically combining non-terminals. By recognizing $12 = 6 + 6$, I can potentially reduce the number of productions. The challenge is creating symmetric derivations that allow generating the same sequence through different paths. I notice an interesting symmetry in constructing $a^6$ using different non-terminal combinations. By carefully designing productions that can generate equivalent sequences, I might streamline the grammar's complexity. The key insight is finding equivalent production rules that can generate the same language sequence with fewer distinct non-terminals. I'm exploring alternative factorizations to derive specific string lengths. By breaking down 9 and 12 into different component parts, I'm seeking production rules that could generate these strings efficiently. The current approach involves creating productions where different non-terminals derive specific power sequences. I'm noticing potential challenges with circular dependencies and complex derivation mechanisms. A promising direction emerges: using recursive productions that might allow generating multiple string lengths through strategic combinations. The goal is finding a concise set of rules enabling flexible string generation. I'm exploring ways to construct a grammar that generates specific string lengths, but the current approaches aren't yielding the desired $a^9$ and $a^{12}$ strings. The challenge involves finding a systematic way to derive these exact string lengths within a limited number of productions. My attempts so far involve creating nested production rules that incrementally build string length, but I'm struggling to precisely control the final string's length. The specific grammar structures I'm designing aim to generate strings of predetermined lengths, yet the complexity quickly becomes challenging to manage. I need a more strategic approach to ensure I can generate the exact string lengths I want. I'll derive a concise set of productions that generate the target strings $a^9$ and $a^{12}$. The key is finding the right combination of rules to produce these specific exponents. By carefully selecting and combining production rules, I can create a grammar that generates exactly $a^9$ and $a^{12}$ without unnecessary complexity. The productions need to allow precise control over string length, ensuring I can generate $a^9$ through $S \to AB$ and $a^{12}$ through a different derivation. Careful rule design will be crucial to achieving these specific string lengths. I see the challenge of constructing specific language derivations with limited productions. The current approach explores systematic ways to generate strings using different non-terminal combinations and productions. Each attempt reveals constraints in generating desired string lengths, particularly with the restriction of 6 productions. The exploration involves carefully mapping out potential derivation paths, considering how different non-terminal rules might interact to produce specific string lengths. The thinking is moving towards a systematic investigation of possible production structures, recognizing that simply adding productions doesn't guarantee a solution. There's a growing suspicion that 6 productions might fundamentally limit the possible language constructions. I'm exploring whether specific grammar productions can generate $a^9$ and $a^{12}$ efficiently. The current approach suggests generating these strings requires more productions than the six available. While I can't definitively prove it, the complexity of creating binary derivation trees for these specific string lengths implies significant production challenges. The constraints seem to prevent a straightforward solution, pointing toward a likely negative answer.
Answer
Looking at this problem, I need to determine if there's a context-free grammar in Chomsky Normal Form with at most 6 productions that generates exactly the language $L(G) = \{a^{12}, a^9\}$. Let me try to construct such a grammar systematically. In CNF, I need productions of the form $A \to BC$ or $A \to a$. To generate both $a^9$ and $a^{12}$, I'll try to find a structure that can produce both strings efficiently. Let me attempt to build this using factorizations: - $9 = 4 + 5$ - $12 = 6 + 6$ I'll try to construct non-terminals for $a^4$, $a^5$, and $a^6$: Let me try: 1. $A \to a$ (generates $a^1$) 2. $B \to AA$ (generates $a^2$) 3. $C \to BB$ (generates $a^4$) 4. $D \to CA$ (generates $a^5$) 5. $E \to CB$ (generates $a^6$) 6. $S \to CD$ (generates $a^9$) 7. $S \to EE$ (generates $a^{12}$) This gives me 7 productions, which exceeds the limit of 6. Let me try a different approach with $9 = 3 + 6$ and $12 = 6 + 6$: 1. $A \to a$ 2. $B \to AA$ (generates $a^2$) 3. $C \to AB$ (generates $a^3$) 4. $D \to BB$ (generates $a^4$) 5. $E \to DC$ (generates $a^7$) - this doesn't help After several attempts with different factorizations and structures, I consistently need at least 7-8 productions to generate both strings while maintaining the CNF constraints. The fundamental issue is that generating strings of length 9 and 12 in CNF requires building binary trees with 9 and 12 leaves respectively. Even with maximal sharing of substructures, the number of distinct non-terminal productions needed exceeds 6. <option id="1">0</option> <option id="2">1</option> <answer id="3"> For any string $a^n$ in CNF, we need approximately $n-1$ binary productions to create the tree structure, plus terminal productions. Even with optimal sharing between the derivations for $a^9$ and $a^{12}$, we need separate substructures for different factors. The minimal constructions I attempted all required 7-8 productions, suggesting that 6 productions are insufficient to generate both strings while maintaining the precise language $L(G) = \{a^{12}, a^9\}$. </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☐Ja, Grammatik:☒Nein, Begründung:
wrong answer for choice (0)
For any string in CNF, we need approximately binary productions to create the tree structure, plus terminal productions. Even with optimal sharing between the derivations for and , we need separate substructures for different factors. The minimal constructions I attempted all required 7-8 productions, suggesting that 6 productions are insufficient to generate both strings while maintaining the precise language .
0: could not parse value For any string a^n in CNF, we need approximately n-1 binary productions to create the tree structure, plus terminal productions. Even with optimal sharing between the derivations for a^9 and a^{12}, we need separate substructures for different factors. The minimal constructions I attempted all required 7-8 productions, suggesting that 6 productions are insufficient to generate both strings while maintaining the precise language L(G) = \{a^{12}, a^9\}. for type cfg
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:Looking at each language, I need to determine whether $(L_i)^*$ is regular or not.
Let me analyze each case:
**For $L_1 = \{(ab)^n : n \in \mathbb{N}\}$:**
This language is already regular (described by $(ab)^*$). Since each string in $L_1$ has the form $(ab)^n$, any concatenation of strings from $L_1$ gives us $(ab)^{n_1}(ab)^{n_2}\cdots(ab)^{n_k} = (ab)^{n_1+n_2+\cdots+n_k}$. Therefore $(L_1)^* = L_1$, which is regular.
**For $L_2 = \{a^nb^n : n \in \mathbb{N}\}$:**
This is the classic non-regular language. Let me check if $(L_2)^*$ is regular using the pumping lemma.
Assume $(L_2)^*$ is regular with pumping length $p$. Consider the string $w = (a^pb^p)^p \in (L_2)^*$ (concatenation of $p$ copies of $a^pb^p$).
Since $|w| = 2p^2 \geq p$ and $|xy| \leq p$, the substring $xy$ must lie entirely within the first $a^p$ portion of $w$. So $x = a^j$ and $y = a^k$ where $j \geq 0$, $k \geq 1$, and $j + k \leq p$.
When we pump down to get $xy^0z = xz$, we remove $k$ $a$'s from the first block, giving us $a^{p-k}b^p$ as the first block. For this to be in $L_2$, we need $p-k = p$, which implies $k = 0$. But the pumping lemma requires $k \geq 1$. This contradiction shows $(L_2)^*$ is not regular.
**For $L_3 = \{a^nb^m : n,m \in \mathbb{N} \wedge n \neq m\}$:**
Note that $a = a^1b^0 \in L_3$ (since $1 \neq 0$) and $b = a^0b^1 \in L_3$ (since $0 \neq 1$). Since $\{a,b\} \subseteq L_3$, we have $\{a,b\}^* \subseteq (L_3)^*$. Conversely, every string in $(L_3)^*$ is over alphabet $\{a,b\}$, so $(L_3)^* \subseteq \{a,b\}^*$. Therefore $(L_3)^* = \{a,b\}^*$, which is regular.
<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
$(L_2)^*$ ist nicht regulär. Beweis mit Pumping-Lemma: Sei $p$ die Pumping-Länge und betrachte $w = (a^pb^p)^p \in (L_2)^*$. Da $|xy| \leq p$ liegt $xy$ vollständig im ersten $a^p$-Teil, also $x = a^j, y = a^k$ mit $k \geq 1$. Beim Herunterpumpen ($i=0$) erhalten wir $xz$ mit erstem Block $a^{p-k}b^p$. Für $(L_2)^*$-Zugehörigkeit müsste $p-k = p$ gelten, also $k = 0$, Widerspruch zu $k \geq 1$.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine if there's a context-free grammar in Chomsky Normal Form with at most 6 productions that generates exactly the language $L(G) = \{a^{12}, a^9\}$.
Let me try to construct such a grammar systematically.
In CNF, I need productions of the form $A \to BC$ or $A \to a$. To generate both $a^9$ and $a^{12}$, I'll try to find a structure that can produce both strings efficiently.
Let me attempt to build this using factorizations:
- $9 = 4 + 5$
- $12 = 6 + 6$
I'll try to construct non-terminals for $a^4$, $a^5$, and $a^6$:
Let me try:
1. $A \to a$ (generates $a^1$)
2. $B \to AA$ (generates $a^2$)
3. $C \to BB$ (generates $a^4$)
4. $D \to CA$ (generates $a^5$)
5. $E \to CB$ (generates $a^6$)
6. $S \to CD$ (generates $a^9$)
7. $S \to EE$ (generates $a^{12}$)
This gives me 7 productions, which exceeds the limit of 6.
Let me try a different approach with $9 = 3 + 6$ and $12 = 6 + 6$:
1. $A \to a$
2. $B \to AA$ (generates $a^2$)
3. $C \to AB$ (generates $a^3$)
4. $D \to BB$ (generates $a^4$)
5. $E \to DC$ (generates $a^7$) - this doesn't help
After several attempts with different factorizations and structures, I consistently need at least 7-8 productions to generate both strings while maintaining the CNF constraints.
The fundamental issue is that generating strings of length 9 and 12 in CNF requires building binary trees with 9 and 12 leaves respectively. Even with maximal sharing of substructures, the number of distinct non-terminal productions needed exceeds 6.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
For any string $a^n$ in CNF, we need approximately $n-1$ binary productions to create the tree structure, plus terminal productions. Even with optimal sharing between the derivations for $a^9$ and $a^{12}$, we need separate substructures for different factors. The minimal constructions I attempted all required 7-8 productions, suggesting that 6 productions are insufficient to generate both strings while maintaining the precise language $L(G) = \{a^{12}, a^9\}$.
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let me think about this step by step. We have a context-free and non-regular language $L \subseteq \{0,1\}^*$. Option 1: "Es gibt eine unentscheidbare Sprache $L' \subseteq L$." This asks whether there exists an undecidable language that is a subset of $L$. Option 2: "Jede Sprache $L' \subseteq L$ ist entscheidbar." This asks whether every subset of $L$ is decidable. Let me think about option 2 first. If every subset of $L$ is decidable, then this would be a very strong restriction. In particular, since $L$ is context-free, it is decidable (context-free languages are decidable). But does this mean that every subset of $L$ is decidable? Actually, no. Here's why: Consider any undecidable language $U \subseteq \{0,1\}^*$. Since $L$ is infinite (as it's context-free and non-regular), we can find an injection from $U$ into $L$. More precisely, we can construct a subset $L' \subseteq L$ such that $L'$ is undecidable. Actually, let me be more careful. The question is whether there exists an undecidable subset of $L$. Let me think about this differently. Since $L$ is context-free and non-regular, $L$ is infinite. In fact, any non-regular context-free language must be infinite. Now, given that $L$ is infinite, we can enumerate the strings in $L$ as $w_1, w_2, w_3, \ldots$ (since $L$ is decidable, we can effectively enumerate its elements). Now, consider any undecidable set $S \subseteq \mathbb{N}$ (for example, the halting problem). We can define: $L' = \{w_i : i \in S\}$ I can construct an undecidable subset by mapping an undecidable set of natural numbers to strings in $L$. This creates a subset $L'$ that inherits the undecidability of the original set $S$. The key insight is that we can leverage the infinite nature of $L$ to create this mapping, proving that not all subsets of $L$ are decidable. The construction demonstrates that option 1 is true, while option 2 is false. By carefully selecting strings from $L$ corresponding to an undecidable set, we've shown the existence of an undecidable subset.
Answer
Looking at the two options: Option 1 claims there exists an undecidable language that is a subset of $L$. Option 2 claims every subset of $L$ is decidable. These statements are contradictory, so at most one can be true. Let me analyze Option 1: Since $L$ is context-free and non-regular, $L$ must be infinite. Context-free languages are decidable, so we can effectively enumerate the strings in $L$ as $w_1, w_2, w_3, \ldots$ Now I can construct an undecidable subset of $L$ as follows: - Let $H$ be the halting problem (or any undecidable set of natural numbers) - Define $L' = \{w_i : i \in H\}$ This $L'$ is clearly a subset of $L$ since each $w_i \in L$. However, $L'$ is undecidable because deciding whether $w_i \in L'$ is equivalent to deciding whether $i \in H$, which is undecidable. Therefore Option 1 is true, and consequently Option 2 is false. <option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1: Da $L$ kontextfrei und nicht regulär ist, ist $L$ unendlich und entscheidbar. Wir können die Elemente von $L$ als $w_1, w_2, w_3, \ldots$ aufzählen. Sei $H$ das Halteproblem. Definiere $L' = \{w_i : i \in H\}$. Dann ist $L' \subseteq L$, aber $L'$ ist unentscheidbar, da die Entscheidung ob $w_i \in L'$ äquivalent zur Entscheidung ob $i \in H$ ist, was unentscheidbar ist. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1: Da kontextfrei und nicht regulär ist, ist unendlich und entscheidbar. Wir können die Elemente von als aufzählen. Sei das Halteproblem. Definiere . Dann ist , aber ist unentscheidbar, da die Entscheidung ob äquivalent zur Entscheidung ob ist, was unentscheidbar ist.
deepseek/deepseek-chat-v3.1
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
First, the question is in German, but I can understand it. It's about which languages L_i have a Kleene star (L_i)* that is not regular. The languages are defined over Σ = {a, b}. The options are: - L1 = {(ab)^n : n in N} // That's strings like ε, ab, abab, etc. - L2 = {a^n b^n : n in N} // The classic non-regular language, but we're looking at (L2)* - L3 = {a^n b^m : n, m in N and n ≠ m} // Strings with unequal number of a's and b's I need to determine for which i, (L_i)* is not regular. And I have to choose one and justify it. The answer format requires me to output 0 or 1 for each option, and then an answer with justification for one of them. But the question says: "Für welche der folgenden Sprachen L_i ... gilt, dass (L_i)* nicht regulär ist? (Es können mehrere sein.)" So there might be multiple, but I need to select one and justify. Then in the answer template, it's "Begründung für i=?" so I need to pick an i and justify why (L_i)* is not regular. Now, let's analyze each one. Start with L1: L1 = {(ab)^n : n in N}. This is regular because it can be recognized by a finite automaton. Actually, it's the set of all strings that are concatenations of "ab", so it's (ab)*, which is regular. But we're looking at (L1)*. L1 itself is regular, and the Kleene star of a regular language is always regular. So (L1)* should be regular. Therefore, for i=1, (L1)* is regular, so I should not select it. Confirm: L1 = {ε, ab, abab, ababab, ...} which is (ab)*, so L1 is regular. Then (L1)* is the Kleene star of a regular language, which is regular. Yes. Now L2: L2 = {a^n b^n : n in N}. This is not regular, as per the pumping lemma. But what about (L2)*? The Kleene star of a non-regular language might or might not be regular. For example, if I take L2*, it includes strings that are concatenations of multiple a^n b^n blocks. Like a^n b^n a^m b^m, etc. This language might not be regular. I think (L2)* is not regular. I recall that the Kleene star of a context-free language can be context-free, but regularity might be different. I can use the pumping lemma or other techniques. Consider that L2* contains all strings where the number of a's equals the number of b's, but in blocks. Actually, no: L2* is the set of all strings that can be divided into substrings each of which is in L2. Each substring is a^n b^n for some n. But note that ε is in L2 (for n=0), so L2* includes all possible concatenations, including strings where the a's and b's are not balanced overall, but in segments. For example, a^2 b^2 a^3 b^3 is in L2*, and it has 5 a's and 5 b's, so overall balanced. But also, a^1 b^1 a^2 b^2 has 3 a's and 3 b's. In fact, any string in L2* must have an equal number of a's and b's overall, because each block has equal a and b. Is that true? For each string in L2*, it is a concatenation of strings from L2, each of which has #a = #b, so the total #a = total #b. Moreover, the string must be such that it can be segmented into parts where each part has a prefix of a's and suffix of b's with equal number. But actually, L2* is a subset of the balanced strings, but not all balanced strings are in L2*. For example, abab is balanced with 2 a and 2 b, but is it in L2*? L2* consists of concatenations of a^n b^n, so for abab, it could be (a^1 b^1)(a^1 b^1) if we consider n=1 twice, but a^1 b^1 is ab, so yes, abab = ab . ab, so it is in L2*. Similarly, aababb might not be directly, but let's see. aababb: if we try to segment, it could be a^2 b^2 followed by ab, but a^2 b^2 is aabb, and then ab is a^1 b^1, so aabb ab = aababb, yes. So it seems that L2* might actually be all strings with equal number of a and b, but is that true? Consider a string like abba. #a=2, #b=2, but can it be written as concatenation of a^n b^n? a^n b^n always has all a's before b's, so abba has b after a and then a after b, which violates the order. So abba cannot be written as concatenation of strings that are all a^k b^k. Therefore, L2* is not the set of all balanced strings; it's only those balanced strings that can be partitioned into segments each of the form a^k b^k. In fact, L2* is a proper subset of the balanced strings. Now, is L2* regular? I think not. I can use the pumping lemma. Suppose L2* is regular. Then consider a string like (a^p b^p)^k for large p. But perhaps better to use the fact that if L2* were regular, then its intersection with a regular language should be regular. Consider the intersection with a*b*. Strings in L2* ∩ a*b* must be of the form a^n b^m where n=m, because in a*b*, the string is all a's then all b's, and for it to be in L2*, it must be a concatenation of a^k b^k blocks. But the only way for a string in a*b* to be composed of a^k b^k blocks is if it is itself a single block, i.e., a^n b^n for some n. Because if there are multiple blocks, there would be a b followed by a, which is not in a*b*. So L2* ∩ a*b* = {a^n b^n | n in N}, which is L2 itself, and we know L2 is not regular. Since regular languages are closed under intersection with regular languages, if L2* were regular, then L2* ∩ a*b* should be regular, but it's not (it's L2, not regular). Therefore, L2* cannot be regular. Yes, that seems solid. So for i=2, (L2)* is not regular. Now L3: L3 = {a^n b^m : n, m in N and n ≠ m} This is the set of all strings with a's then b's, but number of a's not equal to number of b's. Is L3 regular? L3 is not regular because it's the complement of {a^n b^n} intersected with a*b*, but {a^n b^n} is not regular, but complements can be tricky. Actually, L3 is not regular. I can use pumping lemma or similar. But we're looking at (L3)*. What is (L3)*? It's concatenations of strings that have unequal number of a and b, with a's before b's. Note that ε is in L3? n and m in N, and n ≠ m. N probably includes 0, so for n=0, m=0, but n=m, so not in L3. For n=0, m>0, a^0 b^m = b^m, which has 0 a and m b, n≠m, so yes, b^m is in L3 for m>0. Similarly, a^n for n>0 is in L3 if we consider m=0? a^n b^0 = a^n, n≠0, so yes, a^n is in L3 for n>0. And ε is not in L3 because n=m=0. So L3 does not contain ε. Therefore, (L3)* includes ε and all concatenations of non-empty strings with unequal a and b, with a's before b's. Now, is (L3)* regular? Consider what strings are in (L3)*. They are strings that can be divided into parts, each part is a^k b^l with k ≠ l. Note that the entire string might have any number of a's and b's, but with the constraint that it can be segmented such that in each segment, the number of a's and b's are unequal, and a's come before b's. But since each segment has a's then b's, the whole string must be of the form a^* b^* , because after a b, if there is an a, it would start a new segment, but the new segment has a's, which come after b's from previous, but in the string, a's after b's are allowed only if it's a new segment, but the string can have multiple segments, so the overall string can have interleaving, but no, because each segment is a^k b^l, so all a's of a segment come before all b's of that segment, and since segments are concatenated, the entire string will have all a's of first segment, then all b's of first segment, then all a's of second segment, then all b's of second segment, and so on. So the whole string is in (a^* b^*)^* , but (a^* b^*)^* is all strings that are sequences of a-blocks and b-blocks, but actually, since each "block" might be empty, but in this case, each segment is non-empty a^k b^l with k≠l, but a^k or b^l could be empty? No, k and m are in N, which probably includes 0, but for a^k b^l to be in L3, k ≠ l, so if k=0, l>0, so b^l is in L3, which is a string with no a's and l b's. Similarly, if l=0, k>0, a^k is in L3. So segments can be of the form a^k (k>0, no b's), or b^l (l>0, no a's), or a^k b^l with k>0, l>0, k≠l. But in the concatenation, when we have multiple segments, the string can have a's and b's interleaved in the sense that after a block of b's, we can have a block of a's, so the overall string is not necessarily in a*b*; it can be like b^l a^k, which is allowed if we have a segment that is b^l (l>0) followed by a segment that is a^k (k>0). So (L3)* consists of all strings that can be partitioned into non-empty segments, each segment is either all a's or all b's or a's followed by b's with unequal count, but since all a's or all b's are special cases of a^k b^l with one of them zero. Actually, any non-empty string of a's and b's can be written as a sequence of "runs" of a's and b's. But for it to be in (L3)*, each run must satisfy that if it's a run of a's followed by a run of b's (in the same segment), then the number of a's and b's in that segment are unequal, but if a segment is just a run of a's or just a run of b's, that's fine since k≠l (with one zero). But when we have multiple segments, the segmentation might not align with the natural runs. For example, consider the string "ab". Is it in (L3)*? "ab" has one a and one b, n=m, so if we consider it as one segment, it would need to be a^k b^l with k≠l, but k=1,l=1, equal, not in L3. Can we segment it differently? The string is short, only two characters. If we try to split into two segments, say "a" and "b", both are in L3: "a" is a^1 b^0, 1≠0, so yes. Similarly "b" is a^0 b^1, 0≠1. So "a" . "b" = "ab", so yes, "ab" is in (L3)*. Similarly, "ba" – but "ba" has b before a. Now, can "ba" be in (L3)*? Each segment must be of the form a^k b^l, meaning all a's before b's. So a segment cannot have b before a. Therefore, "ba" cannot be a single segment because it has b before a. Can it be multiple segments? If we try to split, say "b" and "a", both are in L3: "b" is a^0 b^1, "a" is a^1 b^0. So concatenation "b" . "a" = "ba", so yes, it is in (L3)*. Similarly, any string can be split into individual characters? Each single a or single b is in L3: a is a^1 b^0, 1≠0; b is a^0 b^1, 0≠1. So every non-empty string of a's and b's can be written as a concatenation of single characters, each of which is in L3. Therefore, (L3)* is actually all strings over {a,b}, including ε, because ε is in the Kleene star. Is that right? L3 does not contain ε, but (L3)* always contains ε. And since every single symbol a or b is in L3, then any string can be formed by concatenating them. So (L3)* = Σ*, which is regular. Σ* is definitely regular. So for L3, (L3)* is regular. Therefore, only for i=2, (L_i)* is not regular. The question says "für welche", and I need to select which ones, and justify one. So for option 1: no, (L1)* is regular. Option 2: yes, (L2)* is not regular. Option 3: no, (L3)* is regular. So I should set <option id="1">0</option>, <option id="2">1</option>, <option id="3">0</option> Then for the answer, I need to justify for i=2. The answer template is: Begründung für i=? : ??? So I should say i=2, and then the justification. From earlier, I can use the intersection argument. So justification: Wenn (L2)* regulär wäre, dann wäre der Schnitt mit a*b* auch regulär. Aber (L2)* ∩ a*b* = L2, was nicht regulär ist. Also ist (L2)* nicht regulär. I should write it in German, since the question is in German. The user said "begründen Sie kurz", so justify briefly. Also, in the context, it might be expected to be in German. But the instructions don't specify language, but since the question is in German, probably answer in German. The example might be in English, but here it's fine. In the answer format, it's just text, so I can write in English or German. But to be safe, I'll write in German. So for the answer: <answer id="4"> Begründung für i=2: Wenn (L₂)* regulär wäre, dann wäre der Schnitt mit der regulären Sprache a*b* auch regulär. jedoch ist (L₂)* ∩ a*b* = L₂, und L₂ ist nicht regulär (da es die nicht-reguläre Sprache {a^n b^n | n ∈ ℕ} ist). Daher kann (L₂)* nicht regulär sein. </answer> I should make sure about L2: L2 is {a^n b^n : n in N}, which includes n=0, so ε is in L2? n in N, usually N includes 0, so for n=0, a^0 b^0 = ε, so ε is in L2. In the intersection with a*b*, a*b* includes ε, and L2 includes ε, so yes. In my earlier argument, L2* ∩ a*b* = L2? Is that true? Strings in L2* ∩ a*b* must be in a*b* and in L2*. In a*b*, strings are of the form a^m b^n for some m,n. For it to be in L2*, it must be a concatenation of strings each of the form a^k b^k. If the string is in a*b*, it has all a's then all b's. If it is composed of multiple a^k b^k blocks, then between blocks, there would be a transition from b to a, but in a*b*, there is no b followed by a; the string has only one switch from a to b. Therefore, for a string in a*b* to be in L2*, it must be that it consists of a single block, because if there are multiple blocks, the string would have to have b's then a's, which is not in a*b*. Therefore, indeed, L2* ∩ a*b* = {a^n b^n | n in N} = L2. And since L2 is not regular, and a*b* is regular, if L2* were regular, the intersection should be regular, contradiction. So the argument holds. For L1 and L3, we have that (L1)* is regular, (L3)* is regular. So only i=2 is correct. Now for the output, I need to have: <option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für i=2: Wenn (L₂)* regulär wäre, dann wäre der Schnitt mit der regulären Sprache a*b* auch regulär. jedoch ist (L₂)* ∩ a*b* = L₂, und L₂ ist nicht regulär. Daher ist (L₂)* nicht regulär. </answer> I should write it neatly.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für i=2: Wenn (L₂)* regulär wäre, dann wäre der Schnitt mit der regulären Sprache a*b* auch regulär. jedoch ist (L₂)* ∩ a*b* = L₂, und L₂ ist nicht regulär (da es die Sprache {a^n b^n | n ∈ ℕ} ist, die nicht regulär ist). Daher kann (L₂)* nicht regulär sein. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☐
Begründung für i=2: Wenn (L₂)* regulär wäre, dann wäre der Schnitt mit der regulären Sprache a*b* auch regulär. jedoch ist (L₂)* ∩ a*b* = L₂, und L₂ ist nicht regulär (da es die Sprache {a^n b^n | n ∈ ℕ} ist, die nicht regulär ist). Daher kann (L₂)* nicht regulär sein.
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für i=2:
Wenn (L₂)* regulär wäre, dann wäre der Schnitt mit der regulären Sprache a*b* auch regulär. jedoch ist (L₂)* ∩ a*b* = L₂, und L₂ ist nicht regulär (da es die Sprache {a^n b^n | n ∈ ℕ} ist, die nicht regulär ist). Daher kann (L₂)* nicht regulär sein.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
First, the question is about whether there exists a context-free grammar in Chomsky Normal Form (CNF) with at most 6 productions that generates the language L = {a^12, a^9}. Chomsky Normal Form requires that all productions are of the form: - A → BC (where B and C are non-terminals) - or A → a (where a is a terminal) - and optionally, S → ε if the empty string is in the language, but here the language doesn't include ε, so we don't need that. The language has only two strings: a^12 and a^9. So, we need a grammar that produces exactly these two strings with no others. CNF grammars for unary languages (languages over a single letter) can be tricky because they often require multiple non-terminals to generate different lengths. To generate a string of length n in CNF, we need a derivation that builds up the string using binary productions. The number of productions needed can be related to the number of non-terminals and how they are used. The grammar must have a start symbol S, and we need to derive a^12 and a^9. Since it's a finite language, we can have separate chains for each string, but we need to share productions if possible to minimize the number. Let me think about the minimum number of productions needed. In CNF, to generate a string of length n, we need at least n-1 binary productions to build the structure, but since we can reuse non-terminals, it might be optimized. But here, we have two different lengths: 9 and 12. We might have non-terminals that generate a^k for various k. The language is very small, so perhaps we can list the productions. Let me try to construct such a grammar. First, define non-terminals. Let S be the start symbol. We need S to derive a^12 and S to derive a^9. We can have multiple ways. One common way is to have a base production for a, say A → a, and then build up. But to generate a^12, we need a chain that multiplies up. The number of binary productions needed for a string of length n is at least the number of steps to build it, which is related to the prime factors or something. Since it's unary, the grammar can be designed with non-terminals for different lengths. But we have a constraint of at most 6 productions. Productions include both binary and unary (terminal) productions. A production is a rule, so for example, A → a is one production, B → CD is another. Now, for a^9, we can generate it with a binary tree that has 8 binary productions if we do it naively, but we can reuse non-terminals. For example, to generate a^n, we can have a non-terminal that generates a^k for k from 1 to n, but that might require many productions. But with CNF, the minimum number of productions to generate a single string of length n is O(n), but we can optimize by using exponentiation or something. For example, to generate a^8, we can have A → AA, and then A → a, but A → AA is not in CNF because AA is two non-terminals, but A → AA is allowed if A is a non-terminal, but in CNF, A → AA is fine as long as A is non-terminal, but A → AA means deriving two A's, which if A derives a, then A → AA would derive aa, but to get a^8, we need a binary tree. Let's think carefully. In CNF, to generate a string of length n, we need a derivation tree with n leaves (each leaf is a terminal, from A → a productions), and the internal nodes are from binary productions. The number of binary productions in the tree for a string of length n is n-1, but that's for one derivation, but the grammar can have multiple productions that are reused. But the grammar itself has a fixed set of productions. For the grammar to generate a^9, we need at least one production that generates a (like B → a), and then binary productions to combine them. The minimal number of productions in the grammar for a single string might be less if we use efficient chains. For example, to generate a^8, we can have: S → A A A A but that's not CNF because S → A A A A has four symbols, which is not allowed; CNF only allows two non-terminals on right-hand side for binary productions. In CNF, productions must have exactly one terminal or two non-terminals, so for strings longer than 1, we need to use binary productions to build up. For a^n, we need a sequence of binary productions. For example, to generate a^4: We can have: A → a B → A A (so B derives aa) C → B B (so C derives aaaa) Then S → C for a^4. But S → C is not a production that generates string directly; S must be defined to derive C. In this case, productions: A → a, B → A A, C → B B, and S → C. That's 4 productions for a^4. We can reduce by having S → B B directly, but B → A A, A → a, so S → B B, B → A A, A → a, still 3 productions for a^4. S → B B, B → A A, A → a. Then from S, we derive B B, then each B derives A A, so A A A A, then each A derives a, so aaaa. Yes, 3 productions. But S → B B is a production, B → A A is another, A → a is another. So for string of length 4, we need at least 3 productions if we use this binary tree. Generally, for a string of length n, if n is a power of 2, we can generate it with log2(n) binary productions and one terminal production, but each binary production is a rule, so number of productions is number of distinct rules. In this case, for n=4, we have three productions: one terminal and two binary. But the binary productions might be reused for different non-terminals. In the grammar, we have multiple non-terminals. For n=4, with productions: let's say we have only one non-terminal for a, say A → a. Then we need a production to make bigger chunks. But since we need only one string, we can have S → A A for n=2, but for n=4, S → B B where B → A A, so we introduced B. The number of productions is the number of rules. For a single string of length n, the minimum number of productions in CNF is at least the number of distinct steps, but it can be O(log n) if we use a balanced tree, but each new non-terminal might require a new production. In the example above, for a^4, we used A → a, B → A A, and S → B B. So three productions. But S → B B is for the start symbol, and B is used only for this, so it's specific. We could have S → A A for n=2, but for n=4, we need S → S S or something, but S → S S is not helpful if S derives a, it would be infinite or something. To generate a^4, we can have: S → A B (but then A and B need to derive strings) To minimize productions, we might use recursive productions, but for finite language, we can avoid recursion. Since the language is finite, we don't need recursion that generates infinitely many strings. For L = {a^9, a^12}, we need to generate both with the same grammar. Now, back to the question: is there a CNF grammar with at most 6 productions. Let me see what the minimum might be. First, we need a production for a, so至少有一个 A → a。 Then, to generate a^9 and a^12, we need non-terminals that generate a^k for various k. The differences in length: 9 and 12, so we might share some common factors. 9 and 12 have gcd 3, so perhaps we can have a non-terminal that generates a^3, and then build up. For example, let B generate a^3. How to generate a^3 with CNF? We need at least two productions: for example, C → a, D → C C (so D derives aa), but then for a^3, we need E → C D or E → D C, so E derives aaa. So productions: C → a, D → C C, E → C D. That's three productions for a^3. We can do better: for a^3, we can have F → a, G → F F (so G derives aa), then H → F G or H → G F, so H derives aaa, still three productions. But we can have a production that directly does three, but CNF doesn't allow three non-terminals, so we must use two steps for a^3. Minimum productions for a^3: we need one terminal production and two binary productions. For example, A → a, B → A A, C → A B. Then C derives aaa. So three productions, but we can reuse A and B for other things. In this grammar, if we have A → a, and we want to generate a^3, we need an additional production like D → A A for aa, and another E → A D for aaa, so two extra productions, but D and E are new. But if we already have A → a, then to get a^3, we need at least two more productions: one for aa and one for aaa, but the production for aa can be used for other things. Now for a^9, if we have a non-terminal for a^3, say C derives a^3, then we can have S → C C C for a^9, but S → C C C is not CNF because right-hand side has three symbols. In CNF, we can only have two non-terminals, so we need to introduce another non-terminal. For example, D → C C, then S → C D, so S derives C and D, and D derives C C, so C C C, which is a^9 if C derives a^3. Similarly for a^12, if we have C derives a^3, then we can have E → D D or something, but D derives C C which is a^6 if C is a^3, so D derives a^6, then S → D D for a^12, but S is already used for a^9, so we need S to derive both. Let's try to construct a grammar. Suppose we have non-terminals: A → a (terminal production) Now, we need to build a^3. Let B → A A (so B derives aa) Then C → A B or C → B A, so C derives aaa. (C → A B derives a * aa = aaa) Now C derives a^3. For a^9, we can have D → C C (so D derives a^6) Then E → C D (so E derives a^3 * a^6 = a^9) Then we need S → E for a^9. But S must also derive a^12. For a^12, since we have D derives a^6, we can have F → D D (so F derives a^12) Then S → F for a^12. But now we have multiple productions: A → a, B → A A, C → A B, D → C C, E → C D, F → D D, and S → E, S → F. That's 8 productions already, and we have S → E and S → F, which are two productions for S. But we need to count all productions. List: 1. A → a 2. B → A A 3. C → A B (assuming C → A B) 4. D → C C 5. E → C D 6. F → D D 7. S → E 8. S → F That's 8 productions, which is more than 6. We can reduce by not having E and F, and have S derive directly. For example, for a^9, S → C D, but C D would derive a^3 and a^6, so a^9, but S → C D is a production. Similarly for a^12, S → D D. But S → C D and S → D D are two productions for S. And we have A → a, B → A A, C → A B, D → C C. That's 4 productions plus two for S: S → C D and S → D D, total 6 productions. Let's see: productions: 1. A → a 2. B → A A 3. C → A B // C derives a^3 4. D → C C // D derives a^6 5. S → C D // S derives a^9 6. S → D D // S derives a^12 Is that all? With these, what strings can be derived? S can derive C D or D D. C D: C derives a^3, D derives a^6, so a^9. D D: D derives a^6, so a^12. Are there any other strings? For example, can S derive anything else? No, because only these two rules for S. But what about the other non-terminals? A, B, C, D can derive strings, but since S only uses C and D, and C and D derive a^3 and a^6 respectively, and no other rules, so the only strings derived from S are a^9 and a^12, which is perfect. But is this grammar in CNF? Check the productions: A → a: terminal, ok. B → A A: two non-terminals, ok. C → A B: two non-terminals, ok. D → C C: two non-terminals, ok. S → C D: two non-terminals, ok. S → D D: two non-terminals, ok. All productions are of the form to two non-terminals or to a terminal. And no ε-productions. So yes, it is in CNF. And we have exactly 6 productions. The question is "höchstens 6 Produktionen", which means at most 6, so 6 is acceptable. In this grammar, we have 6 productions, and it generates exactly {a^9, a^12}. So, yes, it is possible. But let me confirm the derivations. From S → C D, and C → A B, D → C C, etc. C derives a^3: C → A B → a B → a (A A) → a (a a) = aaa. Similarly, D → C C → (aaa)(aaa) = a^6. Then S → C D → (a^3)(a^6) = a^9. S → D D → (a^6)(a^6) = a^12. No other strings, since no other rules. Perfect. So, we can have such a grammar. Therefore, the answer is yes. Now, for the answer format. There are options: <option id="1">Ja, Grammatik:</option> and <option id="2">Nein, Begründung:</option> We need to choose one. Since it is yes, we set <option id="1">1</option> and <option id="2">0</option> Then in <answer id="3"> we need to provide the grammar. The example shows something like S -> aS | SS, but that's not CNF, but we need to provide our grammar. So, we can write the productions. In the answer template, it says "???", so we can list the productions. Since it's CNF, we need to specify all. In our grammar, we have non-terminals: S, A, B, C, D. But we need to define them. We can write: S → C D | D D C → A B B → A A A → a D → C C But let's list all productions clearly. To be precise, we should list all productions. Since S has two rules, we can write them separately. In the answer, we can write: Let the grammar be G = ({S,A,B,C,D}, {a}, P, S) where P consists of: A → a B → A A C → A B D → C C S → C D S → D D This is 6 productions. We can write it in a compact way. In the example, it shows "S -> aS | SS", so perhaps we can use | for alternatives. But in CNF, it's fine to list productions with |. So, for <answer id="3">, we can write: S → C D | D D C → A B B → A A A → a D → C C But D → C C is already there, and we have all. In this list, we have 5 lines, but S has two rules, so technically 6 productions. We can write: Productions: - A → a - B → A A - C → A B - D → C C - S → C D - S → D D Yes. To save space, we can write: S → C D | D D, C → A B, B → A A, A → a, D → C C But D → C C is necessary. In the derivation, for D to derive a^6, we need D → C C, and C derives a^3. Is there a way with fewer productions? But we don't need to, since 6 is acceptable. The question is "at most 6", so with 6, it works. So, we can provide this grammar. Therefore, for subproblem b, answer is yes. Now, for the output format. First, for subproblem a, I already answered. In subproblem a, I said for i=2, (L2)* is not regular, and I gave justification. In the options, I set option 1 to 0, option 2 to 1, option 3 to 0. And answer for i=2. Now for subproblem b. So, for the final answer.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> S → C D | D D C → A B B → A A A → a D → C C </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☒Ja, Grammatik:☐Nein, Begründung:
S → C D | D D C → A B B → A A A → a D → C C
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für i=2:
Wenn (L₂)* regulär wäre, dann wäre der Schnitt mit der regulären Sprache a*b* auch regulär. jedoch ist (L₂)* ∩ a*b* = L₂, und L₂ ist nicht regulär (da es die Sprache {a^n b^n | n ∈ ℕ} ist, die nicht regulär ist). Daher kann (L₂)* nicht regulär sein.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
S → C D | D D
C → A B
B → A A
A → a
D → C C
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
First, for subproblem c, I need to determine which of the two statements is true. The statements are about a context-free but not regular language L, and whether there exists an undecidable subset L' of L or if every subset L' of L is decidable. Option 1 says: "Es gibt eine unentscheidbare Sprache L' ⊆ L." which means "There exists an undecidable language L' ⊆ L." Option 2 says: "Jede Sprache L' ⊆ L ist entscheidbar." which means "Every language L' ⊆ L is decidable." I need to see which one is true. Since L is context-free, it might have decidable subsets, but not necessarily all subsets are decidable. In fact, for any infinite language, there are uncountably many subsets, but only countably many decidable languages, so most subsets are undecidable. However, L is context-free, which is a specific type, but subsets can still be undecidable. L is context-free and not regular. Context-free languages are decidable themselves, but subsets of context-free languages can be undecidable. For example, take L to be {0^n 1^n | n ∈ N}, which is context-free but not regular. Now, consider subsets of L. Since L is infinite, by the cardinality argument, there are uncountably many subsets, but only countably many decidable languages, so there must exist undecidable subsets of L. Therefore, option 1 should be true. Option 2 says every subset is decidable, which is false because of the cardinality argument. So, for option 1, I should mark it as true (1), and for option 2, false (0). Now, I need to provide a justification for why option 1 is true. Justification: Since L is context-free and not regular, it must be infinite (because all finite languages are regular). Infinite languages have uncountably many subsets, but there are only countably many decidable languages. Therefore, there exist subsets of L that are undecidable. I should state this clearly. For the answer format, I need to choose which option is true and justify it. So, for the options, I'll set: <option id="1">1</option> <option id="2">0</option> And for the answer, I'll justify option 1. The answer template says: "Begründung für Aussage $?$ (1 oder 2):" so I need to specify which statement I'm justifying, which is 1. Then, the justification.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1: Da L kontextfrei und nicht regulär ist, muss L unendlich sein (alle endlichen Sprachen sind regulär). Unendliche Sprachen haben überabzählbar viele Teilmengen, aber es gibt nur abzählbar viele entscheidbare Sprachen. Daher muss es unentscheidbare Teilmengen L' ⊆ L geben. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1: Da L kontextfrei und nicht regulär ist, muss L unendlich sein (alle endlichen Sprachen sind regulär). Unendliche Sprachen haben überabzählbar viele Teilmengen, aber es gibt nur abzählbar viele entscheidbare Sprachen. Daher muss es unentscheidbare Teilmengen L' ⊆ L geben.
deepseek/deepseek-r1-0528
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Wir haben drei Sprachen über dem Alphabet Σ = {a, b}: - L1 = {(ab)^n | n ∈ ℕ} - L2 = {a^n b^n | n ∈ ℕ} - L3 = {a^n b^m | n, m ∈ ℕ und n ≠ m} Wir müssen bestimmen, für welche dieser Sprachen (L_i)* nicht regulär ist. Erinnerung: Die Kleene-Stern-Operation (L)* ist die Menge aller endlichen Verkettungen von Wörtern aus L, einschließlich des leeren Wortes. Wir prüfen jede Sprache: 1. **L1 = {(ab)^n | n ∈ ℕ}** L1 besteht aus Wörtern der Form ab, abab, ababab, usw., also alle Wörter, die aus einer geraden Anzahl von Symbolen bestehen, wobei ab wiederholt wird. (L1)*: Da L1 selbst regulär ist (es wird durch den regulären Ausdruck (ab)* beschrieben), ist (L1)* auch regulär, weil die Kleene-Stern-Operation die Regularität erhält. Tatsächlich ist (L1)* = L1, da L1 bereits unter Verkettung abgeschlossen ist? Nicht ganz: L1 enthält (ab)^n für n≥1, aber nicht das leere Wort. (L1)* enthält das leere Wort und alle Wörter, die aus einer beliebigen Anzahl von (ab)^n bestehen, also alle Wörter der Form (ab)^k für k≥0. Das ist genau die Sprache (ab)*, die regulär ist. Also ist (L1)* regulär. 2. **L2 = {a^n b^n | n ∈ ℕ}** L2 ist die Sprache der Wörter mit gleich vielen a's wie b's, wobei alle a's vor den b's stehen. Diese Sprache ist bekanntlich nicht regulär (kann mit Pumping-Lemma gezeigt werden). Was ist (L2)*? (L2)* besteht aus Verkettungen von Wörtern aus L2. Zum Beispiel: aabb, aabb aabb, usw., aber auch aabb aaabbb, etc. Beachte: Ein Wort in (L2)* ist eine Folge von Wörtern, jedes von der Form a^{k_i} b^{k_i} für ein k_i ≥ 0 (wenn n=0, ist das leere Wort, aber in L2 ist n∈ℕ, und normalerweise enthält ℕ die 0? In der Definition: n∈ℕ. In der Informatik oft ℕ inklusive 0, aber hier: L2 := {a^n b^n : n∈ℕ}. Wenn ℕ die natürlichen Zahlen inklusive 0 sind, dann enthält L2 auch das leere Wort (n=0). Aber typischerweise ist a^0 b^0 = ε. In der Definition: n∈ℕ. In vielen Kontexten schließt ℕ die 0 ein, aber manchmal nicht. Hier: In der Aufgabe steht n∈ℕ, und in L3 steht n,m∈ℕ mit n≠m, was andeutet, dass n=0 oder m=0 möglich ist. Aber für L2: wenn n=0, dann a^0 b^0 = ε, also enthält L2 ε. Aber unabhängig davon: (L2)* ist die Menge aller Wörter, die in Blöcke unterteilt werden können, wobei jeder Block gleich viele a's und b's hat, und alle a's vor den b's im Block. Ist diese Sprache regulär? Nein, denn sie enthält Wörter, bei denen die Anzahl der a's und b's insgesamt gleich ist? Nicht unbedingt: Betrachte ein Wort, das aus zwei Blöcken besteht: (a^{k} b^{k}) (a^{m} b^{m}) = a^k b^k a^m b^m. Hier ist die Anzahl der a's k+m, b's k+m, also gleich. Aber in (L2)* kann man auch ε haben, oder einzelne Blöcke. Also jedes Wort in (L2)* hat die Eigenschaft, dass die Gesamtzahl der a's gleich der Gesamtzahl der b's ist? Ja, weil jeder Block gleich viele a's und b's hat. Aber es gibt mehr: Die Sprache aller Wörter mit gleich vielen a's und b's ist nicht regulär. Aber (L2)* ist eine Teilmenge davon, denn in (L2)* müssen die a's und b's in Blöcken sein, d.h. nach einem b kann kein a mehr kommen, außer in einem neuen Block. Tatsächlich ist (L2)* genau die Sprache, in der das Wort in eine Folge von Teilwörtern zerlegt werden kann, jedes von der Form a^k b^k. Das ist eine echte Teilmenge der Sprache mit gleicher Anzahl a's und b's. Zum Beispiel ist das Wort "abab" in der Sprache mit gleicher Anzahl, aber "abab" kann nicht in Blöcke der Form a^k b^k zerlegt werden, denn wenn wir versuchen: (ab)(ab) aber ab ist a^1 b^1, also ja, es ist in (L2)*, da L2 für n=1 ab enthält. "abab" = (ab)(ab) und ab ∈ L2 (n=1), also in (L2)*. Ein anderes Beispiel: "aabb" = a^2 b^2 ∈ L2, also in (L2)*. Aber was ist mit "aaabbb"? Das ist a^3 b^3 ∈ L2, also in (L2)*. Nun, ein Wort wie "aabbaaabbb" = (a^2 b^2)(a^3 b^3) ∈ (L2)*. Aber kann (L2)* Wörter enthalten, in denen a's und b's gemischt sind? Nein, weil in jedem Block alle a's vor den b's sind, und die Blöcke direkt aneinandergereiht sind, also kommt nach dem ersten b eines Blocks nur noch b's oder ein neuer Block mit a's, aber wenn ein neuer Block mit a's beginnt, dann muss davor ein b gewesen sein, also hat man ...b a..., was erlaubt ist. Also (L2)* enthält Wörter, die mit a beginnen und mit b enden, und dazwischen können Wechsel von b zu a vorkommen. Ist diese Sprache regulär? Ich denke nein. Wir können das Pumping-Lemma anwenden. Behauptung: (L2)* ist nicht regulär. Beweisskizze: Angenommen, (L2)* ist regulär. Dann gibt es eine Pumping-Zahl p. Betrachte das Wort s = (a^p b^p)^p. Dieses Wort ist in (L2)*, da es aus p Kopien von a^p b^p besteht. |s| = p * (2p) = 2p^2, was größer als p ist. Nach Pumping-Lemma kann s in xyz zerlegt werden mit |xy| ≤ p, |y| > 0, und xy^k z ∈ (L2)* für alle k≥0. Da |xy| ≤ p und s mit p a's beginnt (weil der erste Block a^p b^p ist), besteht xy nur aus a's des ersten Blocks. Also y besteht nur aus a's, sagen wir y = a^m mit 1≤m≤p. Dann ist xy^0 z = xz = a^{p-m} b^p (a^p b^p)^{p-1} Dieses Wort sollte in (L2)* sein. Aber schauen wir uns den ersten Block an: der erste Block sollte a^{k} b^{k} für ein k sein. Aber hier haben wir a^{p-m} b^p. Da p-m < p (weil m>0), ist p-m ≠ p, also kann a^{p-m} b^p nicht als ein Block in L2 sein. Aber könnte es in mehrere Blöcke zerlegt werden? Der erste Teil ist a^{p-m} b^p. Nach den b's kommen noch weitere Blöcke. Aber a^{p-m} b^p: die b's sind mehr als die a's in diesem Teil, und es gibt keine Möglichkeit, dies in Blöcke der Form a^k b^k zu zerlegen, weil nach den a's sofort b's kommen, und wenn wir versuchen, einen Block zu bilden, müsste er mit a^{p-m} enden, aber dann bleiben b's übrig, die nicht zugeordnet sind. Genauer: der erste Teil a^{p-m} b^p: um in Blöcke zu zerlegen, müsste der erste Block a^{k} b^{k} sein für ein k, aber dann müsste k ≤ p-m und k ≤ p, aber nach a^{k} b^{k} haben wir noch a^{(p-m)-k} b^{p-k}, was nicht mit a beginnt, sondern mit b? Nein, nach b^k kommt a^{(p-m)-k}, aber in unserem Wort kommt nach den a's direkt b's, und nach b^p kommen weitere a's (vom nächsten Block). In xz = a^{p-m} b^p (a^p b^p)^{p-1} Die Sequenz ist: a^{p-m} b^p a^p b^p ... a^p b^p (mit p-1 Blöcken am Ende). Jetzt: der erste Teil a^{p-m} b^p. Das kann nicht als ein Block in L2 sein, da p-m ≠ p. Kann es in mehrere Blöcke zerlegt werden? Ein Block muss mit a's beginnen und mit b's enden. Nach den ersten a^{p-m} kommen b^p. Wenn wir einen Block bilden, sagen wir a^{k} b^{k}, dann muss k ≤ p-m und k ≤ p. Aber nach diesem Block haben wir noch a^{p-m - k} b^{p - k}? Nein, nach den b^k des ersten Blocks kommen die nächsten Symbole: aber in unserem Wort kommen nach den ersten b^p sofort a^p (vom nächsten Block). Also nach den ersten b^p (die zu den ersten a^{p-m} gehören) kommen a^p. Also haben wir: a^{p-m} b^p a^p b^p ... Um einen Block zu bilden, müsste nach b^p ein neuer Block mit a^p beginnen. Aber der erste Block endet mit b^p und beginnt mit a^{p-m}. Aber die Länge des ersten Blocks: wenn wir versuchen, ihn als einen Block zu nehmen, dann a^{p-m} b^p, aber p-m ≠ p, also nicht in L2. Wenn wir mehrere Blöcke im ersten Teil haben, aber zwischen den ersten a^{p-m} und b^p gibt es keine Stelle, wo ein Block endet und ein neuer beginnt, weil dazwischen keine Trennung ist. Die einzigen möglichen Trennstellen sind zwischen b und a, aber hier haben wir nach b^p sofort a^p, also könnte man nach dem ersten b^p einen neuen Block beginnen. Aber der erste Teil a^{p-m} b^p ist nicht unterteilt. Wenn wir einen Block a^{k} b^{k} für k < p-m bilden, dann bleiben a^{(p-m)-k} übrig, aber dann kommen b^p, also a^{(p-m)-k} b^p, was nicht mit b beginnt. Ein Block muss mit a beginnen. Also müsste der nächste Block mit a^{(p-m)-k} beginnen, aber dann müsste er a^{(p-m)-k} b^{m'} für ein m' sein, aber danach kommen b^p, also ist das nicht möglich, weil nach den a's sofort b's kommen, aber hier haben wir a's, dann b's, dann wieder a's. Konkret: das Wort ist: [a^{p-m}] [b^p] [a^p] [b^p] ... Um es in Blöcke zu zerlegen, müsste jeder Block a^x b^x sein. Der erste Block könnte a^{p-m} b^x sein, aber dann müsste x = p-m, aber dann haben wir b^p, und p-m < p (da m>0), also nach b^{p-m} (wenn x=p-m) bleiben noch b^{m} übrig, aber dann kommt a^p, also b^{m} a^p, was nicht mit a beginnt. Also kann der erste Block nicht enden, bevor die b's zu Ende sind. Wenn wir den ersten Block als a^{p-m} b^{p-m} nehmen, dann bleiben b^m übrig, und dann a^p, also b^m a^p. Aber b^m a^p kann nicht der Anfang eines Blocks sein, weil ein Block mit a beginnen muss. Also ist keine Zerlegung möglich. Daher ist xy^0 z nicht in (L2)*, Widerspruch. Also ist (L2)* nicht regulär. 3. **L3 = {a^n b^m | n, m ∈ ℕ und n ≠ m}** L3 ist die Sprache der Wörter, die mit einem oder mehr a's beginnen, dann einem oder mehr b's, aber die Anzahl der a's und b's ist ungleich. Beachte: n,m ∈ ℕ, und n≠m. Wenn n=0 oder m=0? n und m sind in ℕ, und n≠m. Wenn n=0, dann a^0 b^m = b^m, und m≠0 (da n=0, m≥1 für n≠m). Analog, wenn m=0, a^n mit n≥1. Also L3 enthält Wörter, die nur a's (mindestens eins), nur b's (mindestens eins), oder a's gefolgt von b's mit unterschiedlicher Anzahl. Genauer: L3 = {a^n b^m | n,m ≥ 0, n≠m}, aber wenn n=0 und m>0, ist es b^m; wenn m=0 und n>0, a^n; wenn n>0,m>0 und n≠m, a^n b^m. Was ist (L3)*? (L3)* besteht aus Verkettungen von solchen Wörtern. Ist (L3)* regulär? Beachte, dass L3 selbst nicht regulär ist? Eigentlich ist L3 regulär! Warum? L3 = {a^n b^m | n≠m} = (a^+ b^*) \ {a^n b^n | n≥0} ∪ {a^n | n≥1} ∪ {b^m | m≥1}, aber besser: die Sprache aller Wörter, die nicht a^n b^n sind, in der Form a^* b^*? Nein, weil es auch Wörter mit anderen Formen geben könnte, aber in L3 sind alle Wörter von der Form a^n b^m. Tatsächlich ist L3 = a^+ b^* \ {a^n b^n} ∪ b^+ \ {ε}, aber genauer: Die Menge aller Wörter in a^* b^* mit n≠m. Und a^* b^* ist regulär, und {a^n b^n} ist kontextfrei, aber L3 ist das Komplement von {a^n b^n} in a^* b^*? Nicht ganz, weil a^* b^* enthält auch Wörter wie a^n b^m mit n=m, und auch das leere Wort. Sei A = {w ∈ a^* b^* | w = a^n b^m für n,m ≥ 0}. Dann ist A regulär (durch regulären Ausdruck a^* b^*). Und {a^n b^n | n≥0} ist eine Teilmenge von A. L3 = {a^n b^m | n≠m} = A \ {a^n b^n | n≥0}. Aber A ist regulär, und wenn {a^n b^n} regulär wäre, dann wäre L3 regulär, aber {a^n b^n} ist nicht regulär, also folgt nicht direkt. Tatsächlich ist L3 regulär. Warum? Wir können L3 als Vereinigung von: - Alle Wörter, die mit a enden: aber nein, in a^* b^* enden alle mit b oder sind nur a's. Besser: L3 = {a^n b^m | n > m} ∪ {a^n b^m | n < m} {a^n b^m | n > m} = a^+ b^* \ {a^n b^m | n ≤ m}, aber einfacher: {a^n b^m | n > m} = a^+ b^* ∩ {w | |w|_a > |w|_b}, aber das ist nicht regulär? Nein, weil die Bedingung |w|_a > |w|_b nicht regulär ist. Aber in diesem Fall sind die Wörter in a^* b^*, also können wir es regulär ausdrücken. Tatsächlich: {a^n b^m | n > m} = a (a^* b^* ) \ ( {a^n b^m | n ≤ m} ) aber besser mit regulärem Ausdruck. Beachte: ein Wort in {a^n b^m | n > m} kann geschrieben werden als a^k a^j b^j für k≥1, j≥0? Nein. Zum Beispiel: a^{k} b^{m} mit k>m. Das kann man schreiben als a^{m} a^{k-m} b^{m} = a^m (a^{k-m} b^m), aber nicht hilfreich. Ein regulärer Ausdruck für {a^n b^m | n > m}: Dies ist äquivalent zu: Wörter, die mit a beginnen, und in denen die Anzahl der a's größer ist als die der b's, und alle a's vor b's. Wir können es als a a^* b^* ∩ (Komplement von {a^n b^n}), aber das Komplement ist nicht regulär. Alternativ: {a^n b^m | n > m} = a^+ b^* \ {a^n b^n | n≥0}, aber wieder das Komplement. Tatsächlich ist {a^n b^m | n > m} regulär, weil es durch den Ausdruck a^+ b^* \ L2, aber L2 ist nicht regulär, also nicht direkt. Wir können einen DFA bauen. Die Sprache besteht aus Wörtern in a^* b^*, die nicht a^n b^n sind. Und da a^* b^* regulär ist, und die Eigenschaft "nicht gleich viele" mit einem endlichen Automaten überprüft werden kann? Nein, weil der Automat sich nicht merken kann, wie viele a's er gesehen hat. Aber: für Wörter in a^* b^*, kann man die Bedingung n≠m mit einem DFA erkennen? Ja, tatsächlich, weil man nicht die genaue Anzahl wissen muss, sondern nur ob n>m oder n<m. Ein DFA für L3: - Zustände: q0 (Start), qa (nach a), qb (nach b), qf (Fehler, aber nicht nötig) Aber genauer: wir brauchen Zustände, die den Unterschied n-m speichern, aber da n und m beliebig groß, geht das nicht mit endlich vielen Zuständen. Tatsächlich ist L3 nicht regulär! Aber ich denke doch. Gegenbeispiel: angenommen L3 ist regulär. Dann wende Pumping-Lemma auf s = a^p b^{p+1} ∈ L3. Zerlegung s = xyz, |xy|≤p, |y|>0, y=a^k für k>0. Dann xy^0 z = a^{p-k} b^{p+1}. Wenn p-k ≠ p+1, was immer der Fall ist, da p-k ≤ p < p+1, also n=p-k < m=p+1, also in L3. Kein Widerspruch. Pumpen nach oben: xy^2 z = a^{p+k} b^{p+1}. n=p+k > p+1? Nicht unbedingt, wenn k=1, p+1 > p+1? Nein, n=p+1, m=p+1, also n=m, also nicht in L3. Wenn wir y^2 nehmen, also y=a^k, dann xy^2 z = a^{p+k} b^{p+1}. Jetzt ist n = p+k, m = p+1. Wenn k≥2, dann n = p+k ≥ p+2 > p+1 = m, also n>m, in L3. Wenn k=1, n=p+1, m=p+1, n=m, nicht in L3. Also für k=1 ist xy^2 z = a^{p+1} b^{p+1} ∉ L3, während s ∈ L3, und |y|=1>0, also Widerspruch. Also ist L3 nicht regulär? Aber das ist falsch, denn ich erinnere mich, dass {a^n b^m | n≠m} tatsächlich nicht regulär ist, weil es das Komplement von {a^n b^n} in a^* b^* ist, und {a^n b^n} nicht regulär ist, aber das Komplement einer nicht regulären Sprache kann regulär sein. Hier ist es nicht regulär, wie das Pumping-Lemma zeigt. Im Pumping-Lemma: für s = a^p b^{p+1}, und y=a^k, dann xy^2 z = a^{p+k} b^{p+1}. Wenn k=1, dann n=p+1, m=p+1, also n=m, also nicht in L3. Und da |y|=1>0, und |xy|≤p, y besteht nur aus a's, also ist xy^2 z nicht in L3, während s in L3 ist, also Widerspruch. Also L3 ist nicht regulär. Aber in der Aufgabe geht es um (L3)*, nicht L3 selbst. Also zurück zu (L3)*. L3 ist nicht regulär, aber (L3)* könnte regulär sein. Was ist (L3)*? Es ist die Menge aller endlichen Verkettungen von Wörtern aus L3. Beachte, dass L3 Wörter enthält wie a, aa, b, bb, ab, aab, abb, usw., aber nicht ε, da für n=m=0, aber n≠m nicht erfüllt, und für n=0,m>0 ist b^m in L3, aber ε nicht, da n=m=0. Also ε ∉ L3. Aber (L3)* enthält ε (da Kleene-Stern). Nun, welche Wörter sind in (L3)*? Zum Beispiel: jedes Wort, das nicht die Form hat, dass es in Blöcke unterteilt werden kann, wobei jeder Block a^n b^m mit n≠m. Aber es könnte schwierig sein. Beachte, dass L3 alle Wörter in a^* b^* enthält außer a^n b^n für n≥0 (einschließlich ε? a^0 b^0=ε, und n=m=0, also ε ∉ L3, da n=m). Also L3 = (a^* b^*) \ {a^n b^n | n≥0} Dann (L3)* = [ (a^* b^*) \ {a^n b^n | n≥0} ]^* Was ist diese Sprache? Behauptung: (L3)* = a^* b^*, die gesamte reguläre Sprache. Warum? - Jedes Wort in a^* b^* kann in einzelne Buchstaben zerlegt werden. - Einzelne a: a = a^1 b^0, n=1,m=0, n≠m, also a ∈ L3. - Einzelne b: b = a^0 b^1, n=0,m=1, n≠m, also b ∈ L3. - Daher kann jedes Wort w in a^* b^* als Folge von einzelnen a's und b's geschrieben werden, jedes in L3. Zum Beispiel: aab = a + a + b, alle in L3. Oder aaabbb = a+a+a+b+b+b. Sogar a^n b^n = (a)^n (b)^n, und a ∈ L3, b ∈ L3, also in (L3)*. Also ist (L3)* = a^* b^*, die regulär ist. Ist das richtig? a^n b^n: wir können es als n mal a gefolgt von n mal b schreiben, und jedes a und jedes b ist in L3, also ja, es ist in (L3)*. Und jedes Wort in a^* b^* kann so zerlegt werden. Also (L3)* = a^* b^*, regulär. Daher ist (L3)* regulär. Zusammenfassung: - Für L1: (L1)* ist regulär. - Für L2: (L2)* ist nicht regulär (wie wir gezeigt haben). - Für L3: (L3)* ist regulär. Die Frage ist: für welche i ist (L_i)* nicht regulär. Also nur für i=2. Die Optionen: wir müssen ankreuzen, für welche es zutrifft. <options> <option id="1">L1</option> <option id="2">L2</option> <option id="3">L3</option> </options> Also nur id=2 sollte 1 sein, die anderen 0. Dann Begründung für i=2. <answer-template> Begründung für $i=2$: ??? </answer-template> Wir schreiben die Begründung für i=2. Kurz: Wir zeigen mit Pumping-Lemma, dass (L2)* nicht regulär ist. Ausführlich: Angenommen, (L2)* ist regulär. Sei p die Pumping-Zahl. Betrachte s = (a^p b^p)^p. Dann |s| = 2p^2 > p. Sei s = xyz mit |xy| ≤ p, |y| > 0. Da die ersten p Symbole a's sind (weil s mit a^p beginnt), besteht y nur aus a's, y = a^k für ein k mit 1≤k≤p. Dann ist xy^0 z = a^{p-k} b^p (a^p b^p)^{p-1}. Dieses Wort ist nicht in (L2)*, denn der Präfix a^{p-k} b^p kann nicht als Konkatenation von Wörtern aus L2 geschrieben werden, da in jeder Zerlegung der erste Block a^{m} b^{m} sein müsste, aber a^{p-k} b^p hat p-k < p, also müsste m ≤ p-k sein, aber dann bleiben b^{p - m} ≥ b^k > 0 übrig, gefolgt von a^p, was nicht mit a beginnt, ein Widerspruch. Also ist (L2)* nicht regulär. Formal: Begründung für $i=2$: Angenommen, $(L_2)^*$ sei regulär. Dann gibt es nach dem Pumping-Lemma für reguläre Sprachen eine Pumping-Länge $p$. Betrachte das Wort $s = (a^p b^p)^p$. Offensichtlich ist $s \in (L_2)^*$ und $|s| = 2p^2 \geq p$. Sei $s = xyz$ mit $|xy| \leq p$, $|y| > 0$. Da die ersten $p$ Symbole von $s$ alles $a$'s sind, muss $y$ aus $a$'s bestehen, also $y = a^k$ für ein $k$ mit $1 \leq k \leq p$. Betrachte $xy^0 z = xz = a^{p-k} b^p (a^p b^p)^{p-1}$. Angenommen, dieses Wort sei in $(L_2)^*$. Dann muss es eine Zerlegung in Wörter aus $L_2$ geben. Der Präfix $a^{p-k} b^p$ muss jedoch Teil eines oder mehrerer solcher Wörter sein. Da jedes Wort in $L_2$ die Form $a^m b^m$ hat, müsste der erste Block mit einem $b$ enden. Der Präfix endet mit $b^p$, gefolgt von $a^p$. Versucht man, den ersten Block zu bilden, so müsste er $a^{m} b^{m}$ für ein $m$ sein. Da $a^{p-k} b^p$ mit $a$'s beginnt und mit $b$'s endet, wäre der erste Block $a^{m} b^{m}$ für ein $m \leq p-k$ (da nur $p-k$ $a$'s vorhanden). Dann blieben $b^{p - m}$ übrig. Aber $p - m \geq p - (p - k) = k > 0$, und diese $b$'s sind direkt vor den nächsten $a$'s, also $b^{p - m} a^p$. Dies kann nicht der Anfang eines Wortes in $L_2$ sein, da solche mit $a$ beginnen müssen. Eine Zerlegung ist also unmöglich, Widerspruch. Daher ist $xz \notin (L_2)^*$, und $(L_2)^*$ ist nicht regulär. Kürzer, wie in der Aufgabe gefordert "kurz". Wir fassen zusammen.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für $i=2$: Angenommen, $(L_2)^*$ sei regulär. Nach dem Pumping-Lemma existiert eine Pumping-Länge $p$. Betrachte $s = (a^p b^p)^p \in (L_2)^*$ mit $|s| = 2p^2 > p$. Sei $s = xyz$ mit $|xy| \leq p$, $|y| > 0$. Da die ersten $p$ Symbole $a$'s sind, gilt $y = a^k$ für ein $k$ mit $1 \leq k \leq p$. Dann ist $xy^0 z = a^{p-k} b^p (a^p b^p)^{p-1}$. Dieses Wort ist nicht in $(L_2)^*$, da der Präfix $a^{p-k} b^p$ nicht als Konkatenation von Wörtern aus $L_2$ zerlegt werden kann: Jeder Block in $L_2$ hat die Form $a^m b^m$, aber für $a^{p-k} b^p$ mit $p-k < p$ bleibt nach einem möglichen Block $a^m b^m$ (mit $m \leq p-k$) ein Suffix $b^{p-m} a^p$ übrig, das nicht mit $a$ beginnt und somit keinen neuen Block starten kann. Widerspruch. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☐
Begründung für : Angenommen, sei regulär. Nach dem Pumping-Lemma existiert eine Pumping-Länge . Betrachte mit . Sei mit , . Da die ersten Symbole 's sind, gilt für ein mit . Dann ist . Dieses Wort ist nicht in , da der Präfix nicht als Konkatenation von Wörtern aus zerlegt werden kann: Jeder Block in hat die Form , aber für mit bleibt nach einem möglichen Block (mit ) ein Suffix übrig, das nicht mit beginnt und somit keinen neuen Block starten kann. Widerspruch.
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Angenommen, $(L_2)^*$ sei regulär. Nach dem Pumping-Lemma existiert eine Pumping-Länge $p$. Betrachte $s = (a^p b^p)^p \in (L_2)^*$ mit $|s| = 2p^2 > p$. Sei $s = xyz$ mit $|xy| \leq p$, $|y| > 0$. Da die ersten $p$ Symbole $a$'s sind, gilt $y = a^k$ für ein $k$ mit $1 \leq k \leq p$. Dann ist $xy^0 z = a^{p-k} b^p (a^p b^p)^{p-1}$. Dieses Wort ist nicht in $(L_2)^*$, da der Präfix $a^{p-k} b^p$ nicht als Konkatenation von Wörtern aus $L_2$ zerlegt werden kann: Jeder Block in $L_2$ hat die Form $a^m b^m$, aber für $a^{p-k} b^p$ mit $p-k < p$ bleibt nach einem möglichen Block $a^m b^m$ (mit $m \leq p-k$) ein Suffix $b^{p-m} a^p$ übrig, das nicht mit $a$ beginnt und somit keinen neuen Block starten kann. Widerspruch.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Wir betrachten die Frage: Gibt es eine kontextfreie Grammatik in Chomsky-Normalform (CNF) mit höchstens 6 Produktionen, die die Sprache L = {a^12, a^9} erzeugt? Zuerst erinnern wir uns an die Chomsky-Normalform: - Jede Produktion ist von der Form A → BC oder A → a, wobei A, B, C Nichtterminale sind und a ein Terminal. - Außerdem ist das Startsymbol S darf ε erzeugen, aber in diesem Fall ist ε nicht in der Sprache, also kein Problem. Die Sprache besteht aus zwei Wörtern: a^9 und a^12. Beide sind aus dem Terminal a. In CNF müssen wir Ketten von a's erzeugen. Um ein Wort der Länge n zu erzeugen, benötigen wir eine Ableitung, die genau n-1 Schritte mit binären Produktionen (A → BC) und dann einen Schritt mit einer terminalen Produktion (A → a) für jedes Blatt. Allgemein: Für ein Wort a^n in CNF: - Wir brauchen einen Ableitungsbaum, der ein vollständiger Binärbaum mit n Blättern ist, wobei jedes Blatt ein 'a' ist. - Die Anzahl der inneren Knoten ist n-1, und jeder innere Knoten entspricht einer binären Produktion. - Zusätzlich brauchen wir terminale Produktionen: Jedes Blatt wird von einer Produktion A → a erzeugt, aber in CNF haben wir normalerweise ein Nichtterminal, das zu a führt. Standardmethode: Wir haben ein Nichtterminal, sagen wir A, mit A → a. Dann können wir größere Ketten durch binäre Verkettung aufbauen. Für eine einzelne Länge n: - Die minimale Anzahl von Produktionen: - Ein terminale Produktion: T → a (eine Produktion) - Dann brauchen wir Nichtterminale, um die Verkettung zu machen. - Zum Beispiel für n=2: S → T T, T → a. Das sind zwei Produktionen. - Für n=3: S → A T, A → T T, T → a. Oder S → T A, A → T T, T → a. Drei Produktionen. - Allgemein für a^n: Wir brauchen n-1 binäre Produktionen und eine terminale Produktion, also insgesamt n Produktionen. Aber wir haben zwei verschiedene Längen: 9 und 12. Wir müssen beide Wörter mit derselben Grammatik erzeugen. Idee: Wir können gemeinsame Teilwörter nutzen. Zum Beispiel, a^9 und a^12. Beachte, dass 12 = 9 + 3, aber 3 ist nicht direkt ein Teilwort. Wir können ein Startsymbol S haben, das entweder zu A9 oder A12 ableitet, wobei A9 a^9 erzeugt und A12 a^12. Jetzt: Wie viele Produktionen brauchen wir für A9 und A12 separat? Für A9: Um a^9 zu erzeugen, brauchen wir 9-1 = 8 binäre Produktionen und eine terminale Produktion, also 9 Produktionen. Aber die terminale Produktion (T → a) kann geteilt werden. Ebenso für A12: 11 binäre Produktionen und T → a, also 12 Produktionen. Wenn wir T → a teilen, dann separat für A9: 8 binäre, für A12: 11 binäre, plus T → a, also 8+11+1=20 Produktionen. Das ist zu viel, und wir dürfen nur 6 haben. Wir müssen effizienter sein, indem wir gemeinsame Unterbäume teilen. Zum Beispiel, wenn wir ein Nichtterminal haben, das a^k für ein k erzeugt, das ein Teiler von 9 und 12 ist. Die größten gemeinsamen Teiler: ggT(9,12)=3. Also, wir können ein Nichtterminal A3 definieren, das a^3 erzeugt. Dann ist a^9 = (a^3)^3, a^12 = (a^3)^4. In CNF: Wir können A3 → B C, wobei B und C a^{1.5}? Nein, Längen müssen ganzzahlig sein. Wir definieren A3, das a^3 erzeugt. Wie erzeugt man a^3 mit CNF? - T → a (terminale Produktion) - Dann A2 → T T (für a^2) - Aber für a^3: A3 → A2 T oder A3 → T A2. Braucht drei Produktionen: T→a, A2→T T, A3→A2 T. Alternativ: A3 → T A2, A2→T T, T→a. Gleiche Anzahl. Also für A3: 3 Produktionen (T→a, A2→T T, A3→T A2 oder ähnlich). Nun für a^9: Wir können es als (a^3)^3 schreiben. Also brauchen wir ein Nichtterminal, das drei A3's verkettet. In CNF: Für eine Kette von drei Symbolen: S9 → A3 B, wobei B zwei A3's erzeugt. B → A3 A3. Also: Produktionen: - S9 → A3 B - B → A3 A3 Aber B ist ein neues Nichtterminal. Ebenso für a^12: S12 → C D, wobei C und D passend gewählt werden. a^12 = (a^3)^4. Um vier A3's zu verkettet, brauchen wir: - Zuerst zwei Paare: E → A3 A3 (für die ersten zwei) - F → A3 A3 (für die letzten zwei) - Dann S12 → E F Aber das sind viele Produktionen. Besser: Wir können ein Nichtterminal für zwei A3's: D → A3 A3 (das erzeugt a^6) Dann für a^9: S9 → A3 D, denn A3 (a^3) + D (a^6) = a^9. Für a^12: S12 → D D, denn D (a^6) + D (a^6) = a^12. Jetzt brauchen wir: - T → a (1) - A2 → T T (2) [für a^2? Nein, für A3 brauchen wir nicht unbedingt A2] Für A3: Wir haben: - Option 1: A3 → T A2, A2 → T T, T → a. Aber A2 ist für a^2. - Stattdessen können wir A3 direkt mit drei Produktionen: - A3 → T C, C → T T, wobei C ein Hilfsnonterminal für die letzten zwei a's. - Aber dann C → T T, und T → a, also drei Produktionen. Wir können A3 mit zwei Produktionen machen? In CNF muss jede Produktion zwei Nonterminale oder ein Terminal haben. Um von einem Nonterminal a^3 zu erzeugen, brauchen wir mindestens zwei binäre Produktionen und eine terminale, also drei Produktionen, da wir drei a's haben. Allgemein: Für ein Wort der Länge n in CNF ist die minimale Anzahl von Produktionen n (eine pro Symbol, aber mit Teilen). Genauer: Wir brauchen n terminale Produktionen (aber sie können geteilt sein) und n-1 binäre Produktionen. Aber die terminale Produktion T→a wird nur einmal gebraucht, und dann für jede "Ebene" binäre Produktionen. In diesem Fall, für A3: - T → a (wird geteilt) - Dann A3 → T A2, wobei A2 → T T. Also Produktionen: T→a, A2→T T, A3→T A2. Drei Produktionen. A3→A2 T, etc., gleiche Sache. Jetzt für D, das a^6 erzeugt: D → A3 A3. Aber A3 erzeugt a^3, also D erzeugt a^6. Dafür brauchen wir eine Produktion: D → A3 A3. Aber D ist ein neues Nonterminal. Ebenso S9 → A3 D, S12 → D D. Und S, das Startsymbol, muss zu S9 oder S12 ableiten. Also S → S9 | S12. Jetzt zählen wir die Produktionen. Nonterminale: T, A2, A3, D, S9, S12, S. Und eventuell andere. Produktionen: 1. T → a 2. A2 → T T (für A3) 3. A3 → T A2 (oder A3 → A2 T, egal) 4. D → A3 A3 5. S9 → A3 D 6. S12 → D D 7. S → S9 8. S → S12 Das sind 8 Produktionen, aber wir dürfen nur höchstens 6 haben. Zu viele. Wir können einige Nonterminale weglassen. Zum Beispiel, brauchen wir A2? A2 wird nur für A3 gebraucht. Aber A3 braucht A2. Statt A3 mit drei Produktionen, können wir A3 effizienter machen? Nein, in CNF für a^3 brauchen wir mindestens drei Produktionen: eine terminale und zwei binäre, aber die terminale wird geteilt. Minimale Produktionen für ein einzelnes a^n: n Produktionen (wenn wir T→a teilen, dann n-1 binäre plus T→a, aber T→a zählt nur einmal). Hier für die ganze Grammatik. Wir haben T→a nur einmal. Für A3: zusätzlich zu T→a, brauchen wir zwei binäre Produktionen. Aber die binären Produktionen benötigen neue Nonterminale. Jede binäre Produktion ist eine Produktion. Also für A3: drei Produktionen: T→a, A2→T T, A3→T A2. (Annahme: A3→T A2, dann A2→T T, also A3 → T (T T) = T T T, ja.) Aber A2→T T ist eine Produktion, A3→T A2 ist eine. Plus T→a. Also drei Produktionen für A3, aber T→a wird geteilt. Nun für D: D → A3 A3, eine Produktion. S9 → A3 D, eine Produktion. S12 → D D, eine Produktion. S → S9 | S12, zwei Produktionen. Und T→a. Gesamt: - T→a: 1 - Für A3: A2→T T, A3→T A2: 2 (da T→a schon gezählt) Aber A2 und A3 sind neue, also zwei zusätzliche Produktionen. - D → A3 A3: 1 - S9 → A3 D: 1 - S12 → D D: 1 - S → S9: 1 - S → S12: 1 Summe: 1 (T) + 2 (für A3) + 1 (D) + 1 (S9) + 1 (S12) + 2 (für S) = 8 Produktionen. Aber wir haben nur 6 erlaubt. Wir können S9 und S12 eliminieren. Stattdessen: S → A3 D für a^9, und S → D D für a^12. Aber S muss beide können, also S → A3 D | D D. Dann: Produktionen: 1. T → a 2. A2 → T T 3. A3 → T A2 (oder A3 → A2 T) 4. D → A3 A3 5. S → A3 D 6. S → D D Das sind 6 Produktionen. Jetzt: Ist das korrekt? Nonterminale: T, A2, A3, D, S. Produktionen: - T → a - A2 → T T (erzeugt a^2? A2 → T T, also zwei T's, jedes T→a, also a a, also a^2) - A3 → T A2 (T und A2, also a + a^2 = a^3) - D → A3 A3 (a^3 + a^3 = a^6) - S → A3 D (a^3 + a^6 = a^9) - S → D D (a^6 + a^6 = a^12) Perfekt! Und alle in CNF. Die Sprache ist {a^9, a^12}, und wir erzeugen genau diese. Anzahl der Produktionen: 6. Also ja, es gibt eine solche Grammatik. Im <options>: <option id="1">Ja, Grammatik:</option> sollte 1 sein. <option id="2">Nein, Begründung:</option> sollte 0 sein. Dann im <answer> geben wir die Grammatik an. Laut <example> können wir sie so angeben: S -> A3 D | D D D -> A3 A3 A3 -> T A2 A2 -> T T T -> a Aber in der Reihenfolge, oder wir können sie auflisten. Normalerweise schreibt man die Produktionen für jedes Nonterminal. Beachte: Wir haben S, D, A3, A2, T. Wir müssen sicherstellen, dass alle Nonterminale definiert sind. In der Grammatik: - T → a - A2 → T T - A3 → T A2 (könnte auch A3 → A2 T sein, aber in diesem Fall ist es T A2, also a (a a) = a^3) - D → A3 A3 - S → A3 D | D D Das sind 5 Regeln, aber S hat zwei Produktionen, also insgesamt 6 Produktionen. Ja. Können wir A2 weglassen? Wenn wir A3 direkt machen, aber in CNF muss es binär sein. Also A3 → T A2 oder ähnlich, braucht ein Hilfsnonterminal. Alternativ: Wir könnten A3 → A2 T, gleiche Sache. Oder wir könnten eine andere Aufteilung. Zum Beispiel, für a^3: A3 → T T T? Nein, in CNF nur bis zu zwei Symbole auf der rechten Seite. Also muss es sein. Eine andere Idee: Vielleicht ohne A2, aber dann brauchen wir trotzdem zwei Schritte. Z.B. A3 → B T, B → T T. Das ist das gleiche wie mit A2, nur umbenannt. Also notwendig. Somit ist die Grammatik korrekt. Also Antwort: Ja. Jetzt im Format: <option id="1">1</option> <option id="2">0</option> <answer id="3"> S -> A3 D | D D D -> A3 A3 A3 -> T A2 A2 -> T T T -> a </answer> Im Beispiel steht "S -> aS | SS ...", aber hier ist es anders. Wir können es so schreiben. Beachte: Die Nonterminale sind S, T, A2, A3, D. Das sind 5 verschiedene, aber das ist in Ordnung. Wir könnten die Namen ändern, aber nicht nötig. Also so ist es gut.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> S -> A3 D | D D D -> A3 A3 A3 -> T A2 A2 -> T T T -> a </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☒Ja, Grammatik:☐Nein, Begründung:
S -> A3 D | D D D -> A3 A3 A3 -> T A2 A2 -> T T T -> a
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Angenommen, $(L_2)^*$ sei regulär. Nach dem Pumping-Lemma existiert eine Pumping-Länge $p$. Betrachte $s = (a^p b^p)^p \in (L_2)^*$ mit $|s| = 2p^2 > p$. Sei $s = xyz$ mit $|xy| \leq p$, $|y| > 0$. Da die ersten $p$ Symbole $a$'s sind, gilt $y = a^k$ für ein $k$ mit $1 \leq k \leq p$. Dann ist $xy^0 z = a^{p-k} b^p (a^p b^p)^{p-1}$. Dieses Wort ist nicht in $(L_2)^*$, da der Präfix $a^{p-k} b^p$ nicht als Konkatenation von Wörtern aus $L_2$ zerlegt werden kann: Jeder Block in $L_2$ hat die Form $a^m b^m$, aber für $a^{p-k} b^p$ mit $p-k < p$ bleibt nach einem möglichen Block $a^m b^m$ (mit $m \leq p-k$) ein Suffix $b^{p-m} a^p$ übrig, das nicht mit $a$ beginnt und somit keinen neuen Block starten kann. Widerspruch.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
S -> A3 D | D D
D -> A3 A3
A3 -> T A2
A2 -> T T
T -> a
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Wir haben drei Unteraufgaben: a, b und c. Ich werde jede nacheinander bearbeiten. ### Unteraufgabe a Frage: Für welche Sprachen \( L_i \) ist \( (L_i)^* \) nicht regulär? Optionen sind: - \( L_1 = \{(ab)^n \mid n \in \mathbb{N}\} \) - \( L_2 = \{a^n b^n \mid n \in \mathbb{N}\} \) - \( L_3 = \{a^n b^m \mid n, m \in \mathbb{N} \wedge n \neq m\} \) Ich muss prüfen, ob der Kleene-Stern dieser Sprachen regulär ist oder nicht. **Analyse:** - \( L_1 \): Die Sprache der Wörter mit ab wiederholt. \( L_1 \) selbst ist regulär (z.B. regulärer Ausdruck (ab)*). Der Kleene-Stern \( (L_1)^* \) ist ebenfalls regulär, da reguläre Sprachen unter Kleene-Stern abgeschlossen sind. Also ist \( (L_1)^* \) regulär. - \( L_2 \): Die Sprache \( \{a^n b^n\} \) ist bekanntlich nicht regulär (klassisches Beispiel für Pumping-Lemma). Aber was ist \( (L_2)^* \)? - \( (L_2)^* \) besteht aus Konkatenationen von Wörtern der Form \( a^n b^n \). Zum Beispiel: \( a^{n1} b^{n1} a^{n2} b^{n2} \cdots \). - Diese Sprache ist nicht regulär. Man kann das Pumping-Lemma anwenden. Angenommen, sie wäre regulär. Wähle ein Wort, das lang genug ist, z.B. \( s = (a^p b^p)^k \) für ein großes k. Wenn man in den a's pumpt, kann man ein Wort erzeugen, das nicht in der Sprache liegt, weil die Balance gestört wird. - In meiner vorherigen Antwort habe ich \( i=2 \) gewählt und begründet. Das scheint korrekt. - \( L_3 \): \( \{a^n b^m \mid n \neq m\} \). Diese Sprache ist nicht regulär (kann mit Pumping-Lemma gezeigt werden). Aber was ist \( (L_3)^* \)? - \( (L_3)^* \) besteht aus Konkatenationen von Wörtern, bei denen jeweils die Anzahl der a's und b's ungleich ist. Beachte, dass Wörter wie \( a^n b^m \) mit n≠m, aber wenn man mehrere konkateniert, könnte es sein, dass insgesamt die Sprache alle Wörter über {a,b} ohne Einschränkung ist? Nein, denn z.B. aaab ist in L3, aber aabb ist nicht in L3, aber in (L3)*? - Tatsächlich ist \( (L_3)^* = \{a,b\}^* \setminus \{ \text{Wörter, die mit } a^n b^n \text{ für ein n} \text{ als Präfix haben, aber eigentlich?} \} \). - Genauer: Ein Wort w ist in (L3)*, wenn es in Blöcke der Form a^n b^m mit n≠m zerlegt werden kann. - Aber es gibt Wörter, die nicht zerlegt werden können, z.B. aabb. Wenn ich aabb zerlege, müsste es ein oder mehrere Blöcke sein. Ein Block a^n b^m mit n≠m. aabb: wenn ein Block, dann n=2,m=2, aber n=m, also nicht in L3. Zwei Blöcke: z.B. aa und bb, aber aa ist nicht in L3 (da nur a's, kein b), oder a und abb, aber a hat n=1,m=0? L3 erfordert mindestens ein a und ein b? - Definition: \( \mathbb{N} \) enthält 0? Normalerweise ja, also n,m ≥0, aber n≠m. Also z.B. a^n für n≥1 ist in L3? Weil m=0, n≠0, also n≠m. Ebenso b^m für m≥1. Aber Wörter nur aus a's oder nur aus b's sind in L3. - Also L3 enthält alle Wörter, die nicht a^n b^n für n≥0 sind? Nein, a^n b^n mit n=m ist nicht in L3, aber Wörter mit unterschiedlicher Anzahl oder wenn sie nicht die Form a*b* haben. - L3 ist definiert als {a^n b^m | n,m ∈ ℕ und n≠m}. Also nur Wörter der Form a*b*, aber mit n≠m. Also Wörter, die mit a's beginnen, dann b's folgen, und Anzahl a's ungleich Anzahl b's. - Dann ist (L3)* die Menge aller Wörter, die in solche Blöcke zerlegt werden können. Ein Block ist ein nicht-leeres Wort der Form a*b* mit ungleicher Anzahl. - Aber was ist mit dem leeren Wort? Das leere Wort ist in (L3)*, da Kleene-Stern es enthält. - Kann ich jedes Wort in solche Blöcke zerlegen? Nein, z.B. aba: wenn ich versuche, Blöcke zu bilden: a ist ein Block (n=1,m=0), dann b a: b ist nicht a*b*, da b vor a. Also kann aba nicht zerlegt werden. - Tatsächlich: Jeder Block muss in a*b* sein, also die Sprache (L3)* ist eine Teilmenge von (a*b*)*, was gleich a*b* ist, da einmal a*b*, dann wieder a*b* usw., aber (a*b*)* = a*b*, weil nach dem ersten b kein a mehr kommen kann. - Das ist ein wichtiger Punkt: (a*b*)* = a*b*, weil jedes Wort in (a*b*)* mit a's beginnt, dann b's, und dann könnte ein neuer Block beginnen, aber ein neuer Block müsste mit a beginnen, aber nach b's können keine a's mehr kommen. Also ist (a*b*)* = a*b*. - Aber L3 ⊆ a*b*, also (L3)* ⊆ (a*b*)* = a*b*. - Also (L3)* ⊆ a*b*. - Aber nicht jedes Wort in a*b* ist in (L3)*. Z.B. aabb: wie oben, kann nicht in Blöcke aus L3 zerlegt werden. - Trotzdem: ist (L3)* regulär? - Betrachte: (L3)* = { w ∈ a*b* | w = w1 w2 ... wk für k≥0, wi ∈ L3 } - Da L3 alle Wörter in a*b* mit n≠m enthält, und auch die, die nur a's oder nur b's sind (da n≠m, wenn m=0 oder n=0). - Ein Wort w = a^x b^y. Kann ich es in Blöcke zerlegen? - Wenn x ≠ y, dann kann es ein einzelner Block sein, also in (L3)*. - Wenn x = y, dann muss ich es in mehrere Blöcke zerlegen. Z.B. für x=y=2: aabb. Mögliche Zerlegungen: - Zwei Blöcke: aa und bb. aa ∈ L3 (n=2,m=0≠2), bb ∈ L3 (n=0,m=2≠0). Also ja, mit zwei Blöcken. - Allgemein: für a^n b^n, kann ich es zerlegen in n Blöcke: a und a und ... und a und b? Nein, weil Blöcke in a*b* sein müssen. - Besser: zerlege in a (n=1,m=0) und dann a^{n-1} b^n. Aber a^{n-1} b^n ist nicht in a*b*? Doch, aber es hat n-1 a's und n b's, also n-1 ≠ n, also in L3. - Aber der erste Block ist a (n=1,m=0), der zweite Block ist a^{n-1} b^n. Aber a^{n-1} b^n beginnt mit a's, dann b's, also in a*b*, und n-1 ≠ n, ja. - Also für n≥1, a^n b^n = a * (a^{n-1} b^n). Beide Blöcke in L3. - Für n=0, das leere Wort, in (L3)*. - Also jedes Wort in a*b* ist in (L3)*, denn: - Wenn x ≠ y, dann direkter Block. - Wenn x = y, dann zerlege in a^x b^y = (a) * (a^{x-1} b^x) für x≥1, und für x=0 ist es ε. - Aber a^{x-1} b^x: Anzahl a's ist x-1, b's ist x, x-1 ≠ x, also in L3. - Also (L3)* = a*b*, was regulär ist. - Also ist (L3)* regulär. Daher: nur für L2 ist (L_i)* nicht regulär. Also Option 1: nein, Option 2: ja, Option 3: nein. In meiner vorherigen Antwort habe ich Option 2 mit 1 markiert und die anderen mit 0, was korrekt ist. ### Unteraufgabe b Frage: Gibt es eine kontextfreie Grammatik in Chomsky-Normalform (CNF) mit höchstens 6 Produktionen für die Sprache {a^{12}, a^9}? Die Sprache besteht aus zwei Wörtern: "aaaaaaaaaaaa" (12 a's) und "aaaaaaaaa" (9 a's). CNF erfordert, dass alle Produktionen die Form A → BC oder A → a haben, wobei A,B,C Nichtterminale sind, und für das leere Wort eine spezielle Regel, aber hier ist das leere Wort nicht in der Sprache. Da wir nur ein Terminal 'a' haben, muss die Grammatik Ketten von Nichtterminalen aufbauen, die schließlich zu 'a' führen. Um ein Wort der Länge n zu erzeugen, braucht man in CNF eine Ableitung mit genau n-1 Schritten, die Nichtterminale in Binärbäume aufteilen, und dann n Blätter mit 'a'. Aber hier haben wir zwei Wörter mit unterschiedlichen Längen: 12 und 9. Ich muss eine Grammatik haben, die beide erzeugt. Die Grammatik muss ein Startsymbol S haben, und S muss in der Lage sein, beide Wörter zu erzeugen. In CNF kann S → A B sein, wobei A das Wort für 9 a's erzeugt und B für 3 a's? Aber 9+3=12, aber B müsste dann 3 a's erzeugen, und A 9 a's. Aber die Sprache hat nur a^9 und a^12, nicht a^3 oder andere. Also muss ich sicherstellen, dass keine zusätzlichen Wörter erzeugt werden. Eine Möglichkeit ist, verschiedene Pfade für die beiden Wörter zu haben. Zum Beispiel: S → A | B A erzeugt a^12 B erzeugt a^9 Aber in CNF, und mit wenigen Produktionen. Um a^n zu erzeugen, braucht man in CNF eine Kette. Für a^n, wenn man nur binäre Regeln hat, braucht man n-1 Regeln, um die Struktur aufzubauen, plus n Regeln A → a. Aber die Regeln A → a können geteilt werden. Standardweg: für eine feste Länge n, braucht man etwa n Regeln. Aber hier zwei verschiedene Längen. Minimale Anzahl von Produktionen. Zuerst: für a^9: wie viele Produktionen braucht man in CNF? In CNF für eine einzelne Länge n: man hat ein Startsymbol, und dann Regeln, die einen binären Baum aufbauen. Die Anzahl der binären Regeln ist n-1, und n Regeln A → a, aber die A → a können von mehreren Stellen geteilt werden. Um es effizient zu machen, kann man eine Hierarchie aufbauen. Zum Beispiel für a^8: S → A A, A → B B, B → C C, C → a. Dann braucht man für a^8: S→AA, A→BB, B→CC, C→a. Das sind 4 Produktionen, und erzeugt a^8. Anzahl der Produktionen: eine für jedes Level. Allgemein für n=2^k, braucht man k+1 Produktionen: k binäre und eine terminale. Hier n=9 und n=12, keine Zweierpotenzen. Für a^9: 9 ist ungerade. Man könnte S → A B, wobei A a^5 erzeugt, B a^4, aber dann muss man auch A und B definieren. Jedes Teil muss definiert werden. Minimale Grammatik. Ich könnte ein gemeinsames Präfix oder Suffix haben, aber da nur a's, ist es einfach. Eine Möglichkeit: definiere Nichtterminale für Teiler. Beachte, dass 12 und 9 den ggT 3 haben. Also könnte ich ein Nichtterminal C für a^3 haben, dann S → C C C C für a^{12}, und S → C C C für a^9? Aber C C C ist a^9? Nein, wenn C a^3 erzeugt, dann C C C ist a^9, und C C C C ist a^{12}. Perfekt. Und ich brauche nur eine Regel für C. In CNF: S → A B, aber ich muss die Struktur aufbauen. S muss zu vier C's führen, aber in CNF muss jede Regel genau zwei Nichtterminale oder ein Terminal auf der rechten Seite haben. Also für S → C1 C2, aber dann C1 und C2 müssen jeweils Teile erzeugen. Um eine Folge von vier C's zu erzeugen, brauche ich eine Kette. Zum Beispiel: S → A B, A → C D, B → E F, usw., aber das wird mehr. Besser: S → A A, wobei A a^6 erzeugt, aber dann für a^12: S → A A mit A→a^6, aber für a^9 brauche ich etwas anderes. Mit dem C-Ansatz: sei C → a a a? Aber in CNF muss C → X Y, wobei X und Y zu a's führen. Standard CNF für eine Folge: um n a's zu erzeugen, braucht man eine Grammatik mit etwa log n Produktionen, aber für festes n. Für C, das a^3 erzeugt: C → D E, D → a a? Aber D → a a ist nicht erlaubt, nur binär oder terminal. In CNF: Regeln müssen sein: A → BC oder A → a. Also für a^3: brauche zwei Regeln. Z.B. T → a (terminal) C → T U, aber U muss a^2 erzeugen. U → T T Also: C → T U, U → T T, T → a. Dann C erzeugt T U → a (T T) → a a a. Drei Produktionen: T→a, U→TT, C→TU. Jetzt für a^9: S → C C C. Aber S → C C C ist nicht in CNF, da drei Symbole. Muss binär sein. Also S → A B, wobei A und B Nichtterminale. Z.B. S → A B, A → C C, B → C. Dann A erzeugt C C → a^3 a^3 = a^6, B erzeugt a^3, also S → A B erzeugt a^6 a^3 = a^9. Für a^{12}: S → C C C C, aber wieder nicht binär. Also für a^{12}: S → X Y, X → C C, Y → C C, dann X erzeugt a^6, Y erzeugt a^6, S → X Y erzeugt a^{12}. Aber ich brauche zwei verschiedene S-Regeln? Nein, S muss beide Wörter erzeugen. Also muss S entweder zu a^9 oder a^{12} führen. Also S → P | Q, wobei P a^9 erzeugt, Q a^{12}. Aber in CNF, S → P und S → Q sind erlaubt, da P und Q Nichtterminale. Jetzt zähle ich die Produktionen. Zuerst, für C, das a^3 erzeugt: wie oben, drei Produktionen: T→a, U→TT, C→TU. Für P, das a^9 erzeugt: P → A B, A → C C, B → C. A → C C ist eine Produktion, B → C ist eine, aber B → C ist in CNF? CNF erlaubt A → B, wenn B ein Nichtterminal ist? Nein, in strikter CNF muss die rechte Seite entweder ein Terminal oder zwei Nichtterminale sein. A → B, wobei B ein Nichtterminal ist, ist nicht erlaubt, es sei denn, es ist eine Kettenregel, aber in reiner CNF sind solche Regeln verboten. Chomsky-Normalform: alle Regeln sind von der Form: - A → BC, wobei B,C Nichtterminale - A → a, wobei a Terminal Keine Kettenregeln (A → B) und keine Regeln mit mehr als zwei Symbolen. Also B → C ist nicht erlaubt. Daher muss ich für P → a^9 eine binäre Zerlegung machen. Zum Beispiel: P → R S, wobei R a^6 erzeugt, S a^3 erzeugt. Aber S ist schon Startsymbol, also andere Namen. P → X Y, X → a^6, Y → a^3. Aber Y → a^3, das haben wir schon als C, also Y ist C. X → a^6: X → C C, da C a^3 erzeugt. X → C C ist erlaubt. Also P → X Y, mit X → C C, Y → C. Aber wieder, Y → C ist nicht erlaubt. Problem: ich kann nicht Y → C schreiben, da Kettenregel. Also muss ich Y so definieren, dass es a^3 erzeugt, aber ohne auf C zu verweisen, oder ich muss C ersetzen. Da Y dasselbe wie C erzeugen soll, aber ich kann nicht einfach Y → C schreiben. Also muss ich Y separat definieren, oder ich verwende C für beides, aber dann brauche ich eine Regel, die P mit C verbindet. Alternative: definiere ein Nichtterminal für a^k. Für a^3: C wie oben: C → T U, U → T T, T → a. Drei Produktionen. Jetzt für a^6: ich kann D → C C haben. Das ist eine Produktion. D erzeugt a^6. Für a^9: E → D C. E → D C, dann E erzeugt a^6 a^3 = a^9. Für a^{12}: F → D D, erzeugt a^{12}. Jetzt S → E | F. Produktionen: 1. T → a 2. U → T T 3. C → T U (erzeugt a^3) 4. D → C C (erzeugt a^6) 5. E → D C (erzeugt a^9) 6. F → D D (erzeugt a^{12}) 7. S → E 8. S → F Das sind 8 Produktionen, aber wir dürfen höchstens 6 haben. Zu viele. Ich kann einige teilen. Beachte, dass E und F ähnlich sind. S → E | F, aber ich könnte S direkt definieren. Zum Beispiel S → D G, aber was ist G. Oder ich definiere S → X Y, und X und Y für verschiedene Dinge. Aber ich brauche Flexibilität für beide Längen. Minimaler Weg: da 9 und 12, könnte ich ein gemeinsames Nichtterminal für ggT 3 haben. Definiere C für a^3, wie oben: 3 Produktionen. Dann für a^9: ich brauche drei C's. Um drei C's zu erzeugen, in CNF: S9 → C A, A → C C. Dann S9 erzeugt C A → C (C C) = drei C's, also a^9. Ebenso für a^{12}: S12 → B C, B → C C, C → C C? Nein. S12 → D D, wobei D → C C (a^6), also D → C C. Also: Für a^9: S9 → C A, A → C C Für a^{12}: S12 → D D, D → C C Dann S → S9 | S12 Produktionen: 1. T → a 2. U → T T 3. C → T U (a^3) 4. A → C C (A erzeugt a^6? A → C C, also a^6) Aber für S9: S9 → C A → C (C C) = drei C's, a^9, ja. 5. D → C C (a^6) 6. S12 → D D (a^{12}) 7. S9 → C A 8. S → S9 9. S → S12 Immer noch 9 Produktionen, zu viele. Beachte, dass A und D beide a^6 erzeugen. Also kann ich dasselbe Nichtterminal für a^6 verwenden. Definiere E für a^6: E → C C Dann für a^9: S9 → C E (da C a^3, E a^6, zusammen a^9) Für a^{12}: S12 → E E Dann S → S9 | S12 Produktionen: 1. T → a 2. U → T T 3. C → T U (a^3) 4. E → C C (a^6) 5. S9 → C E (a^9) 6. S12 → E E (a^{12}) 7. S → S9 8. S → S12 8 Produktionen, noch zu viele. Ich brauche nur 6. Wie kann ich reduzieren? Ich könnte auf T und U verzichten und C direkt definieren, aber in CNF muss ich schrittweise vorgehen. Für a^3: minimal zwei Produktionen? Nein, in CNF braucht man für ein Wort der Länge n mindestens n terminale Regeln und n-1 binäre, aber sie können geteilt werden. Für a^3: ich muss drei a's haben. Mit einer Regel A → a a a? Nicht erlaubt. Also mindestens zwei binäre Regeln. Z.B. A → B C, B → a, C → D, D → a? Aber C → D nicht erlaubt. B → a a? Nicht erlaubt. Also Standard: A → B C, B → a, C → a a, aber C → a a nicht erlaubt. Also A → B C, B → a, C → D E, D → a, E → a. Das sind vier Produktionen für a^3, zu viel. Besser: A → B B, B → a a? Nicht erlaubt. Die effizienteste Weise für a^k ist, einen binären Baum zu verwenden. Für k=3: A → B C, B → a, C → D E, D → a, E → a. Aber dann A erzeugt B C → a (D E) → a a a, mit Produktionen: B→a, D→a, E→a, C→DE, A→BC. Fünf Produktionen? Nein, die terminalen können geteilt werden. Wenn ich ein gemeinsames Terminal habe, kann ich T → a haben, und dann: C → T T? Aber C → T T ist erlaubt, da zwei Nichtterminale? T ist ein Nichtterminal, das zu a ableitet, aber in der Regel A → B C, B und C sind Nichtterminale, und wenn B → a, dann ist es ok. Für a^3: - T → a (terminal Regel) - U → T T (erzeugt aa) - C → T U (erzeugt a aa = a^3) Drei Produktionen: T→a, U→TT, C→TU. Das ist minimal, denke ich. Für a^6: E → C C, eine Produktion. Für a^9: S9 → C E, eine Produktion. Für a^{12}: S12 → E E, eine Produktion. S → S9 | S12, zwei Produktionen. Summe: 3 (für C) + 1 (E) + 1 (S9) + 1 (S12) + 2 (S-Regeln) = 8. Immer noch 8. Ich kann S9 und S12 eliminieren, indem ich S direkt mit den Teilen verbinde. Z.B. S → C E // für a^9 S → E E // für a^{12} Dann brauche ich keine S9 und S12. Produktionen: 1. T → a 2. U → T T // U erzeugt aa 3. C → T U // C erzeugt a^3 4. E → C C // E erzeugt a^6 5. S → C E // a^9 6. S → E E // a^{12} Das sind 6 Produktionen. Perfekt. Und es erzeugt nur a^9 und a^{12}, da C immer a^3, E a^6, und S nur diese beiden Optionen. Keine anderen Wörter, da keine Wahlmöglichkeiten. Also ja, es gibt eine solche Grammatik. In der Antwort: ich muss die Grammatik angeben. Laut Format: wenn ja, dann Grammatik angeben. Option id="1" für "Ja, Grammatik:", also 1, und id="2" für "Nein" 0. Dann im answer die Grammatik. ### Unteraufgabe c Frage: Sei L ⊆ {0,1}* eine beliebige kontextfreie und nicht reguläre Sprache. Welche Aussagen sind wahr? Optionen: 1. Es gibt eine unentscheidbare Sprache L' ⊆ L. 2. Jede Sprache L' ⊆ L ist entscheidbar. Ich muss prüfen, ob diese wahr sind. Zuerst: L ist kontextfrei und nicht regulär. Aussage 1: Es gibt eine unentscheidbare Sprache L' ⊆ L. Das heißt, ist jede Teilmenge von L entscheidbar? Oder gibt es eine unentscheidbare Teilmenge. Nach der Theorie: es gibt entscheidbare Sprachen, die unentscheidbare Teilmengen haben. Aber hier ist L kontextfrei. Kontextfreie Sprachen sind entscheidbar (da kontextfreie Sprachen entscheidbar sind), aber Teilmengen müssen nicht entscheidbar sein. Tatsächlich: jede unendliche Sprache hat unentscheidbare Teilmengen? Nein, es gibt entscheidbare Sprachen, deren Teilmengen alle entscheidbar sind, aber das ist selten. Satz: Eine Sprache L hat die Eigenschaft, dass jede Teilmenge entscheidbar ist, genau dann wenn L endlich ist. Wenn L endlich ist, dann ist jede Teilmenge endlich, also entscheidbar. Wenn L unendlich ist, dann gibt es eine unentscheidbare Teilmenge. Beweis: wenn L unendlich ist, dann ist L abzählbar unendlich. Die Menge aller Teilmengen von L ist überabzählbar, während die Menge der entscheidbaren Sprachen abzählbar ist (da es nur abzählbar viele Turingmaschinen gibt). Also gibt es überabzählbar viele Teilmengen, die nicht entscheidbar sind. Also für jede unendliche Sprache L, gibt es eine unentscheidbare Teilmenge L' ⊆ L. Nun, hier ist L kontextfrei und nicht regulär. Da nicht regulär, muss L unendlich sein (denn endliche Sprachen sind regulär). Also ist L unendlich. Daher gibt es eine unentscheidbare Teilmenge L' ⊆ L. Also ist Aussage 1 wahr. Aussage 2: Jede Sprache L' ⊆ L ist entscheidbar. Das ist falsch, da es unentscheidbare Teilmengen gibt. Also nur Aussage 1 ist wahr. In der Antwort: Option 1: 1 (wahr), Option 2: 0 (falsch). Begründung für Aussage 1. Zusammenfassung der Antworten: a: Option 1:0, 2:1, 3:0, Begründung für i=2. b: Option 1:1 (ja), Option 2:0, Grammatik: wie oben. c: Option 1:1, Option 2:0, Begründung für Aussage 1.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für $i=2$: Angenommen, $(L_2)^*$ sei regulär. Nach dem Pumping-Lemma für reguläre Sprachen existiert eine Pumping-Länge $p$. Betrachte das Wort $s = (a^p b^p)^p \in (L_2)^*$, das aus $p$ Blöcken $a^p b^p$ besteht. Es gilt $|s| = 2p^2 > p$. Sei $s = xyz$ mit $|xy| \leq p$, $|y| > 0$ und $xy^iz \in (L_2)^*$ für alle $i \geq 0$. Da $|xy| \leq p$ und die ersten $p$ Symbole $a$'s sind, liegt $y$ vollständig im ersten $a$-Block, d.h. $y = a^k$ für ein $k$ mit $1 \leq k \leq p$. Für $i=0$ erhält man $xy^0z = a^{p-k} b^p (a^p b^p)^{p-1}$. Dieses Wort muss als Konkatenation von Wörtern aus $L_2 = \{a^n b^n \mid n \in \mathbb{N}\}$ darstellbar sein. Der Präfix $a^{p-k} b^p$ hat jedoch mehr $b$'s als $a$'s ($p-k < p$), kann also nicht als $a^m b^m$ für ein $m$ geschrieben werden. Jeder Block in einer solchen Zerlegung müsste die Form $a^m b^m$ haben, aber nach einem eventuellen Block, der im Präfix beginnt, verbleibt ein Suffix, das mit $b$'s beginnt oder unvollständig ist, was keine gültige Konkatenation aus $L_2$ erlaubt. Somit ist $xy^0z \notin (L_2)^*$, Widerspruch. Daher ist $(L_2)^*$ nicht regulär. </answer> <option id="1">1</option> <option id="2">0</option> <answer id="3"> S -> C E S -> E E E -> C C C -> T U U -> T T T -> a </answer> <option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1: Da $L$ kontextfrei und nicht regulär ist, muss $L$ unendlich sein (denn alle endlichen Sprachen sind regulär). Für jede unendliche Sprache $L$ existiert eine unentscheidbare Teilmenge $L' \subseteq L$. Dies folgt aus der Überabzählbarkeit der Potenzmenge von $L$: Die Menge aller Teilmengen von $L$ ist überabzählbar, während die Menge der entscheidbaren Sprachen abzählbar ist (da es nur abzählbar viele Turingmaschinen gibt). Somit muss es überabzählbar viele unentscheidbare Teilmengen von $L$ geben. Insbesondere existiert also mindestens eine unentscheidbare Sprache $L' \subseteq L$. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1: Da kontextfrei und nicht regulär ist, muss unendlich sein (denn alle endlichen Sprachen sind regulär). Für jede unendliche Sprache existiert eine unentscheidbare Teilmenge . Dies folgt aus der Überabzählbarkeit der Potenzmenge von : Die Menge aller Teilmengen von ist überabzählbar, während die Menge der entscheidbaren Sprachen abzählbar ist (da es nur abzählbar viele Turingmaschinen gibt). Somit muss es überabzählbar viele unentscheidbare Teilmengen von geben. Insbesondere existiert also mindestens eine unentscheidbare Sprache .
google/gemini-2.5-pro
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
**Assessing Exam Question** I've just reviewed the question; it's a bonus question related to the regularity of Kleene star closures of languages. The core task is to identify at least one language, $L_i$, where its Kleene star closure, $(L_i)^*$, is not regular, then construct a formal proof. I need to analyze the provided options carefully to identify a suitable candidate, and then structure my proof accordingly. **Examining $L_2$ Closure** I'm now focused on $L_2 = \{a^n b^n : n \in \mathbb{N}\}$. The key is determining whether $(L_2)^*$ is regular. I've already considered some example strings within the closure. Recognizing that $L_2$ is context-free but not regular gives me a direction to explore: I think the closure also won't be regular. This will be proven by analyzing $(L_2)^*$. **Investigating Pumping Application** I'm currently focused on $(L_2)^*$, attempting to demonstrate its non-regularity. The initial application of the Pumping Lemma seems promising. I've successfully identified a potential violation by pumping down the string $a^p b^p$ and produced a string $a^{p-l}b^p$. Now, it needs a rigorous argument that proves the result is outside $(L_2)^*$, specifically detailing how this string cannot be constructed by concatenating strings from $L_2$. **Proving Non-Regularity** I've concluded that $L_1$ is regular, making its Kleene closure also regular, which is not what I need. Now, I've moved on to analyzing $L_2$. My current focus is on constructing a formal proof, showing that $(L_2)^*$ isn't regular using the Pumping Lemma for regular languages. **Verifying Closure Properties** I've now thoroughly analyzed $L_1$, concluding $(L_1)^*$ is regular. Next up, I looked into $L_2$, where I've formalized a Pumping Lemma proof to establish that $(L_2)^*$ is demonstrably not regular. With this confirmed, the question's requirements are met. I've decided to skip $L_3$ as I have already found an answer. **Evaluating $L_3$** I'm now analyzing $L_3 = \{a^n b^m : n, m \in \mathbb{N} \land n \ne m\}$. While $L_2$ proved sufficient, I'm pursuing its non-regularity proof using a Pumping Lemma application, to refine my answer. I'm trying to construct a suitable string, pump it, and generate a string not within $L_3$ to complete the proof. **Probing Language $L_3$** I'm exploring the properties of language $L_3$ and its Kleene closure. After proving that $(L_2)^*$ isn't regular, I am attempting to derive a similar proof for $(L_3)^*$. My strategy now involves choosing a suitable string within $L_3$, applying the Pumping Lemma and finding a resulting pumped string that violates $L_3$'s conditions, which I expect to show will not be regular. **Synthesizing Proofs** I've formally proven that $(L_2)^*$ is not regular using the Pumping Lemma. I also applied the same method and confirmed that $(L_3)^*$ appears non-regular. I am now confident in my answer: The correct answers must contain $L_2$ and possibly $L_3$. **Revisiting Language Closures** I'm further refining the approach, now incorporating insights from $L_3$. After proving that $L_2$ is not regular, I am now formulating a comprehensive proof to establish $(L_3)^*$ is not regular, focusing on how a suitable application of the Pumping Lemma for regular languages confirms the non-regularity of the Kleene closure of this language. **Finalizing Non-Regularity Proofs** I've thoroughly investigated $L_2$ and its closure, confirming it's non-regular via Pumping Lemma application. I have also examined $L_3$ with the same technique. The conclusions are clear. With my answers now proven, I'm confident. I now know which languages and their closures are non-regular, as requested by the exam question. **Finalizing Language Analysis** I've now examined the non-regularity of both $(L_2)^*$ and $(L_3)^*$, using a Pumping Lemma approach. This proof process has enabled me to determine that the Kleene closures of $L_2$ and $L_3$ are not regular. With these conclusions, I can confidently select the languages. **Probing Closure Non-Regularity** I've established that $(L_2)^*$ is not regular. Now, I've decided to shift focus to $L_3$ and its closure, attempting a formal proof using the Pumping Lemma. I'm developing a strategy and selecting a string from $L_3$, to demonstrate its non-regularity. I anticipate that $(L_3)^*$ will also be non-regular. **Confirming Proofs** I'm now going to use the Pumping Lemma on the language $L_3$ to prove its non-regularity, similar to how I treated $L_2$. My goal is to build a robust argument for the non-regularity of the Kleene closure of the language $L_3$ and solidify my answer. **Finalizing $L_3$ Closure Analysis** I've formalized a Pumping Lemma proof that demonstrates $(L_3)^*$ isn't regular, mirroring my earlier work on $L_2$. Now I have proven that the Kleene closures of $L_2$ and $L_3$ are not regular languages, and can confidently choose both languages. **Proving $L_3$ Closure** I'm working on demonstrating the non-regularity of $(L_3)^*$. Leveraging the insights from my analysis of $L_2$, I'm applying the Pumping Lemma to the language $L_3$, carefully constructing a potential pumping violation, and generating a contradiction, which I expect will show that $(L_3)^*$ is non-regular. **Finalizing Closure Properties** I've now demonstrated the non-regularity of both $(L_2)^*$ and $(L_3)^*$, using a Pumping Lemma approach. The proofs are now formalized and verified. The exam question requirements are met. **Finalizing $L_3$ Properties** I've analyzed the structure of strings in $(L_3)^*$ and I've confirmed that $L_2$, which is known to be not regular, is in the closure. Considering this, I'm formulating a Pumping Lemma argument to show that $(L_3)^*$ is not regular. I'm working through the implications. **Finalizing $L_3$ Properties** I've finalized analyzing $L_3$ and found a viable Pumping Lemma proof for it. I'm now building a Pumping Lemma-based argument that demonstrates $(L_3)^*$ is not regular. My aim is to fully show the non-regularity of this Kleene closure. **Finalizing $L_3$ Proof** I've concluded, following the same strategy used for $L_2$, to formalize the Pumping Lemma proof showing $(L_3)^*$ is non-regular. Now I'm ready to select the languages as $L_2$ and $L_3$ and their respective closures. **Forming Non-Regularity Proof** I've now formally proved that $(L_2)^*$ isn't regular. After my exploration, I am now building an argument to establish that the Kleene closure, $(L_3)^*$, is also non-regular using the Pumping Lemma. **Confirming $L_3$ Properties** I'm analyzing how to formalize a proof, showing $(L_3)^*$ isn't regular using the Pumping Lemma. The central idea is to show a suitable pumping violation. This appears to be a promising direction for $L_3$'s closure. **Proving $L_3$ Properties** I'm analyzing how to formalize a proof, showing $(L_3)^*$ isn't regular using the Pumping Lemma. After solidifying my conclusions regarding the closure properties of $L_2$, I'm seeking to demonstrate how a similar strategy can be successfully applied, to prove the non-regularity of $(L_3)^*$. **Finalizing Proof Construction** I'm now finalizing my proof to formally demonstrate that $(L_3)^*$'s closure is not regular, mirroring my work with $L_2$. This will fully answer the exam question. **Proving $L_3$ is Complex** I'm continuing to analyze $L_3$, aiming to prove its Kleene star is not regular, using the Pumping Lemma as my primary method. My current goal is to construct a formal proof, similar to how I approached the $L_2$ closure's analysis, and find a string that will violate the pumping property. **Proving $L_3$ Properties** I'm currently revisiting the $L_3$ closure. I previously believed it was non-regular, and now I need to refine this. Now I am trying a new angle, and am testing whether the Pumping Lemma still applies to its properties. **Finalizing Exam Analysis** I've completed the exam analysis. $L_2$ is confirmed not to be regular after applying the Pumping Lemma. The other languages' closures are regular. I am confident with the conclusions, and the exam is now complete. **Confirming Non-Regularity Proof** I'm now set on delivering a concise and robust demonstration. My focus is currently on refining my application of the Pumping Lemma, specifically to show that $L_2$ isn't regular and explain why. I'm going to provide that argument in detail. **Justifying Closure's Non-Regularity** I've analyzed the given languages, and focused on proving the non-regularity of $(L_2)^*$, which is achieved via a Pumping Lemma proof, and then formalizing this. **Finalizing Exam Solution** I've reviewed all the languages and proven that the closure of $L_2$ is not regular. The Pumping Lemma confirms this. Now, I will clearly state my answer to ensure a perfect score. **Formulating Final Response** I'm now generating my final answer based on the problem requirements. Specifically, I'm set to apply the Pumping Lemma for regular languages to prove the non-regularity of $(L_2)^*$, then express it in a concise format as an answer. **Formulating Final Solution** I've reviewed the exam question and language properties once again. I'm now ready to definitively answer the exam question by selecting $L_2$ and then composing the formal Pumping Lemma proof for its non-regularity.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für $i=2$: Wir beweisen mittels des Pumping-Lemmas für reguläre Sprachen, dass $(L_2)^*$ nicht regulär ist. Sei $L := (L_2)^* = (\{a^n b^n : n \in \mathbb{N}\})^*$. Annahme: $L$ ist eine reguläre Sprache. Sei $p$ die Pumping-Länge gemäß dem Pumping-Lemma. Wir wählen das Wort $w := a^p b^p$. Da $w \in L_2$ und per Definition $L_2 \subseteq L$, ist auch $w \in L$. Weiterhin gilt $|w| = 2p \ge p$. Nach dem Pumping-Lemma kann $w$ in drei Teile $x, y, z$ zerlegt werden, d.h. $w=xyz$, sodass die folgenden Bedingungen erfüllt sind: 1. $|xy| \le p$ 2. $|y| \ge 1$ 3. Für alle $i \ge 0$ gilt $xy^iz \in L$. Aufgrund der Bedingung $|xy| \le p$ und der Struktur von $w = a^p b^p$ muss der Teilstring $y$ ausschließlich aus dem Symbol 'a' bestehen. Es gilt also $y = a^k$ für eine ganze Zahl $k \ge 1$ (wegen $|y| \ge 1$). Wir betrachten nun das "herausgepumpte" Wort für $i=0$, also $w' = xy^0z = xz$. Dieses Wort hat die Form $a^{p-k}b^p$. Laut Pumping-Lemma muss $w' \in L$ gelten. Ein Wort liegt in $L=(L_2)^*$, wenn es eine Konkatenation von Wörtern aus $L_2 = \{\varepsilon, ab, aabb, \dots\}$ ist. Jedes nicht-leere Wort in $L_2$ hat die Form $a^n b^n$ für $n \ge 1$. Die Konkatenation von zwei oder mehr nicht-leeren Wörtern aus $L_2$ (z.B. $(a^{n_1}b^{n_1})(a^{n_2}b^{n_2})$ mit $n_1, n_2 \ge 1$) enthält zwingend den Teilstring "ba". Das Wort $w' = a^{p-k}b^p$ enthält jedoch kein "ba". Damit $w'$ in $L$ liegen kann, muss es entweder das leere Wort sein (was nicht der Fall ist, da $p \ge 1$) oder selbst ein Element von $L_2$ sein. Damit $w' = a^{p-k}b^p$ in $L_2$ liegt, muss die Anzahl der 'a's gleich der Anzahl der 'b's sein. Es muss also $p-k = p$ gelten. Dies impliziert $k=0$. Dies steht jedoch im Widerspruch zur Bedingung $|y| = k \ge 1$ des Pumping-Lemmas. Somit führt die Annahme, dass $(L_2)^*$ regulär ist, zu einem Widerspruch. Folglich ist $(L_2)^*$ nicht regulär. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☐
Begründung für : Wir beweisen mittels des Pumping-Lemmas für reguläre Sprachen, dass nicht regulär ist. Sei . Annahme: ist eine reguläre Sprache. Sei die Pumping-Länge gemäß dem Pumping-Lemma. Wir wählen das Wort . Da und per Definition , ist auch . Weiterhin gilt . Nach dem Pumping-Lemma kann in drei Teile zerlegt werden, d.h. , sodass die folgenden Bedingungen erfüllt sind: 1. 2. 3. Für alle gilt . Aufgrund der Bedingung und der Struktur von muss der Teilstring ausschließlich aus dem Symbol 'a' bestehen. Es gilt also für eine ganze Zahl (wegen ). Wir betrachten nun das "herausgepumpte" Wort für , also . Dieses Wort hat die Form . Laut Pumping-Lemma muss gelten. Ein Wort liegt in , wenn es eine Konkatenation von Wörtern aus ist. Jedes nicht-leere Wort in hat die Form für . Die Konkatenation von zwei oder mehr nicht-leeren Wörtern aus (z.B. mit ) enthält zwingend den Teilstring "ba". Das Wort enthält jedoch kein "ba". Damit in liegen kann, muss es entweder das leere Wort sein (was nicht der Fall ist, da ) oder selbst ein Element von sein. Damit in liegt, muss die Anzahl der 'a's gleich der Anzahl der 'b's sein. Es muss also gelten. Dies impliziert . Dies steht jedoch im Widerspruch zur Bedingung des Pumping-Lemmas. Somit führt die Annahme, dass regulär ist, zu einem Widerspruch. Folglich ist nicht regulär.
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Wir beweisen mittels des Pumping-Lemmas für reguläre Sprachen, dass $(L_2)^*$ nicht regulär ist.
Sei $L := (L_2)^* = (\{a^n b^n : n \in \mathbb{N}\})^*$.
Annahme: $L$ ist eine reguläre Sprache. Sei $p$ die Pumping-Länge gemäß dem Pumping-Lemma.
Wir wählen das Wort $w := a^p b^p$.
Da $w \in L_2$ und per Definition $L_2 \subseteq L$, ist auch $w \in L$.
Weiterhin gilt $|w| = 2p \ge p$.
Nach dem Pumping-Lemma kann $w$ in drei Teile $x, y, z$ zerlegt werden, d.h. $w=xyz$, sodass die folgenden Bedingungen erfüllt sind:
1. $|xy| \le p$
2. $|y| \ge 1$
3. Für alle $i \ge 0$ gilt $xy^iz \in L$.
Aufgrund der Bedingung $|xy| \le p$ und der Struktur von $w = a^p b^p$ muss der Teilstring $y$ ausschließlich aus dem Symbol 'a' bestehen. Es gilt also $y = a^k$ für eine ganze Zahl $k \ge 1$ (wegen $|y| \ge 1$).
Wir betrachten nun das "herausgepumpte" Wort für $i=0$, also $w' = xy^0z = xz$.
Dieses Wort hat die Form $a^{p-k}b^p$.
Laut Pumping-Lemma muss $w' \in L$ gelten.
Ein Wort liegt in $L=(L_2)^*$, wenn es eine Konkatenation von Wörtern aus $L_2 = \{\varepsilon, ab, aabb, \dots\}$ ist. Jedes nicht-leere Wort in $L_2$ hat die Form $a^n b^n$ für $n \ge 1$. Die Konkatenation von zwei oder mehr nicht-leeren Wörtern aus $L_2$ (z.B. $(a^{n_1}b^{n_1})(a^{n_2}b^{n_2})$ mit $n_1, n_2 \ge 1$) enthält zwingend den Teilstring "ba".
Das Wort $w' = a^{p-k}b^p$ enthält jedoch kein "ba". Damit $w'$ in $L$ liegen kann, muss es entweder das leere Wort sein (was nicht der Fall ist, da $p \ge 1$) oder selbst ein Element von $L_2$ sein.
Damit $w' = a^{p-k}b^p$ in $L_2$ liegt, muss die Anzahl der 'a's gleich der Anzahl der 'b's sein. Es muss also $p-k = p$ gelten. Dies impliziert $k=0$.
Dies steht jedoch im Widerspruch zur Bedingung $|y| = k \ge 1$ des Pumping-Lemmas.
Somit führt die Annahme, dass $(L_2)^*$ regulär ist, zu einem Widerspruch. Folglich ist $(L_2)^*$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
**Investigating CNF Grammar** I'm examining the constraints of Chomsky Normal Form (CNF) grammars. Specifically, I'm pondering whether I can construct a CNF grammar for the language {a<sup>12</sup>, a<sup>9</sup>} using a maximum of six productions. This seems tricky, given the length requirements. I'm currently focused on the minimum productions needed. **Revising Production Counts** I'm now reframing the problem, considering the minimum number of productions required for $a^{12}$ and $a^9$ individually, then combining them. It's apparent that generating $a^{12}$ directly with CNF constraints necessitates multiple productions, probably more than the three I initially thought. Similarly, generating $a^9$ also has minimum requirements. The crux is finding the overlap to fit within the 6-production limit. **Evaluating Initial Production Strategy** I'm now breaking down the derivation trees for $a^{12}$ and $a^9$ individually. The constraint of CNF grammars means the number of productions directly impacts derivation depth. I'm recognizing that generating $a^9$ efficiently necessitates exploiting repeated doubling with intermediate non-terminals, but the initial approach of building up each substring separately proves unsustainable given the limited production count. Time to re-evaluate how to derive the target strings. **Refining Derivation Strategy** I'm now meticulously examining the possible derivation paths. Generating $a^{9}$ and $a^{12}$ simultaneously within the constraints of CNF grammars and the limited production count presents significant challenges. My focus is on finding a single shared component to efficiently combine the strings in fewer steps. It seems the core issue revolves around efficiently building the longer string, which requires a greater number of steps. **Concluding CNF Grammar Construction** I've successfully constructed a CNF grammar for the language {a<sup>12</sup>, a<sup>9</sup>} using six productions. I've validated the productions and the language they generate, confirming the constraints. The grammar leverages powers of two to efficiently generate longer strings, thus meeting the production limit. The focus now is on verifying the solution and writing the documentation. **Verifying the CNF Grammar** I'm now thoroughly examining the constructed grammar. I'm scrutinizing each production rule to ensure compliance with the CNF format. Furthermore, I am validating the language generated by this grammar against the target language {a<sup>12</sup>, a<sup>9</sup>}, confirming that the derived strings are precisely the desired ones and no others. **Evaluating Production Efficiency** I'm now assessing if my current grammar, within the CNF constraints, offers optimal production counts. I'm meticulously reviewing the structure, seeking any redundant steps in generating $a^9$ and $a^{12}$. The goal is to streamline the productions. It appears a bottom-up approach using power-of-two construction is the most economical given the limitations. **Optimizing Production Counts** I'm now revisiting the grammar with a focus on production efficiency. Although a six-production grammar was found, I'm investigating if the initial approach is optimal. Minimizing the steps required to construct $a^9$ and $a^{12}$ through repeated squaring seems unavoidable, but I am scrutinizing the variable combinations to ensure the lowest possible production count. **Constructing the Final Grammar** I'm now finalized the six-production CNF grammar. This includes the start symbol's productions, which generate $a^{12}$ and $a^{9}$ using a combination of rules. All the grammar rules are in the expected format, meeting all the criteria. **Reflecting on Production Counts** I'm now comparing the previously generated grammars. While the six-production solution is verified, I am aiming for a deeper understanding of production efficiency. Specifically, I am searching for hidden efficiencies and trying to identify any opportunities to reduce the overall count. I also think about the role of how the initial string lengths influence the number of productions. **Verifying the Grammar's Applicability** I'm now verifying the grammar against the provided example and ensuring it adheres to the instructions, especially the format for the answer, which seems critical. I'm making a final sweep to ensure perfect adherence to the prompt's details. **Assessing Production Optimization** I'm now reviewing the grammar to investigate potential production count reductions. Given the CNF restrictions, I'm carefully examining the derivation paths for both $a^9$ and $a^{12}$ to pinpoint any unnecessary steps. The binary expansion approach, with the grammar developed earlier, appears efficient, yet the ultimate goal is to verify if it's truly minimal within the established constraints. **Confirming Final Answer** I'm now re-evaluating the grammar's construction and confirming all the rules adhere to the CNF standard. I am also cross-checking for production count accuracy. Final validation of each production is underway, and I'm confident this version fulfills the given conditions. **Confirming Final Solution** I'm now compiling and verifying the finalized grammar against the requirements. Specifically, the six-production limit is my central focus. The grammar appears sound, and all rules are in the required CNF. I've validated the language generated by the grammar against the desired target. **Confirming Grammar's Correctness** I've reviewed the current grammar, confirming that it produces exactly $a^{12}$ and $a^9$ and no other strings, thus satisfying the initial language requirement. Also, I am double-checking the production count is precisely six. **Confirming Grammar Construction** I'm now convinced the six-production CNF grammar I constructed satisfies all requirements. Thorough validation confirms the correct strings are generated, and the constraints are met. I'm fully ready to finalize this solution. **Analyzing Grammar Construction** I'm now focused on generating the shortest strings directly. Instead of building larger values from scratch, I'm focusing on directly generating $a^9$ and $a^{12}$. The prior approaches involve generating substrings that are then combined, so direct generation may yield production reductions. Examining and eliminating redundant rules remains the challenge. **Reflecting on Production Counts** I'm now attempting to determine if a more economical CNF grammar can be constructed. While I've verified a six-production solution, I'm critically examining the derivation steps of each production to identify opportunities for optimization. The goal is to ensure that all possible strings are produced with the fewest productions possible, given the limitations. **Synthesizing Grammar Structure** I'm now structuring the core rules of the grammar to generate $a^9$ and $a^{12}$. The goal is to find a compact set of productions using binary representation to build the strings efficiently, with the constraint of having exactly 6 productions. The plan is to evaluate the efficiency. **Synthesizing Final Grammar** I'm now in the process of producing the definitive, six-production grammar. The challenge is to meet every constraint, ensuring the productions generate the targeted strings only. The structure of $a^9$ and $a^{12}$ generation is critical in optimizing the production count to the required minimum. **Reflecting on the Final Grammar** I've analyzed the constructed grammar, confirming its compliance with the specified CNF format and the correct language generation. The six-production count is verified, and I'm now satisfied with this solution. **Synthesizing Grammar Construction** I'm now considering the construction and format of my grammar. Given all prior analysis, my goal is to use the minimum productions. I will focus on building the necessary components (1 and 8) and combine them for the final solution. I will now synthesize my grammar. **Synthesizing Grammar Construction** I'm now meticulously constructing the final grammar, ensuring compliance with all the CNF requirements and the targeted language. Generating the strings $a^{9}$ and $a^{12}$ within a limited production count presents a significant challenge, so careful production selection is critical.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Ja, eine solche Grammatik $G = (V, \Sigma, R, S)$ existiert. Sei $\Sigma = \{a\}$ und $V = \{S, A, A_2, A_4, A_8\}$. Die Menge der Produktionen $R$ ist: $S \to A_8 A_4$ $S \to A_8 A$ $A_8 \to A_4 A_4$ $A_4 \to A_2 A_2$ $A_2 \to A A$ $A \to a$ Diese Grammatik hat 6 Produktionen und ist in Chomsky-Normalform, da jede Regel die Form $A \to BC$ oder $A \to a$ hat. Herleitung der Sprache $L(G)$: - $A$ leitet das Wort $a^1=a$ ab. - $A_2 \to AA$ leitet $a^1a^1 = a^2$ ab. - $A_4 \to A_2A_2$ leitet $a^2a^2 = a^4$ ab. - $A_8 \to A_4A_4$ leitet $a^4a^4 = a^8$ ab. - Die erste Startregel $S \to A_8A_4$ leitet $a^8a^4 = a^{12}$ ab. - Die zweite Startregel $S \to A_8A$ leitet $a^8a^1 = a^9$ ab. Somit ist die von der Grammatik erzeugte Sprache $L(G) = \{a^{12}, a^9\}$. </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☒Ja, Grammatik:☐Nein, Begründung:
Ja, eine solche Grammatik existiert. Sei und . Die Menge der Produktionen ist: Diese Grammatik hat 6 Produktionen und ist in Chomsky-Normalform, da jede Regel die Form oder hat. Herleitung der Sprache : - leitet das Wort ab. - leitet ab. - leitet ab. - leitet ab. - Die erste Startregel leitet ab. - Die zweite Startregel leitet ab. Somit ist die von der Grammatik erzeugte Sprache .
0: could not parse value Ja, eine solche Grammatik G = (V, \Sigma, R, S) existiert. Sei \Sigma = \{a\} und V = \{S, A, A_2, A_4, A_8\}. Die Menge der Produktionen R ist: S \to A_8 A_4 S \to A_8 A A_8 \to A_4 A_4 A_4 \to A_2 A_2 A_2 \to A A A \to a Diese Grammatik hat 6 Produktionen und ist in Chomsky-Normalform, da jede Regel die Form A \to BC oder A \to a hat. Herleitung der Sprache L(G): - A leitet das Wort a^1=a ab. - A_2 \to AA leitet a^1a^1 = a^2 ab. - A_4 \to A_2A_2 leitet a^2a^2 = a^4 ab. - A_8 \to A_4A_4 leitet a^4a^4 = a^8 ab. - Die erste Startregel S \to A_8A_4 leitet a^8a^4 = a^{12} ab. - Die zweite Startregel S \to A_8A leitet a^8a^1 = a^9 ab. Somit ist die von der Grammatik erzeugte Sprache L(G) = \{a^{12}, a^9\}. for type cfg
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Wir beweisen mittels des Pumping-Lemmas für reguläre Sprachen, dass $(L_2)^*$ nicht regulär ist.
Sei $L := (L_2)^* = (\{a^n b^n : n \in \mathbb{N}\})^*$.
Annahme: $L$ ist eine reguläre Sprache. Sei $p$ die Pumping-Länge gemäß dem Pumping-Lemma.
Wir wählen das Wort $w := a^p b^p$.
Da $w \in L_2$ und per Definition $L_2 \subseteq L$, ist auch $w \in L$.
Weiterhin gilt $|w| = 2p \ge p$.
Nach dem Pumping-Lemma kann $w$ in drei Teile $x, y, z$ zerlegt werden, d.h. $w=xyz$, sodass die folgenden Bedingungen erfüllt sind:
1. $|xy| \le p$
2. $|y| \ge 1$
3. Für alle $i \ge 0$ gilt $xy^iz \in L$.
Aufgrund der Bedingung $|xy| \le p$ und der Struktur von $w = a^p b^p$ muss der Teilstring $y$ ausschließlich aus dem Symbol 'a' bestehen. Es gilt also $y = a^k$ für eine ganze Zahl $k \ge 1$ (wegen $|y| \ge 1$).
Wir betrachten nun das "herausgepumpte" Wort für $i=0$, also $w' = xy^0z = xz$.
Dieses Wort hat die Form $a^{p-k}b^p$.
Laut Pumping-Lemma muss $w' \in L$ gelten.
Ein Wort liegt in $L=(L_2)^*$, wenn es eine Konkatenation von Wörtern aus $L_2 = \{\varepsilon, ab, aabb, \dots\}$ ist. Jedes nicht-leere Wort in $L_2$ hat die Form $a^n b^n$ für $n \ge 1$. Die Konkatenation von zwei oder mehr nicht-leeren Wörtern aus $L_2$ (z.B. $(a^{n_1}b^{n_1})(a^{n_2}b^{n_2})$ mit $n_1, n_2 \ge 1$) enthält zwingend den Teilstring "ba".
Das Wort $w' = a^{p-k}b^p$ enthält jedoch kein "ba". Damit $w'$ in $L$ liegen kann, muss es entweder das leere Wort sein (was nicht der Fall ist, da $p \ge 1$) oder selbst ein Element von $L_2$ sein.
Damit $w' = a^{p-k}b^p$ in $L_2$ liegt, muss die Anzahl der 'a's gleich der Anzahl der 'b's sein. Es muss also $p-k = p$ gelten. Dies impliziert $k=0$.
Dies steht jedoch im Widerspruch zur Bedingung $|y| = k \ge 1$ des Pumping-Lemmas.
Somit führt die Annahme, dass $(L_2)^*$ regulär ist, zu einem Widerspruch. Folglich ist $(L_2)^*$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
Ja, eine solche Grammatik $G = (V, \Sigma, R, S)$ existiert.
Sei $\Sigma = \{a\}$ und $V = \{S, A, A_2, A_4, A_8\}$.
Die Menge der Produktionen $R$ ist:
$S \to A_8 A_4$
$S \to A_8 A$
$A_8 \to A_4 A_4$
$A_4 \to A_2 A_2$
$A_2 \to A A$
$A \to a$
Diese Grammatik hat 6 Produktionen und ist in Chomsky-Normalform, da jede Regel die Form $A \to BC$ oder $A \to a$ hat.
Herleitung der Sprache $L(G)$:
- $A$ leitet das Wort $a^1=a$ ab.
- $A_2 \to AA$ leitet $a^1a^1 = a^2$ ab.
- $A_4 \to A_2A_2$ leitet $a^2a^2 = a^4$ ab.
- $A_8 \to A_4A_4$ leitet $a^4a^4 = a^8$ ab.
- Die erste Startregel $S \to A_8A_4$ leitet $a^8a^4 = a^{12}$ ab.
- Die zweite Startregel $S \to A_8A$ leitet $a^8a^1 = a^9$ ab.
Somit ist die von der Grammatik erzeugte Sprache $L(G) = \{a^{12}, a^9\}$.
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
**Assessing Decidability** I'm currently breaking down the implications of $L$ being context-free but non-regular. My focus is on the decidability aspects, specifically regarding subsets of $L$. The challenge now is to find a set of statements that reflect truth values for various properties of $L$. **Examining Subsets** I'm now constructing an argument based on the infinite nature of $L$ and the countability of decidable languages. I am proceeding with an analysis of subsets, specifically the relationship between $L$, its subsets, and decidability. I am close to proving that some subsets of $L$ can, indeed, be undecidable. **Confirming Undecidability** Building on my earlier cardinality argument, I've formalized the proof for statement 1. The uncountability of $L$'s power set, and the countability of decidable languages allows me to confirm the existence of an undecidable subset $L' \subseteq L$. I am satisfied. **Refining Justification** I've now formalized the proof for statement 1. My argument rests on cardinality: the power set of $L$ is uncountable, while the set of decidable languages is countable. Therefore, an undecidable subset of $L$ must exist. I am preparing my response for a justification. **Evaluating Statements** I'm now focusing on the final step: formalizing the justification for the true statement, which I've identified as statement 1, and demonstrating the falsity of the second statement. My approach centers on the cardinality arguments, emphasizing the uncountable nature of subsets versus the countable nature of decidable languages. **Formalizing the Proof** I'm now outlining the formal proof using set theory and cardinality. I have a clear path, leveraging the properties of countable and uncountable sets to prove statement 1. The core of the justification relies on the existence of an uncountable power set of L and the countability of decidable languages. **Concluding The Analysis** I've successfully proven the truth of statement 1 using both a cardinality argument and a reduction from the halting problem, providing a strong justification. I have also rejected the second statement. My confidence in the final answer is now very high. **Concluding Analysis** I've successfully completed the analysis. I've correctly identified statement 1 as true, and statement 2 as false. My justification relies on a cardinality argument, proving the existence of an undecidable subset of $L$, which is a non-regular, context-free language. I am ready to provide the final justification. **Concluding the Proof** I've finished the analysis. I've solidified the proof by using the concept of countability versus uncountability for the subsets. I'm ready to finalize my response and produce the formal justification, specifically for statement 1. **Reflecting on Justification** I'm now meticulously crafting the final justification, based on the cardinality argument, to support the truth of the first statement. The focus is on clarity and precision, ensuring the response is easily understood and logically sound.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1: Eine Sprache $L$ ist genau dann regulär, wenn sie von einem endlichen Automaten akzeptiert wird. Jede endliche Sprache ist regulär, da man für sie einen endlichen Automaten konstruieren kann, der genau die (endlich vielen) Wörter der Sprache akzeptiert. Da die gegebene Sprache $L$ als **nicht regulär** vorausgesetzt wird, muss sie unendlich viele Wörter enthalten. Da $L \subseteq \{0,1\}^*$ gilt und $\{0,1\}^*$ eine abzählbar unendliche Menge ist, ist auch $L$ eine abzählbar unendliche Menge. Betrachten wir nun die Menge aller Teilmengen von $L$, also die Potenzmenge $\mathcal{P}(L)$. Nach dem Satz von Cantor ist die Potenzmenge einer abzählbar unendlichen Menge überabzählbar unendlich. Es gibt also überabzählbar viele verschiedene Sprachen $L'$, die Teilmengen von $L$ sind. Andererseits ist die Menge aller **entscheidbaren** Sprachen über dem Alphabet $\{0,1\}^*$ nur abzählbar unendlich. Das liegt daran, dass jede entscheidbare Sprache durch eine Turing-Maschine (die immer hält) entschieden wird. Die Menge aller Turing-Maschinen ist abzählbar, da jede Turing-Maschine als endlicher String kodiert werden kann. Wir haben also eine überabzählbare Menge von Teilmengen von $L$, aber nur eine abzählbare Menge von entscheidbaren Sprachen. Selbst wenn jede entscheidbare Sprache eine Teilmenge von $L$ wäre (was nicht der Fall ist), gäbe es immer noch nicht "genug" entscheidbare Sprachen, um alle Teilmengen von $L$ abzudecken. Daraus folgt zwingend, dass es Teilmengen $L' \subseteq L$ geben muss, die nicht entscheidbar sind. Gäbe es keine solche unentscheidbare Teilmenge, wären alle Teilmengen von $L$ entscheidbar. Dann wäre die überabzählbare Menge $\mathcal{P}(L)$ eine Teilmenge der abzählbaren Menge der entscheidbaren Sprachen, was ein Widerspruch ist. Somit ist die Existenz einer unentscheidbaren Sprache $L' \subseteq L$ bewiesen. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1: Eine Sprache ist genau dann regulär, wenn sie von einem endlichen Automaten akzeptiert wird. Jede endliche Sprache ist regulär, da man für sie einen endlichen Automaten konstruieren kann, der genau die (endlich vielen) Wörter der Sprache akzeptiert. Da die gegebene Sprache als nicht regulär vorausgesetzt wird, muss sie unendlich viele Wörter enthalten. Da gilt und eine abzählbar unendliche Menge ist, ist auch eine abzählbar unendliche Menge. Betrachten wir nun die Menge aller Teilmengen von , also die Potenzmenge . Nach dem Satz von Cantor ist die Potenzmenge einer abzählbar unendlichen Menge überabzählbar unendlich. Es gibt also überabzählbar viele verschiedene Sprachen , die Teilmengen von sind. Andererseits ist die Menge aller entscheidbaren Sprachen über dem Alphabet nur abzählbar unendlich. Das liegt daran, dass jede entscheidbare Sprache durch eine Turing-Maschine (die immer hält) entschieden wird. Die Menge aller Turing-Maschinen ist abzählbar, da jede Turing-Maschine als endlicher String kodiert werden kann. Wir haben also eine überabzählbare Menge von Teilmengen von , aber nur eine abzählbare Menge von entscheidbaren Sprachen. Selbst wenn jede entscheidbare Sprache eine Teilmenge von wäre (was nicht der Fall ist), gäbe es immer noch nicht "genug" entscheidbare Sprachen, um alle Teilmengen von abzudecken. Daraus folgt zwingend, dass es Teilmengen geben muss, die nicht entscheidbar sind. Gäbe es keine solche unentscheidbare Teilmenge, wären alle Teilmengen von entscheidbar. Dann wäre die überabzählbare Menge eine Teilmenge der abzählbaren Menge der entscheidbaren Sprachen, was ein Widerspruch ist. Somit ist die Existenz einer unentscheidbaren Sprache bewiesen.
openai/gpt-5
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
**Identifying non-regular languages** I need to determine which L_i star isn't regular. For the domain Sigma {a,b}, let's consider the properties. L1 is the set {(ab)^n: n in N}, which is regular since it matches (ab)^*. L2, however, is {a^n b^n: n in N}, known to be non-regular. I need to consider (L2)^*, which might lead to concatenations of a^n b^n blocks. Okay, this is an essential distinction to make, and I'm thinking through how these properties work together.**Exploring language properties** I’m considering that words are sequences composed of blocks like a^k b^k. The resulting combinations resemble a^{n1} b^{n1} a^{n2} b^{n2} ... a^{nk} b^{nk}. This kind of structure seems non-regular. I’ve seen claims that (a^n b^n)^* isn’t context-free. Actually, I recall it being definitive that (a^n b^n)^* isn’t context-free, known from Ogden's lemma. But I feel uncertain—maybe it’s context-free? I need to carefully verify these properties while keeping in mind the closure properties regarding languages.**Analyzing the grammar** I’m looking at a grammar defined as S -> SS | a S b | epsilon. This generates balanced numbers of a's and b's, but I need to check if it produces a^n b^n concatenations. Starting from epsilon, the production a S b will create strings like a^k b^k, where S in the middle generates balanced pairs. The rule S -> SS allows concatenation, leading to a language where the count of a's matches b's, and all prefixes have at least as many a's as b's. It’s interesting to connect this to Dyck words as well, involving balanced parentheses!**Comparing language properties** I’m realizing that (a^n b^n)^* isn’t the same as the grammar I’ve been analyzing. For instance, "ab ab" becomes "abab," and both belong to the language, while "aabb" fits L2 when n=2. Now, "aabbab" has the pattern a^2 b^2 a b. It is part of the star, and checking its prefixes shows that it maintains the property of having #a ≥ #b at every step. It seems to fit the balanced parentheses criteria. But looking at "abaabb," I see it forms "ab" and "aabb," so it also respects the prefix property. This is interesting!**Exploring balanced languages** I’m analyzing how any concatenation of a^n b^n blocks maintains the property that b's never exceed a's in any prefix. Each block starts with all a's followed by b's, so the accumulation doesn’t allow b's to surpass a's. I'm examining examples like "abba," and trying to determine if specific patterns fit the Dyck language model. It's intriguing that some balanced strings can be partitioned into a^n b^n formats, while others can't. Looking at L3, defined as {a^n b^m: n, m in N and n ≠ m}, seems to lead to more interesting considerations on regularity. I’ll need to further prove non-regularity in this case!**Analyzing L3's Regularity** I'm considering the language defined as all strings a^n b^m except where n equals m, alongside the inclusion of epsilon. This brings up the question of whether L3 is regular. Since it needs to handle count inequalities, I suspect L3 isn't regular. The intersection with a^* b^* demonstrates that if L3 were regular, it would contradict established results around non-regular languages. I can provide reasoning for i=2, which should be concise and adhere to format: L2's intersection with a^* b^* yields L2, showcasing its non-regularity. Sounds good!
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für $i=2$: Betrachte $R := a^*b^*$ regulär. Dann gilt $(L_2)^* \cap R = \{(a^{n_1}b^{n_1})\cdots(a^{n_k}b^{n_k}) : k\ge 0\} \cap a^*b^* = \{a^n b^n : n\in\mathbb{N}\} = L_2$, denn jede Konkatenation von mindestens zwei Blöcken erzeugt ein Vorkommen von „ba“ und liegt somit nicht in $a^*b^*$. Wäre $(L_2)^*$ regulär, so wäre wegen Abschluss unter Schnitt auch $L_2$ regulär — Widerspruch. Also ist $(L_2)^*$ nicht regulär. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☐
Begründung für : Betrachte regulär. Dann gilt , denn jede Konkatenation von mindestens zwei Blöcken erzeugt ein Vorkommen von „ba“ und liegt somit nicht in . Wäre regulär, so wäre wegen Abschluss unter Schnitt auch regulär — Widerspruch. Also ist nicht regulär.
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Betrachte $R := a^*b^*$ regulär. Dann gilt
$(L_2)^* \cap R = \{(a^{n_1}b^{n_1})\cdots(a^{n_k}b^{n_k}) : k\ge 0\} \cap a^*b^* = \{a^n b^n : n\in\mathbb{N}\} = L_2$,
denn jede Konkatenation von mindestens zwei Blöcken erzeugt ein Vorkommen von „ba“ und liegt somit nicht in $a^*b^*$. Wäre $(L_2)^*$ regulär, so wäre wegen Abschluss unter Schnitt auch $L_2$ regulär — Widerspruch. Also ist $(L_2)^*$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
**Examining leaves in a grammar** I’m considering the number of leaves, n, which can actually be any positive integer in CNF since you can construct a binary tree with that many leaves. However, there’s a key property: for a fixed grammar, the set of lengths is defined by combinations of cycle productions. I need to see if I can limit this to exactly two lengths, 9 and 12, using at most 6 productions, focusing on designing a grammar that can generate a^9 and a^12.**Exploring nonterminal expansions** I’m thinking about a standard technique using nonterminals that generate fixed numbers of a's, like A9 for a^9 and A3 for a^3. The start symbol S can choose between A9 and A12, but CNF prohibits unit productions like S->A, except for S->ε. To manage choices, I can introduce S->BC pairs, where B and C yield specific counts that sum up correctly. However, I need to avoid unit productions, and only S can handle ε, which can't be derived elsewhere. So, no empty productions are allowed here!**Constructing binary expansions** I'm considering how each binary expansion contributes at least 2 leaves, and I need to create a CNF grammar that derives exactly two strings. This seems feasible! One method is using a base generator like T -> a to produce leaves. I can define X -> T T to yield 2 leaves. However, CNF requires that right-hand sides consist of only variables, which means I can't directly use terminals there. My goal is to associate nonterminals with specific numbers of leaves while maintaining a structure like a full binary tree.**Building nonterminal structures** I'm exploring the structure where A3 expands to T A2, which fits the A->BC form with both as nonterminals. This gives a leaf count of 3, but we need T to produce an actual terminal leaf (T -> a). I'm considering the rules for composing these counts, ensuring A->BC gives the correct total by summing leaves. I'm thinking of defining A1 for 1 leaf, but since unit productions aren't allowed, I can use T to represent one leaf instead. So ultimately, I can define A1 as simply producing a terminal leaf, which is allowed.**Designing a grammar with fixed leaf counts** I'm considering how we might need multiple leaf producers and if it's okay to reuse nonterminals. In CNF, having productions like A->a and A->BC is permitted, allowing me to generate a variable number of leaves. I think the simplest option is to use a dedicated nonterminal like 'A' with A->a and define others to create fixed sizes of leaves. S needs to produce either 9 or 12, and it can't use unit productions. I could create binary productions like S -> B C, but I need to be mindful of the total number of allowed productions, which must remain under 6. So I’ll define nonterminals systematically, ensuring I can generate the desired counts while keeping the language finite and manageable.**Constructing a minimal grammar** I’m planning to create a grammar with a limited number of productions, ideally up to six, including both options for S and the leaf rule. The goal is to derive exactly 9 and 12 leaves using binary decomposition. However, both rules can't derive contradictory lengths. I realize that I need a strategy where each nonterminal has a deterministic production. By defining specific nonterminals and their relationships—like A producing one leaf and others building on that—I can achieve the required lengths. I think I can set it up as follows: A->a, B->AA, C->AB, D->CC, and finally S->CD and S->DD to derive the total desired lengths. This construction fits well within the CNF guidelines.**Finalizing the grammar** I've determined that my grammar defines strings in the form a^k, specifically L = {a^9, a^12}, so it meets the requirements. As for CNF, it looks like I don't have to worry about the start symbol appearing on the right side of any production in this case. I’ll present the grammar with six separate productions: ``` S -> C D S -> D D D -> C C C -> A B B -> A A A -> a ``` The options will be option id="1" for yes and option id="2" for 0 since the grammar is valid.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> S -> C D S -> D D D -> C C C -> A B B -> A A A -> a </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☒Ja, Grammatik:☐Nein, Begründung:
S -> C D S -> D D D -> C C C -> A B B -> A A A -> a
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Betrachte $R := a^*b^*$ regulär. Dann gilt
$(L_2)^* \cap R = \{(a^{n_1}b^{n_1})\cdots(a^{n_k}b^{n_k}) : k\ge 0\} \cap a^*b^* = \{a^n b^n : n\in\mathbb{N}\} = L_2$,
denn jede Konkatenation von mindestens zwei Blöcken erzeugt ein Vorkommen von „ba“ und liegt somit nicht in $a^*b^*$. Wäre $(L_2)^*$ regulär, so wäre wegen Abschluss unter Schnitt auch $L_2$ regulär — Widerspruch. Also ist $(L_2)^*$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
S -> C D
S -> D D
D -> C C
C -> A B
B -> A A
A -> a
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
**Evaluating language properties** I'm tackling subproblem c, focusing on a language L that is context-free and non-regular. I need to determine which statements about it are true. There's a mix of options: one claims there's an undecidable language L' within L, and another states that every subset L' is decidable. It gets tricky—while context-free languages are decidable, a subset of a decidable set can still be undecidable. This could mean that L' membership might not be decidable either. I'll need to analyze this further.**Exploring undecidable subsets** I'm examining the idea that there can be undecidable subsets within a decidable set. It's a classic result that shows this is possible for natural numbers and any infinite set. I realize that any subset of natural numbers can be undecidable; it's about the property of the set itself. So, just because it's included in a decidable set doesn’t mean it’s decidable. If L is infinite, I can create a subset from it and establish a bijection to show undecidability. Interesting, right?**Understanding undecidability in subsets** I'm reasoning through why L' is undecidable. If it were decidable, I'd be able to decide U by mapping elements with a computable bijection, which requires computability. However, the important point is that undecidability exists even without such reductions. Undecidability can be shown by proving that no Turing machine can decide L'. Since L is countably infinite, any power set P(L) becomes uncountable, and there are only countably many Turing machines. Hence, many subsets of L are undecidable, which is a classic result!**Clarifying the properties of L** To be precise, if L is infinite, there must be undecidable subsets of L. But if L were finite, it would contradict the fact that finite languages are regular, meaning L must be infinite. So, option 1 is true: there exists an undecidable language L' within L. On the other hand, option 2, stating every subset of L is decidable, is false. To justify this, I could use a cardinality argument or show that since L is infinite and {0,1}* is countable, at least one subset must be undecidable. It's an interesting connection!**Crafting a formal answer** CFLs are computably enumerable, meaning I can enumerate L effectively. I know there's an undecidable subset U, like the complement of the halting set. The problem only asks me to assert existence rather than produce it. Using the uncountability argument is simpler. Since L is infinite, there are uncountably many subsets but only countably many Turing machines. Thus, some subsets must be undecidable. I’ll format the answer as requested: "Begründung für Aussage 1: L ist kontextfrei und nicht regulär, also unendlich. Die Menge aller Teilmengen von L hat die Kardinalität 2^{aleph_0}, unzählbar. Daher existiert eine unentscheidbare Teilmenge L'."
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1: Da $L$ kontextfrei, nicht regulär und damit unendlich ist, hat die Potenzmenge $\mathcal{P}(L)$ überabzählbar viele Elemente, während es nur abzählbar viele Turingmaschinen (und damit entscheidbare Sprachen) gibt. Also gibt es (sogar überabzählbar viele) unentscheidbare Teilmengen $L'\subseteq L$. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1: Da kontextfrei, nicht regulär und damit unendlich ist, hat die Potenzmenge überabzählbar viele Elemente, während es nur abzählbar viele Turingmaschinen (und damit entscheidbare Sprachen) gibt. Also gibt es (sogar überabzählbar viele) unentscheidbare Teilmengen .
openai/gpt-oss-120b
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
We need to answer which languages L_i have (L_i)^* not regular. Provide options 0/1 for each. Then provide answer with template id 4: "Begründung für $i=?$:" then multi-line explanation. We need to determine. L1 = {(ab)^n : n∈N}. This is language of strings "ab" repeated n times. That's regular. Its star is also regular (since L1 is already a regular language, star of a regular language is regular). Actually (L1)^* = strings of concatenations of (ab)^n blocks. That's essentially strings of a's and b's where each block is a^? Wait each block is (ab)^n, which itself is a^n b^n? No (ab)^n = "ab" repeated n times => a b a b ... length 2n, alternating. The star of that includes concatenations of such blocks, which yields strings of alternating a and b but possibly with runs of "ab" patterns. This is regular. So (L1)^* is regular. So option 1 is 0. L2 = {a^n b^n : n∈N}. This is classic non-regular language. Its star? (L2)^* = concatenations of strings a^{n1} b^{n1} a^{n2} b^{n2} ... . This yields strings where each a-block is followed by equal number of b's, but concatenated. This language is known to be non-regular as well? Let's think: (L2)^* includes strings where the number of a's before each b block may not match overall. For example, a^2 b^2 a^3 b^3 is in (L2)^*. This language is not regular because you can use pumping lemma? Actually (L2)^* = { a^{n1} b^{n1} a^{n2} b^{n2} ... a^{nk} b^{nk} : k≥0, each ni≥0 }. This is equivalent to the set of strings where the total number of a's equals total number of b's, and the string is of the form a^* b^* a^* b^* ... alternating blocks, but each a-block length equals the following b-block length. This is known to be non-regular (it is the "copy language" with concatenation). I think it's not regular. So option 2 is 1. L3 = {a^n b^m : n,m∈N and n≠m}. This language includes all strings a^n b^m where n and m differ. Its complement is {a^n b^n} which is non-regular. But L3 itself is regular? Let's see: L3 = (a^* b^*) \ {a^n b^n}. The set a^* b^* is regular. Removing a non-regular subset may produce non-regular? Actually complement of L3 within a^*b^* is {a^n b^n} which is non-regular, so L3 is not regular? Wait regular languages are closed under complement, so if L3 were regular, then its complement within a^*b^* (which is also regular) would be regular as intersection of complement with a^*b^*. But complement of L3 (within Σ*) is strings not of form a^n b^m with n≠m, i.e., either not of the form a^*b^* or n=m. That's more complex. However we can consider L3 = a^* b^* - {a^n b^n}. Since a^*b^* is regular, if we subtract a non-regular language, result may be non-regular. Indeed L3 is not regular because if it were, then intersect with a^*b^* would be regular, but that intersection is L3 itself (since L3 subset of a^*b^*). Then complement within a^*b^* would be {a^n b^n} which would be regular (since regular languages are closed under complement within a regular superset). But {a^n b^n} is known non-regular, contradiction. Therefore L3 is not regular. But the question asks about (L_i)^* not regular. For L3, (L3)^*? Since L3 already includes many strings, its star likely equals a^*b^*? Let's see: L3 contains strings a^n b^m where n≠m. By concatenating such strings, you can get any string of a's and b's? For example, to get a^k b^k (equal), you could concatenate a^{k}b^{k+1} then a^{0}b^{?} Not sure. Actually you cannot produce a^n b^n because each block has n≠m, but concatenation could produce overall equal numbers? Example: block1 a^2 b^3 (n=2,m=3) block2 a^3 b^2 (n=3,m=2) concatenation yields a^2 b^3 a^3 b^2 = a^{2} b^{3} a^{3} b^{2}. That's not of the form a^*b^*. So (L3)^* includes strings with interleaved a's and b's beyond a^*b^*. So likely (L3)^* is not regular as well. But we need to decide which (L_i)^* is not regular. L2 definitely. L3 maybe also not regular. Let's test: Could (L3)^* be regular? Since L3 is not regular, its star could be regular (e.g., L = {a^n b^n | n≥0} is non-regular, but L^* = (a^n b^n)^* = a^* b^*? Actually concatenating equal blocks yields strings of the form a^{n1} b^{n1} a^{n2} b^{n2} ... which is not a^*b^*. So not regular. So likely (L3)^* is not regular as well. But we need to pick at least one i. The question: "Für welche der folgenden Sprachen L_i, wobei i∈{1,2,3}, gilt, dass (L_i)^* nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches i und begründen Sie kurz, dass (L_i)^* nicht regulär ist." So we need to mark all that satisfy, and then choose one to justify. So we should set option 1 =0, option2=1, option3=1. Then provide justification for one i, say i=2. Provide explanation: using pumping lemma or closure properties. Let's craft answer.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">1</option> <answer id="4"> Begründung für $i=2$: \[ L_2 = \{a^n b^n \mid n\in\mathbb N\} \] ist die klassische Kopiersprache, die nicht regulär ist (Pumping‑Lemma). Für jedes Wort \(w = a^n b^n\in L_2\) gilt, dass jede Zerlegung \(w = xyz\) mit \(|xy|\le p\) und \(|y|>0\) nach dem Pumpen von \(y\) zu \(xy^kz\) (für \(k\neq1\)) zu einer Ungleichheit zwischen der Anzahl der \(a\)’s und \(b\)’s führt, also zu einem Wort, das nicht mehr in \(L_2\) liegt – ein Widerspruch zur Annahme, dass \(L_2\) regulär ist. Da \(L_2\) selbst nicht regulär ist, kann ihr Kleene‑Stern \((L_2)^*\) ebenfalls nicht regulär sein: \[ (L_2)^* = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}\dots a^{n_k}b^{n_k} \mid k\ge 0,\; n_i\ge 0\} \] Enthält bereits die Teilmenge \(\{a^n b^n\mid n\ge 0\}\) (für \(k=1\)), die nicht regulär ist. Wäre \((L_2)^*\) regulär, wäre auch diese Teilmenge regulär (Regulärsprachen sind unter Schnitt mit regulären Sprachen abgeschlossen), was zum bekannten Ergebnis \(\{a^n b^n\}\) \(\notin\) REG führt – ein Widerspruch. Somit ist \((L_2)^*\) nicht regulär. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☒
wrong answer for choice (2)
Begründung für : ist die klassische Kopiersprache, die nicht regulär ist (Pumping‑Lemma). Für jedes Wort gilt, dass jede Zerlegung mit und nach dem Pumpen von zu (für ) zu einer Ungleichheit zwischen der Anzahl der ’s und ’s führt, also zu einem Wort, das nicht mehr in liegt – ein Widerspruch zur Annahme, dass regulär ist. Da selbst nicht regulär ist, kann ihr Kleene‑Stern ebenfalls nicht regulär sein: Enthält bereits die Teilmenge (für ), die nicht regulär ist. Wäre regulär, wäre auch diese Teilmenge regulär (Regulärsprachen sind unter Schnitt mit regulären Sprachen abgeschlossen), was zum bekannten Ergebnis REG führt – ein Widerspruch. Somit ist nicht regulär.
Subproblem b (0.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<answer id="4">
Begründung für $i=2$:
\[
L_2 = \{a^n b^n \mid n\in\mathbb N\}
\]
ist die klassische Kopiersprache, die nicht regulär ist (Pumping‑Lemma).
Für jedes Wort \(w = a^n b^n\in L_2\) gilt, dass jede Zerlegung \(w = xyz\) mit \(|xy|\le p\) und \(|y|>0\) nach dem Pumpen von \(y\) zu \(xy^kz\) (für \(k\neq1\)) zu einer Ungleichheit zwischen der Anzahl der \(a\)’s und \(b\)’s führt, also zu einem Wort, das nicht mehr in \(L_2\) liegt – ein Widerspruch zur Annahme, dass \(L_2\) regulär ist.
Da \(L_2\) selbst nicht regulär ist, kann ihr Kleene‑Stern \((L_2)^*\) ebenfalls nicht regulär sein:
\[
(L_2)^* = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}\dots a^{n_k}b^{n_k} \mid k\ge 0,\; n_i\ge 0\}
\]
Enthält bereits die Teilmenge \(\{a^n b^n\mid n\ge 0\}\) (für \(k=1\)), die nicht regulär ist.
Wäre \((L_2)^*\) regulär, wäre auch diese Teilmenge regulär (Regulärsprachen sind unter Schnitt mit regulären Sprachen abgeschlossen), was zum bekannten Ergebnis \(\{a^n b^n\}\) \(\notin\) REG führt – ein Widerspruch.
Somit ist \((L_2)^*\) nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need to answer subproblem b: existence of CFG in CNF with at most 6 productions generating exactly {a^{12}, a^9}. Need to decide. In CNF, productions are either A -> BC or A -> a or S -> epsilon (if allowed). Grammar must generate exactly two strings: a^12 and a^9. Need to see if possible with ≤6 productions. We need to produce grammar with CNF that generates exactly two specific lengths. Since CNF only generates strings of length >=1 (except epsilon). Each derivation tree for a string of length n has exactly 2n-1? Actually in CNF, each terminal appears via a rule A -> a (terminal). Each internal node is a binary production. For a string of length k, the parse tree has k leaves (terminals) and internal nodes count k-1 (binary nodes). So total productions used = 2k -1 (including start). But that's number of rule applications in a derivation, not number of productions in grammar. We can have a grammar that generates only those two strings. Since language finite, regular, hence also CF. But CNF with at most 6 productions? Let's try design. We need to generate a^9 and a^12. Since lengths differ, we need some way to produce either 9 or 12 a's. In CNF, each rule either A -> BC or A -> a. No epsilon (except maybe start). We cannot have terminal directly after nonterminal unless it's a leaf. We need to produce exactly a^9 and a^12. Could we have start S -> A9 | A12 where A9 generates a^9 and A12 generates a^12. But we cannot have unit productions (A -> B) in CNF. However we can use binary productions to encode. One approach: Use a binary tree that expands to a number of leaves. To get specific lengths, we need to control the shape. For a fixed length, we can have a grammar that generates exactly one string of that length by building a binary tree that yields that many leaves. For each length we can have a distinct start production? But we can't have S -> something that leads to two different lengths unless we have branching choices. So we need S to derive either a structure for 9 or for 12. We need a rule S -> X | Y, but that's not allowed in CNF because unit productions not allowed, but we can have S -> AB where A generates 9 and B generates epsilon? Not allowed. Could use S -> AB where A generates a^9 and B -> epsilon? But epsilon not allowed except S->epsilon and only if language includes empty string; not here. We need to encode choice via a binary rule where one side produces the desired string and the other produces epsilon? Not allowed. But we can use two different nonterminals, S and maybe T, with start S. We need S to produce either some nonterminal that leads to a^9 or a^12. In CNF, we can have S -> XY where X leads to a^9 and Y leads to ε? Not allowed. So we need to encode choice via a production S -> AB where A leads to a^9 and B leads to a^12? That would concatenate the strings, giving longer strings. Thus we cannot directly have choice in CNF. However, we could encode choice via using two different start symbols? Not possible. Thus likely impossible to have CNF grammar with at most 6 productions to generate exactly two strings of different length, because CNF can't have unit productions; to produce two different lengths we need branching that would produce concatenation of substrings; but you could have S -> A | B via unit productions but CNF doesn't allow that. But we could still encode by having S -> AB and then have A generate a^9 and B-> epsilon (but not allowed). Could we use S -> AB, A generates a^9, B -> a^3? Then total length would be 12 for one branch and 9 for other? Not. Thus likely impossible. But maybe we can use S->AB where A generates a^9, B generates a^3 (to get 12) and also have another derivation that yields a^9 by having B derive epsilon? Not allowed. Thus answer: No, because CNF forbids unit productions, and any derivation in CNF corresponds to a binary tree whose leaves are terminals, so any string generated must have length equal to number of leaves; a grammar that generates two strings of lengths 9 and 12 would need at least a choice point, which in CNF would cause concatenation, causing additional strings like a^21 etc. So not possible. Provide brief reasoning. Thus select option 2 = 1 (yes) or 2 = 0? The options: 1: Yes, Grammar. 2: No, Begründung. We choose No. So option 1 =0, option 2 =1. Provide answer.
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Eine kontextfreie Grammatik in Chomsky‑Normalform kann nur Produktionen der Form \(A \to BC\) oder \(A \to a\) (plus eventuell \(S\to\varepsilon\) ) enthalten. Um die beiden Wörter \(a^{9}\) und \(a^{12}\) zu erzeugen, muss die Grammatik einen Wahlpunkt besitzen, an dem entweder ein Ableitungsbaum mit \(9\) Blatt‑Terminals oder ein Ableitungsbaum mit \(12\) Blatt‑Terminals entsteht. In Chomsky‑Normalform ist jede Ableitung durch einen binären Ableitungsbaum gegeben, dessen Blätter exakt die erzeugten Terminale sind. Ein Wahlpunkt in einer CNF‑Grammatik ist immer eine Regel der Form \(A\to BC\). Der resultierende Ableitungsbaum enthält dann **beide** Teilbäume, also wird die Zeichenkette die Konkatenation der beiden Teilbäume. Damit entstehen stets die Gesamtlängen \[ \text{(Länge des linken Teilbaums)} + \text{(Länge des rechten Teilbaums)} . \] Damit kann keine CNF‑Grammatik nur **zwei** verschiedene Längen erzeugen, ohne weitere Kombinationen zu erlauben. Um ausschließlich die beiden Wörter \(a^{9}\) bzw. \(a^{12}\) zu generieren, wäre ein Produktionsregel der Form \(S \to A \mid B\) (eine Wahl zwischen zwei Nicht‑Terminals) erforderlich; solche **Einheitsproduktionen** sind in Chomsky‑Normalform jedoch nicht zulässig. Daher gibt es keine CNF‑Grammatik mit höchstens sechs Produktionen, die exakt die Sprache \(\{a^{12},a^{9}\}\) erzeugt. **Folgerung:** Keine solche Grammatik existiert. </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☐Ja, Grammatik:☒Nein, Begründung:
wrong answer for choice (0)
Eine kontextfreie Grammatik in Chomsky‑Normalform kann nur Produktionen der Form oder (plus eventuell ) enthalten. Um die beiden Wörter und zu erzeugen, muss die Grammatik einen Wahlpunkt besitzen, an dem entweder ein Ableitungsbaum mit Blatt‑Terminals oder ein Ableitungsbaum mit Blatt‑Terminals entsteht. In Chomsky‑Normalform ist jede Ableitung durch einen binären Ableitungsbaum gegeben, dessen Blätter exakt die erzeugten Terminale sind. Ein Wahlpunkt in einer CNF‑Grammatik ist immer eine Regel der Form . Der resultierende Ableitungsbaum enthält dann beide Teilbäume, also wird die Zeichenkette die Konkatenation der beiden Teilbäume. Damit entstehen stets die Gesamtlängen Damit kann keine CNF‑Grammatik nur zwei verschiedene Längen erzeugen, ohne weitere Kombinationen zu erlauben. Um ausschließlich die beiden Wörter bzw. zu generieren, wäre ein Produktionsregel der Form (eine Wahl zwischen zwei Nicht‑Terminals) erforderlich; solche Einheitsproduktionen sind in Chomsky‑Normalform jedoch nicht zulässig. Daher gibt es keine CNF‑Grammatik mit höchstens sechs Produktionen, die exakt die Sprache erzeugt. Folgerung: Keine solche Grammatik existiert.
0: could not parse value Eine kontextfreie Grammatik in Chomsky‑Normalform kann nur Produktionen der Form \(A \to BC\) oder \(A \to a\) (plus eventuell \(S\to\varepsilon\) ) enthalten. Um die beiden Wörter \(a^{9}\) und \(a^{12}\) zu erzeugen, muss die Grammatik einen Wahlpunkt besitzen, an dem entweder ein Ableitungsbaum mit \(9\) Blatt‑Terminals oder ein Ableitungsbaum mit \(12\) Blatt‑Terminals entsteht. In Chomsky‑Normalform ist jede Ableitung durch einen binären Ableitungsbaum gegeben, dessen Blätter exakt die erzeugten Terminale sind. Ein Wahlpunkt in einer CNF‑Grammatik ist immer eine Regel der Form \(A\to BC\). Der resultierende Ableitungsbaum enthält dann **beide** Teilbäume, also wird die Zeichenkette die Konkatenation der beiden Teilbäume. Damit entstehen stets die Gesamtlängen \[ \text{(Länge des linken Teilbaums)} + \text{(Länge des rechten Teilbaums)} . \] Damit kann keine CNF‑Grammatik nur **zwei** verschiedene Längen erzeugen, ohne weitere Kombinationen zu erlauben. Um ausschließlich die beiden Wörter \(a^{9}\) bzw. \(a^{12}\) zu generieren, wäre ein Produktionsregel der Form \(S \to A \mid B\) (eine Wahl zwischen zwei Nicht‑Terminals) erforderlich; solche **Einheitsproduktionen** sind in Chomsky‑Normalform jedoch nicht zulässig. Daher gibt es keine CNF‑Grammatik mit höchstens sechs Produktionen, die exakt die Sprache \(\{a^{12},a^{9}\}\) erzeugt. **Folgerung:** Keine solche Grammatik existiert. for type cfg
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<answer id="4">
Begründung für $i=2$:
\[
L_2 = \{a^n b^n \mid n\in\mathbb N\}
\]
ist die klassische Kopiersprache, die nicht regulär ist (Pumping‑Lemma).
Für jedes Wort \(w = a^n b^n\in L_2\) gilt, dass jede Zerlegung \(w = xyz\) mit \(|xy|\le p\) und \(|y|>0\) nach dem Pumpen von \(y\) zu \(xy^kz\) (für \(k\neq1\)) zu einer Ungleichheit zwischen der Anzahl der \(a\)’s und \(b\)’s führt, also zu einem Wort, das nicht mehr in \(L_2\) liegt – ein Widerspruch zur Annahme, dass \(L_2\) regulär ist.
Da \(L_2\) selbst nicht regulär ist, kann ihr Kleene‑Stern \((L_2)^*\) ebenfalls nicht regulär sein:
\[
(L_2)^* = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}\dots a^{n_k}b^{n_k} \mid k\ge 0,\; n_i\ge 0\}
\]
Enthält bereits die Teilmenge \(\{a^n b^n\mid n\ge 0\}\) (für \(k=1\)), die nicht regulär ist.
Wäre \((L_2)^*\) regulär, wäre auch diese Teilmenge regulär (Regulärsprachen sind unter Schnitt mit regulären Sprachen abgeschlossen), was zum bekannten Ergebnis \(\{a^n b^n\}\) \(\notin\) REG führt – ein Widerspruch.
Somit ist \((L_2)^*\) nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Eine kontextfreie Grammatik in Chomsky‑Normalform kann nur Produktionen der Form
\(A \to BC\) oder \(A \to a\) (plus eventuell \(S\to\varepsilon\) ) enthalten.
Um die beiden Wörter \(a^{9}\) und \(a^{12}\) zu erzeugen, muss die Grammatik
einen Wahlpunkt besitzen, an dem entweder ein Ableitungsbaum mit
\(9\) Blatt‑Terminals oder ein Ableitungsbaum mit \(12\) Blatt‑Terminals
entsteht.
In Chomsky‑Normalform ist jede Ableitung durch einen binären
Ableitungsbaum gegeben, dessen Blätter exakt die erzeugten
Terminale sind. Ein Wahlpunkt in einer CNF‑Grammatik ist immer eine
Regel der Form \(A\to BC\). Der resultierende Ableitungsbaum
enthält dann **beide** Teilbäume, also wird die Zeichenkette
die Konkatenation der beiden Teilbäume. Damit entstehen stets
die Gesamtlängen
\[
\text{(Länge des linken Teilbaums)} + \text{(Länge des rechten Teilbaums)} .
\]
Damit kann keine CNF‑Grammatik nur **zwei** verschiedene Längen
erzeugen, ohne weitere Kombinationen zu erlauben.
Um ausschließlich die beiden Wörter \(a^{9}\) bzw. \(a^{12}\) zu
generieren, wäre ein Produktionsregel der Form
\(S \to A \mid B\) (eine Wahl zwischen zwei Nicht‑Terminals)
erforderlich; solche **Einheitsproduktionen** sind in
Chomsky‑Normalform jedoch nicht zulässig.
Daher gibt es keine CNF‑Grammatik mit höchstens sechs
Produktionen, die exakt die Sprache \(\{a^{12},a^{9}\}\) erzeugt.
**Folgerung:**
Keine solche Grammatik existiert.
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need pick true statements regarding L is any context-free, non-regular language. Options: 1) There exists an undecidable language L' subset of L. 2) Every language L' subset of L is decidable. We know that any CFL is decidable (membership). But subsets of L may be arbitrary languages, not necessarily CF. Since L is infinite? Not necessarily, but non-regular CF could be infinite. Could we have an undecidable subset of a decidable language? Yes, any decidable infinite language contains an undecidable subset (by diagonalization). For example, take L = {0^n 1^n}. Subset of strings where n encodes a TM that halts, etc. Since L is infinite, we can encode any language inside using mapping from naturals to strings in L. Thus there exists undecidable L' subset of L. Therefore statement 1 true, 2 false. Thus answer: option 1 =1, option2=0. Provide brief justification.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1 (1 oder 2): Da \(L\) kontextfrei und damit entscheidbar ist, besitzt sie mindestens unendlich viele Wörter (jede nicht‑reguläre CFL ist unendlich). Aus einer unendlichen, entscheidbaren Menge lässt sich durch eine geeignete kodierende Abbildung eine beliebige Teilmenge der natürlichen Zahlen realisieren. Wählt man z. B. eine effektive, injektive Abbildung \(\pi:\mathbb N \rightarrow L\) (möglich, weil \(L\) unendlich ist), so kann jede Sprache \(K\subseteq\mathbb N\) in die Form \(L' = \{\pi(n) \mid n\in K\}\subseteq L\) überführt werden. Da es unentscheidbare Teilmengen von \(\mathbb N\) gibt (z. B. die Halte‑Sprache), liefert die entsprechende Menge \(L'\) eine unentscheidbare Sprache, die vollständig in \(L\) liegt. Damit existiert für jede nicht‑reguläre kontextfreie Sprache \(L\) mindestens ein unentscheidbares \(L'\subseteq L\). Die zweite Aussage ist falsche, weil bereits das obige Gegenbeispiel zeigt, dass nicht *jede* Teilmenge entscheidbar ist. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1 (1 oder 2): Da kontextfrei und damit entscheidbar ist, besitzt sie mindestens unendlich viele Wörter (jede nicht‑reguläre CFL ist unendlich). Aus einer unendlichen, entscheidbaren Menge lässt sich durch eine geeignete kodierende Abbildung eine beliebige Teilmenge der natürlichen Zahlen realisieren. Wählt man z. B. eine effektive, injektive Abbildung (möglich, weil unendlich ist), so kann jede Sprache in die Form überführt werden. Da es unentscheidbare Teilmengen von gibt (z. B. die Halte‑Sprache), liefert die entsprechende Menge eine unentscheidbare Sprache, die vollständig in liegt. Damit existiert für jede nicht‑reguläre kontextfreie Sprache mindestens ein unentscheidbares . Die zweite Aussage ist falsche, weil bereits das obige Gegenbeispiel zeigt, dass nicht jede Teilmenge entscheidbar ist.
qwen/qwen3-235b-a22b
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Okay, let's tackle this problem step by step. The question is about determining which of the given languages L_i have a Kleene star (L_i)* that is not regular. The options are L1, L2, and L3. We need to choose at least one correct option and provide a justification. First, I need to recall that the Kleene star of a language is always regular if the original language is regular. However, if the original language is not regular, then its Kleene star might or might not be regular. So the key here is to check whether each L_i is non-regular. If L_i is non-regular, then we have to see if (L_i)* is also non-regular. If L_i is regular, then (L_i)* is definitely regular. Starting with L1: L1 is {(ab)^n | n ∈ N}. This language consists of strings like ab, abab, ababab, etc. Each string is a repetition of "ab". Now, this seems like a regular language because we can construct a regular expression for it. The regular expression would be (ab)*, which matches any number of "ab" sequences. Therefore, L1 is regular. So (L1)* would be the same as L1, since the Kleene star of a regular language is regular. Therefore, option 1 should be 0 because (L1)* is regular. Next, L2: {a^n b^n | n ∈ N}. This is the classic example of a context-free language that's not regular. The reason is that a regular language can't count the number of a's and match them with the same number of b's. So L2 is not regular. Now, what about (L2)*? The Kleene star allows any concatenation of strings from L2. Let's think: each string in L2 has an equal number of a's and b's, but when you concatenate multiple such strings, the total counts might vary. Wait, no. Wait, each individual string in L2 has exactly n a's followed by n b's. So if you take two such strings, say "aabb" (n=2) and "aaabbb" (n=3), their concatenation would be "aabbaaabbb", which has 2+3=5 a's and 2+3=5 b's. So overall, each string in (L2)* will have the same number of a's and b's. But wait, no. Wait, each individual string in L2 has equal a's and b's. So when you concatenate multiple such strings, the total a's and b's would be the sum of each individual's equal counts. So the total a's and b's would still be equal. For example, "ab" (n=1) concatenated with "aabb" (n=2) gives "abaabb", which has 1+2=3 a's and 1+2=3 b's. So the total number of a's equals the total number of b's. Therefore, (L2)* consists of all strings that can be formed by concatenating any number of strings from L2. However, each string in (L2)* must have a structure where each "block" of a's followed by b's has equal counts. But the total a's and total b's in the entire string would be equal. Wait, but the total a's would be the sum of the n's of each individual string, and same for the b's. So yes, the total a's and b's in the concatenated string would be equal. However, the structure is more complex than a single block of a's followed by b's. For example, the string "abab" is in (L2)* because it's "ab" concatenated with "ab". Similarly, "aabbaab" would not be in (L2)* because the first part "aabb" (n=2) and then "aab" isn't in L2. Wait, no. Wait, each element in (L2)* is a concatenation of elements from L2. So each element in (L2)* is a string that can be broken down into parts, each of which is a^n b^n for some n. So the entire string would have a structure like (a^{n1} b^{n1}) (a^{n2} b^{n2}) ... (a^{nk} b^{nk})). This is different from the language of all strings where the number of a's equals the number of b's. For example, the string "aabbaabb" is in (L2)* because it's two copies of "aabb" (n=2). But the string "aabbab" would be "aabb" (n=2) followed by "ab" (n=1), which is allowed. However, a string like "aaabbb" (n=3) is in L2, so it's in (L2)*. Now, the question is whether (L2)* is regular. Let's think. If (L2)* were regular, then we could use the pumping lemma to show otherwise. But maybe (L2)* is not regular. Let's consider the language (L2)*. Suppose we try to create a regular grammar for it. However, the problem is that each time we add a string from L2, we have to remember the structure of each block. Alternatively, maybe (L2)* is not regular. For example, consider the intersection of (L2)* with the language a*b*a*b*. Let's see. The intersection would consist of strings that are in (L2)* and also in a*b*a*b*. Let's take a string like a^p b^p a^q b^q. This is in (L2)* because it's two separate elements of L2 concatenated. Now, if we pump this string, perhaps we can find a contradiction. Alternatively, maybe (L2)* is not regular. Let's consider the string a^n b^n a^n b^n. Wait, no, that's not necessarily in (L2)*. Wait, each part is a separate element. So the string a^p b^p a^q b^q is in (L2)* for any p and q. Now, suppose we take the subset of all strings in (L2)* that have exactly two blocks of a's and b's. That subset is the set {a^p b^p a^q b^q | p, q ≥ 0}. If this subset can be shown to not be regular, then (L2)* as a whole can't be regular. But how? Alternatively, perhaps (L2)* is context-free but not regular. Let's think of the pumping lemma. Suppose (L2)* is regular. Then there exists a pumping length p. Consider the string s = a^p b^p a^p b^p. Wait, but this string is in (L2)* because it's two copies of a^p b^p. However, according to the pumping lemma, we should be able to split s into xyz such that |xy| ≤ p, |y| ≥ 1, and xy^i z is in (L2)* for all i ≥ 0. Let's take s as a^p b^p a^p b^p. The first part of the string is the first p characters, which would be a^p followed by some b's. Wait, the first p characters would be a^p, since the first part is a^p b^p. Wait, no. The string s is a^p b^p followed by a^p b^p. So the entire string is length 4p. The first p characters would be a^p followed by the first 0 characters of the b's. So the first part is a^p, then b^p, then a^p, then b^p. So the first p characters are all a's. So in the pumping lemma scenario, we can take y to be some number of a's in the first block. Pumping down (i=0) would result in fewer a's in the first block. But then the entire string would have a structure that may not fit into (L2)*. Wait, but maybe this approach isn't the best. Alternatively, consider the string s = a^p b^p. This is in (L2)*. If we pump this string, but since s is already in L2, but pumping might break it. Wait, but the pumping lemma for regular languages applies to all strings in the language longer than the pumping length. Let me think again. Suppose (L2)* is regular. Then the pumping lemma applies. Let's pick a string s in (L2)* that is long enough. For example, take s = a^p b^p a^p b^p. The pumping length is p. Since |s| ≥ p, we can split s into xyz. Now, according to the pumping lemma, the split must be such that |xy| ≤ p and |y| ≥ 1. Since the first p characters are all a's (the first block of a^p), x and y must be in the first block of a's. So y is a^k for some k ≥ 1. Then, pumping down (i=0) would result in xy^0z = a^{p -k} b^p a^p b^p. Now, this string is a^{p -k} followed by b^p, then a^p, then b^p. The first part a^{p -k} b^p cannot be part of any L2 string because the number of a's and b's in each block must be equal. Wait, but in (L2)*, the string is a concatenation of multiple L2 elements. So the first block of a's in the first L2 element would have to have a matching number of b's. However, in the pumped string, the first block of a's is p -k, and the following b's are p. Since p -k ≠ p (unless k=0, which it's not), this block doesn't form a valid L2 string. Therefore, the entire string cannot be split into valid L2 elements, so xy^0z is not in (L2)*. This contradicts the pumping lemma, so our assumption that (L2)* is regular must be false. Therefore, (L2)* is not regular. Therefore, option 2 should be 1. Now, moving to L3: {a^n b^m | n ≠ m}. This language consists of all strings of a's followed by b's where the number of a's is not equal to the number of b's. Now, L3 itself is not regular. Wait, why? Because the complement of L3 would be {a^n b^m | n = m}, which is the same as the language L2, which is not regular. Since regular languages are closed under complementation, if L3 were regular, then its complement would also be regular, but since L2 is not regular, L3 cannot be regular either. So L3 is non-regular. Now, what about (L3)*? Let's think. The Kleene star of L3 would include all concatenations of strings from L3. Let's consider what this language looks like. Any string in (L3)* is a concatenation of multiple a^n b^m where each individual string has n ≠ m. However, when you concatenate such strings, the total structure could be more complex. But perhaps (L3)* is actually the entire set of strings of the form a^* b^* except for the string a^n b^n. Wait, no. Because (L3)* allows concatenation of multiple elements. For example, if you take two strings from L3: first a^2 b^1 (so n=2, m=1) and then a^1 b^3 (n=1, m=3). Concatenating them gives a^2 b^1 a^1 b^3 = a^3 b^4. But this is a single block of a's followed by a single block of b's. However, if you have a string like a^2 b a a b^3, which is a concatenation of two elements, each of which has a different number of a's and b's. But when you concatenate, the result is a^3 b^4, which is a single block of a's followed by b's. So (L3)* includes all strings of the form a^k b^l where k and l are non-negative integers, except when k = l? Not exactly. Wait, because if you take multiple elements from L3, you can have strings that have multiple transitions from a to b. For example, concatenating a^2 b^1 and a^1 b^3 gives a string with a^2 b^1 a^1 b^3, which has two transitions. However, the Kleene star allows any number of concatenations, so (L3)* includes all strings that can be partitioned into one or more parts, each of which is a string in L3. Now, the key is to determine whether (L3)* is regular. Let's think about the possible structure. Let's consider that (L3)* actually equals the set of all strings over {a,b} that are either empty (since Kleene star includes ε), or have at least one a or one b, except for the strings that are exactly a^n b^n for some n ≥ 0. Wait, no. Because (L3)* includes all concatenations of strings from L3. Each string in L3 is a block of a's followed by b's with n ≠ m. So concatenating multiple such blocks would result in a string that has multiple alternations between a's and b's. For example, a string like aabbaabbb could be a concatenation of a^2 b^2 (but wait, that's not in L3 because n=m=2), so that's not allowed. Wait, no. Each element in L3 must have n ≠ m. So for example, a^2 b^3 is in L3. If you concatenate that with a^1 b^4, you get a^2 b^3 a^1 b^4. So this string has a transition from b to a, which is not allowed in the original L3 elements. Wait, no! Wait, each element in L3 is a block of a's followed by b's. So when you concatenate two such elements, you have a block of a's followed by b's, then another block of a's followed by b's. So the entire string would have a's, then b's, then a's, then b's, etc. So the concatenation results in a string that has multiple alternations between a's and b's. For example, the concatenation of two elements from L3 could be "a^2 b^1" (which is in L3) followed by "a^1 b^3" (also in L3), resulting in "aababb". This string has a's, then b's, then a's, then b's. So it's not a single block of a's followed by b's. Therefore, (L3)* contains strings with multiple such blocks. Now, the question is whether this language is regular. Let's think about what (L3)* really contains. Let's consider that any string in (L3)* can have multiple a and b blocks. However, note that the empty string is in (L3)*. Also, any string that starts with b is not possible because each element in L3 starts with a's. Wait, no. Each element in L3 is a block of a's followed by b's. So the first character of any element in L3 is an a. Therefore, all strings in L3 start with a, except for the empty string. Wait, no. Wait, n and m are in N, which typically starts at 0. Wait, the problem statement says n, m ∈ N. But in the definition of L3, n ≠ m. Wait, but if n=0 and m=1, then the string is b, which is allowed. Similarly, if m=0 and n ≥ 1, then the string is a^n. But wait, wait. Wait, the original definition of L3 is {a^n b^m | n, m ∈ N ∧ n ≠ m}. So n and m can be zero. So for example, if n=0, then the string is b^m where m ≠ 0 (since n ≠ m). So m must be ≥1. Similarly, if m=0, then n must be ≥1. So L3 includes strings like b, b^2, a, a^2, ab^2, a^2b, etc., as long as the number of a's isn't equal to the number of b's. Wait, but if n=0 and m=1, the string is b. Similarly, m=0 and n=1 gives a. So L3 includes all strings of a's followed by b's, including single a's and single b's, except for the case where n = m. So the elements of L3 can be a single a, a single b, ab^2, a^2b, etc. Now, considering (L3)*, which is the set of all concatenations of zero or more elements from L3. The empty string ε is in (L3)*. Also, any concatenation of these elements. For example, concatenating two single a's gives aa. But wait, each element in L3 is a block of a's followed by b's. So the single a is a block of a's (n=1, m=0), which is allowed. So concatenating two single a's would be "a" followed by "a", which is "aa". Similarly, concatenating "a" and "b" gives "ab", but wait, "ab" is in L3 (n=1, m=1? No, wait n=1 and m=1 would be n=m, which is excluded. Wait, no! Wait, in L3, n ≠ m. So "ab" has n=1, m=1, which is excluded. Therefore, "ab" is not in L3. Wait, this is a critical mistake. Earlier analysis of L3 was incorrect. Let me re-examine L3. The language L3 is {a^n b^m | n, m ∈ N ∧ n ≠ m}. So n and m can be zero. So for example, when n=1 and m=0, the string is a. When n=0 and m=1, the string is b. But the string ab (n=1, m=1) is not in L3. Similarly, aabb (n=2, m=2) is not in L3. Therefore, L3 includes all strings of a's followed by b's (including all a's, all b's, or a mix) except those where the number of a's equals the number of b's. So the single a and single b are in L3, but ab is not. Now, considering (L3)*. Let's see what strings can be formed. For example, concatenating "a" (from L3) and "a" gives "aa", which is in (L3)*. Similarly, concatenating "a" and "b" (but wait, "b" is in L3, but "a" is in L3. So concatenating "a" (a^1 b^0) and "b" (a^0 b^1) gives "ab", which is not in L3. However, "ab" is in (L3)* because it's the concatenation of two elements from L3. Wait, but "ab" is a string in (L3)* because it's the concatenation of "a" and "b", both of which are in L3. However, "ab" itself is not in L3 because n=1 and m=1. So (L3)* contains strings that are concatenations of elements from L3, even if the resulting string could also be formed in a different way. Now, what is the language (L3)*? Let's think about all possible strings that can be formed. Since each element in L3 is a block of a's followed by b's (possibly with zero a's or zero b's), concatenating multiple such blocks results in a string that can have multiple transitions from a to b. For example, "a" (from L3) followed by "b" gives "ab", which is in (L3)*. Similarly, "b" followed by "a" is not possible because each element in L3 starts with a's or is all b's. Wait, no. Wait, each element in L3 is of the form a^n b^m. So if you have a block that starts with b's, then n must be zero. For example, the string "b" is in L3 (n=0, m=1). So concatenating "b" (from L3) and "a" (from L3) would require that the "a" is an element of L3, which it is (n=1, m=0). So the concatenation would be "ba", which is a string in (L3)*. Therefore, (L3)* contains strings like "ba", "bba", "ab", etc., which have a's and b's in any order, as long as they can be divided into blocks that are either a^n (with n ≥0, but n ≠ m where m is zero?), wait no. Wait, each block in the concatenation must be a member of L3. So each block is a^n b^m with n ≠ m. So for example, the string "ba" can be formed by concatenating "b" (a^0 b^1) and "a" (a^1 b^0). Each of these blocks is in L3. Therefore, "ba" is in (L3)*. Similarly, "b" followed by "b" gives "bb", which is in (L3)*. This suggests that (L3)* includes all possible strings over {a, b}, except for those that are exactly a^n b^n. Wait, no. Because we can create any combination. For example, the string "aba" can be formed by concatenating "a", "b", "a". Each of these is in L3. Similarly, "abba" can be formed by "a", "bb", "a". So it seems that (L3)* actually equals the entire set of strings over {a, b}, except for the strings of the form a^n b^n (including ε, which is allowed in (L3)* because it's the concatenation of zero elements). Wait, but ε is in (L3)*. Also, the string a^n b^n can be formed in some way? For example, can we form "ab" (which is a^1 b^1) by concatenating elements of L3? Yes, as discussed earlier. So "ab" is in (L3)* even though it's not in L3. Therefore, (L3)* actually includes all possible strings over {a, b}, because you can generate any combination by concatenating single letters. For example, to get "ba", you concatenate "b" and "a". To get "aab", you can take "aa" (which is a^2 b^0, so in L3) followed by "b" (a^0 b^1). So "aab" is in (L3)*. Similarly, any string can be built by concatenating single a's and b's. Therefore, (L3)* is equal to the entire Σ*, which is definitely regular. Wait, this is a key insight. If L3 contains all single letters (since a = a^1 b^0, which satisfies n=1 ≠ m=0; similarly b = a^0 b^1), then (L3)* includes all possible strings over {a, b}, because you can concatenate single letters in any order. Therefore, (L3)* = Σ*, which is regular. Therefore, even though L3 itself is non-regular, its Kleene star is regular. Therefore, option 3 should be 0. So summarizing: - L1 is regular, so (L1)* is regular. So option 1: 0. - L2 is non-regular, and (L2)* is not regular. So option 2: 1. - L3 is non-regular, but (L3)* is regular (Σ*), so option 3: 0. The justification is for i=2. We need to show that (L2)* is not regular. Using the pumping lemma as outlined earlier.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für $i=2$: Die Sprache $L_2 = \{a^nb^n : n \in \mathbb{N}\}$ ist bekanntermaßen nicht regulär (Beweis z.B. mit dem Pumping-Lemma). Wir zeigen, dass $(L_2)^*$ ebenfalls nicht regulär ist. Angenommen, $(L_2)^*$ wäre regulär. Dann gäbe es eine Pumping-Lemma-Konstante $p$. Betrachte das Wort $w = a^pb^pa^pb^p \in (L_2)^*$. Zerlege $w = xyz$ mit $|xy| \leq p$ und $|y| \geq 1$. Da $|xy| \leq p$, besteht $y$ nur aus $a$'s. Pumpen wir $y$ auf $xy^0z$, erhalten wir $a^{p-k}b^pa^pb^p$ für ein $k \geq 1$. Dieses Wort lässt sich nicht als Konkatenation von Wörtern aus $L_2$ darstellen, da der erste Block $a^{p-k}b^p$ nicht in $L_2$ liegt (ungleiche Anzahl an $a$'s und $b$'s). Dies widerspricht dem Pumping-Lemma, also ist $(L_2)^*$ nicht regulär. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☐
Begründung für : Die Sprache ist bekanntermaßen nicht regulär (Beweis z.B. mit dem Pumping-Lemma). Wir zeigen, dass ebenfalls nicht regulär ist. Angenommen, wäre regulär. Dann gäbe es eine Pumping-Lemma-Konstante . Betrachte das Wort . Zerlege mit und . Da , besteht nur aus 's. Pumpen wir auf , erhalten wir für ein . Dieses Wort lässt sich nicht als Konkatenation von Wörtern aus darstellen, da der erste Block nicht in liegt (ungleiche Anzahl an 's und 's). Dies widerspricht dem Pumping-Lemma, also ist nicht regulär.
Subproblem b (0.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Die Sprache $L_2 = \{a^nb^n : n \in \mathbb{N}\}$ ist bekanntermaßen nicht regulär (Beweis z.B. mit dem Pumping-Lemma). Wir zeigen, dass $(L_2)^*$ ebenfalls nicht regulär ist. Angenommen, $(L_2)^*$ wäre regulär. Dann gäbe es eine Pumping-Lemma-Konstante $p$. Betrachte das Wort $w = a^pb^pa^pb^p \in (L_2)^*$. Zerlege $w = xyz$ mit $|xy| \leq p$ und $|y| \geq 1$. Da $|xy| \leq p$, besteht $y$ nur aus $a$'s. Pumpen wir $y$ auf $xy^0z$, erhalten wir $a^{p-k}b^pa^pb^p$ für ein $k \geq 1$. Dieses Wort lässt sich nicht als Konkatenation von Wörtern aus $L_2$ darstellen, da der erste Block $a^{p-k}b^p$ nicht in $L_2$ liegt (ungleiche Anzahl an $a$'s und $b$'s). Dies widerspricht dem Pumping-Lemma, also ist $(L_2)^*$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, let's tackle this problem. The question is asking whether there exists a context-free grammar (CFG) in Chomsky Normal Form (CNF) with at most 6 productions such that the language generated is {a^12, a^9}. If yes, we need to provide such a grammar; if not, explain why. First, I need to recall what Chomsky Normal Form requires. In CNF, all productions must be of the form: - A → BC, where A, B, C are non-terminals, or - A → a, where a is a terminal. Additionally, the start symbol S cannot appear on the right-hand side of any production unless it's allowed (but sometimes there's a restriction that S can't be in any right-hand side, but maybe in some definitions it's allowed if the only production is S → ε. Hmm, but here the language is non-empty, so S can't produce ε. So maybe we can ignore that for now.) So, each production is either two non-terminals or a single terminal. Also, the grammar must generate exactly the two strings a^12 and a^9. The challenge is to create such a grammar with at most 6 productions. Let me think about how to generate a^n where n is 9 or 12. Since these are both multiples of 3, perhaps we can find a way to build up the exponents using productions that multiply by 3 or add certain amounts. Wait, but 9 and 12 have a common divisor of 3. So maybe we can have a non-terminal that generates a^3, then build up from there. But how? Alternatively, think of generating a^9 and a^12. Let's see: 9 is 3^2, 12 is 3*4. Not sure. Alternatively, 9 = 3*3, 12 = 4*3. Maybe we can have a way to generate a multiple of 3 a's, but with specific counts. But in CNF, each production can only split into two non-terminals or a terminal. So building up exponents requires a binary tree structure. For example, to generate a^k, the number of a's must be the sum of the a's generated by each non-terminal in the productions. But since each production is either two non-terminals or a terminal, the length of the generated string depends on the number of terminal productions. Wait, in CNF, every production step either replaces a non-terminal with two non-terminals (A → BC) or with a single terminal (A → a). So the derivation tree for a string of length n would have exactly n leaves (terminals), and the internal nodes would be non-terminals producing two children. The number of productions used in the derivation isn't directly limited by the CNF structure, but the grammar's size (number of productions) is limited here to 6. Our goal is to have a grammar with ≤6 productions that can generate exactly a^9 and a^12. Let me think of possible approaches. Let's consider that both 9 and 12 can be broken down into sums or products that can be handled with CNF rules. For example, 9 = 3*3, 12 = 3*4. Maybe we can have a non-terminal that generates a^3, then combine that with others. But how to generate a^3 with CNF. Let's say we have a non-terminal A that generates a^3. Then, to generate a^9, we could have A concatenated three times, and for a^12, four times. But in CNF, each production must split into two non-terminals. So to get three A's, we need a way to combine them step by step. Wait, but in CNF, each production splits into two non-terminals. So for example, if we have a non-terminal B that generates A B', where B' then generates A B'' etc., but that might get complicated. Alternatively, perhaps we can use a non-terminal that generates a^3, and then have a production that allows combining two of them to make a^6, then combine again. Let's see: Let me try to outline a possible grammar. Let S be the start symbol. We need S to generate a^9 and a^12. So S must have two productions: one leading to a^9 and another to a^12. But in CNF, each production must be either A → BC or A → a. So S can't directly produce a long string of a's. Instead, we need to break it down into combinations of non-terminals. Let me think recursively. For example, to generate a^9: We can have a non-terminal that generates a^3, then use three of them. Similarly for a^12, which is four times a^3. But how to structure this in CNF. Let me try: Let’s define A → aaa. But in CNF, we can't have A → aaa. So we need to break that down. To generate a single a, we need a terminal production. So perhaps: Let’s have a non-terminal X that produces a. So X → a. Then, to build A → BC, which would generate a certain number of a's. For example, to get a^3, we might need a combination of non-terminals that produce a^1 each, but that's not straightforward. Alternatively, think of building a non-terminal that generates a^3. Let's say: Let’s create a non-terminal A that generates a^3. To do this in CNF, we can do: A → B C B → D E D → a E → F G F → a G → a Wait, this seems too long. Alternatively, perhaps: Let me think of building A → B C, where B and C can generate a certain number of a's. But in CNF, each non-terminal in a production must eventually produce some number of a's. So if we want A to produce a^3, then the sum of the a's produced by B and C must be 3. So possible splits are 1+2 or 2+1. But then B and C would need to be non-terminals that generate 1 and 2 a's, respectively. Let's say: Let’s have: A → B C (produces 3 a's) B → D E (produces 1 a) D → a E → F G (produces 2 a's) F → a G → a Wait, no. Wait, B → D E would generate two a's (since D and E each produce a). Then A would produce B C, which would be 2 + (number from C). But this approach might not be efficient. Alternatively, perhaps create a non-terminal for each power of 2. But this might not help here. Alternatively, think of the problem as needing to generate a^9 and a^12. Let's see: 9 = 3^2, and 12 = 3*4. Alternatively, 9 = 8 +1, but not sure. Alternatively, think of exponents in terms of binary. But maybe not helpful. Another approach: Since 9 and 12 are both multiples of 3, perhaps generate a^3 as a unit. Let’s create a non-terminal X that generates a^3. How to do that in CNF. To get X to generate a^3, we can have: X → A A A, but in CNF, each production must have exactly two symbols. So we can't have three. So we need to break this down. For example: X → A Y Y → A A A → a Wait, but in CNF, A → a is allowed. Then Y would generate two A's, so two a's. Then X would generate A followed by Y, which is a followed by two a's, making three a's. So yes, X would generate a^3. So: A → a Y → A A X → A Y This way, X produces A Y → A A A → aaa. So X generates a^3. Now, we can use X to build up multiples of 3. Now, to generate a^9 (which is X^3) and a^12 (X^4), we need to find a way to combine X's. But in CNF, each production splits into two non-terminals. So for example, to generate X^3, we can have a non-terminal that combines X with another non-terminal that produces X^2. Similarly, X^4 can be X^2 combined with X^2. Let me try to outline this. Let’s have: S → P Q | R Q Wait, not sure. Let's think step by step. We need S to generate X^3 and X^4. Let’s define: Let’s have a non-terminal S as the start symbol. S must have two productions: one that generates X^3 (for a^9) and one that generates X^4 (for a^12). But how to express X^3 and X^4 in CNF. For X^3: We can have a non-terminal B that produces X B', where B' produces X X. But B' would be X X, which can be represented as Y → X X. Then B → X Y would generate X followed by X X, which is X^3. Similarly, for X^4, we can have C → Y Y, where Y is X X. Then Y Y would be X^4. Putting this together: Let’s define: S → B | C B → X Y1 (produces X^3) Y1 → X X (so X^3) C → Y2 Y2 (produces X^4) Y2 → X X But wait, each Y1 and Y2 would be separate non-terminals. Let me list all the productions: A → a (1) Y → A A (2) X → A Y (3) (so X is a followed by two a's, total 3) Now, for generating X^3: B → X Y1 (4) Y1 → X X (5) For generating X^4: C → Y2 Y2 (6) Y2 → X X (7) Wait, but here we have Y1 and Y2 both as X X. So maybe we can reuse Y2 for Y1 as well. Let me see: If we define Y_common → X X, then both Y1 and Y2 can be replaced by Y_common. So: Y_common → X X (5) Then B → X Y_common (4) C → Y_common Y_common (6) This way, we save one production. So let's count the productions: 1. A → a 2. Y → A A 3. X → A Y 4. B → X Y_common 5. Y_common → X X 6. C → Y_common Y_common 7. S → B | C Wait, but S needs to have productions leading to B and C. So S → B and S → C. That would be two productions. Wait, but in CNF, S can have productions to B and C. So S → B and S → C. But in CNF, the start symbol can be part of the productions as long as it doesn't appear on the right-hand side in a way that causes problems. Wait, but in our case, B and C are non-terminals, so S → B and S → C are allowed. Wait, but in this setup: Productions would be: 1. A → a 2. Y → A A 3. X → A Y 4. Y_common → X X 5. B → X Y_common 6. C → Y_common Y_common 7. S → B 8. S → C But that's 8 productions, which exceeds the limit of 6. So this approach uses too many productions. Hmm, so this approach requires 8 productions, which is over the limit. So we need to find a way to reduce the number of productions. Alternative idea: Maybe combine some of the steps. Let me think again. Our goal is to generate a^9 and a^12. Let's see if there's a smarter way. What if we use a non-terminal that can generate X^3 and X^4 through some recursive productions? Alternatively, think of 9 and 12 as 3^2 and 3*4. Maybe we can find a way to have a non-terminal that can generate X^3 and X^4 using fewer productions. Another approach: Let's try to generate a^9 and a^12 directly using a minimal number of productions. Let’s consider that in CNF, the number of productions needed to generate a single string a^n is O(log n), because you can split it into two halves each time. For example, to generate a^8, you can have S → AA, A → BB, B → CC, C → a. But that's 4 productions. But here we need to generate two different lengths. But since we need two different lengths, we need to find a way to have branching in the grammar. Let me try to create a grammar that can generate both a^9 and a^12 with ≤6 productions. Let’s start with the terminal: Let’s have A → a (1 production) Now, to build up larger blocks. Let’s create a non-terminal X that generates a^3. As before: X → A Y (produces 1 + 2 a's) Y → A A (produces 2 a's) So X produces A Y → A A A → 3 a's. (2 more productions: total 3) Now, to generate a^9 (X^3) and a^12 (X^4). Let’s have S → P and S → Q, but in CNF, S must have productions that are either two non-terminals or a terminal. Wait, no: in CNF, S can have productions like any other non-terminal. Wait, S must generate the start of the string. So for generating X^3, we can have a non-terminal B that produces X multiplied by X^2. But how to structure this. Let’s define: B → X C (to generate X followed by X^2, making X^3) C → X X (produces X^2) Similarly, for X^4, D → X E (X followed by X^3), but that might not be efficient. Alternatively, for X^3: B → X X3_part, where X3_part → X X. Similarly, X^4 can be generated by D → X X (which is X^2) and then D D. So: C → X X (produces X^2) D → C C (produces X^4) So putting this together: Productions: 1. A → a 2. Y → A A 3. X → A Y (X produces a^3) 4. C → X X (produces X^2 = a^6) 5. B → X C (produces X^3 = a^9) 6. D → C C (produces X^4 = a^12) Then S → B | D (two productions) But S → B and S → D. However, in CNF, the start symbol S can have these productions. Wait, but in CNF, S can have any productions as long as they are in the allowed forms. So S → B and S → D are allowed, as B and D are non-terminals. Wait, but S must have two productions here. So that would be: 7. S → B 8. S → D Now, total productions are 8, which is over the limit of 6. Hmm, again too many. Alternative idea: Can we merge some of the non-terminals? For example, instead of having C and D, can we have S directly generate B and D? Wait, but the problem is that S needs to have two productions, adding two to the count. Alternative approach: Let’s have S generate B and D via a single non-terminal. Wait, not sure. Another idea: Instead of creating separate non-terminals for a^9 and a^12, find a way to reuse some productions. Let me think of generating a^9 and a^12 as follows: a^9 = a^3 * 3 a^12 = a^3 * 4 So if we can have a non-terminal that can generate 3 or 4 instances of X (which is a^3), then maybe we can do it with fewer productions. Let’s try: Let’s have: A → a (1) Y → A A (2) X → A Y (3) (X is a^3) Now, to generate X^3 and X^4. Let’s have: S → X T (for X^3) and S → X U (for X^4) But need to structure T and U. For X^3: T must generate X^2. So T → X X. For X^4: U must generate X^3. Which could be U → X T (if T is X^2). But this might not help. Alternatively: Let’s have: S → P and S → Q, where P generates X^3 and Q generates X^4. To generate X^3: P can be generated by a non-terminal that splits into X and R, where R generates X^2. Similarly, R → X X. To generate X^4: Q can split into R R, where R is X X. So: R → X X (4) P → X R (5) Q → R R (6) S → P (7) S → Q (8) Again, this leads to 8 productions. Hmm. Alternative idea: Use a recursive production that allows generating both. Let’s have S → X S' and then S' can generate either more X's or terminate. But in CNF, each production must be two non-terminals or a terminal. So perhaps: Let’s think of generating X^m where m is 3 or 4. Wait, but how to get exactly 3 or 4 X's. Not sure. Another approach: Let's think of the exponents 9 and 12 in terms of binary representations. 9 in binary is 1001, which is 8+1. 12 is 1100, which is 8+4. But not sure if that helps. Alternatively, think of generating a^9 as a^8 * a, and a^12 as a^8 * a^4. But again, not sure. Wait, but generating a^8 requires log2(8) steps in CNF. For example: Let’s have: S → AA A → BB B → CC C → a This would generate a^8 with 4 productions. Similarly, a^4 would be: A → BB, B → CC, C → a. But combining these for two different lengths might not be efficient. Alternatively, perhaps use a grammar that can generate a^9 and a^12 by having a base that can be combined in different ways. Wait, but this is getting complicated. Let's think about the minimal number of productions needed. We need to generate two specific strings. Let's see if we can find a way to do this with 6 productions. Let me try a different approach. Let's create a grammar that directly builds a^9 and a^12 using a combination of non-terminals. Start with: S → A A (but this would generate a^2, not helpful) No, need to use non-terminals that generate larger chunks. Let’s try: Let’s have: 1. S → P Q (to generate a^9) 2. S → R T (to generate a^12) But then P Q must generate a^9 and R T must generate a^12. But each of P, Q, R, T must be non-terminals with their own productions. This might not be efficient. Alternative idea inspired by arithmetic: 9 = 3*3, 12 = 3*4. If we can have a non-terminal that generates a^3 (X), and another that generates X^3 and X^4. But again, how to do this with few productions. Let me try: A → a (1) X → A A A (but this is not CNF; need to break into two parts) So break into: A → a (1) B → A A (2) X → A B (3) (generates a^3) Now, X is a^3. To generate X^3 (a^9): We can have: C → X D (4) D → X X (5) So C generates X D → X X X → X^3. Similarly, to generate X^4: E → D D (6), where D is X X (from above), so E is X^4. Then S has two productions: S → C (7) and S → E (8). That's two more productions, totaling 8 again. Still over. Wait, but can we merge C and E somehow? Alternatively, have S generate via: S → C and S → D D. But S needs to have productions in CNF. Alternatively, let's have: S → C (C is X^3) S → E (E is X^4) But C and E are non-terminals. Same problem. Alternative idea: Use a single production for S. Wait, S must generate both a^9 and a^12. So S must have two different productions. So that's two productions for S. Let me think of another way. Suppose we have: S → A A ... A (nine times), but in CNF, this isn't possible directly. We need to split into binary steps. But for generating a^9, the minimal number of productions in CNF is O(log n). Let's see: For a^9: We can do: S → A B A → aaaaa (but again, not CNF) No, need to break down. Let me think recursively. To generate a^9: We can split into 5 +4, but that's not helpful. Or split into 3 and 6. But in CNF, each split must be into two parts. Let’s try: S → A B (a^9) A generates a^3, B generates a^6. A can be generated via: A → C D C → a, D → E F where E and F generate a each. No, this seems messy. Alternatively, use a method similar to exponentiation by squaring. For example, a^9 = a * a^8 = a*(a^4)^2. To generate a^8, we can have: X → Y Y, Y → Z Z, Z → A A, A → a. But this would take multiple productions. This seems like it would require many productions, especially for two different lengths. At this point, I'm starting to think that it might not be possible with only 6 productions. But I need to be sure. Let me try to count the minimal number of productions required. First, to generate a^3 (X): A → a (1) B → A A (2) X → A B (3) (produces a^3) Now, to generate a^9 (X^3): We need a way to combine three X's. Let’s define: C → X D D → X X (4) So C produces X D → X X X (3 X's) (production 5: C → X D) Then S → C (production 6) But wait, S needs to also generate a^12. For a^12, which is X^4: We need to generate four X's. Let's define: E → D D (since D is X X, then E is X^4) (production 5 or 6) And S → E (production 6 or 7) So let's list: 1. A → a 2. B → A A 3. X → A B 4. D → X X 5. C → X D (X^3) 6. E → D D (X^4) 7. S → C | E That's 7 productions. We're over by one. Is there a way to reduce this by one? Notice that D is X X (X^2), and we use it in both C and E. If we can eliminate one production. What if we have C directly produce X X X instead of using D? But in CNF, you can't have three symbols. So C would have to be C → X Y, where Y → X X. Which brings us back to needing D. Alternative idea: Can we use S directly to generate the combinations? For example: S can have productions: S → C and S → E, where C is X D and E is D D. But we still need to define C, D, E. Alternatively, eliminate C and have S generate X D directly. So: S → X D | D D But then S would have two productions (S → X D and S → D D), which are allowed in CNF. So let's see: 1. A → a 2. B → A A 3. X → A B (X is a^3) 4. D → X X (X^2 = a^6) 5. S → X D (produces X^3 = a^9) 6. S → D D (produces X^4 = a^12) That's 6 productions! Yes! Let's check: Productions: 1. A → a 2. B → A A 3. X → A B (so X generates a followed by two a's → a^3) 4. D → X X (generates X^2 = (a^3)^2 = a^6) 5. S → X D (generates X followed by D: X * D = a^3 * a^6 = a^9) 6. S → D D (generates D followed by D: a^6 * a^6 = a^12) Now, check if all productions are in CNF: - A → a: yes (terminal) - B → A A: yes (two non-terminals) - X → A B: yes - D → X X: yes - S → X D: yes - S → D D: yes Total of 6 productions. This works! So this grammar has exactly 6 productions and generates {a^9, a^12}. Wait, but wait: Does this grammar generate only these two strings? Let's verify: The start symbol S can produce either X D or D D. X D is X followed by D. Since X generates a^3 and D generates a^6, X D generates a^3 a^6 = a^9. D D is a^6 a^6 = a^12. But are there any other derivations? For example, can the non-terminals generate other combinations? Let's see: When deriving X D: Each X produces a^3, each D produces a^6. But in CNF, the derivation must follow the productions. Since all non-terminals here eventually produce terminals, there's no epsilon production or other ways to terminate early. Each non-terminal in the grammar: A produces a. B produces A A, which are two a's. X produces A B, which produces a followed by two a's: 3 a's. D produces X X, which is 3+3=6 a's. S produces either X D (3+6=9) or D D (6+6=12). So yes, this grammar generates exactly a^9 and a^12. Therefore, the answer is yes, and this grammar works.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> S → XD | DD X → AB B → AA A → a D → XX (Alle Produktionen in CNF mit insgesamt 6 Regeln) </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☒Ja, Grammatik:☐Nein, Begründung:
S → XD | DD X → AB B → AA A → a D → XX (Alle Produktionen in CNF mit insgesamt 6 Regeln)
0: could not parse value S → XD | DD X → AB B → AA A → a D → XX (Alle Produktionen in CNF mit insgesamt 6 Regeln) for type cfg
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Die Sprache $L_2 = \{a^nb^n : n \in \mathbb{N}\}$ ist bekanntermaßen nicht regulär (Beweis z.B. mit dem Pumping-Lemma). Wir zeigen, dass $(L_2)^*$ ebenfalls nicht regulär ist. Angenommen, $(L_2)^*$ wäre regulär. Dann gäbe es eine Pumping-Lemma-Konstante $p$. Betrachte das Wort $w = a^pb^pa^pb^p \in (L_2)^*$. Zerlege $w = xyz$ mit $|xy| \leq p$ und $|y| \geq 1$. Da $|xy| \leq p$, besteht $y$ nur aus $a$'s. Pumpen wir $y$ auf $xy^0z$, erhalten wir $a^{p-k}b^pa^pb^p$ für ein $k \geq 1$. Dieses Wort lässt sich nicht als Konkatenation von Wörtern aus $L_2$ darstellen, da der erste Block $a^{p-k}b^p$ nicht in $L_2$ liegt (ungleiche Anzahl an $a$'s und $b$'s). Dies widerspricht dem Pumping-Lemma, also ist $(L_2)^*$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
S → XD | DD
X → AB
B → AA
A → a
D → XX
(Alle Produktionen in CNF mit insgesamt 6 Regeln)
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, let's tackle this problem step by step. The question is about a context-free, non-regular language L over the alphabet {0,1}, and we need to determine which of the two statements is true. The options are: 1. There exists an undecidable language L' ⊆ L. 2. Every language L' ⊆ L is decidable. We need to choose one of these statements and justify why it's true. First, let's recall some concepts. A context-free language (CFL) is a language generated by a context-free grammar, which can be recognized by a pushdown automaton. Regular languages are a subset of CFLs, and since L is specified as non-regular, it's a CFL that isn't regular. Now, looking at the statements: Statement 1 claims that there's some subset L' of L that is undecidable. Undecidable languages are those for which no Turing machine exists that can decide membership for all inputs. The classic example is the halting problem, which is undecidable. Statement 2 says that every subset of L is decidable. This would mean that no matter how you choose a subset of L, it must be decidable. We need to determine which of these is true given that L is a non-regular CFL. Let me think about the properties of subsets of CFLs. It's known that regular languages are closed under subset? No, that's not true. Regular languages are closed under various operations like union, intersection, etc., but subsets can be non-regular. However, context-free languages aren't closed under complementation or intersection, so subsets can behave differently. Wait, but the question is about decidability. The set of decidable languages is closed under subset? No. For example, the halting problem is a subset of Σ* (which is decidable), but the halting problem itself is undecidable. So subsets of decidable languages can be undecidable. Therefore, the fact that L is context-free (and thus decidable, since all CFLs are decidable) doesn't prevent it from having undecidable subsets. Wait, but wait: All context-free languages are decidable. Because a pushdown automaton can recognize them, and since PDAs are less powerful than Turing machines, but any language accepted by a PDA is decidable. So L is decidable. However, L could have subsets that are undecidable. For example, take any undecidable language L' ⊆ {0,1}*. If we can show that L' is a subset of L, then statement 1 would be true. But how can we know that? But L is a non-regular CFL. For example, take L = {a^n b^n | n ≥ 0}, which is a classic non-regular CFL. Does L have an undecidable subset? Well, the set {a^n b^n | n ∈ K}, where K is the halting problem, would be a subset of L. Since K is undecidable, this subset would be undecidable as well. But is this subset a valid subset of L? Yes, because each element is in L. Therefore, such a subset exists. Therefore, statement 1 is true. But wait, the question says that L is an arbitrary context-free, non-regular language. So regardless of what L is (as long as it's CFL and not regular), statement 1 would hold. But how can we be sure that any such L has an undecidable subset? Alternatively, maybe there exists some L which is CFL, non-regular, but all its subsets are decidable. But that's impossible because any uncountable set of subsets would include undecidable languages. Wait, the power set of L is uncountable, and there are only countably many decidable languages. Therefore, there must exist subsets of L that are undecidable. Therefore, statement 1 is true. But statement 2 says that every subset is decidable. Since there are uncountably many subsets, and only countably many decidable languages, most subsets are undecidable. Therefore, statement 2 is false. Wait, but the argument here is that since L is countably infinite (since it's a subset of Σ* which is countable), its power set is uncountable. Therefore, there are uncountably many subsets, but only countably many decidable languages. Therefore, there must exist subsets of L that are undecidable. Therefore, statement 1 is true, and statement 2 is false. But wait, the problem states that L is a subset of {0,1}*, which is countable. So L is countably infinite (assuming it's infinite; but since it's non-regular, and context-free languages can be infinite, but maybe some non-regular CFLs are finite? No, finite languages are regular. So if L is non-regular, then it must be infinite. So L is countably infinite. Therefore, the number of subsets of L is uncountable, which implies that there are subsets of L that are undecidable. Therefore, statement 1 is true. Therefore, the correct answer is option 1. But wait, the problem says "L is an arbitrary context-free and non-regular language". So regardless of which such L we pick, does statement 1 hold? Yes, because as per the cardinality argument, there are uncountably many subsets, and only countably many decidable languages, so some subsets must be undecidable. Therefore, statement 1 is correct, and statement 2 is incorrect. So the answer should be option 1 selected (1), and the justification would be that since L is infinite and countable, it has uncountably many subsets, but there are only countably many decidable languages. Therefore, there must exist subsets of L that are undecidable.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage $1$ (1 oder 2): Da $L$ eine überabzählbare Teilmenge von $\{0,1\}^*$ ist und unendlich viele Elemente enthält, besitzt $L$ überabzählbar viele Teilmengen $L' \subseteq L$. Die Menge aller entscheidbaren Sprachen ist jedoch abzählbar, da Turing-Maschinen abzählbar sind. Somit muss es notwendigerweise Teilmengen $L'$ von $L$ geben, die nicht entscheidbar sind. Dies gilt unabhängig davon, dass $L$ selbst kontextfrei (und damit entscheidbar) ist. Daher ist Aussage $1$ wahr. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage (1 oder 2): Da eine überabzählbare Teilmenge von ist und unendlich viele Elemente enthält, besitzt überabzählbar viele Teilmengen . Die Menge aller entscheidbaren Sprachen ist jedoch abzählbar, da Turing-Maschinen abzählbar sind. Somit muss es notwendigerweise Teilmengen von geben, die nicht entscheidbar sind. Dies gilt unabhängig davon, dass selbst kontextfrei (und damit entscheidbar) ist. Daher ist Aussage wahr.
qwen/qwen3-235b-a22b-thinking-2507
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Okay, let's tackle this problem. So, the question is about which of the given languages L_i, when their Kleene star (L_i)* is formed, results in a non-regular language. The options are L1, L2, L3, each defined over the alphabet {a, b}. First, I need to recall that for a language L, (L)* is the set of all strings that can be formed by concatenating zero or more strings from L. The Kleene star of a regular language is always regular, but if L itself isn't regular, then (L)* might or might not be regular. Wait, but actually, even if L is non-regular, (L)* could become regular. So the key here is to check if each (L_i)* is regular or not. Let me look at each option one by one. Starting with L1: L1 is {(ab)^n : n ∈ N}. Wait, (ab)^n means ababab... n times. So L1 is a regular language because it's just the set {ab, abab, ababab, ...}, which can be described by the regular expression (ab)+. Wait, but the Kleene star of L1 would be ( (ab)+ )*. So (ab)*. Wait, no. Wait, (ab)^n where n is a natural number (assuming N starts at 1 here, but sometimes N includes 0). Wait, the problem says n ∈ N. Depending on whether N includes 0 or not. Hmm, for example, in some contexts N is positive integers, so n ≥ 1. Then L1 would be {ab, abab, ...}, which is (ab)+. Then (L1)* would be all strings made by concatenating zero or more copies of (ab)^n. So the Kleene star of that would be any string formed by these, including the empty string. But (ab)+* is actually equivalent to (ab)*, because if you can have any number of repetitions, including zero, then it's the same as (ab)*. Wait, let's see. If L1 is (ab)+, then L1* is the set of strings that are concatenations of one or more (ab) strings. Wait, no: Kleene star allows for any number of concatenations, including zero. Wait, no. Wait, the Kleene star of L (L*) is the union of L^0, L^1, L^2, etc. So L^0 is {ε}, L^1 is L, L^2 is LL, etc. So if L1 is (ab)^n where n ∈ N (assuming n ≥1), then L1 itself is {(ab), (ab)^2, (ab)^3, ...} which is (ab)+. Then (L1)* would be all strings that are concatenations of any number of elements from L1, including zero, which would give ε combined with (ab)^+ concatenated any number of times. Wait, but concatenating multiple elements of L1 would be like (ab)^k concatenated with (ab)^m, which gives (ab)^{k+m}. So (L1)* would actually be { (ab)^n | n ≥ 0 }, since you can have n =0 (the empty string), n=1, etc. Wait, yes, because (L1)* includes ε (from L^0), and then L^1 is (ab)^+, L^2 is (ab)^+ concatenated with itself, which gives (ab)^{≥2}, etc. So overall, (L1)* is (ab)*, which is a regular language. So even though L1 isn't all (ab)* (it's (ab)+), the Kleene star of L1 would allow any number of concatenations, including zero, so (L1)* = (ab)* ∪ {ε} but since (ab)* already includes ε, no, wait (ab)* includes ε as the zero-length string. Wait, but L1 is (ab)^n where n ∈ N. If N starts at 1, then L1 is (ab)+, and (L1)* is indeed (ab)*, which is regular. So (L1)* is regular, so L1 is not the answer. Now L2: L2 is {a^n b^n : n ∈ N}. This is the classic non-regular language (the equal number of a's followed by b's). Now, what is (L2)*? The Kleene star of L2 would be all concatenations of zero or more strings from L2. So for example, ε, a^1 b^1, a^1 b^1 a^2 b^2, etc. But let's see. Each component in the concatenation must be a string of the form a^n b^n. So a string in (L2)* would look like a^{n1} b^{n1} a^{n2} b^{n2} ... a^{nk} b^{nk}, where each ni ≥1 (assuming N starts at 1). Wait, but if N includes 0, then n=0 would be a^0 b^0 = ε, but in this problem statement, for L2 it's n ∈ N. If N here is the positive integers (n ≥1), then each concatenation has blocks where a's and b's are equal in each block. However, the entire string may not have equal a's and b's overall. For example, the concatenation of two strings from L2: a^1 b^1 a^2 b^2 = ab aab b, which is aabbaab? Wait, no, it's ab followed by aabb (since n=2 for the second string: a^2 b^2 = aabb). So ab aabb = abaabb. So total a count is 1 + 2 = 3, b count is 1 + 2 = 3. Wait, but in this case, the total number of a's and b's would be the sum of ni for a's and the sum of ni for b's. Wait, each ni is the number for a's and b's in each concatenated string. Wait, for each string in L2, say a^k b^k, so when you concatenate multiple such strings, the total number of a's is k1 + k2 + ... + km, and the same for b's. So total a's and b's would be equal. Wait, but hold on, the strings in L2 are a^n b^n, so when you concatenate them, the concatenation would be a^{n1} b^{n1} a^{n2} b^{n2} ... a^{nk} b^{nk}, which is a^{n1} (b^{n1} a^{n2}) b^{n2} ... So between the b's and a's, there's a switch. So this string is not the same as a^m b^m, because there are interleaved a's and b's. However, the total number of a's is n1 + n2 + ... + nk, and total number of b's is the same. But the structure is different. However, the key point is whether (L2)* is regular or not. But wait, even if the total a's and b's are equal, that's not sufficient for regularity. However, maybe there's a way to see if (L2)* is regular. Let's think about the pumping lemma. Suppose (L2)* is regular. Let's consider strings in (L2)*. For example, the string (a^p b^p) where p is the pumping length. Wait, no, actually (L2)* includes strings that are concatenations of multiple a^n b^n. Wait, a single a^n b^n is in L2, so it's in (L2)*, and multiple concatenations are as well. Wait, but actually, let's consider the case where you have only one concatenation: the strings of the form a^n b^n are all in (L2)*. Because L2 is a subset of (L2)* (since it's L2^1). So the language (L2)* contains all strings a^n b^n for n ≥1 (assuming N starts at 1), as well as concatenations of these. But if (L2)* is regular, then the subset {a^n b^n | n ≥1} must also be regular, which it's not. Wait, but that's not true. Because a non-regular language can be a subset of a regular language. For example, {a^n b^n} is a subset of a*b*, which is regular. So the presence of a non-regular subset doesn't make the whole language non-regular. Ah, right. So that approach is invalid. Instead, we need to check if (L2)* itself satisfies the pumping lemma for regular languages. Alternatively, maybe (L2)* is not regular. Let's try to apply the pumping lemma. Assume (L2)* is regular. Let p be the pumping length. Consider the string s = a^p b^p. Wait, but is this string in (L2)*? Yes, because it's a single element of L2 (if n=p is allowed). So if p ≥1, and assuming N includes p, then s is in (L2)*. Wait, but wait: (L2)* includes all concatenations of strings from L2. So the string a^p b^p is in L2, hence in (L2)*. By pumping lemma, s can be divided into xyz, with |xy| ≤ p, |y| ≥1, such that xy^iz ∈ (L2)* for all i ≥0. Since |xy| ≤ p, y consists of only a's. Pumping y (i.e., repeating it) would result in a string with more a's than b's in the first part. For example, if we pump down (i=0), we get xz = a^{p - |y|} b^p. But this string is a^{p - k} b^p, where k ≥1. However, this string is not of the form a^n b^n (since p -k ≠ p unless k=0), and it's also not a concatenation of strings from L2. Because to be in (L2)*, the string must be a sequence of blocks each of which is a^n b^n. However, a^{p -k} b^p can be written as a single block? Let's see: a^{p -k} b^p. For this to be a single block, we need (p -k) = p, which would require k=0, but k ≥1. So it's not a single block. Could it be multiple blocks? Suppose someone splits it into two blocks: a^{m} b^{m} a^{n} b^{n}. But after the first block's b's, you can't have more a's. So in the string a^{p -k} b^p, after the a's, all the following characters are b's. So this is a^* b^*, but not in the form of a concatenation of a^n b^n strings. Wait, but the first part up to the b's is a^{p -k} b^p. Wait, for this to be in (L2)*, it has to be a concatenation of one or more a^n b^n strings. Let's suppose it's a concatenation of multiple such strings. But since all the a's come first, followed by all the b's, the only way this could happen is if there is only one string in the concatenation, i.e., a^{p -k} b^{p -k} would be the string, but here we have a^{p -k} b^p. Since p -k < p, the number of a's is less than the number of b's. So the total string a^{p -k} b^p can't be expressed as a concatenation of a^n b^n strings, because each part must have equal a's and b's, and the concatenation would have equal total a's and b's. Wait, but in this case, total a's are p -k, total b's are p. So p -k < p, so total a's < total b's, which would mean that it's impossible to have such a string in (L2)*, because any concatenation of a^n b^n strings would have total a's equal to total b's. Ah! Because each component a^{n_i} b^{n_i} contributes n_i a's and n_i b's, so the total number of a's is the sum of n_i's, and same for b's. Therefore, any string in (L2)* must have an equal number of a's and b's. Conversely, if a string has equal number of a's and b's and is in the form a...ab...b (without any interleaving), then it is a single block a^n b^n, which is in L2, hence in (L2)*. Wait, but the string a^{m} b^{m} is in (L2)* as a single element. However, what about a string like a^2 b^2 a^3 b^3? That's in (L2)*, but it's not a single a^n b^n; however, its total a's = 2+3=5, total b's=2+3=5. But the structure is aabbaaabbb. So this string is in (L2)* and has equal a's and b's, but the structure is different. However, the language (L2)* consists of all strings with equal number of a's and b's that can be divided into segments each of which has equal a's and b's. Wait, but is that all strings with equal a's and b's? No. For example, abab has two a's and two b's, but it can't be split into segments of a^n b^n. Because the first part would be 'ab', which is a^1 b^1, then 'ab' again. Wait, abab = ab ab, which is two copies of a^1 b^1. Wait, yes. So abab would be in (L2)*, because L2 includes a^1 b^1 and a^2 b^2, etc. Wait, but ab is in L2 (n=1), so abab is ab followed by ab, each of which is in L2. So yes, abab is in (L2)*. Wait, but wait: the language L2 is {a^n b^n | n ∈ N}. So for n=1, it's ab (if we consider Σ={a,b}), but a^1 is 'a', b^1 is 'b', so ab. For n=2, aab b. So each string in L2 is a run of a's followed by a run of b's of equal length. So, for example, the string 'abab' would be two instances of 'ab' concatenated, but 'ab' is in L2 (n=1), so yes, 'abab' = (ab)(ab) ∈ (L2)*. Similarly, 'aabbaabbb' would not be in (L2)*, but wait: aabb is n=2, aabbb is not because the a's and b's aren't equal. Wait, no. Wait, 'aabb' is n=2, 'aaabbb' is n=3, but 'aabbaabbb' would be 'aabb' + 'aaabbb' = (n=2 and n=3), which is in (L2)*. Wait, but in general, any string in (L2)* must be of the form where you have alternating runs of a's and b's, but in such a way that each run of a's is immediately followed by a run of b's of the same length. So the structure is (a^n b^n)*, which would look like a...ab...ba...ab...b etc., with each a-run matching the following b-run. Therefore, the strings in (L2)* are all the strings where the a's and b's are arranged in blocks, each block being a^n b^n. So this is different from the language {a^n b^n | n ≥ 0}, which is the single block case. Therefore, (L2)* is the set of all strings formed by concatenating zero or more strings each of which is a^n b^n. Now, the key question is whether this language is regular. To check regularity, we can try using the pumping lemma. Suppose (L2)* is regular, let p be the pumping length. Consider the string s = (a^p b^p). Wait, but that's in L2, so it's in (L2)*. Wait, but we need a string that can't be pumped. Let's think. Alternatively, perhaps consider s = (ab)^p. Wait, but (ab)^p is a^p b^p? No, (ab)^p is abab...ab (p times), which is a^p b^p? No: (ab)^p would be ab repeated p times, so for p=2: abab, which is a^2 b^2. Wait, no: each ab is 'a' followed by 'b', so abab is a, b, a, b, which is a^2 b^2 only if it's a's followed by b's. Wait no, abab has two a's and two b's, but interleaved. So abab is not a^n b^n; a^n b^n is a...a followed by b...b. So ab is in L2 (n=1), but abab is two instances of ab (each from L2), so abab is in (L2)*. Wait, but what's the structure of strings in (L2)*? Each element is a concatenation of strings from L2, which are a^n b^n. So each such string has a prefix of a's, then same number of b's. So when you concatenate two such strings, you get a^{n1} b^{n1} a^{n2} b^{n2}, which is a string that starts with a's, then b's, then a's, then b's. So there can be multiple alternations between a's and b's. Therefore, the language (L2)* is the set of all strings over {a,b} where the number of a's equals the number of b's, and the string is a concatenation of blocks each with equal a's and b's. However, it's more restrictive than just having equal numbers; for example, the string abab is allowed (two blocks), but the string aababb (which has three a's and three b's) may not be. Wait, aababb: let's see. Can it be divided into blocks of a^n b^n? Let's split as aa (but then we need bb, but after aa is b followed by a, which breaks). The string aababb is aababb. Let's see: first block a's: 'a', but then 'a', 'b', so first block is 'aa', but then to have aa followed by bb, but the string is aababb. Let's look at the positions: Indices 0: a 1: a 2: b 3: a 4: b 5: b Trying to split into a^n b^n: First, read as many a's as possible. At position 0 and 1 are a's. Then need n=2, so we expect two b's next. But position 2 is b, 3 is a. So after two a's, we have a single b, followed by an a, which breaks. So it cannot be divided into such blocks. Therefore, aababb is in the language of equal a's and b's but not in (L2)*. So (L2)* is a proper subset of the equal a's and b's language. Now, to check if (L2)* is regular. Let's apply the pumping lemma. Suppose it's regular. Choose a string s = a^p b^p a^p b^p. Wait, but this is (a^p b^p)(a^p b^p), so in (L2)*. Wait, s has length 4p. Pumping length p. The pumping lemma says that we can split s into xyz, |xy| ≤ p, |y| > 0, and xy^iz ∈ L for all i. Since |xy| ≤ p, and s starts with p a's, the substring xy is entirely within the first p a's. So y is a sequence of a's. Let's pump up to i=2: xy^2z = a^{p + |y|} b^p a^p b^p. Now, is this string in (L2)*? Let's see. After the first a's: there are p + k a's (k = |y| ≥1). Then comes p b's. So the first block would need to be a^{n1} b^{n1}. However, the number of a's in the first run is p +k, followed by p b's. Since p +k > p, this first block cannot be a valid a^n b^n string (since n1 would have to be p, but then the a's would have to be p, but there are more). Therefore, the string cannot be split into a^n b^n blocks, because after the first p +k a's, there are only p b's, so the first block would require p +k a's followed by p +k b's, but here there are only p b's. Therefore, the pumped string is not in (L2)*, which contradicts the pumping lemma. Therefore, (L2)* is not regular. Wait, but let's validate this. Suppose p is the pumping length. Let s = (a^p b^p)^2 = a^p b^p a^p b^p. Wait, but maybe a better choice is to take s = a^p b^p. Let's see. Take s = a^p b^p. It's in (L2)* (as a single block). Split into xyz, with |xy| ≤ p, so xy is all a's. Pumping y will change the number of a's. If we pump down to i=0, we get a^{p - k} b^p. Now, this string has fewer a's than b's. To be in (L2)*, the total number of a's must equal total b's (as each block contributes equally), so this string has a's = p -k, b's = p, which are unequal. Therefore, it's not in (L2)*. Thus, violates the pumping lemma. Therefore, (L2)* is not regular. Wait, but earlier I thought that all strings in (L2)* have equal a's and b's, which they do. Because each block contributes n_i a's and n_i b's, sum total. So total a's = sum n_i = total b's. Therefore, any string in (L2)* must have equal numbers of a's and b's. Therefore, when we pump down and get a^{p -k} b^p, this has a's < b's, thus not in (L2)*. So yes, this application of the pumping lemma shows that (L2)* is not regular. So L2 is a candidate. Now check L3. L3 is {a^n b^m : n, m ∈ N and n ≠ m}. So this is all strings of a's followed by b's where the count of a's is not equal to the count of b's. Now, what is (L3)*? First, L3 consists of a^n b^m where n and m are natural numbers (assuming N here starts at 1, but maybe including 0? The problem says n, m ∈ N. In some contexts, N starts at 1, but in computer science often N includes 0. However, the condition n ≠ m. If N includes 0, then for example, a^0 b^1 = b is in L3, a^1 b^0 = a is in L3, etc. But regardless, L3 is a subset of a*b*, since all strings are a's followed by b's. Now, (L3)* is the set of all concatenations of strings from L3. However, note that a string in L3 is of the form a^n b^m with n ≠ m. When we concatenate two such strings, say a^n b^m followed by a^k b^l, we get a^n b^m a^k b^l. But this is not in a*b* unless m=0 and k=0, which they aren't (assuming N doesn't include 0). Wait, if N starts at 1, then m and k are at least 1. So concatenating a string ending with b's and starting with a's would result in a string of the form ...b a..., which is not in a*b*. Therefore, the only way for the concatenation to stay in a*b* is if there are no such transitions. Wait, no. Wait, L3 contains only strings that are a's followed by b's. So concatenating two strings from L3 would produce a string that has a block of a's, then b's, then a's, then b's. So it's not in a*b*, but in (a*b*)* which allows for multiple alternations. But actually, the Kleene star of a language that is a subset of a*b* is not necessarily a subset of a*b*. Wait, L3 is a subset of a*b*, so every string in L3 is a*b*. Therefore, any concatenation of such strings would be (a*b*) (a*b*) ... (a*b*), but when you concatenate a*b* with a*b*, you get a*b*a*b*, which includes strings that have mixed a's and b's. However, the point is: what is (L3)*? But let's think practically. L3 is {a^n b^m | n, m ≥ 1, n ≠ m} (assuming N starts at 1). Wait, but maybe the problem's N is including 0. Let's check the exact definition. The problem says n, m ∈ N ∧ n ≠ m. If N includes 0, then ε is not in L3 (since n and m are zero? No: if n=0 and m=0, but they need to have a^n b^m where n and m are in N, so if N includes 0, then a^0 b^0 = ε, but n=m=0, so it's excluded. However, a^0 b^1 = b, which is in L3 if 0 ∈ N, because n=0, m=1, n≠m. But regardless, the key properties of L3 are: - It consists of strings of a's followed by b's where the counts are unequal. Now, (L3)* includes all concatenations of such strings. Let's consider what strings can be formed. For example, take ε: since (L3)* includes ε. Take ab: If n=1, m=2, which is in L3 (1≠2), so "abb" is in L3. Wait, but the question is about L3 itself. Wait, L3 is a^n b^m with n ≠ m. So if n=1 and m=2, it's aabbb? No: a^1 b^2 is ab b. Wait, a^1 is 'a', b^2 is 'bb', so the string is 'abb'. But, for example, is 'ab' in L3? If n=1, m=1, but n must not equal m, so 'ab' (n=1, m=1) is not in L3. So 'ab' is not in L3. So L3 does not include strings where n = m. Wait, so for L3, it's a^n b^m where n and m are natural numbers (whatever N is), and n ≠ m. Therefore, if N is positive integers (n ≥1), then L3 is a^+ b^+ \ {a^n b^n | n ≥1}. But in any case, the Kleene star of L3. Wait, but here's an important point: the language L3 almost contains all strings of a's followed by b's except those with equal counts. So L3 = a*b* \ {a^n b^n | n ≥ ...}. But when you take the Kleene star, what happens? Consider that (L3)* includes ε, and all concatenations of strings from L3. But let's think about whether (L3)* is regular. Note that a*b* is a regular language. Also, L3 is a regular language? Wait, L3 is {a^n b^m | n ≠ m}. Assuming that n and m range over natural numbers (N). If N includes 0, then it's all strings in a*b* except those where n = m (including n=m=0 if ε is considered, but ε is a^0 b^0, which is excluded in L3 if N allows n=0 and m=0). However, whether L3 is regular depends. Wait, {a^n b^m | n ≠ m} is a regular language because we can build an automaton that either the number of a's is less than the number of b's or greater. Wait, no. Wait, the language {a^n b^m | n ≠ m} is not regular. Because it's similar to {a^n b^n} but inverted. Wait, no: but it's part of a*b*. Wait, let's think. If you have a*b*, then {a^n b^m | n ≠ m} is a*b* minus the language {a^n b^n | n ≥0}. Since a*b* is regular, and regular languages are closed under intersection and complement. However, the difference of a regular language and a non-regular language can be non-regular. But in this case, {a^n b^m | n ≠ m} is actually context-free but maybe not regular. Wait, but let's check. Suppose N is including 0. So L3 = a*b* \ {a^n b^n | n ≥0}. Now, a*b* is regular, but {a^n b^n} is not. So can the difference be regular? No. Because if L3 were regular, then a*b* ∩ complement(L3) = {a^n b^n | n ≥0}, which is a context-free language. But the intersection of a regular language and a regular language is regular. So if L3 were regular, then {a^n b^n} would be regular, which it's not. Therefore, L3 is not regular. But the question is about (L3)*. Wait, but what is (L3)*? Let's consider. Since L3 consists of a^n b^m with n ≠ m, but when we take the Kleene star, we allow concatenating any number of such strings. But for example, consider concatenating two strings: a^1 b^2 (which is in L3 since 1≠2) followed by a^1 b^2 again. So abbb abbb. Wait, no: the second string starts with a's after b's. So the concatenated string is abbbabbb. This string has a run of a's, then b's, then a's, then b's. But in terms of counting, the total a's are 1 + 1 = 2, total b's are 2 + 2 =4. However, 2 ≠4. Wait, but each individual block may have unequal counts, but the total counts may vary. But perhaps (L3)* is the entire Σ*? Or almost. Wait, let's see. For example, can we generate the empty string? Yes, because ε is in (L3)* (by definition of Kleene star). Can we generate "a"? Is "a" in (L3)*? "a" can be written as a^1 b^0 if N allows m=0. Wait, but in L3, it's a^n b^m with n ≠ m. If m=0 is allowed (assuming N includes 0), then a^n b^0 = a^n. But n ≠ 0 (assuming n ∈ N). Wait, if N includes 0, then n can be 0, but in a^n b^m, n and m are both in N. Wait, this is getting confusing. Alternative approach: Assume N starts at 0. Then L3 includes all a^n b^m where n and m are non-negative integers (including zero) and n ≠ m. So, for example, ε is a^0 b^0, which is excluded. So ε ∉ L3. But a^1 b^0 = "a" is in L3 because 1≠0. Similarly, a^0 b^1 = "b" is in L3. Then L3 contains "a", "b", "aa", "aaa", ..., "ab", "abb", "aab", etc., but excludes "ab" (wait no, if n=1 and m=1, then "ab" is excluded. Wait, if N includes 0, then a^1 b^1 is "ab", which has n=1, m=1, so n=m, thus excluded from L3. So L3 includes: - All a's: strings like "a", "aa", ... (m=0, n≥1; since n≠m) - All b's: strings like "b", "bb", ... (n=0, m≥1; since n≠m) - Strings like "aab" (n=2, m=1, 2≠1), etc. Wait, but if N includes 0, then n and m can be zero. So "a" is a^1 b^0, which is in L3 (1≠0), and "b" is a^0 b^1, which is in L3 (0≠1). Now, if L3 contains all single characters 'a' and 'b', then (L3)* would be Σ*, since we can build any string by concatenating 'a's and 'b's. Let's check. Since 'a' is in L3? If 'a' is in L3, then yes. If N includes 0, then n=1, m=0: 1≠0, so 'a' is in L3. Similarly, 'b' is a^0 b^1, which is in L3. Therefore, L3 contains 'a' and 'b', so (L3)* is Σ*, which is regular. But wait, does 'a' belong to L3? Let's verify. Assuming that N includes 0 (which is common in theoretical CS), then for 'a' (which is a^1), we can represent it as a^1 b^0. Since n=1 and m=0, n≠m, so yes, it's in L3. Similarly, 'b' is a^0 b^1, which is also in L3. So L3 indeed contains 'a' and 'b', thus (L3)* = Σ*, which is regular. But what if N starts at 1? Then n and m are ≥1. So L3 consists of a^n b^m where n ≥1, m ≥1, and n≠m. So strings like "aab" (n=2, m=1), but does 'a' belong to L3? No, because m must be ≥1. So 'a' would require m=0, which is not allowed. Similarly, 'b' is not allowed. In this case, L3 is a^+ b^+ \ {a^n b^n | n ≥1}. In this scenario, L3 does not contain single 'a's or 'b's. So what is (L3)* in this case? For example, can we get 'a' in (L3)*? Let's see. To form 'a', we need to concatenate strings from L3. Each string in L3 has at least one 'a' and one 'b', since n,m ≥1. Therefore, any concatenation of such strings will have at least one 'a' and one 'b' per component. Wait, no: the first string in the concatenation could be something like a^2 b^1 (so 'aab'), then next could be a^1 b^2 ('abb'), etc. But even in this case, each component has a's followed by b's. However, when concatenated, they form a string like 'aababb', which would be part of the concatenation. But the problem is, to get a single 'a', we need to have a string that starts with 'a's and ends before any 'b's. However, all strings in L3 (when N starts at 1) are of the form a^+ b^+, so they all have at least one 'b' following 'a's. Therefore, any concatenated string from L3 would have the property that after the first block of a's, there are b's, then potentially a's again, etc. Wait, but in this case, the Kleene star (L3)* would consist of all strings that are either ε or concatenations of one or more a^n b^m (n,m ≥1, n≠m). So even if N starts at 1, can we ever get a string that has only a's or only b's? No. Because each string in L3 has both a's and b's. So the concatenation would always have both. So 'a' cannot be formed. Similarly, 'b' cannot be formed. However, what about 'aa'? To get 'aa', we need to find a string in L3 that can be concatenated to form 'aa'. But each string in L3 ends with at least one 'b', so concatenating them would never give a string without 'b's. Therefore, (L3)* in this case is a subset of (a^+ b^+)^*, which are all strings where: - ε is allowed. - Any non-empty string is a sequence of blocks, each block containing at least one 'a' and one 'b'. But in this case, can we create some regular language? Wait, but the problem states that Σ = {a, b}. So the question is whether (L3)* is regular. Assuming N starts at 1. Then L3 = {a^n b^m | n, m ≥1, n ≠ m}. So for example, 'aaab' (n=3, m=1) is in L3. Now, consider (L3)*. Let's see if we can express this as a regular language. Notice that L3 = a^+ b^+ \ {a^n b^n | n ≥1}. But the complement of {a^n b^n} within a^+ b^+ is L3. But (L3)* would be a subset of (a^+ b^+)^*, which is regular (since it's (a a^* b b^*)^*, which is regular). But is (L3)* equal to (a^+ b^+)^*? Wait, suppose we want to see if all strings in (a^+ b^+)^* are in (L3)*. A string in (a^+ b^+)^* is a concatenation of blocks each of which is a^+ b^+. But each such block may or may not be in L3. If the block is a^n b^m with n ≠ m, then it is in L3. If it's a^n b^n, it's not. So (L3)* is exactly (a^+ b^+)^* \ the set of strings where at least one block is a^n b^n. Wait, no. (L3)* is all concatenations where every block is in L3, i.e., all concatenations of a^n b^m with n≠m. Therefore, (L3)* is a proper subset of (a^+ b^+)^*. But is it regular? Hmm. Suppose we can find that (L3)* = (a^+ b^+)^*. But no, because for example, the string abab has two blocks 'ab' each. However, 'ab' has n=1, m=1, which is a^n b^n, so it's not in L3. Therefore, 'abab' would not be in (L3)*, because each block 'ab' is not in L3. But wait, 'ab' is not in L3 (since n=m=1). So 'abab' is 'ab' followed by 'ab', both not in L3, so 'abab' is not in (L3)*. However, a string like 'aabbaabbb' is 'aabb' (n=2, m=2? No, m=2 for first block? Wait, 'aabb' is a^2 b^2, so n=m=2, so it's not in L3. So it's excluded. But what if we take 'aaab' (n=3, m=1), which is in L3, concatenated with 'abbb' (n=1, m=3), which is also in L3. So the resulting string is 'aaababbb'. Now, can we form certain strings. But maybe it's easier to ask if L3* contains all strings of (a^+ b^+)* except those that have some blocks with n=m. But even so, is this language regular? Alternatively, think about whether (L3)* is equal to (a^+ b^+)*. If yes, then it's regular. If not, decide. But to have (L3)* = (a^+ b^+)*, we must be able to express any block a^n b^m as a concatenation of blocks each of which has n≠m. Wait, for example, the block a^2 b^2 (which is not in L3) can we write it as a concatenation of blocks from L3? No, because a single block is a^2 b^2, which is not in L3. But can we split it into multiple blocks? No, because a^2 b^2 as a string would have to be at least one block. Wait, the string a^2 b^2 is one block, and since it's a^2 b^2, n=m=2, so it's not in L3. But could it be expressed as two blocks? Suppose we try to split into 'aa' and 'bb', but 'aa' is a^2 b^0, which is not in a^+ b^+ (if m must be ≥1), so it's not in L3. Alternatively, but we are considering L3 when N starts at 1: strings must have at least one a and one b. So 'aa' is not in L3. Alternatively, can a^2 b^2 be written as the concatenation of two strings from L3? For example, 'aab' (a^2 b^1) followed by 'ab' (a^1 b^1). But 'ab' is not in L3 since n=m=1. So that won't work. Another try: 'aaaab' (a^4 b^1) but that's longer than needed. Doesn't help for a^2 b^2. In general, to form a block a^k b^k, we need to find some way to split it into multiple sub-blocks each of which are a^n b^m with n≠m. But within the block a^k b^k, there are no internal subdivisions; it's a single run of a's followed by b's. So you can't split a^k b^k into multiple a^+ b^+ blocks unless you do something like a^{k'} b^{m'} a^{k''} b^{m''}, but since it's a single a's then b's, you can't have another a after the b's. So the only way to have multiple blocks is if the entire string has multiple alternating runs. Therefore, the string a^k b^k cannot be decomposed into a concatenation of smaller a^n b^m blocks (with n,m ≥1), because after the b's there are no a's. So a^k b^k can only be expressed as a single block. Therefore, in (L3)*, any string that contains a block a^k b^k in its decomposition would not be present, provided that such a block exists. But (L3)* consists of all strings that can be broken into blocks each of which is in L3. So the problem is whether certain strings from (a^+ b^+)* cannot be formed. But regardless, the key is to determine if (L3)* is regular. Assuming N starts at 1: Consider whether (L3)* equals (a^+ b^+)*. If yes, then regular. If not, perhaps it's still regular. Wait, but wait: Let's say take a block a^2 b^3. This is in L3 (n=2, m=3, 2≠3). Now, can we get a^2 b^2 by concatenating strings? No, because you'd need to have total a's =2 and total b's=2. But each string in L3 has at least one a and one b. So the minimum a count from one string is 1, same for b. So for example, 'ab' is not in L3 (n=m=1), but 'aab' (n=2, m=1) is. Suppose we try to get a^2 b^2 by concatenating two blocks. The first block could have n1 a's and m1 b's, the second n2 a's and m2 b's. But since the second block must start with a's, you'd have a string like a^{n1} b^{m1} a^{n2} b^{m2} = a^2 b^2. Therefore, n1 = 2, and m1 + n2 = 0? No, because all exponents are ≥1. Impossible. Wait, no: the concatenation would require that m1 (number of b's in first block) is followed by n2 a's, which is impossible unless m1=0, but m1 ≥1. So you cannot have a^2 b^2 in (L3)*. But this suggests that (L3)* is a subset of (a^+ b^+)* that excludes strings where any single-block decomposition has n=m. But how does that help us? Another approach: Let's consider that (L3)* includes all strings in (a^+ b^+)* where for each maximal block of a's followed by b's in the concatenation, the numbers are unequal. But actually, no. Each individual block in the concatenation must have n≠m. Now, to check regularity. Assume N starts at 1. Suppose we want to design a regex or an automaton for (L3)*. (L3)* is all strings that are concatenations of blocks of the form a^n b^m with n ≥1, m ≥1, n≠m. Note that a^n b^m with n ≠ m can be expressed as (a^+ b^+ ) \ {a^n b^n | n ≥1}. So the blocks are either a^n b^m where n > m or n < m. Wait, but how can we describe the infinite possibilities of n > m or n < m with a regex? For example, the set of blocks where n > m includes all strings like a^{m + k} b^m for k ≥1, m ≥1. Similarly, n < m includes a^n b^{n +k} for k ≥1, n ≥1. This seems difficult to capture with a regular expression, as it requires comparing the lengths of a's and b's. However, (L3)* might still be regular if there's a way to avoid this counting. Wait, but let's consider the following: Take the language (a a^* b b^*)*, which is regular. This corresponds to any number of blocks of a^+ b^+. But L3 is a subset of this language (since each block has a^+ b^+ but with n≠m), so (L3)* is a subset of (a a^* b b^*)*. Now, if we can show that (a a^* b b^*)* \ (L3)* is regular, or something, but I'm not sure. Alternatively, think about closure properties. Suppose (L3)* is regular. But L3 itself is not regular. However, the star of a non-regular language can be regular or not. Wait, but we need to determine if (L3)* is regular. Another angle: If N includes 0, then L3 contains 'a' and 'b', so (L3)* = Σ* which is regular. But the problem states that n, m ∈ N. In many theoretical contexts, N does include 0. So perhaps this is the case. But the problem is in German, where sometimes N refers to positive integers. The problem says "mindestens eine Antwortmöglichkeit ist immer richtig", so we need to see which is correct. But going back to the problem statement: The student is to select which L_i's Kleene star is not regular. The question is in German, and often in German mathematical contexts, N starts at 1. However, in computer science, N often includes 0. This is a point of confusion. Let me check L3 again. If N includes 0, then a^0 b^1 = b is in L3 (since 0≠1), and a^1 b^0 = a is also in L3. Thus, L3 contains the single characters 'a' and 'b', hence L3* = Σ*, which is regular. Therefore, (L3)* is regular, so L3 is not a correct answer. If N starts at 1, then 'a' and 'b' are not in L3, as the strings in L3 must have at least one a and one b. So L3 consists of strings that have at least one a and one b, with a's followed by b's, and counts unequal. Then (L3)* would be the set of all strings formed by concatenating such blocks. Now, is this language regular? Let's consider whether it's possible to represent (L3)* using a regular expression. For example, take two types of blocks: those where there are more a's than b's, and those where there are more b's than a's. Each block is in a^+ b^+. But to express all such blocks without the equality condition is difficult. However, perhaps we can find a way to cover all possibilities. Wait, suppose we consider the following: Any block where number of a's ≥1, number of b's ≥1, and not equal. This can be expressed as: - Either there is at least one extra a: a^+ b^+ with the condition that a's > b's. But this language {a^n b^m | n ≥1, m ≥1, n > m} is not regular. Similarly for n < m. So L3 itself is not regular, but the question is about its star. However, even if each block is non-regular, the concatenation might somehow become regular. But let's assume N starts at 1. Then, to see if (L3)* is regular: Let's consider the pumping lemma. Suppose it's regular. Take a long enough block. Wait, take the string s = (a^{p+1} b^p), which is in L3 (n=p+1, m=p, n>m), so s ∈ L3 ⊂ (L3)*. But wait, s is a single block. Now, apply pumping lemma on (L3)*. Assume (L3)* is regular, so s can be pumped. But s is a^{p+1} b^p. Split into xyz with |xy| ≤ p, so y is within the a's. Pumping up: xy^2z = a^{p+1 +k} b^p. This string is a^{p+1 +k} b^p. Since p+1 +k > p, this string is still in L3 (n > m). Therefore, it's in (L3)*. Pumping down: a^{p+1 -k} b^p. If k =1, then a^p b^p, which has n =m=p. So this string is not in L3, hence not in (L3)*. Because a^p b^p would need to be decomposed into blocks, but as a single block, it's invalid. And since it's a single run of a's then b's, it can't be split into multiple blocks. Therefore, the pumped-down string is not in (L3)*. This violates the pumping lemma, implying that (L3)* is not regular. Wait, but this depends on whether N starts at 1. If so, then pumping down leads to a string not in (L3)*, so (L3)* is not regular. But wait, if we pump down the string s = (a^{p+1} b^p), we get a^{p+1 -k} b^p. If this equals a^p b^p (when k=1), which is not in L3. So if we pump down once (i=0), the string a^p b^p is not in (L3)* because it can't be split into valid blocks. But here's the catch: the pumped string needs to be in (L3)* for all i ≥0. So when i=0, it's not there, which would violate the pumping lemma's condition. Hence, (L3)* is not regular. But wait, this conclusion depends on whether N starts at 1 or includes 0. Given that this is a German exam problem, and in German mathematics, N often starts at 1, it's probable that N here means positive integers (n ≥1). Thus, assuming N starts at 1: For L3, the Kleene star is not regular. But wait, earlier analysis suggested that if N starts at 1, then (L3)* may not be regular. But wait, we just applied the pumping lemma to (L3)* by taking a string s = a^{p+1} b^p (which is in L3), and pumping it down to a^p b^p, which is not in (L3)*. However, the pumping lemma applies to the language (L3)*, so s must be a string in (L3)* that's longer than p. But s is a single block in L3, hence in (L3)*. Pumping it down gives a string that would need to be in (L3)*. But the pumped-down string is a^p b^p, which is not in L3. Can it be expressed as a concatenation of other strings from L3? As previously discussed, a^p b^p has a single run of a's followed by b's, so it can only be a single block. Since that block is not in L3 (n=m=p), the entire string a^p b^p cannot be in (L3)*. Therefore, the pumped-down string is not in the language, so the pumping lemma is violated, implying (L3)* is not regular. But wait, this would mean both L2 and L3 have non-regular stars. However, the problem says "mindestens eine Antwortmöglichkeit ist immer richtig." (At least one correct choice.) Wait, but maybe my analysis for L3 is incorrect. Let me double-check. Assuming N starts at 1. Take L3 = {a^n b^m | n,m ≥1, n≠m}. (L3)* contains ε and all concatenations of blocks where each block has n≠m. Consider the string a^p b^p. Can it be expressed as a concatenation of blocks each in L3? Suppose we try two blocks: a^{n1} b^{m1} a^{n2} b^{m2}. But this would require m1 ≥1 and n2 ≥1. The resulting string is a^{n1} b^{m1} a^{n2} b^{m2}. But a^p b^p is a's followed by b's. The only way this works is if m1 =0 and n2 =0, which is not allowed. So no possible decomposition. Hence, a^p b^p is not in (L3)*. Now, take s = (a^{p+1} b^p) which is in L3, so it's in (L3)*. By pumping lemma, we can split s into xyz, with |xy| ≤p. Since the first p+1 characters are a's, xy must be a^k for some k ≤p. Pumping down gives a^{p+1 -k} b^p. Let k=1, then we get a^p b^p. As established, this is not in (L3)*. Therefore, (L3)* is not regular. But wait, this would imply that both L2 and L3 have non-regular stars. However, the options are to choose which i's are correct. But wait, looking back at the problem statement: "Wählen Sie ein solches i und begründen Sie kurz, dass (L_i)* nicht regulär ist." Which translates to "Select one such i and briefly justify why (L_i)* is not regular." Ah, the problem says "Für welche der folgenden Sprachen L_i, wobei i∈{1,2,3}, gilt, dass (L_i)* nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches i und begründen Sie kurz..." So multiple could be correct, but the student is instructed to select one (choose one such i) and justify. However, the answer format involves marking which options are correct with 0/1, and then providing the justification for one. But based on our analysis: - L1*: regular (it's (ab)*) - L2*: non-regular - L3*: non-regular (if N starts at 1) But wait, but perhaps my analysis of L3 is wrong. Let's reconsider. Another viewpoint: If L3's star is considered. Assuming N starts at 1. (L3)* contains all concatenations of blocks each of which is a^n b^m, n≠m ≥1. Now, consider the intersection of (L3)* with the regular language a^* b^*. The intersection would be all strings in a^* b^* that are in (L3)*. But any string in a^* b^* that's in (L3)* must be equal to a single block a^n b^m where n≠m (since it's a's followed by b's with no additional blocks). So the intersection is exactly L3. Now, regular languages are closed under intersection. If (L3)* were regular, then L3 would be regular (since a^* b^* is regular). But L3 is not regular—because L3 = a^+ b^+ \ {a^n b^n}, and since {a^n b^n} is not regular, and regular minus non-regular is non-regular. Wait, no: the closure is only for regular minus regular. Actually, L3 = a^+ b^+ \ {a^n b^n}. If we assume a^+ b^+ is regular, and if L3 were regular, then {a^n b^n} = a^+ b^+ \ L3 would be regular (since regular languages are closed under set difference). But {a^n b^n} is not regular. Therefore, L3 is not regular (as expected). But if (L3)* were regular, then its intersection with a^* b^* would be regular. But that intersection is L3 ∪ all concatenations that happen to be in a^* b^*. However, only single blocks can be in a^* b^*, because multiple blocks would require alternating a's and b's. Wait, no: concatenating multiple blocks from L3 would lead to strings like a^n b^m a^p b^q which is a^n b^m a^p b^q. If this string is in a^* b^*, then m must be 0 and p must be 0, which they are not. So the intersection of (L3)* with a^* b^* is exactly L3. Therefore, since a^* b^* is regular, if (L3)* were regular, then L3 would be regular, which it is not. Hence, (L3)* is not regular. So both L2 and L3 have non-regular stars. But wait, this contradicts earlier analysis for L3 when N includes 0. However, given the German context, likely N starts at 1. But the problem states "n,m ∈ N". In theoretical CS problems, especially in language theory, sometimes N includes 0. Let's check the other option for L3. If N includes 0, then 'a' and 'b' are in L3, so (L3)* = Σ*, which is regular. So in this case, L3's star is regular. This is a critical point. The definition of N here is ambiguous. However, looking at L1: L1 := {(ab)^n : n ∈ N} If N includes 0, then (ab)^0 = ε is in L1. But typically, (L1)* would include ε regardless, but if L1 already contains ε, then it's a detail. But in the problem statement, L1 is defined as (ab)^n where n ∈ N. If N starts at 0, then L1 includes ε, making L1* = L1, since ε is the identity. But no: Kleene star is all concatenations, which would still be the same as L1 if L1 is closed under concatenation and includes ε. Actually, if L1 is {(ab)^n | n ≥0}, then L1* = L1, because concatenation of these strings gives (ab)^{n+m} etc., which is still in L1. But regardless, (ab)* is regular. Back to L3: the key is whether 'a' or 'b' are included in L3. If the problem defines N as including 0 (n, m ≥0), then 'a' (a^1 b^0) is in L3 since 1≠0. Thus, 'a' ∈ L3 and 'b' ∈ L3, hence (L3)* = Σ*, which is regular. If N is positive integers (n,m ≥1), then 'a' and 'b' are not in L3, leading to (L3)* being non-regular. The problem statement doesn't specify whether N includes 0. In mathematics, N typically starts at 1, but in computer science, often at 0. Given that this is a theoretical CS exam, it's possible that N includes 0. But let's check L2: L2 = {a^n b^n | n ∈ N}. If N includes 0, then ε is in L2, since a^0 b^0 = ε. But typically, the standard non-regular language is {a^n b^n | n ≥0}, which includes ε. So if N includes 0, L2 includes ε. However, the star of L2 would still be non-regular? Let's see. If L2 includes ε, then (L2)* = (L2' ∪ {ε})* = L2'*, where L2' = {a^n b^n | n ≥1}, because including ε doesn't change the star. Or more accurately, since ε is in L2, (L2)* is the same as (L2')*, where L2' = L2 \ {ε} if ε was there. But I think this doesn't affect the earlier pumping argument. Regardless of whether e is in L2, the pumping argument for (L2)* would still hold because we can choose strings without e. But back to L3. This is crucial. The problem statement says "n,m ∈ N". In the German academic context, it's common for N to start at 1. For example, in Germany, "natürliche Zahlen" often refers to positive integers (1,2,3,...), whereas "nichtnegative ganze Zahlen" would include 0. Given that, likely N starts at 1 here. Thus, L3 does NOT contain 'a' or 'b', only strings with both a's and b's. So its star is non-regular. But wait, according to the previous argument using closure under intersection: If (L3)* were regular, then L3 = (L3)* ∩ a*b* would be regular. Since L3 is not regular, (L3)* cannot be regular. Yes, this is a valid argument regardless of N's definition (as long as a*b* is regular, which it is). Similarly, for L2: (L2)* ∩ a*b* = L2, since any string in (L2)* that's also in a*b* must be a single a^n b^n block (because if you concatenate multiple, you get transitions from b back to a). Therefore, (L2)* ∩ a*b* = L2. Since L2 is not regular, and a*b* is regular, if (L2)* were regular, then L2 would be regular (closed under intersection). Therefore, (L2)* is not regular. Similarly for L3: (L3)* ∩ a*b* = L3. Because strings in this intersection are of the form a^n b^m, which in (L3)* must be a single block (as multiple blocks would require transitions), hence n≠m. So yes, L3 = (L3)* ∩ a*b*. Since L3 is not regular, (L3)* can't be regular. Wait, this is a better argument than using pumping. Because regular languages are closed under intersection. If (L2)* were regular, then L2 = (L2)* ∩ a*b* would be regular. But L2 is not regular, so (L2)* is not regular. Same for L3: If (L3)* were regular, then L3 = (L3)* ∩ a*b* would be regular. But L3 is not regular, hence (L3)* is not regular. This is a decisive argument. So both L2 and L3's stars are non-regular. For L1: (L1)* = ( (ab)^+ )* = (ab)*, which is regular. Or if N includes 0, L1 = { (ab)^n | n ≥0 }, so L1* = L1 = (ab)*, still regular. So L1's star is regular. Thus, the correct answers are options 2 and 3 (i=2 and i=3). But let's confirm for L3: L3 = {a^n b^m | n,m ∈ N, n≠m}. Assuming N starts at 1. Then L3 = a^+ b^+ \ {a^n b^n | n ≥1}. We know {a^n b^n} is not regular. If L3 were regular, then {a^n b^n} = a^+ b^+ \ L3 would be regular (since a^+ b^+ is regular and regular languages are closed under difference). But {a^n b^n} is not regular, so L3 is not regular. Then, (L3)*'s regularity: If it were regular, then since a*b* is regular, their intersection L3 would be regular, which it's not. Hence, (L3)* is not regular. Similarly for L2. But what about L3 when N includes 0? Suppose n,m ≥0. Then L3 = {a^n b^m | n ≠ m, n,m ≥0} ∪ {a^n b^m | n or m zero?} Wait: If n,m ≥0: - n=0, m>0: allowed (0≠m), so strings like b, bb, etc. - n>0, m=0: allowed (n≠0), strings like a, aa, etc. - n>0, m>0, n≠m. So L3 = a*b* \ {a^n b^n | n ≥0}. Now, intersection with a*b* is the whole L3. If (L3)* is regular, then L3 = (L3)* ∩ a*b* must be regular. But L3 in this case is a*b* \ {a^n b^n}, which is not regular, because {a^n b^n} is not regular. Therefore, regardless of N's definition (including 0 or not), L3 is not regular, hence (L3)* can't be regular. Wait, but wait: if Σ* is regular and L3 contains 'a' and 'b', then (L3)* = Σ*. If N includes 0: - L3 contains 'a' = a^1 b^0 (n=1, m=0, 1≠0). - 'b' = a^0 b^1. Therefore, L3 contains the entire alphabet, so (L3)* = Σ*, which is regular. This contradicts the previous argument. What's the issue here? Ah! If 'a' and 'b' are in L3, then (L3)* contains all strings over Σ, hence Σ*, which is regular. In this case, L3 ∩ a*b* is not L3 itself—it's a*b*. Wait, no: (L3)* = Σ*, so (L3)* ∩ a*b* = a*b*, which is regular. But we thought earlier it equals L3, but that's only if strings in (L3)* ∩ a*b* have to be single blocks. However, when 'a' is in L3, then 'a' can be concatenated multiple times, leading to a^k, which is in a*b* (with m=0). But a^k is in (L3)* because it's a concatenation of 'a' k times. Wait, this is the key point. If N includes 0: L3 contains: - All a^n for n ≥1 (m=0) - All b^m for m ≥1 (n=0) - All a^n b^m with n ≥1, m ≥1, n≠m. Therefore, (L3)* includes: - ε (from 0 concatenations) - All strings that are any combination of the above. Since 'a' is in L3, you can concatenate it repeatedly to get a^+, similarly 'b' gives b^+. Also, concatenating 'a' and 'b' gives ab, aab, etc. In fact, since both 'a' and 'b' are in L3, (L3)* includes every possible string in Σ*, because any string can be built by concatenating 'a's and 'b's. Therefore, (L3)* = Σ*, which is regular. This completely changes things. The crux is whether L3 contains the individual alphabet characters 'a' and 'b'. If N includes 0: - 'a' is a^1 b^0 → n=1, m=0, n≠m → belongs to L3. - 'b' is similar. Thus, L3 contains Σ = {'a', 'b'}, so its star is everything. If N starts at 1: - 'a' would require m=0 but m ≥1 → not in L3. - L3 does not contain single 'a' or 'b'. Thus, (L3)* is not everything. This means the regularity of (L3)* hinges entirely on the definition of N. Given the problem is in German, and German mathematics often uses N = {1,2,3,...}, it's ambiguous. But in theoretical computer science, especially in language theory, it's common to include 0 in N when specifying lengths, since empty strings have length 0. However, the problem's other language L1 is defined as (ab)^n, n ∈ N. If N includes 0, then L1 includes ε; if not, it doesn't. But (L1)* would then either be ( (ab)* ) or ( (ab)^+ )*. In either case, it's (ab)*, which is regular. So regardless of N's definition, L1* is regular. For L2: {a^n b^n | n ∈ N}. If N includes 0, L2 includes ε, but (L2)* still isn't regular. Pumping arguments go through as before. For L3: If N includes 0, star is Σ* (regular); if not, star is non-regular. Given the problem states that at least one answer is correct, and given that L2 is definitely non-regular star regardless of N's definition, while L3's status depends. The safest choice is L2, since for L3 it's ambiguous, but L2 is definitely non-regular. Let's recap: - L1*: regular. - L2*: non-regular (as shown by pumping lemma or closure properties). - L3*: ambiguous, but if following German convention (N starts at 1), then non-regular; if N includes 0, regular. Given that this is a bonus question and multiple may be correct, but the problem says "Wählen Sie ein solches i", suggest at least one is correct. The question says "mindestens eine Antwortmöglichkeit ist immer richtig." Given that L2 is definitely a correct answer regardless, but L3's status is unclear, the answer must include L2. Additionally, analyzing L3 again. The problem states "n,m ∈ N ∧ n≠m". If N is the natural numbers starting at 1, then m and n are at least 1. So L3 contains strings like aab, abb, etc., but not the empty string, single a's or b's. In this case, (L3)* is not the entire Σ*, but a subset. However, does it contain some strings that allow for generating enough blocks to become regular? Earlier closure property argument: If (L3)* were regular, then L3 = (L3)* ∩ a*b* must be regular. But L3 is not regular. Therefore, (L3)* is not regular. This argument holds **only if** the intersection equals L3. But if (L3)* contains strings like 'aa', is that true? Wait, no. If N starts at 1, L3 does not contain 'a', so (L3)* consists of concatenations of blocks each with at least one a and one b. Therefore, any string in (L3)* that's also in a*b* must be a single block (since multiple blocks would require alternating), hence it's exactly L3. Therefore, (L3)* ∩ a*b* = L3. Since L3 is not regular, (L3)* can't be regular. This argument holds regardless of N's definition as long as L3 is defined as not containing single-letter strings. Therefore, both L2 and L3 have non-regular Kleene stars. But wait, let's verify with the closure argument for L3. Assume N starts at 1: 1. a*b* is regular. 2. If (L3)* is regular, then their intersection (L3)* ∩ a*b* = L3 is regular. 3. But L3 is not regular. Therefore, (L3)* is not regular. Yes, this is solid. For N including 0: L3 contains 'a' and 'b', so (L3)* = Σ*, which is regular. But does the closure argument fail here? If N includes 0: L3 = a*b* \ {a^n b^n | n ≥0}. But (L3)* = Σ*. Intersection of Σ* with a*b* is a*b*, which is regular, not L3. Therefore, the previous argument doesn't apply. So the crux is whether L3's star is Σ* or not. In this problem's context: The question is given in German. In Germany, typically N={1,2,3,...}. However, in CS, sometimes N includes 0. But here's another clue: In subproblem a, L2 is defined as {a^n b^n : n ∈ N}. If N included 0, then ε would be in L2, making L2* contain ε and a^n b^n etc. But the classic non-regular language discussed in pumping lemma examples is {a^n b^n | n ≥ 1}, or including n=0. Either way, it's non-regular. However, the key part for L3 is whether 'a' and 'b' are included. Given that the problem states "n,m ∈ N", and given that in the definition of L1 as (ab)^n, if n started at 0, L1 would include ε, but even if not, L1* becomes (ab)*. Back to the problem's requirement: The student is to choose i where (L_i)* is not regular. Based on standard examples: - (L2)* is well-known to be non-regular. This is a common exam question. - For L3, it's less clear, but closure argument suggests it's non-regular if L3 ∩ a*b* = L3. However, given that in the German academic context, N likely starts at 1, both L2 and L3 would have non-regular stars. But to confirm: Let’s research quickly. A known result: The Kleene star of {a^n b^n | n ≥ 1} is non-regular. Yes, proved via pumping. Another known result: The Kleene star of {a^n b^m | n ≠ m} (where N includes 0) is Σ*, hence regular. But if N starts at 1, it's not. Given the problem provides three options, and says "at least one is correct," but possibly multiple. The original question allows selecting more than one (es können mehrere sein). But according to the answer format, we have to mark each option as 0 or 1. Now, based on the closure argument: For L2: (L2)* non-regular (1). For L3: Case 1: N includes 0 → L3* = Σ* (regular → 0). Case 2: N starts at 1 → L3* non-regular (1). Depending on N's definition. But the problem statement doesn't specify. However, looking at L3's definition: "n,m ∈ N ∧ n≠m". In the most neutral CS perspective, where N sometimes includes 0, but here's another angle: The language L3 = {a^n b^m | n ≠ m}. If we assume n and m are ≥0 (which is common in CS), then as explained, L3 contains 'a' and 'b', so its star is everything. Hence, regular. But if n and m are ≥1, then it's not. How to decide? Consider L1: L1 = {(ab)^n : n ∈ N} If N includes 0, L1 contains ε. But (L1)* is still (ab)* whether ε is there or not. However, typically, if N starts at 1, L1+ would be considered, but star would still give (ab)*. No help. Another approach: The question is from a theoretical computer science exam. In such exams, unless specified otherwise, N usually includes 0, because the empty string is important. But this is not a hard rule. However, there's another way: look at the definition of L3. If N were to start at 1, L3 would contain strings like abb (n=1, m=2), but not the strings of single a's or b's. However, can we form 'a' in (L3)*? No, because all elements of L3 have at least one a and one b. So (L3)* will only contain strings that have both a's and b's arranged in blocks, each block having both a's and b's. But to get a string with only a's, impossible. But the key for regularity is whether this language is regular. The closure argument applies: (L3)* ∩ a*b* = L3. Since L3 is not regular, (L3)* can't be regular. But this only holds if the intersection equals L3. If N starts at 1, then every string in (L3)* ∩ a*b* must be a single block (since multiple blocks would require b's followed by a's), hence yes, the intersection is L3. Therefore, regardless of N's definition (as long as L3 is indeed non-regular), the star is non-regular. But when N includes 0, L3 is regular or not? Wait, if N includes 0: L3 = {a^n b^m | n ≠ m}. This language is not regular. Because the complement within a*b* is {a^n b^n}, which is non-regular, and since a*b* is regular, but the difference of regular and non-regular is not necessarily non-regular. Wait: Actually, L3 = a*b* \ {a^n b^n | n ≥0}. If a*b* is regular and {a^n b^n} is not regular, then regular \ non-regular is not necessarily regular or not. But we can show L3 is not regular: because if it were, then a*b* ∩ L3's complement is {a^n b^n}, which would be regular (intersection of two regular languages), but it's not. However, L3's complement within Σ* is co-a*b* union {a^n b^n}. This is getting too complex. But the key is: If N includes 0, does L3* become Σ*? If L3 contains 'a' and 'b', then yes. But 'a' is in L3 when n=1, m=0. If 0 ∈ N, then yes. So if N includes 0, L3* is Σ*, regular. But is L3 regular when N includes 0? No, because it's missing the diagonal, but its star is everything. So the critical factor for L3* regularity is whether 'a' and 'b' are in L3. If N includes 0: yes, L3* regular. If N starts at 1: no, and L3* is non-regular. Given the problem's context, we need to decide. In the definition of L2 as {a^n b^n}, if n included 0, then ε is in L2, but the standard non-regular language includes n ≥0. The fact that the problem states L2 as non-regular (implied) suggests that whether or not n includes 0, it's non-regular. But for L3, the pivotal point is whether the alphabet characters are included in L3. Given that the problem is in German, and German academic tradition usually takes N as {1,2,3,...}, it's safer to assume N starts at 1. Thus: - L1*: regular (0) - L2*: non-regular (1) - L3*: non-regular (1) However, there's a gotcha with L3: what if by taking certain combinations, you can still get a regular language. But per the closure argument: (L3)* ∩ a*b* = L3. If this were equal to a*b*, which is regular, then L3 would be regular. But it's equal to L3, which is not. Hence, (L3)* can't be regular. Yes, this seems solid. Therefore, both options 2 and 3 are correct. But let's verify with examples. For L2*: As previously, pumping lemma shows non-regular. For L3*: Assume N starts at 1. Assume (L3)* is regular. Intersect with a*b* to get L3. Contradiction. Hence, non-regular. Thus, both i=2 and i=3. However, the question says "Wählen Sie ein solches i" — select one such i and justify. So the answer format has us mark which options are correct (0/1) and provide the justification for one. But the instructions say: "Für längere Antworten, ... A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers." And for this subproblem, the user must set each option to 1 if correct, and provide the justification for whichever i they choose (but likely the first correct one, but the problem says "wählen Sie ein solches i", so they just pick one, but the grader would expect all correct options to be marked). The problem states "Es können mehrere sein." (Multiple may be correct.) Thus, our task is to set option 1 to 0, option 2 to 1, option 3 to 1. And in the justification, pick one of them (probably option 2, as it's the classic case). Let's do that.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">1</option> <answer id="4"> Begründung für $i=2$: Die Sprache $(L_2)^*$ enthält alle Konkatenationen von Strings der Form $a^n b^n$. Um zu zeigen, dass $(L_2)^*$ nicht regulär ist, verwenden wir das Pumping-Lemma für reguläre Sprachen. Angenommen, $(L_2)^*$ wäre regulär mit Pumping-Länge $p$. Betrachte das Wort $s = a^p b^p$, das in $L_2 \subseteq (L_2)^*$ liegt. Laut Pumping-Lemma lässt sich $s$ zerlegen in $xyz$ mit $|xy| \leq p$, $|y| \geq 1$, sodass $xy^iz \in (L_2)^*$ für alle $i \geq 0$. Da $y$ nur aus $a$'s besteht (wegen $|xy| \leq p$), führt das Pumpen (z. B. $i = 0$) zu einem Wort $xz = a^{p - |y|} b^p$ mit ungleicher Anzahl von $a$'s und $b$'s. Dieses Wort kann jedoch nicht als Konkatenation von $a^k b^k$-Blöcken dargestellt werden, da die Gesamtzahl der $a$'s ungleich der $b$'s ist (und jede Konkatenation solcher Blöcke eine gleiche Gesamtzahl erfordert). Dies widerspricht dem Pumping-Lemma, also ist $(L_2)^*$ **nicht regulär**. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☒
wrong answer for choice (2)
Begründung für : Die Sprache enthält alle Konkatenationen von Strings der Form . Um zu zeigen, dass nicht regulär ist, verwenden wir das Pumping-Lemma für reguläre Sprachen. Angenommen, wäre regulär mit Pumping-Länge . Betrachte das Wort , das in liegt. Laut Pumping-Lemma lässt sich zerlegen in mit , , sodass für alle . Da nur aus 's besteht (wegen ), führt das Pumpen (z. B. ) zu einem Wort mit ungleicher Anzahl von 's und 's. Dieses Wort kann jedoch nicht als Konkatenation von -Blöcken dargestellt werden, da die Gesamtzahl der 's ungleich der 's ist (und jede Konkatenation solcher Blöcke eine gleiche Gesamtzahl erfordert). Dies widerspricht dem Pumping-Lemma, also ist nicht regulär.
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<answer id="4">
Begründung für $i=2$:
Die Sprache $(L_2)^*$ enthält alle Konkatenationen von Strings der Form $a^n b^n$. Um zu zeigen, dass $(L_2)^*$ nicht regulär ist, verwenden wir das Pumping-Lemma für reguläre Sprachen. Angenommen, $(L_2)^*$ wäre regulär mit Pumping-Länge $p$. Betrachte das Wort $s = a^p b^p$, das in $L_2 \subseteq (L_2)^*$ liegt. Laut Pumping-Lemma lässt sich $s$ zerlegen in $xyz$ mit $|xy| \leq p$, $|y| \geq 1$, sodass $xy^iz \in (L_2)^*$ für alle $i \geq 0$. Da $y$ nur aus $a$'s besteht (wegen $|xy| \leq p$), führt das Pumpen (z. B. $i = 0$) zu einem Wort $xz = a^{p - |y|} b^p$ mit ungleicher Anzahl von $a$'s und $b$'s. Dieses Wort kann jedoch nicht als Konkatenation von $a^k b^k$-Blöcken dargestellt werden, da die Gesamtzahl der $a$'s ungleich der $b$'s ist (und jede Konkatenation solcher Blöcke eine gleiche Gesamtzahl erfordert). Dies widerspricht dem Pumping-Lemma, also ist $(L_2)^*$ **nicht regulär**.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, let's tackle subproblem b. The question is asking whether there exists a context-free grammar in Chomsky Normal Form (CNF) with at most 6 productions that generates the language L(G) = {a¹², a⁹}. First, I need to recall what Chomsky Normal Form is. CNF requires that all production rules are of the form A → BC or A → a, where A, B, C are non-terminals and a is a terminal. Also, the start symbol cannot appear on the right-hand side of any production, and if the empty string ε is in the language, there's a special rule for that, but in this case, the language consists of two specific strings of a's, neither of which is ε, so we don't have to worry about ε-productions here. The language L has two words: "a" repeated 9 times and "a" repeated 12 times. So the grammar must generate exactly those two strings and no others. In CNF, to generate a string of length n, the number of productions needed is related to the structure of the derivation tree. For a single string of length n, the number of steps in the derivation (and hence the number of productions) can be calculated. But here we need two different strings. Wait, but in CNF, each production either splits a non-terminal into two non-terminals or into a terminal. So for a string of length m, the derivation requires m-1 production steps of the form A → BC (since each such step increases the number of symbols by 1, starting from 1 non-terminal, to get to m terminals, you need m-1 splits), plus m productions of the form A → a. Wait, no: in CNF, the productions for terminals are only single terminals, so each terminal symbol in the string must come from a production of the form A → a. Wait, let's think. For example, to generate "aaa" (a³), in CNF you might have S → AB, A → a, B → AC, C → a, but that seems messy. Wait, the standard way for a single string of length n in CNF is that you need n-1 non-terminal productions (A → BC) and n terminal productions (A → a). But total productions in the grammar would depend on how many non-terminals you have. Wait, no. The productions in the grammar are the set of rules. For example, if we have a grammar that generates a single string of length k, then in CNF the minimal number of productions would be 2k - 1. Because for a string of length k, you need k terminal productions (each symbol is produced by a rule like A → a), and (k-1) non-terminal productions (each split). But perhaps some productions can be reused if there are multiple strings. But here, the language has two different strings: a⁹ and a¹². So the grammar needs to generate both of these. Wait, but in CNF, each production that generates a terminal is a single rule (A → a). So if we have a start symbol S, which needs to generate both a⁹ and a¹², how can that happen? Wait, but a⁹ is a string of 9 a's, and a¹² is 12 a's. So perhaps the grammar could have productions that allow building up different lengths. However, in CNF, every production to terminal is exactly a single a, so maybe we can have some non-terminals that generate x number of a's, and combine them. Wait, but let's think about the structure. In CNF, the only way to get a terminal is to have a production like X → a. So each a in the final string must come from some such production. The number of non-terminal productions (i.e., those of the form A → BC) is one less than the length of the string, because each such production breaks a non-terminal into two parts, so for length n, you need n-1 of these. Wait, for example, if the string is "aa", then CNF would require S → XY, X → a, Y → a. That's 3 productions. For "aaa", maybe S → XY, X → Aa, Y → BC, B → a, C → a. Wait, no. Wait, in CNF, all productions must be either A → BC or A → a. So for a string of length n, the parse tree is a binary tree with n leaves (each leaf being an a). The number of internal nodes (non-terminals) is n-1. Each internal node corresponds to a production of the form A → BC. So the number of non-terminal productions needed for a single string of length n is n-1, and the number of terminal productions is n (each A → a). But if the grammar is supposed to generate more than one string, perhaps some of these productions can be reused. But in our case, the language is finite: only two strings. So the grammar must have exactly these two strings, no others. Wait, but in CNF, can a grammar generate multiple strings by having different derivation paths? For example, maybe the start symbol S can produce either a derivation for 9 a's or 12 a's. But how to do that with minimal productions. Let's try to construct such a grammar. First, for generating a^9: The minimal number of productions in CNF would be 9 terminal productions (each A → a for some non-terminals), and 8 non-terminal productions to split them. But maybe some non-terminals can be reused. Wait, for a single string of length n, the minimal CNF grammar has 2n - 1 productions. But if you have two strings, perhaps some non-terminals can be shared. Wait, let's see. For a^9 and a^12. Suppose we have a non-terminal A that generates 3 a's. Then a^9 could be A^3, and a^12 could be A^4. But how to get 3 a's with minimal productions. Wait, but in CNF, to generate 3 a's, you need: S → AB A → CD C → a D → a B → a Wait, no. Let's think again. Wait, the string aaa: length 3. The parse tree would be binary. So S → XY, X → AZ, Z → a, A → a, Y → a. Wait, no. Let's get the exact productions. To get 3 a's: S → AB A → CD C → a D → a B → a That would generate a a a. Because A → CD, so CD generates a a, then S → AB is (CD) B, which is a a a. So the productions are: 1. S → AB 2. A → CD 3. C → a 4. D → a 5. B → a Total productions: 5. Which is 2*3 - 1 = 5. So for n=3, 5 productions. Similarly, for n=4, it would be 7 productions. But perhaps if we have a non-terminal that generates k a's, we can build up larger numbers. But in our problem, we need two different lengths: 9 and 12. Wait, 9 and 12 have a common multiple, but perhaps if we find a common structure. Alternatively, perhaps the grammar can have non-terminals that generate different numbers, but the total productions count must be ≤6. Wait, the question says "höchstens 6 Produktionen" which means at most 6 productions. Wait, but let's see. For example, can we have: S → AA | AAA A → aa Wait, but CNF requires that all right-hand sides are either two non-terminals or a single terminal. Wait, A → aa is not allowed in CNF. Because aa is two terminals. In CNF, each production to terminals must be a single terminal. So to get two a's, you need A → BC where B and C each produce a's. Wait, so let's think: To generate a single a: X → a. To generate aa: S → XY, X → a, Y → a. So that's three productions. But if we want to generate a^9, the minimal productions would be 2*9 -1 = 17. Which is way more than 6. Wait, but that's if we have a single string. However, the problem here is that the language has two strings. But even so, perhaps there's a way to overlap some productions. Wait, but wait. The question is asking for a grammar where L(G) = {a^9, a^12}. So the grammar must generate exactly those two strings. But in CNF, let's see. Let me think of a different approach. Suppose we have a grammar where S can generate either A9 or A12, where A9 generates a^9 and A12 generates a^12. But how to generate different lengths with few productions. Another thought: CNF grammars can use recursion. Wait, but the language is finite (only two strings), so the grammar can't have recursion that leads to infinite strings. So all derivations must terminate at exactly 9 or 12 a's. Wait, but in CNF, any production that's A → BC must eventually lead to terminals. So the grammar must be built in such a way that the start symbol S can derive a^9 in one way and a^12 in another way, using a combination of non-terminals. Let me think of how to express 9 and 12 as combinations of smaller numbers via CNF productions. For example, 9 can be written as 5+4, but in CNF, each production splits into two parts. So to get a^9, we need a derivation tree where the root splits into two parts, say left and right, each of which can split further. Alternatively, perhaps the idea is to use a non-terminal that generates a certain number of a's, and then compose them. Wait, for example, suppose we have a non-terminal X that generates 3 a's, then we can have S → XXX (for 9 a's) or S → XXXX (for 12 a's). But how to express X → something in CNF. But in CNF, X can't directly produce 3 a's. Because CNF requires that each production is either two non-terminals or a terminal. So to get 3 a's, X needs to derive through a binary tree. So let's see: To get X to produce 3 a's. X → AB A → CD C → a D → a B → a That's 5 productions (as before for length 3). But if we want S to generate 9 a's, it could be XXX. But in CNF, how to get three X's? Wait, no. In CNF, each production is either two non-terminals or a terminal. So S → XY, where X generates 3 a's and Y generates 6 a's. Then Y → ZW, where Z and W each generate 3 a's. Then S → XX' where X generates 3 and X' generates 6, but this starts to accumulate productions. Alternatively, suppose X generates 3 a's, then for 9 a's: S → XX, X → XX', X' → XX'' etc. But this might lead to recursion and infinite strings, but since our language is finite, we can't have recursion. Wait, but if the grammar is not allowed to have cycles (since L is finite), then all derivations must be of fixed length. Wait, but in CNF, to get a finite language, the grammar must be such that there are no recursive non-terminals. Otherwise, you could pump and get infinitely many strings. But since our language is finite (two strings), the grammar must not have any recursive non-terminals. So every non-terminal must eventually derive a specific number of terminals without any cycles. Therefore, all production rules must eventually lead to a fixed number of a's. So, for example, if we have a non-terminal A that produces k a's, B that produces m a's, then A → BC means k = m + n, where B produces m and C produces n. So, the number of a's a non-terminal produces is fixed. So, given that, perhaps we can model this as a problem where each non-terminal has a fixed length of a's it generates. Let’s denote for a non-terminal N, |N| = the number of a's it generates (in any derivation starting from N). Then: - If N → P Q is a production, then |N| = |P| + |Q|. - If N → a is a production, then |N| = 1. Our start symbol S must have |S| = 9 or 12. Wait, but S could produce either 9 or 12 a's. So perhaps S can derive to two different combinations. Wait, let's suppose that S can have two productions: S → A B (where |A| + |B| = 9) and S → C D (where |C| + |D| = 12) But we need to have other productions for A, B, C, D, etc. But the problem is that the total number of productions must be ≤6. Let's think about possible ways to decompose 9 and 12. 9 and 12 can both be written as sums where the components can be reused. For example, 9 = 3 + 3 + 3 (but each binary split would require more steps). Wait, 9 can be split as 4 + 5, but 4 and 5 would each need to be split further. Alternatively, notice that 12 = 9 + 3. But we need to see if 3 can be a common component. Wait, let's try to find a common non-terminal that generates 3 a's. Let’s define X such that |X|=3. To get X to generate 3 a's, we need: X → Y Z, where |Y| + |Z| = 3. Possible splits: 1+2 or 2+1. Let’s split 1+2. So Y → a (|Y|=1), Z → A B, A → a, B → a (|Z|=2). Thus, to get X: X → Y Z Y → a Z → A B A → a B → a That's 5 productions just for X. Then, to get 9 a's: S → X X X (but in CNF, each production is binary, so S → X A, A → X X). Wait, let's see. Let S produce X and A, where A produces X X. So: S → X A (for 9: 3 + 6, but 6 would be X X (each X is 3, so 3+3=6, but how to get X X). Wait, maybe better: We have X → Y Z (3 a's as before). To get 9 a's: S → X1 X2, X1 → X X, X2 → X. Wait, no. Let's think step by step. For |S|=9: We need S to split into two parts, say |S| = m + n, where m + n = 9. Each of m and n must be at least 1. Let’s choose m=6, n=3. Then S → A B, |A|=6, |B|=3. But |B|=3 would be X, as above. |A|=6 could split into 3 + 3, so A → X X. Similarly, for |S|=12, we could have S → C D, with |C|=9, |D|=3, but 9+3=12. Wait, but then S would have two productions: S → A B (for 9 = 6+3) and S → E F (for 12 = 9+3) But this is getting complicated. Alternatively, maybe 9 = 3*3, and 12 = 4*3. If we have X generating 3 a's, then to get 9 a's, we need three X's. But in CNF, how to have three parts? The start symbol S would need to split into two parts. For example, S → X Y, where Y → X X (so S → X (X X) which is three X's, total 9). Similarly, for 12 a's, S → Y Z where Y → X X, Z → X X, so 4 X's. Wait, but let's formalize this. Assume X generates 3 a's. Then: For 9 a's: S → X T, T → X U, U → X X. Wait, but each split is binary. So to get three X's: S → X R R → X X Which gives X R = X (X X) = X^3 → 9 a's. For 12 a's: S → X S1, S1 → X S2, S2 → X X. Wait, X (X (X X)) = X^4, but then the productions would be: S → X R R → X T T → X X But this would generate 3*4=12 a's. Wait, but let's count the productions. First, to get X to generate 3 a's: as before, X → Y Z, Y → a, Z → A B, A → a, B → a. That's 5 productions. Then, for S to generate X R (9 a's), we need: S → X R Then R → X X Wait, the productions: S → X R (1) R → X X (2) So that's two more productions. Total so far: 5 + 2 =7. But we need at most 6 productions, so this is over. Hmm. Alternatively, can we find a way to have fewer productions? Wait, suppose that X generates 3 a's with fewer productions. Wait, how many productions are necessary to generate exactly 3 a's in CNF. Wait, the standard way for a single string aaa: The derivation would be: S → AB A → CD C → a D → a B → a That's 5 productions. Is it possible to do it in fewer productions? For example, if some non-terminals are shared. Wait, but if there's only the string aaa, then no, because each step is necessary. But in our problem, the grammar also needs to generate a^12, so perhaps some productions can be shared. Wait, let's think: What if we have a non-terminal that generates 3 a's, but also can be used to build larger numbers. Wait, another approach: Let's see the minimal number of productions needed. We need to generate two specific lengths: 9 and 12. In CNF, the number of productions required to generate a language with two words of lengths m and n might be related to the number of nodes in the parse trees for those words. Each parse tree for a word of length k in CNF has 2k -1 nodes (productions), but if some subtrees are shared between the two parse trees, then the total number of productions can be less. For example, if both words share some common subtree, then the productions for that subtree would only be counted once. But 9 and 12. Let's see their parse trees. But 9 and 12 have a greatest common divisor of 3. So maybe they can both be built up from blocks of 3 a's. Let’s consider: - a^9 = (a^3)^3 - a^12 = (a^3)^4 So if we have a non-terminal X that generates a^3, then we can have S generate either X^3 or X^4. But how to do this in CNF with few productions. First, let's find a grammar for X generating a^3. As before, in CNF, this requires: X → A B A → C D C → a D → a B → a 5 productions. Then, to generate X^3, we can have: S → X Y Y → X X This is two more productions. Similarly, to generate X^4, we need another production. Wait, but the language is {X^3, X^4}, so S must generate either X^3 or X^4. So S would have two productions: S → X Y (generate X^3) S → X Z (generate X^4) Then Y → X X (for X^2, so S → X Y = X^3) Z → X W W → X X (for X^3, so S → X Z = X^4) Wait, let's break it down: For X^3: S → X Y, Y → X X. For X^4: S → X Z, Z → X W, W → X X. So productions for S part: S → X Y S → X Z Y → X X Z → X W W → X X That's 5 productions. Plus the productions for X (which is 5), total 10. Way over 6. This suggests that even with sharing, it's hard to get under 6 productions. Alternatively, perhaps there's a smarter way. Wait, maybe instead of building up X for 3 a's, we can have a production where a non-terminal generates 4 a's and another generates 3 a's, but I don't see how that helps. Wait another idea: If we have S generate a^9 through S → A B, where A generates 8 a's and B generates 1 a. But that might not be helpful. Alternatively, think of 9 and 12 in terms of exponents. Wait, 12 is 9 + 3, but perhaps we can have S → P Q where P gives 9 and Q gives 3. But then Q is a^3, which still requires several productions. Wait, maybe the key point is that in CNF, the number of productions required to generate a word of length n is 2n - 1. For two words, if they don't share any non-terminals, the total number of productions would be (2*9 -1) + (2*12 -1) = 17 + 23 = 40. But since they might share some non-terminals, the number can be reduced. But the problem allows up to 6 productions. Wait, but even the grammar for the smallest string, a^9, would require at least how many productions? Wait, in CNF, the number of productions (rules) needed depends on the grammar structure. For a single string of length n, the minimal CNF grammar has n-1 non-terminal productions (A → BC) and n terminal productions (A → a), totaling 2n -1 productions. But for n=9, that's 17 productions, which is way more than 6. So for a single string, it's impossible. But here we have two strings, but the combined total productions must be ≤6. Wait, but this seems impossible. Wait, but maybe there's a trick here. The language is {a^12, a^9}, which is a finite language. For finite languages, the minimal CNF grammar size can be calculated. Wait, another thought: A finite language where all strings are unary (like this case, only 'a's) can be generated by a grammar where each string is generated via a specific chain of productions. But in CNF, which requires binary splits, the minimal number of rules for a unary finite language. Wait, suppose we want to generate a^k. Each split is into two parts, so the number of productions for that string is 2k -1. So for two strings, 9 and 12, the minimal number of productions would be the sum minus any shared productions. But the question is whether there's a grammar where some non-terminals are shared. For example, suppose 9 = 3*3 and 12 = 3*4. If we have a non-terminal X generating 3 a's, then to get 9 we need S → X X X (but in CNF, this would require S → X Y, Y → X X), and for 12, S → X Z, Z → X W, W → X X. But each of these steps adds productions. Let me count: Productions for X (generating 3 a's): X → A B A → C D C → a D → a B → a That's 5 productions. Productions for generating 9 a's: S → X Y Y → X X That's 2 more, total 7. But we also need to generate 12 a's. To get 4 X's, we need: S → X Z Z → X W W → X X That's 3 more productions. So total productions would be 5 + 2 + 3 = 10. But we need ≤6. This suggests it's not possible. Alternatively, can we find a different decomposition where more productions are shared? Wait, for example, if we find a common ancestor production. Wait, another angle: The total number of required terminal productions (A → a) is equal to the total number of a's in all the strings, but no—wait, no, because in CNF each a must be produced by a separate production. Wait, no: In reality, each terminal symbol in the string is generated by a production of the form N → a. So for the string a^9, you need 9 productions of the form N → a (assuming no sharing, but if different parts of the parse tree share the same non-terminal for producing 'a', you might have only one such production). Wait, no: in CNF, the terminal productions are of the form N → a, and you can have multiple non-terminals mapping to the same terminal. Wait, but in our case, the terminal is always 'a', so you can have many non-terminals each with a production N → a. However, to save productions, you could have a single non-terminal (say A) that maps to 'a', and then have all other non-terminals that need to produce 'a' use A in their productions. Wait, yes! Because in CNF, you can have A → a, and then other non-terminals can produce A to get the terminal. Wait, no: in CNF, the only production that gives a terminal is directly to 'a', so to get an 'a', a production must be N → a. However, you can have multiple non-terminals map to 'a' with the same production rule? No, each production is a distinct rule. Wait, no: the rule is written once. For example, you can have one production A → a, and then use A in other productions. So if multiple parts of the grammar need to produce 'a', they can all use the non-terminal A which has the production A → a. That way, you only need one production for 'a', rather than multiple. Ah! That's a crucial point I missed earlier. In CNF, the productions for terminal symbols can be shared via a single non-terminal. So instead of having many rules like X → a, Y → a, etc., you can have a single rule A → a, and then other non-terminals produce A to get the 'a's. This reduces the number of terminal productions needed. For example, to generate 'aa', you can have: S → A A A → a So only two productions. Wait, but in CNF, yes, because S → A A is allowed (two non-terminals), and A → a is allowed (terminal production). So for 'aa', this grammar works: 1. S → AA 2. A → a Only two productions. So the standard minimal CNF grammar for 'aa' uses 2 productions, not 3 as I thought earlier. I was mistakenly using different non-terminals each time, but actually, you can reuse the non-terminal A. This drastically changes things. Similarly, for 'aaa' (a³), we can have: S → A B A → A C B → A A C → a Wait, no. Let's do it properly. To form a chain for three a's: S → X A X → A A A → a Here: - A → a (production 1) - X → A A (production 2) - S → X A (production 3) This generates X A → (A A) A → (a a) a = aaa. So three productions. Which is 2*3 - 3 = 3? Wait, no. For n=3, it's 3 productions. Similarly, for n=4: S → X X (where X produces 2 a's: X → A A, A → a) But S → X X X → A A A → a Total 3 productions. Wait, yes. So for 'aaaa' (a^4): S → XX X → AA A → a Three productions. So generalizing, for a^n where n is a power of 2, the number of productions is log2(n) + 1. But for other numbers, it's more complex. Wait, for example, n=3: S → XA, X → AA, A → a (3 productions) n=5: S → XB, X → XC, C → AA, B → AA, A → a Wait: Let's see, 5 can be built as 3 + 2. S → X Y X → X1 A X1 → A A (produces 3: 2 splits) Y → A A (produces 2) A → a Productions: 1. A → a 2. X1 → AA 3. X → X1 A 4. Y → AA 5. S → XY Total 5 productions. But for n=5, this is 5 productions. Which is 2*5 - 5 = 5? Hmm, not sure. But the key point is that by reusing the production A → a, we can minimize the number of terminal productions. Instead of needing n productions for A → a, we only need one: A → a. This is a game-changer. So let's reconsider. We can have one production for A → a. All other non-terminals for producing a's will reference A. So, for example: A → a (1 production) Now, to build up longer sequences. Let's think of this as all 'a's come from A, and we build up more a's by combining non-terminals. So for the language {a^9, a^12}, we need to find a way to have S derive to 9 A's and 12 A's, but through binary splits. Wait, no. Each production is either breaking into two non-terminals or producing a single A. The number of non-terminals (other than A) would determine the number of productions. So, the total productions are: - 1 (for A → a) - Plus the number of non-terminal productions (each of the form N → P Q). The start symbol S would have some productions. Our problem reduces to: Can we have a grammar where the number of non-terminal productions (N → P Q) plus 1 (for A → a) is ≤6? Because the problem states "höchstens 6 Produktionen" (at most 6 productions). The maximum number of non-terminal productions allowed would be 5 (since 1 is for the terminal production). So can we find a grammar where: 1. A → a (1 production) 2. Up to 5 more productions (N → P Q rules) to generate both 9 and 12 a's. Let's see. Total productions must be ≤6. So if we use 1 for A → a, then 5 for the non-terminal splits. Let's try to design such a grammar. We need S to generate both 9 and 12 a's. First, note that each non-terminal production (N → P Q) increases the total length by |P| + |Q|. Wait, let's assign to each non-terminal X a number val(X), which is the number of a's it generates. So val(S) must be either 9 or 12. Each non-terminal production X → Y Z implies val(X) = val(Y) + val(Z). Terminal production X → a implies val(X) = 1. We have A → a, so val(A) = 1. Our goal is to have: - val(S) = 9 or 12. We can have S with two productions: S → X, S → Y, but no, in CNF all productions must be either two non-terminals or one terminal. But we already have A for terminals, so S can only split into two non-terminals. Wait, S cannot produce a terminal directly unless it's S → A (but that would generate 'a'), but we need longer strings. So S must produce via two non-terminals. So, suppose S has two productions: S → B C (val(B) + val(C) = 9) S → D E (val(D) + val(E) = 12) But this would require four new non-terminals (B,C,D,E), each needing their own value. Alternatively, S can have productions that reuse non-terminals. Let’s think of building val(S) as 9 and 12 through combinations. Suppose we have a non-terminal X with val(X) = 3. Then: - 9 = 3*3, so S → X X X but in CNF that's S → X Y and Y → X X. - 12 = 3*4, so S → X Z and Z → X W, W → X X. But let's check the number of productions. val(X) = 3. How to get val(X) = 3: X → A Y Y → A A val(Y) = 2 (val(A)=1) val(X) = 1 + 2 =3. The productions: A → a (1) Y → A A (2) X → A Y (3) Now, for S to produce 9 (3*3): S → X Z Z → X X val(S) for this branch is val(X) + val(X Z) = 3 + 6 =9? Wait, val(Z) = val(X) + val(X) = 6, so val(S) = val(X) + val(Z) =3 +6=9. Productions added: S → X Z (4) Z → X X (5) Now, check the count: Currently 5 productions (1-5). We need to also produce 12 a's. How can S produce 12? If we add another production to S: S → X W val(W) needs to be 9 (since val(X) =3), so 3 +9=12. To get W to produce 9, we could do: W → Z X But val(Z)=6, so 6+3=9. But do we already have Z? Yes, Z is defined as Z → X X, val(Z)=6. So production: S → X W (6) W → Z X (7) But we only have 6 productions allowed. So far, we have: 1. A → a 2. Y → A A 3. X → A Y 4. S → X Z 5. Z → X X 6. S → X W 7. W → Z X That's 7 productions. Too many. Wait, maybe we can find a way where S's second production also reuses existing non-terminals. Suppose that 12 = 9 + 3, so val(S) = val(B) + val(X), where val(B)=9. If S → B X (for 12), but B is the same as the Z in the 9 case. Wait, S has two productions: S → X Z (val=3 +6=9) S → Z Z (val=6 +6=12) Check: val(Z) = 6 (from Z → X X, X=3 each) So Z Z is 12. Productions: 1. A → a 2. Y → AA (val(Y)=2) 3. X → AY (val=3) 4. Z → XX (val=6) 5. S → XZ (val=9) 6. S → ZZ (val=12) That's 6 productions total. Let's verify: Productions: 1. A → a (1) 2. Y → A A (2) 3. X → A Y (3) 4. Z → X X (4) 5. S → X Z (5) 6. S → Z Z (6) Now, check that L(G) = {a^9, a^12}. Derivation for a^9: S → X Z (using rule 5) X → A Y (rule 3) Y → A A (rule 2) Z → X X (rule 4) So expanding: S → X Z → (X)(X X) → but wait, let's do step-by-step. S → X Z (rule 5) X → A Y (rule 3), so S → (A Y) Z Y → A A (rule 2), so S → (A (A A)) Z Z → X X (rule 4), so S → (A (A A)) (X X) Each X → A Y, so: X → A Y → A (A A), so each X gives 3 a's. Thus Z = X X → 3 +3 =6 a's. Thus S → X Z gives 3 +6=9 a's. Similarly, S → Z Z (rule 6) Each Z is 6, so 6+6=12 a's. Each Z expands to X X (each X is 3), so Z Z = (X X)(X X) → each X gives 3, total 12. Now, check if there are any other strings generated. We need to ensure that the grammar doesn't generate any other strings. Let's see: - A can only produce 'a'. - Y produces 'a' * 'a' = 2 a's. - X produces A Y → 'a' followed by 2 a's = 3 a's. - Z produces X X → 3+3=6 a's. - S can produce X Z (3+6=9) or Z Z (6+6=12). Are there any other derivations? For example, could we derive something else by substituting other rules? Wait, all productions are in CNF, and there's no recursion because all non-terminals have fixed valuations. For instance, X cannot be expanded multiple times because each expansion is fixed. Since all non-terminals have valuations that don't overlap (A:1, Y:2, X:3, Z:6), and S has two choices. Let's see: The possible strings are: - S → X Z → 3 +6 =9 a's. - S → Z Z →6 +6=12 a's. No other productions for S. Other non-terminals only expand in one way (each has a single production rule): - A → a (only 'a') - Y → XX? No, Y → AA (val(Y)=2) - X → AY (only to get 1+2=3) - Z → XX (3+3=6) - Y has only one production rule, so no ambiguity. Therefore, the grammar only generates exactly a^9 and a^12. Now, count the productions: 1. A → a 2. Y → A A 3. X → A Y 4. Z → X X 5. S → X Z 6. S → Z Z Total of 6 productions. Which meets the requirement of at most 6. Wait, this works! So the answer is "Ja", and the grammar is as listed. But wait, let's confirm the CNF compliance. Chomsky Normal Form requires: - Every production is either A → BC or A → a, where A,B,C are non-terminals, a is terminal. In our grammar: - S → X Z (ok) - S → Z Z (ok) - Z → X X (ok) - X → A Y (ok) - Y → A A (ok) - A → a (ok) Yes, all productions are in CNF. Additionally, S does not appear on the right-hand side of any production, which is required (though CNF doesn't strictly require this; the only time the start symbol appears on the RHS is if the empty string is in the language, which it's not here). Also, the grammar does not contain ε-productions. Therefore, this grammar is in CNF, has 6 productions, and generates exactly {a^9, a^12}. But wait, let me check the derivation for a^9. S → X Z X expands to A Y A → a Y → A A → a a So X → a (a a) = a^3 Z → X X → a^3 a^3 = a^6 So X Z → a^3 a^6 = a^9. Similarly, Z Z → a^6 a^6 = a^12. Perfect. And no other combinations are possible. For example, could we get a^3 by S →... No, because S must expand to either X Z (9) or Z Z (12), and all other non-terminals have fixed lengths. Yes, this works. Therefore, the answer is "Ja", and the grammar is as specified with 6 productions.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> $S \to XZ \mid ZZ$ $X \to AY$ $Y \to AA$ $Z \to XX$ $A \to a$ </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☒Ja, Grammatik:☐Nein, Begründung:
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<answer id="4">
Begründung für $i=2$:
Die Sprache $(L_2)^*$ enthält alle Konkatenationen von Strings der Form $a^n b^n$. Um zu zeigen, dass $(L_2)^*$ nicht regulär ist, verwenden wir das Pumping-Lemma für reguläre Sprachen. Angenommen, $(L_2)^*$ wäre regulär mit Pumping-Länge $p$. Betrachte das Wort $s = a^p b^p$, das in $L_2 \subseteq (L_2)^*$ liegt. Laut Pumping-Lemma lässt sich $s$ zerlegen in $xyz$ mit $|xy| \leq p$, $|y| \geq 1$, sodass $xy^iz \in (L_2)^*$ für alle $i \geq 0$. Da $y$ nur aus $a$'s besteht (wegen $|xy| \leq p$), führt das Pumpen (z. B. $i = 0$) zu einem Wort $xz = a^{p - |y|} b^p$ mit ungleicher Anzahl von $a$'s und $b$'s. Dieses Wort kann jedoch nicht als Konkatenation von $a^k b^k$-Blöcken dargestellt werden, da die Gesamtzahl der $a$'s ungleich der $b$'s ist (und jede Konkatenation solcher Blöcke eine gleiche Gesamtzahl erfordert). Dies widerspricht dem Pumping-Lemma, also ist $(L_2)^*$ **nicht regulär**.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
Ja, Grammatik:
$S \to XZ \mid ZZ$
$X \to AY$
$Y \to AA$
$Z \to XX$
$A \to a$
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, let's tackle subproblem c. The question is about whether certain statements are true given that L is a context-free, non-regular language over {0,1}*. The options are: 1. There exists an undecidable language L' ⊆ L. 2. Every language L' ⊆ L is decidable. I need to figure out which of these is true. Let's start with some theoretical background. First, I remember that context-free languages (CFLs) are a subset of recursively enumerable (RE) languages, but not all RE languages are context-free. However, every CFL is decidable because there are algorithms (like the CYK algorithm) that can parse CFLs in polynomial time, assuming the grammar is in Chomsky normal form. Wait, but the problem states that L is context-free and not regular. Now, statement 2 says every subset of L is decidable. But I know that even if a language is decidable, it can have undecidable subsets. Wait, but what's the relation here? Wait, no—if a language L is decidable, then all its subsets are not necessarily decidable. In fact, any infinite language has uncountably many subsets, but there are only countably many decidable languages. So if L is infinite, which it must be if it's context-free and non-regular (since all finite languages are regular), then L has uncountably many subsets, but only countably many decidable ones. Therefore, there exist undecidable subsets of L. That would make statement 1 true and statement 2 false. Wait, let me check this reasoning. Suppose L is an infinite CFL. Since CFLs can be infinite (like the classic a^n b^n), then L has 2^|L| subsets. But since L is infinite, |L| is countably infinite, so 2^|L| is uncountable. However, the number of decidable languages is countable because each decidable language is decided by some Turing machine, and there are only countably many TMs. Therefore, there must be undecidable subsets of L. So statement 1 should be true. Statement 2 claims all subsets are decidable, which would be false because of the above reasoning. Therefore, option 1 is true, option 2 is false. So the correct answer is to select option 1 and provide a justification. The user needs to choose one correct statement and explain why it's true. So for answer-template id=3, it should be "Begründung für Aussage 1" followed by the reasoning. Let me make sure. The key points are: - L is context-free, hence decidable (since CFLs are decidable). - However, L is infinite (as it's non-regular; all finite CFLs are regular). - An infinite set has uncountably many subsets. - There are only countably many decidable languages. - Therefore, there must exist subsets of L that are undecidable. Yes, that seems correct. So statement 1 is true, statement 2 is false. Thus, the options should be <option id="1">1</option> and <option id="2">0</option>, and the answer template should explain this.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage $1$: Da $L$ kontextfrei und nicht regulär ist, muss $L$ unendlich sein (alle endlichen Sprachen sind regulär). Eine unendliche Sprache $L \subseteq \{0,1\}^*$ hat überabzählbar viele Teilmengen. Da es jedoch nur abzählbar viele entscheidbare Sprachen gibt (jede entscheidbare Sprache entspricht einer Turingmaschine, und Turingmaschinen sind abzählbar), muss es Teilmengen $L' \subseteq L$ geben, die **nicht entscheidbar** sind. Insbesondere existiert daher stets eine unentscheidbare Teilmenge $L'$, was Aussage $1$ wahr macht. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage : Da kontextfrei und nicht regulär ist, muss unendlich sein (alle endlichen Sprachen sind regulär). Eine unendliche Sprache hat überabzählbar viele Teilmengen. Da es jedoch nur abzählbar viele entscheidbare Sprachen gibt (jede entscheidbare Sprache entspricht einer Turingmaschine, und Turingmaschinen sind abzählbar), muss es Teilmengen geben, die nicht entscheidbar sind. Insbesondere existiert daher stets eine unentscheidbare Teilmenge , was Aussage wahr macht.
x-ai/grok-4
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Begründung für $i=2$: Angenommen $(L_2)^*$ wäre regulär mit Pumplänge $p$. Betrachte $w = a^p b^p a^p b^p \in (L_2)^*$. Dann liegt jede Zerlegung $xyz$ mit $|xy| \le p$, $|y| \ge 1$ in den ersten $a^p$. Für $k=0$ ist $xz = a^{p-t} b^p a^p b^p \notin (L_2)^*$, da es nicht in aufeinanderfolgende Blöcke $a^k b^k$ zerlegt werden kann (nach dem ersten möglichen Block $a^{p-t} b^{p-t}$ bleibt $b^t a^p b^p$ übrig, das mit $b$ beginnt, was kein Block kann). Widerspruch zum Pumplemma. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☐
Begründung für : Angenommen wäre regulär mit Pumplänge . Betrachte . Dann liegt jede Zerlegung mit , in den ersten . Für ist , da es nicht in aufeinanderfolgende Blöcke zerlegt werden kann (nach dem ersten möglichen Block bleibt übrig, das mit beginnt, was kein Block kann). Widerspruch zum Pumplemma.
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Angenommen $(L_2)^*$ wäre regulär mit Pumplänge $p$. Betrachte $w = a^p b^p a^p b^p \in (L_2)^*$. Dann liegt jede Zerlegung $xyz$ mit $|xy| \le p$, $|y| \ge 1$ in den ersten $a^p$. Für $k=0$ ist $xz = a^{p-t} b^p a^p b^p \notin (L_2)^*$, da es nicht in aufeinanderfolgende Blöcke $a^k b^k$ zerlegt werden kann (nach dem ersten möglichen Block $a^{p-t} b^{p-t}$ bleibt $b^t a^p b^p$ übrig, das mit $b$ beginnt, was kein Block kann). Widerspruch zum Pumplemma.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> S -> C D | D D D -> C C C -> A B B -> A A A -> a </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☒Ja, Grammatik:☐Nein, Begründung:
S -> C D | D D D -> C C C -> A B B -> A A A -> a
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Begründung für $i=2$:
Angenommen $(L_2)^*$ wäre regulär mit Pumplänge $p$. Betrachte $w = a^p b^p a^p b^p \in (L_2)^*$. Dann liegt jede Zerlegung $xyz$ mit $|xy| \le p$, $|y| \ge 1$ in den ersten $a^p$. Für $k=0$ ist $xz = a^{p-t} b^p a^p b^p \notin (L_2)^*$, da es nicht in aufeinanderfolgende Blöcke $a^k b^k$ zerlegt werden kann (nach dem ersten möglichen Block $a^{p-t} b^{p-t}$ bleibt $b^t a^p b^p$ übrig, das mit $b$ beginnt, was kein Block kann). Widerspruch zum Pumplemma.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
S -> C D | D D
D -> C C
C -> A B
B -> A A
A -> a
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1: Da $L$ kontextfrei und nicht regulär ist, ist $L$ unendlich (denn endliche Sprachen sind regulär). Da $L$ entscheidbar ist, lässt sich eine effektive Aufzählung $e_1,e_2,\dots$ aller Wörter in $L$ berechnen. Sei $K=\{n\in\mathbb{N}\mid$ die $n$-te TM hält auf leerem Band$\}$. Definiere $L'=\{e_n\mid n\in K\}$. Dann ist $L'\subseteq L$ unentscheidbar, da sich das Halteproblem auf $L'$ reduzieren lässt. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1: Da kontextfrei und nicht regulär ist, ist unendlich (denn endliche Sprachen sind regulär). Da entscheidbar ist, lässt sich eine effektive Aufzählung aller Wörter in berechnen. Sei die -te TM hält auf leerem Band. Definiere . Dann ist unentscheidbar, da sich das Halteproblem auf reduzieren lässt.
z-ai/glm-4.5
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Let's analyze each of the languages $L_i$ and determine whether $(L_i)^*$ is regular or not. First, let's recall that the Kleene star operation $L^*$ applied to a language $L$ gives the set of all strings that can be formed by concatenating zero or more strings from $L$. The empty string $\varepsilon$ is always in $L^*$. Now, let's examine each language: ### Language $L_1 := \{(ab)^n:n\in\mathbb{N}\}$ $L_1$ consists of strings of the form $(ab)^n$ for $n \in \mathbb{N}$. This means: - $L_1 = \{\varepsilon, ab, abab, ababab, ...\}$ Let's consider $(L_1)^*$. Since $L_1$ already contains strings of the form $(ab)^n$, and $(L_1)^*$ allows us to concatenate any number of these strings, we get: - $(L_1)^* = \{(ab)^n:n\in\mathbb{N}\} = L_1$ This is because concatenating strings of the form $(ab)^{n_1}, (ab)^{n_2}, ..., (ab)^{n_k}$ gives us $(ab)^{n_1+n_2+...+n_k}$, which is still of the form $(ab)^n$ for some $n \in \mathbb{N}$. $L_1$ is a regular language because it can be recognized by a simple finite automaton or described by the regular expression $(ab)^*$. Therefore, $(L_1)^* = L_1$ is also regular. So, $(L_1)^*$ is regular. ### Language $L_2 := \{a^nb^n:n\in\mathbb{N}\}$ $L_2$ consists of strings of the form $a^nb^n$ for $n \in \mathbb{N}$. This means: - $L_2 = \{\varepsilon, ab, aabb, aaabbb, ...\}$ $L_2$ is a classic example of a non-regular language. It can be proven using the pumping lemma for regular languages. Now, let's consider $(L_2)^*$. This language consists of all strings that can be formed by concatenating zero or more strings from $L_2$. Let's think about what strings are in $(L_2)^*$. A string $w$ is in $(L_2)^*$ if it can be written as $w = w_1w_2...w_k$ where each $w_i \in L_2$. Each $w_i$ is of the form $a^{n_i}b^{n_i}$ for some $n_i \in \mathbb{N}$. So, $w = a^{n_1}b^{n_1}a^{n_2}b^{n_2}...a^{n_k}b^{n_k}$. This means that in $w$, the number of $a$'s and $b$'s must be equal, and they must appear in a specific pattern: all $a$'s come before all $b$'s in each segment, but there can be multiple segments. Now, is $(L_2)^*$ regular? Let's try to understand its structure. If $(L_2)^*$ were regular, then it would be recognized by some finite automaton. However, the language $(L_2)^*$ has a complex structure that requires counting and matching the number of $a$'s and $b$'s in each segment, which suggests it might not be regular. Let's use the pumping lemma to prove that $(L_2)^*$ is not regular. Assume for contradiction that $(L_2)^*$ is regular. Then there exists a pumping length $p$ such that any string $s \in (L_2)^*$ with $|s| \geq p$ can be divided into $s = xyz$ where: 1. $|xy| \leq p$ 2. $|y| > 0$ 3. $xy^iz \in (L_2)^*$ for all $i \geq 0$ Consider the string $s = (ab)^p = abab...ab$ ($p$ times). This string is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. Since $|s| = 2p \geq p$, we can apply the pumping lemma. Let $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. This means $y$ consists of one or more $a$'s or $b$'s from the first $p$ symbols of $s$. If we pump $y$ (i.e., consider $xy^iz$ for $i \neq 1$), we'll get a string that doesn't have the correct structure to be in $(L_2)^*$. For example, if $y$ consists of $a$'s, then pumping up ($i > 1$) will give us more $a$'s than $b$'s in the first segment, which violates the structure of strings in $(L_2)^*$. Similarly, if $y$ consists of $b$'s, pumping up will give us more $b$'s than $a$'s in the first segment. Therefore, $(L_2)^*$ is not regular. Wait, I need to be more careful here. The string $(ab)^p$ is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. But when we pump, we need to ensure that the resulting string cannot be in $(L_2)^*$. Let's refine the argument. If $y$ consists of $a$'s, say $y = a^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $a$'s than $b$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. Similarly, if $y$ consists of $b$'s, say $y = b^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $b$'s than $a$'s in the first segment, which again means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. Therefore, $(L_2)^*$ is not regular. ### Language $L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$ $L_3$ consists of strings of the form $a^nb^m$ where $n \neq m$. This means: - $L_3 = \{ab, aabb, aaabbb, ...\} \setminus \{a^nb^n:n\in\mathbb{N}\}$ $L_3$ is not a regular language. This can be proven using the pumping lemma or by noting that its complement with respect to the regular language $a^*b^*$ is $\{a^nb^n:n\in\mathbb{N}\}$, which is not regular. Since regular languages are closed under complement, if $L_3$ were regular, its complement would also be regular, which is a contradiction. Now, let's consider $(L_3)^*$. This language consists of all strings that can be formed by concatenating zero or more strings from $L_3$. Let's think about what strings are in $(L_3)^*$. A string $w$ is in $(L_3)^*$ if it can be written as $w = w_1w_2...w_k$ where each $w_i \in L_3$. Each $w_i$ is of the form $a^{n_i}b^{m_i}$ where $n_i \neq m_i$. So, $w = a^{n_1}b^{m_1}a^{n_2}b^{m_2}...a^{n_k}b^{m_k}$ where $n_i \neq m_i$ for all $i$. Now, is $(L_3)^*$ regular? Let's try to understand its structure. If $(L_3)^*$ were regular, then it would be recognized by some finite automaton. However, the language $(L_3)^*$ has a complex structure that requires ensuring that in each segment, the number of $a$'s and $b$'s are not equal, which suggests it might not be regular. Let's use the pumping lemma to prove that $(L_3)^*$ is not regular. Assume for contradiction that $(L_3)^*$ is regular. Then there exists a pumping length $p$ such that any string $s \in (L_3)^*$ with $|s| \geq p$ can be divided into $s = xyz$ where: 1. $|xy| \leq p$ 2. $|y| > 0$ 3. $xy^iz \in (L_3)^*$ for all $i \geq 0$ Consider the string $s = a^{p+1}b^p \in L_3 \subseteq (L_3)^*$. Since $|s| = 2p+1 \geq p$, we can apply the pumping lemma. Let $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. This means $y$ consists of one or more $a$'s. If we pump $y$ (i.e., consider $xy^iz$ for $i \neq 1$), we'll get a string that might not be in $(L_3)^*$. For example, if we pump down ($i = 0$), we get $xz = a^{p+1-|y|}b^p$. If $|y| = 1$, then $xz = a^pb^p$, which is not in $L_3$. But is it in $(L_3)^*$? Actually, $a^pb^p$ is not in $(L_3)^*$ because it cannot be formed by concatenating strings from $L_3$. Any string in $(L_3)^*$ must be a concatenation of strings of the form $a^{n_i}b^{m_i}$ where $n_i \neq m_i$. But $a^pb^p$ cannot be divided into such segments because if it could, it would have to be a single segment (since all $a$'s come before all $b$'s), but then we would have $n = m = p$, which contradicts the requirement that $n \neq m$. Therefore, $xy^0z = a^{p-|y|}b^p$ is not in $(L_3)^*$ when $|y| = 1$, which contradicts the pumping lemma. Hence, $(L_3)^*$ is not regular. Actually, I need to be more careful. Let me rethink the argument for $(L_3)^*$. The language $(L_3)^*$ consists of all strings that can be formed by concatenating zero or more strings from $L_3$. Each string in $L_3$ is of the form $a^nb^m$ where $n \neq m$. Now, consider the string $a^pb^p$ where $p$ is the pumping length. This string is not in $(L_3)^*$ because it cannot be formed by concatenating strings from $L_3$. If it could, it would have to be a single segment (since all $a$'s come before all $b$'s), but then we would have $n = m = p$, which contradicts the requirement that $n \neq m$. Now, consider the string $s = a^{p+1}b^p \in L_3 \subseteq (L_3)^*$. Since $|s| = 2p+1 \geq p$, we can apply the pumping lemma. Let $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. This means $y$ consists of one or more $a$'s. If we pump down ($i = 0$), we get $xz = a^{p+1-|y|}b^p$. If $|y| = 1$, then $xz = a^pb^p$, which is not in $(L_3)^*$ as argued above. This contradicts the pumping lemma, so $(L_3)^*$ is not regular. So, both $(L_2)^*$ and $(L_3)^*$ are not regular, while $(L_1)^*$ is regular. Let me double-check my reasoning for $(L_2)^*$ and $(L_3)^*$. For $(L_2)^*$, I argued that the string $(ab)^p$ is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. Then, when we pump, we get a string that cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. This seems correct. For $(L_3)^*$, I argued that the string $a^{p+1}b^p$ is in $L_3 \subseteq (L_3)^*$. Then, when we pump down, we get $a^pb^p$, which is not in $(L_3)^*$ because it cannot be formed by concatenating strings from $L_3$. This also seems correct. Therefore, both $(L_2)^*$ and $(L_3)^*$ are not regular, while $(L_1)^*$ is regular. So, the answer is: - $(L_1)^*$ is regular, so the answer for option 1 is 0. - $(L_2)^*$ is not regular, so the answer for option 2 is 1. - $(L_3)^*$ is not regular, so the answer for option 3 is 1. Now, I need to provide a justification for one of the languages for which $(L_i)^*$ is not regular. I'll choose $L_2$ and justify why $(L_2)^*$ is not regular. For $L_2 := \{a^nb^n:n\in\mathbb{N}\}$, $(L_2)^*$ is not regular. Here's the justification: Assume for contradiction that $(L_2)^*$ is regular. Then there exists a pumping length $p$ such that any string $s \in (L_2)^*$ with $|s| \geq p$ can be divided into $s = xyz$ where: 1. $|xy| \leq p$ 2. $|y| > 0$ 3. $xy^iz \in (L_2)^*$ for all $i \geq 0$ Consider the string $s = (ab)^p = abab...ab$ ($p$ times). This string is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. Since $|s| = 2p \geq p$, we can apply the pumping lemma. Let $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. This means $y$ consists of one or more $a$'s or $b$'s from the first $p$ symbols of $s$. If $y$ consists of $a$'s, say $y = a^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $a$'s than $b$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. Similarly, if $y$ consists of $b$'s, say $y = b^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $b$'s than $a$'s in the first segment, which again means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. Therefore, $(L_2)^*$ is not regular. Actually, let me refine the argument a bit more. For $(L_2)^*$, the string $(ab)^p$ is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. Now, let $s = (ab)^p$ and divide it into $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, $y$ must be a substring of the first $p$ symbols of $s$, which are $a$'s and $b$'s in alternating fashion. Case 1: $y$ consists of $a$'s. Say $y = a^k$ for some $k > 0$. Then $xy^2z$ will have $k$ more $a$'s than $b$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. Case 2: $y$ consists of $b$'s. Say $y = b^k$ for some $k > 0$. Then $xy^2z$ will have $k$ more $b$'s than $a$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. Case 3: $y$ consists of both $a$'s and $b$'s. Say $y = a^kb^l$ for some $k, l > 0$. Then $xy^2z$ will have a segment with $k$ more $a$'s and $l$ more $b$'s, which disrupts the balance required for segments of the form $a^{n_i}b^{n_i}$. So, $xy^2z$ is not in $(L_2)^*$. In all cases, we get a contradiction to the pumping lemma. Therefore, $(L_2)^*$ is not regular. Actually, I need to be even more careful. Let me rethink the argument for $(L_2)^*$. The language $(L_2)^*$ consists of all strings that can be formed by concatenating zero or more strings from $L_2$. Each string in $L_2$ is of the form $a^nb^n$ for some $n \in \mathbb{N}$. Now, consider the string $s = (ab)^p$. This string is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. Assume for contradiction that $(L_2)^*$ is regular. Then there exists a pumping length $p$ such that any string $s \in (L_2)^*$ with $|s| \geq p$ can be divided into $s = xyz$ where: 1. $|xy| \leq p$ 2. $|y| > 0$ 3. $xy^iz \in (L_2)^*$ for all $i \geq 0$ Let $s = (ab)^p$ and divide it into $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, $y$ must be a substring of the first $p$ symbols of $s$, which are $a$'s and $b$'s in alternating fashion. Case 1: $y$ consists of $a$'s. Say $y = a^k$ for some $k > 0$. Then $xy^2z$ will have $k$ more $a$'s than $b$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. Case 2: $y$ consists of $b$'s. Say $y = b^k$ for some $k > 0$. Then $xy^2z$ will have $k$ more $b$'s than $a$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. Case 3: $y$ consists of both $a$'s and $b$'s. Say $y = a^kb^l$ for some $k, l > 0$. Then $xy^2z$ will have a segment with $k$ more $a$'s and $l$ more $b$'s, which disrupts the balance required for segments of the form $a^{n_i}b^{n_i}$. So, $xy^2z$ is not in $(L_2)^*$. In all cases, we get a contradiction to the pumping lemma. Therefore, $(L_2)^*$ is not regular. Actually, I think I'm overcomplicating this. Let me simplify the argument. For $(L_2)^*$, the string $(ab)^p$ is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. Now, let $s = (ab)^p$ and divide it into $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, $y$ must be a substring of the first $p$ symbols of $s$, which are $a$'s and $b$'s in alternating fashion. If $y$ consists of $a$'s, say $y = a^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $a$'s than $b$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. If $y$ consists of $b$'s, say $y = b^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $b$'s than $a$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. If $y$ consists of both $a$'s and $b$'s, say $y = a^kb^l$ for some $k, l > 0$, then $xy^2z$ will have a segment with $k$ more $a$'s and $l$ more $b$'s, which disrupts the balance required for segments of the form $a^{n_i}b^{n_i}$. So, $xy^2z$ is not in $(L_2)^*$. In all cases, we get a contradiction to the pumping lemma. Therefore, $(L_2)^*$ is not regular. Actually, I think I'm still overcomplicating this. Let me simplify even further. For $(L_2)^*$, consider the string $s = (ab)^p$. This string is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. Now, let $s = (ab)^p$ and divide it into $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, $y$ must be a substring of the first $p$ symbols of $s$, which are $a$'s and $b$'s in alternating fashion. If $y$ consists of $a$'s, say $y = a^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $a$'s than $b$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. If $y$ consists of $b$'s, say $y = b^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $b$'s than $a$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. In both cases, we get a contradiction to the pumping lemma. Therefore, $(L_2)^*$ is not regular. I think this is a solid argument. Let me move on to $(L_3)^*$. For $(L_3)^*$, consider the string $s = a^{p+1}b^p$. This string is in $L_3 \subseteq (L_3)^*$ because $p+1 \neq p$. Now, let $s = a^{p+1}b^p$ and divide it into $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, $y$ must consist of one or more $a$'s. If $y = a^k$ for some $k > 0$, then $xy^0z = a^{p+1-k}b^p$. If $k = 1$, then $xy^0z = a^pb^p$, which is not in $(L_3)^*$ because it cannot be formed by concatenating strings from $L_3$. Any string in $(L_3)^*$ must be a concatenation of strings of the form $a^{n_i}b^{m_i}$ where $n_i \neq m_i$. But $a^pb^p$ cannot be divided into such segments because if it could, it would have to be a single segment (since all $a$'s come before all $b$'s), but then we would have $n = m = p$, which contradicts the requirement that $n \neq m$. Therefore, $xy^0z$ is not in $(L_3)^*$ when $k = 1$, which contradicts the pumping lemma. Hence, $(L_3)^*$ is not regular. So, both $(L_2)^*$ and $(L_3)^*$ are not regular, while $(L_1)^*$ is regular. Therefore, the answer is: - $(L_1)^*$ is regular, so the answer for option 1 is 0. - $(L_2)^*$ is not regular, so the answer for option 2 is 1. - $(L_3)^*$ is not regular, so the answer for option 3 is 1. And for the justification, I'll choose $L_2$ and explain why $(L_2)^*$ is not regular. Actually, let me double-check my reasoning for $(L_1)^*$. For $L_1 := \{(ab)^n:n\in\mathbb{N}\}$, we have $L_1 = \{\varepsilon, ab, abab, ababab, ...\}$. Now, $(L_1)^*$ consists of all strings that can be formed by concatenating zero or more strings from $L_1$. Since $L_1$ already contains strings of the form $(ab)^n$, and $(L_1)^*$ allows us to concatenate any number of these strings, we get: - $(L_1)^* = \{(ab)^n:n\in\mathbb{N}\} = L_1$ This is because concatenating strings of the form $(ab)^{n_1}, (ab)^{n_2}, ..., (ab)^{n_k}$ gives us $(ab)^{n_1+n_2+...+n_k}$, which is still of the form $(ab)^n$ for some $n \in \mathbb{N}$. $L_1$ is a regular language because it can be recognized by a simple finite automaton or described by the regular expression $(ab)^*$. Therefore, $(L_1)^* = L_1$ is also regular. So, $(L_1)^*$ is regular, and the answer for option 1 is 0. Now, let me finalize my answer: For option 1: 0 (because $(L_1)^*$ is regular) For option 2: 1 (because $(L_2)^*$ is not regular) For option 3: 1 (because $(L_3)^*$ is not regular) And for the justification, I'll choose $L_2$ and explain why $(L_2)^*$ is not regular. Actually, let me make sure I understand the question correctly. The question asks: "For which of the following languages $L_i$, where $i\in\{1,2,3\}$, does it hold that $(L_i)^*$ is **not** regular?" So, I need to identify the languages for which the Kleene star is not regular. From my analysis: - $(L_1)^*$ is regular. - $(L_2)^*$ is not regular. - $(L_3)^*$ is not regular. Therefore, the answer is: - For option 1: 0 (because $(L_1)^*$ is regular) - For option 2: 1 (because $(L_2)^*$ is not regular) - For option 3: 1 (because $(L_3)^*$ is not regular) And I need to provide a justification for one of the languages for which $(L_i)^*$ is not regular. I'll choose $L_2$ and justify why $(L_2)^*$ is not regular. Actually, I think I've been overthinking this. Let me simplify my justification for $(L_2)^*$: For $L_2 := \{a^nb^n:n\in\mathbb{N}\}$, $(L_2)^*$ is not regular. Here's the justification: Assume for contradiction that $(L_2)^*$ is regular. Then there exists a pumping length $p$ such that any string $s \in (L_2)^*$ with $|s| \geq p$ can be divided into $s = xyz$ where: 1. $|xy| \leq p$ 2. $|y| > 0$ 3. $xy^iz \in (L_2)^*$ for all $i \geq 0$ Consider the string $s = (ab)^p$. This string is in $(L_2)^*$ because it can be formed by concatenating $p$ strings of the form $ab$ from $L_2$. Since $|s| = 2p \geq p$, we can apply the pumping lemma. Let $s = xyz$ where $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, $y$ must be a substring of the first $p$ symbols of $s$, which are $a$'s and $b$'s in alternating fashion. If $y$ consists of $a$'s, say $y = a^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $a$'s than $b$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. If $y$ consists of $b$'s, say $y = b^k$ for some $k > 0$, then $xy^2z$ will have $k$ more $b$'s than $a$'s in the first segment. This means the string cannot be divided into segments of the form $a^{n_i}b^{n_i}$, so it's not in $(L_2)^*$. In both cases, we get a contradiction to the pumping lemma. Therefore, $(L_2)^*$ is not regular. I think this is a solid justification. Let me finalize my answer.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">1</option> <answer id="4"> Begründung für $i=2$: Angenommen, $(L_2)^*$ ist regulär. Dann existiert eine Pumping-Länge $p$ gemäß dem Pumping-Lemma für reguläre Sprachen. Betrachte den String $s = (ab)^p$. Dieser String ist in $(L_2)^*$, da er durch Konkatenation von $p$ Strings der Form $ab$ aus $L_2$ gebildet werden kann. Da $|s| = 2p \geq p$, können wir das Pumping-Lemma anwenden. Sei $s = xyz$ mit $|xy| \leq p$ und $|y| > 0$. Da $|xy| \leq p$, muss $y$ ein Teilstring der ersten $p$ Symbole von $s$ sein, welche abwechselnd $a$'s und $b$'s sind. Fall 1: $y$ besteht aus $a$'s, etwa $y = a^k$ für ein $k > 0$. Dann hat $xy^2z$ im ersten Segment $k$ mehr $a$'s als $b$'s. Dies bedeutet, dass der String nicht in Segmente der Form $a^{n_i}b^{n_i}$ zerlegt werden kann, also nicht in $(L_2)^*$ liegt. Fall 2: $y$ besteht aus $b$'s, etwa $y = b^k$ für ein $k > 0$. Dann hat $xy^2z$ im ersten Segment $k$ mehr $b$'s als $a$'s. Auch dies bedeutet, dass der String nicht in Segmente der Form $a^{n_i}b^{n_i}$ zerlegt werden kann, also nicht in $(L_2)^*$ liegt. In beiden Fällen erhalten wir einen Widerspruch zum Pumping-Lemma. Daher ist $(L_2)^*$ nicht regulär. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☒
wrong answer for choice (2)
Begründung für : Angenommen, ist regulär. Dann existiert eine Pumping-Länge gemäß dem Pumping-Lemma für reguläre Sprachen. Betrachte den String . Dieser String ist in , da er durch Konkatenation von Strings der Form aus gebildet werden kann. Da , können wir das Pumping-Lemma anwenden. Sei mit und . Da , muss ein Teilstring der ersten Symbole von sein, welche abwechselnd 's und 's sind. Fall 1: besteht aus 's, etwa für ein . Dann hat im ersten Segment mehr 's als 's. Dies bedeutet, dass der String nicht in Segmente der Form zerlegt werden kann, also nicht in liegt. Fall 2: besteht aus 's, etwa für ein . Dann hat im ersten Segment mehr 's als 's. Auch dies bedeutet, dass der String nicht in Segmente der Form zerlegt werden kann, also nicht in liegt. In beiden Fällen erhalten wir einen Widerspruch zum Pumping-Lemma. Daher ist nicht regulär.
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<answer id="4">
Begründung für $i=2$:
Angenommen, $(L_2)^*$ ist regulär. Dann existiert eine Pumping-Länge $p$ gemäß dem Pumping-Lemma für reguläre Sprachen.
Betrachte den String $s = (ab)^p$. Dieser String ist in $(L_2)^*$, da er durch Konkatenation von $p$ Strings der Form $ab$ aus $L_2$ gebildet werden kann.
Da $|s| = 2p \geq p$, können wir das Pumping-Lemma anwenden. Sei $s = xyz$ mit $|xy| \leq p$ und $|y| > 0$. Da $|xy| \leq p$, muss $y$ ein Teilstring der ersten $p$ Symbole von $s$ sein, welche abwechselnd $a$'s und $b$'s sind.
Fall 1: $y$ besteht aus $a$'s, etwa $y = a^k$ für ein $k > 0$. Dann hat $xy^2z$ im ersten Segment $k$ mehr $a$'s als $b$'s. Dies bedeutet, dass der String nicht in Segmente der Form $a^{n_i}b^{n_i}$ zerlegt werden kann, also nicht in $(L_2)^*$ liegt.
Fall 2: $y$ besteht aus $b$'s, etwa $y = b^k$ für ein $k > 0$. Dann hat $xy^2z$ im ersten Segment $k$ mehr $b$'s als $a$'s. Auch dies bedeutet, dass der String nicht in Segmente der Form $a^{n_i}b^{n_i}$ zerlegt werden kann, also nicht in $(L_2)^*$ liegt.
In beiden Fällen erhalten wir einen Widerspruch zum Pumping-Lemma. Daher ist $(L_2)^*$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let me analyze this problem carefully. We need to determine if there exists a context-free grammar in Chomsky Normal Form (CNF) with at most 6 productions that generates the language $L = \{a^{12}, a^9\}$. First, let's recall what a Chomsky Normal Form is: - All productions are of the form $A \to BC$ or $A \to a$ where $A, B, C$ are nonterminals and $a$ is a terminal. - Additionally, we can have the production $S \to \varepsilon$ if the empty string is in the language, but that's not relevant here since our language doesn't contain the empty string. Now, let's think about how to generate the strings $a^{12}$ and $a^9$ using a CNF grammar. To generate a string of length $n$, we need a derivation tree with $n$ leaves, each labeled with $a$. In CNF, each internal node has exactly 2 children (except for the root which might have one child if we have $S \to a$). For $a^9$, we need a binary tree with 9 leaves. For $a^{12}$, we need a binary tree with 12 leaves. Let's try to construct such a grammar: We'll start with the start symbol $S$. We need to generate both $a^9$ and $a^{12}$. One approach is to have: $S \to BC$ where $B$ generates $a^9$ and $C$ generates $a^3$, giving us $a^{12}$. But then we also need a way to generate just $a^9$. Alternatively, we could have: $S \to BC$ where $B$ generates $a^6$ and $C$ generates $a^3$, giving us $a^9$. And $S \to DE$ where $D$ generates $a^9$ and $E$ generates $a^3$, giving us $a^{12}$. Let's try to construct this more systematically. For $a^9$, we need a binary tree with 9 leaves. One way to do this is to have a balanced tree as much as possible. For 9 leaves, we could have: - Root splits into 4 and 5 - 4 splits into 2 and 2 - 5 splits into 2 and 3 - 2 splits into 1 and 1 - 3 splits into 1 and 2 - 2 splits into 1 and 1 This gives us the following productions: $S \to BC$ (where $B$ generates $a^4$ and $C$ generates $a^5$) $B \to DE$ (where $D$ generates $a^2$ and $E$ generates $a^2$) $C \to FG$ (where $F$ generates $a^2$ and $G$ generates $a^3$) $D \to HI$ (where $H$ generates $a^1$ and $I$ generates $a^1$) $E \to JK$ (where $J$ generates $a^1$ and $K$ generates $a^1$) $F \to LM$ (where $L$ generates $a^1$ and $M$ generates $a^1$) $G \to NO$ (where $N$ generates $a^1$ and $O$ generates $a^2$) $H \to a$ $I \to a$ $J \to a$ $K \to a$ $L \to a$ $M \to a$ $N \to a$ $O \to PQ$ (where $P$ generates $a^1$ and $Q$ generates $a^1$) $P \to a$ $Q \to a$ That's already 18 productions, which is way more than the 6 we're allowed. Let's try a different approach. Maybe we can reuse some nonterminals to generate the same number of $a$'s. For $a^9$, we could have: $S \to BC$ (where $B$ generates $a^3$ and $C$ generates $a^6$) $B \to DE$ (where $D$ generates $a^1$ and $E$ generates $a^2$) $C \to FG$ (where $F$ generates $a^3$ and $G$ generates $a^3$) $D \to a$ $E \to HI$ (where $H$ generates $a^1$ and $I$ generates $a^1$) $F \to JK$ (where $J$ generates $a^1$ and $K$ generates $a^2$) $G \to LM$ (where $L$ generates $a^1$ and $M$ generates $a^2$) $H \to a$ $I \to a$ $J \to a$ $K \to NO$ (where $N$ generates $a^1$ and $O$ generates $a^1$) $L \to a$ $M \to PQ$ (where $P$ generates $a^1$ and $Q$ generates $a^1$) $N \to a$ $O \to a$ $P \to a$ $Q \to a$ That's still 18 productions. Let's try to be more efficient. We need to generate $a^9$ and $a^{12}$. Let's see if we can find a common structure. One approach is to generate powers of 2, since they can be efficiently represented in binary trees. $A_1 \to a$ (generates $a^1$) $A_2 \to A_1A_1$ (generates $a^2$) $A_4 \to A_2A_2$ (generates $a^4$) $A_8 \to A_4A_4$ (generates $a^8$) Now, for $a^9$, we can do: $S \to A_8A_1$ (generates $a^9$) For $a^{12}$, we can do: $S \to A_8A_4$ (generates $a^{12}$) But we need a way to choose between these two options. We could have: $S \to BC$ or $S \to DE$ where $B$ generates $a^8$, $C$ generates $a^1$, $D$ generates $a^8$, and $E$ generates $a^4$. Let's count the productions: $A_1 \to a$ $A_2 \to A_1A_1$ $A_4 \to A_2A_2$ $A_8 \to A_4A_4$ $S \to A_8A_1$ $S \to A_8A_4$ That's 6 productions, which is exactly the limit. Let's verify that this grammar generates $\{a^9, a^{12}\}$: For $a^9$: $S \to A_8A_1 \to A_4A_4A_1 \to A_2A_2A_4A_1 \to A_1A_1A_2A_4A_1 \to aA_1A_2A_4A_1 \to aaA_2A_4A_1 \to aaA_1A_1A_4A_1 \to aaaA_1A_4A_1 \to aaaaA_4A_1 \to aaaaA_2A_2A_1 \to aaaaA_1A_1A_2A_1 \to aaaaaA_1A_2A_1 \to aaaaaaA_2A_1 \to aaaaaaA_1A_1A_1 \to aaaaaaaA_1A_1 \to aaaaaaaaA_1 \to aaaaaaaaa$ For $a^{12}$: $S \to A_8A_4 \to A_4A_4A_4 \to A_2A_2A_4A_4 \to A_1A_1A_2A_4A_4 \to aA_1A_2A_4A_4 \to aaA_2A_4A_4 \to aaA_1A_1A_4A_4 \to aaaA_1A_4A_4 \to aaaaA_4A_4 \to aaaaA_2A_2A_4 \to aaaaA_1A_1A_2A_4 \to aaaaaA_1A_2A_4 \to aaaaaaA_2A_4 \to aaaaaaA_1A_1A_4 \to aaaaaaaA_1A_4 \to aaaaaaaaA_4 \to aaaaaaaaA_2A_2 \to aaaaaaaaA_1A_1A_2 \to aaaaaaaaaA_1A_2 \to aaaaaaaaaaA_2 \to aaaaaaaaaaA_1A_1 \to aaaaaaaaaaaA_1 \to aaaaaaaaaaaa$ So, the grammar is: $A_1 \to a$ $A_2 \to A_1A_1$ $A_4 \to A_2A_2$ $A_8 \to A_4A_4$ $S \to A_8A_1$ $S \to A_8A_4$ This grammar is in Chomsky Normal Form, has exactly 6 productions, and generates the language $\{a^9, a^{12}\}$. Therefore, the answer is "Yes" and the grammar is as above. Actually, let me double-check this. I think I made an error in my derivation. Let me re-derive: For $a^9$: $S \to A_8A_1 \to A_4A_4A_1 \to A_2A_2A_4A_1 \to A_1A_1A_2A_4A_1 \to aA_1A_2A_4A_1 \to aaA_2A_4A_1 \to aaA_1A_1A_4A_1 \to aaaA_1A_4A_1 \to aaaaA_4A_1 \to aaaaA_2A_2A_1 \to aaaaA_1A_1A_2A_1 \to aaaaaA_1A_2A_1 \to aaaaaaA_2A_1 \to aaaaaaA_1A_1A_1 \to aaaaaaaA_1A_1 \to aaaaaaaaA_1 \to aaaaaaaaa$ For $a^{12}$: $S \to A_8A_4 \to A_4A_4A_4 \to A_2A_2A_4A_4 \to A_1A_1A_2A_4A_4 \to aA_1A_2A_4A_4 \to aaA_2A_4A_4 \to aaA_1A_1A_4A_4 \to aaaA_1A_4A_4 \to aaaaA_4A_4 \to aaaaA_2A_2A_4 \to aaaaA_1A_1A_2A_4 \to aaaaaA_1A_2A_4 \to aaaaaaA_2A_4 \to aaaaaaA_1A_1A_4 \to aaaaaaaA_1A_4 \to aaaaaaaaA_4 \to aaaaaaaaA_2A_2 \to aaaaaaaaA_1A_1A_2 \to aaaaaaaaaA_1A_2 \to aaaaaaaaaaA_2 \to aaaaaaaaaaA_1A_1 \to aaaaaaaaaaaA_1 \to aaaaaaaaaaaa$ Wait, there's still an issue. Let me trace through the derivation of $a^{12}$ more carefully: $S \to A_8A_4$ $A_8 \to A_4A_4$, so we get $A_4A_4A_4$ $A_4 \to A_2A_2$, so we get $A_2A_2A_2A_2A_2A_2$ $A_2 \to A_1A_1$, so we get $A_1A_1A_1A_1A_1A_1A_1A_1A_1A_1A_1A_1$ $A_1 \to a$, so we get $aaaaaaaaaaaa$ That's correct, it generates $a^{12}$. For $a^9$: $S \to A_8A_1$ $A_8 \to A_4A_4$, so we get $A_4A_4A_1$ $A_4 \to A_2A_2$, so we get $A_2A_2A_2A_2A_1$ $A_2 \to A_1A_1$, so we get $A_1A_1A_1A_1A_1A_1A_1A_1A_1$ $A_1 \to a$, so we get $aaaaaaaaa$ That's correct, it generates $a^9$. So, the grammar is indeed correct and generates the language $\{a^9, a^{12}\}$. Therefore, the answer is "Yes" and the grammar is: $A_1 \to a$ $A_2 \to A_1A_1$ $A_4 \to A_2A_2$ $A_8 \to A_4A_4$ $S \to A_8A_1$ $S \to A_8A_4$ Actually, let me check if there's any ambiguity or if the grammar generates any other strings. The grammar has two productions for $S$: $S \to A_8A_1$ and $S \to A_8A_4$. - $S \to A_8A_1$ generates $a^9$. - $S \to A_8A_4$ generates $a^{12}$. There are no other productions for $S$, and the other nonterminals ($A_1, A_2, A_4, A_8$) have unique productions that generate strings of specific lengths: - $A_1$ generates $a^1$. - $A_2$ generates $a^2$. - $A_4$ generates $a^4$. - $A_8$ generates $a^8$. So, the grammar only generates the strings $a^9$ and $a^{12}$, and no others. Therefore, the answer is "Yes" and the grammar is as above. Actually, let me double-check once more. I need to make sure I'm not missing anything. The grammar is: $A_1 \to a$ $A_2 \to A_1A_1$ $A_4 \to A_2A_2$ $A_8 \to A_4A_4$ $S \to A_8A_1$ $S \to A_8A_4$ This is in Chomsky Normal Form, as all productions are of the form $A \to BC$ or $A \to a$. The language generated is $L(G) = \{a^9, a^{12}\}$, as: - $S \to A_8A_1$ generates $a^9$. - $S \to A_8A_4$ generates $a^{12}$. And there are no other strings in the language. The grammar has exactly 6 productions, which is the limit. Therefore, the answer is "Yes" and the grammar is as above. Actually, I just realized that I might be able to simplify the grammar a bit. Let me see: Instead of having $A_1 \to a$, I could just use $a$ directly in the productions. But that wouldn't be in Chomsky Normal Form, as CNF requires all productions to be of the form $A \to BC$ or $A \to a$. So, the grammar I have is already in the simplest form for CNF. Therefore, the answer is "Yes" and the grammar is: $A_1 \to a$ $A_2 \to A_1A_1$ $A_4 \to A_2A_2$ $A_8 \to A_4A_4$ $S \to A_8A_1$ $S \to A_8A_4$ So, my answer is: <option id="1">1</option> <option id="2">0</option> <answer id="3"> $A_1 \to a$ $A_2 \to A_1A_1$ $A_4 \to A_2A_2$ $A_8 \to A_4A_4$ $S \to A_8A_1$ $S \to A_8A_4$ </answer>
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> $A_1 \to a$ $A_2 \to A_1A_1$ $A_4 \to A_2A_2$ $A_8 \to A_4A_4$ $S \to A_8A_1$ $S \to A_8A_4$ </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☒Ja, Grammatik:☐Nein, Begründung:
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<answer id="4">
Begründung für $i=2$:
Angenommen, $(L_2)^*$ ist regulär. Dann existiert eine Pumping-Länge $p$ gemäß dem Pumping-Lemma für reguläre Sprachen.
Betrachte den String $s = (ab)^p$. Dieser String ist in $(L_2)^*$, da er durch Konkatenation von $p$ Strings der Form $ab$ aus $L_2$ gebildet werden kann.
Da $|s| = 2p \geq p$, können wir das Pumping-Lemma anwenden. Sei $s = xyz$ mit $|xy| \leq p$ und $|y| > 0$. Da $|xy| \leq p$, muss $y$ ein Teilstring der ersten $p$ Symbole von $s$ sein, welche abwechselnd $a$'s und $b$'s sind.
Fall 1: $y$ besteht aus $a$'s, etwa $y = a^k$ für ein $k > 0$. Dann hat $xy^2z$ im ersten Segment $k$ mehr $a$'s als $b$'s. Dies bedeutet, dass der String nicht in Segmente der Form $a^{n_i}b^{n_i}$ zerlegt werden kann, also nicht in $(L_2)^*$ liegt.
Fall 2: $y$ besteht aus $b$'s, etwa $y = b^k$ für ein $k > 0$. Dann hat $xy^2z$ im ersten Segment $k$ mehr $b$'s als $a$'s. Auch dies bedeutet, dass der String nicht in Segmente der Form $a^{n_i}b^{n_i}$ zerlegt werden kann, also nicht in $(L_2)^*$ liegt.
In beiden Fällen erhalten wir einen Widerspruch zum Pumping-Lemma. Daher ist $(L_2)^*$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
$A_1 \to a$
$A_2 \to A_1A_1$
$A_4 \to A_2A_2$
$A_8 \to A_4A_4$
$S \to A_8A_1$
$S \to A_8A_4$
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
First, let me understand the question. We have a context-free but not regular language L ⊆ {0,1}*. We need to determine which of the two statements are true. Statement 1: "Es gibt eine unentscheidbare Sprache L' ⊆ L." (There exists an undecidable language L' ⊆ L.) Statement 2: "Jede Sprache L' ⊆ L ist entscheidbar." (Every language L' ⊆ L is decidable.) I need to decide which of these are true and provide a justification. Recall that a language is decidable if there exists a Turing machine that halts on all inputs and correctly decides whether any given string is in the language. Undecidable means no such Turing machine exists. Now, L is given to be context-free and not regular. Context-free languages are decidable. That's a key point. Every context-free language is decidable because we can build a parser or use the CYK algorithm to decide membership in polynomial time. But the question is about subsets of L, not about L itself. Consider statement 2 first: "Every language L' ⊆ L is decidable." Is this true? Well, L is decidable because it's context-free, but subsets of a decidable language aren't necessarily decidable. In fact, any infinite language contains undecidable subsets. Why? Because if L is infinite, then the set of all subsets of L is uncountable, while the set of decidable languages is countable (since there are only countably many Turing machines). Therefore, there must be subsets of L that are not decidable. Is L infinite? The question doesn't specify, but if L is finite, then all its subsets are finite, and finite languages are decidable. But L is not regular, and if it were finite, it would be regular. Contradiction! Yes! Any finite language is regular. Since L is not regular, it must be infinite. Therefore, L is infinite. Since L is infinite and decidable (because it's context-free), it must have undecidable subsets. This is a standard result in computability theory. For example, even a simple infinite regular language like {0,1}* has undecidable subsets, such as the halting problem encoded appropriately. Therefore, statement 2 is false: not every subset of L is decidable. Now, statement 1: "There exists an undecidable language L' ⊆ L." From the above reasoning, yes, since L is infinite and decidable, it must have undecidable subsets. So statement 1 is true. Is this always true? Yes, for any infinite language, since the power set is uncountable and there are only countably many decidable languages. Moreover, in this case, L is over {0,1}*, which is infinite, and L is infinite, so yes. Can I construct an explicit undecidable subset? Not necessary, but it's possible via diagonalization or reduction. But for the purpose of this question, I think the existence is sufficient. So, statement 1 is true, and statement 2 is false. The question says "which of the following statements are true" and "it can be multiple", but in this case, only statement 1 is true. I need to select one and justify it. I'll choose statement 1. Justification: Since L is context-free, it is decidable. Moreover, since L is not regular, it must be infinite (because all finite languages are regular). Any infinite decidable language contains undecidable subsets. This follows from cardinality arguments: the set of all subsets of an infinite set is uncountable, while the set of decidable languages is countable (since there are only countably many Turing machines). Therefore, there must exist languages L' ⊆ L that are undecidable. I could also mention a specific reduction, but that might be overkill. For example, I can encode the halting problem into L. Since L is infinite, there is an injective computable function f from {0,1}* to L (because L is recursively infinite). Then, if A is an undecidable language, f(A) is undecidable and a subset of L. But perhaps that's more advanced than needed. I think the cardinality argument is standard and sufficient. Now, for the answer format, I need to set the options. Option 1 should be 1 (true), option 2 should be 0 (false). And provide justification for statement 1. The answer template is "Begründung für Aussage $? (1 oder 2): ???" So I'll put 1 there, and then the justification. Let me write it.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1: Da $L$ kontextfrei ist, ist $L$ entscheidbar. Zudem ist $L$ nicht regulär, weshalb $L$ unendlich sein muss (da alle endlichen Sprachen regulär sind). Jede unendliche entscheidbare Sprache enthält unentscheidbare Teilmengen. Dies folgt aus Kardinalitätsargumenten: Die Potenzmenge einer unendlichen Menge ist überabzählbar, während die Menge der entscheidbaren Sprachen abzählbar ist (da es nur abzählbar viele Turingmaschinen gibt). Daher muss es Sprachen $L' \subseteq L$ geben, die nicht entscheidbar sind. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1: Da kontextfrei ist, ist entscheidbar. Zudem ist nicht regulär, weshalb unendlich sein muss (da alle endlichen Sprachen regulär sind). Jede unendliche entscheidbare Sprache enthält unentscheidbare Teilmengen. Dies folgt aus Kardinalitätsargumenten: Die Potenzmenge einer unendlichen Menge ist überabzählbar, während die Menge der entscheidbaren Sprachen abzählbar ist (da es nur abzählbar viele Turingmaschinen gibt). Daher muss es Sprachen geben, die nicht entscheidbar sind.