anthropic/claude-opus-4.1
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me work through this step by step. We have $\Sigma = \{a,b\}$ and $\Del(L)$ is defined as the language obtained by removing exactly one occurrence of the substring $ab$ from words in $L$. Formally: $\Del(L) = \{vw \mid v,w \in \Sigma^* \wedge vabw \in L\}$ We need to find $\Del(\{abbaba, baa, ab, a, b\})$. Let me go through each word in the original language: 1. **Word: $abbaba$** - We need to find all ways to remove one occurrence of $ab$ from this word. - The word is $abbaba$ = $a \cdot b \cdot b \cdot a \cdot b \cdot a$ - Looking for $ab$ patterns: - Position 0-1: $ab$ (removing this gives $baba$) - Position 2-3: $ba$ (not $ab$) - Position 3-4: $ab$ (removing this gives $abba$) - Position 4-5: $ba$ (not $ab$) - So from $abbaba$, we can get: $baba$ and $abba$ 2. **Word: $baa$** - Looking for $ab$ patterns in $baa$: - There is no $ab$ substring in $baa$ - So this word contributes nothing to $\Del(L)$ 3. **Word: $ab$** - The entire word is $ab$ - Removing $ab$ from $ab$ gives the empty word $\varepsilon$ - So from $ab$, we get: $\varepsilon$ 4. **Word: $a$** - There is no $ab$ substring in $a$ (it's just a single letter) - So this word contributes nothing to $\Del(L)$ 5. **Word: $b$** - There is no $ab$ substring in $b$ (it's just a single letter) - So this word contributes nothing to $\Del(L)$ I'll continue carefully examining the first word $abbaba$. The substring $ab$ appears in multiple positions, creating different resulting words when removed. Specifically, I can extract $ab$ from two distinct locations: - At positions 0-1, removing $ab$ leaves $baba$ - At positions 3-4, removing $ab$ gives $abba$ These observations confirm the deletion language contains $\baba$ and $abba$ as valid results. I'll verify the unique elements systematically, ensuring no duplicates exist. The set includes the empty string $\varepsilon$, plus the two derived words $baba$ and $abba$. Each element is distinct in length and composition. Arranging these in lexicographic order with $\varepsilon$ first yields the final set $\{\varepsilon, baba, abba\}$.
Answer
Looking at each word in the given language $\{abbaba, baa, ab, a, b\}$: 1. **Word $abbaba$**: We can remove $ab$ from two positions: - Remove $ab$ from position 0-1: $abbaba = (ab)baba \rightarrow baba$ - Remove $ab$ from position 3-4: $abbaba = abb(ab)a \rightarrow abba$ 2. **Word $baa$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$ 3. **Word $ab$**: Removing $ab$ gives the empty word $\varepsilon$ 4. **Word $a$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$ 5. **Word $b$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$ Therefore: <answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at each word in the given language $\{abbaba, baa, ab, a, b\}$:
1. **Word $abbaba$**: We can remove $ab$ from two positions:
- Remove $ab$ from position 0-1: $abbaba = (ab)baba \rightarrow baba$
- Remove $ab$ from position 3-4: $abbaba = abb(ab)a \rightarrow abba$
2. **Word $baa$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
3. **Word $ab$**: Removing $ab$ gives the empty word $\varepsilon$
4. **Word $a$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
5. **Word $b$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
Therefore:
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let me think about this carefully. $\Del(L)$ removes exactly one occurrence of $ab$ from words in $L$. $\Del(\Del(L))$ would remove one $ab$ from words in $L$, then remove another $ab$ from the result. $\DelTwo(L)$ removes exactly two occurrences of $ab$ from words in $L$. The question is whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$. Let me think of a counterexample. Consider the word $abab$. If we apply $\Del$ once to get $\Del(\{abab\})$: - We can remove the first $ab$ to get $ab$ - We can remove the second $ab$ to get $ab$ So $\Del(\{abab\}) = \{ab\}$ Now applying $\Del$ again: $\Del(\Del(\{abab\})) = \Del(\{ab\}) = \{\varepsilon\}$ Now let's compute $\DelTwo(\{abab\})$: This removes two occurrences of $ab$ from $abab$. Since $abab$ contains exactly two occurrences of $ab$ (overlapping at position 'b'), we get the empty string. So $\DelTwo(\{abab\}) = \{\varepsilon\}$ Wait, that's equal. Let me reconsider. Actually, let me be more careful. The word $abab$ can be written as: - $(\varepsilon) ab (ab)$ where we remove the first $ab$ at position 0-1 - $(ab) ab (\varepsilon)$ where we remove the second $ab$ at position 2-3 Wait, I need to be more careful about what "removing $ab$" means. Let me reconsider with a different example. Consider $L = \{ababab\}$. When removing $ab$ from $ababab$, I have multiple options: - Removing from the start gives $abab$ - Removing from the middle gives $abab$ - Removing from the end gives $abab$ Interestingly, in this case, $\Del(\{ababab\})$ results in $\{abab\}$ regardless of which $ab$ I remove first. This suggests the removal might not depend on the specific position of $ab$. When I apply deletion again to $abab$, I can again remove $ab$ from two positions: - Removing from the start yields $ab$ - Removing from the end also yields $ab$ So $\Del(\Del(\{ababab\})) = \{ab\}$ For $\DelTwo(\{ababab\})$, I'm exploring ways to remove two $ab$ occurrences systematically. I can decompose $ababab$ into different segments where $ab$ appears, considering various removal strategies that preserve the underlying structure. By systematically removing $ab$ from different positions, I consistently arrive at $\{ab\}$ as the result. This suggests a pattern where repeated deletions converge to the same minimal representation. I explore two removal strategies: sequential single-character deletions and two-symbol deletions. In both cases, the language reduces to $\{ab\}$ through strategic $ab$ removal. The process reveals an intriguing transformation where complex strings progressively simplify to a fundamental pattern. Each removal step strategically eliminates $ab$ segments, ultimately distilling the language to its core structure. However, a critical observation emerges: single $ab$ removal might paradoxically generate new $ab$ instances. Using $aabb$ as an example, removing the initial $ab$ unexpectedly produces another $ab$, challenging the assumed equivalence of removal methods. This discovery suggests removal operations aren't uniformly predictable, introducing subtle complexity in substring elimination strategies. Comparing $\Del$ and $\DelTwo$ for $\{aabb\}$ reveals divergent behaviors: sequential single removals yield $\{\varepsilon\}$, while simultaneous two-$ab$ removal produces $\emptyset$. This discrepancy definitively invalidates the original hypothesis.
Answer
Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$. Let me analyze what each operation does: - $\Del(\Del(L))$: Removes one occurrence of $ab$ from words in $L$, then removes one occurrence of $ab$ from the resulting words - $\DelTwo(L)$: Removes exactly two occurrences of $ab$ from words in $L$ that contain at least two such occurrences The key insight is that these operations can differ when removing one $ab$ creates a new $ab$ substring that wasn't originally present as a separate occurrence. **Counterexample:** Let $L = \{aabb\}$ First, let's compute $\Del(\Del(L))$: - $\Del(\{aabb\})$: The word $aabb$ contains one occurrence of $ab$ at positions 1-2. Removing it gives: $aabb = a(ab)b \rightarrow ab$ - So $\Del(\{aabb\}) = \{ab\}$ - $\Del(\Del(\{aabb\})) = \Del(\{ab\})$: Removing $ab$ from $ab$ gives $\varepsilon$ - Therefore $\Del(\Del(\{aabb\})) = \{\varepsilon\}$ Now let's compute $\DelTwo(L)$: - $\DelTwo(\{aabb\})$ requires words with at least two occurrences of $ab$ as substrings - The word $aabb$ contains only ONE occurrence of $ab$ (at positions 1-2) - Therefore $\DelTwo(\{aabb\}) = \emptyset$ Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, we have found a counterexample. The statement is **false**. <option id="1">0</option> <option id="2">1</option> <answer id="3"> **Counterexample:** Consider the finite language $L = \{aabb\}$. The word $aabb$ contains exactly one occurrence of the substring $ab$ (at positions 1-2). Computing $\Del(\Del(L))$: - $\Del(\{aabb\}) = \{ab\}$ (removing the $ab$ from $a\underline{ab}b$ gives $ab$) - $\Del(\{ab\}) = \{\varepsilon\}$ (removing $ab$ from $ab$ gives the empty word) - Therefore: $\Del(\Del(\{aabb\})) = \{\varepsilon\}$ Computing $\DelTwo(L)$: - $\DelTwo(L)$ consists of words obtained by removing exactly two occurrences of $ab$ from words in $L$ - Since $aabb$ contains only one occurrence of $ab$, we cannot remove two occurrences - Therefore: $\DelTwo(\{aabb\}) = \emptyset$ Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, the statement is false. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Counterexample: Consider the finite language . The word contains exactly one occurrence of the substring (at positions 1-2). Computing : - (removing the from gives ) - (removing from gives the empty word) - Therefore: Computing : - consists of words obtained by removing exactly two occurrences of from words in - Since contains only one occurrence of , we cannot remove two occurrences - Therefore: Since , the statement is false.
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at each word in the given language $\{abbaba, baa, ab, a, b\}$:
1. **Word $abbaba$**: We can remove $ab$ from two positions:
- Remove $ab$ from position 0-1: $abbaba = (ab)baba \rightarrow baba$
- Remove $ab$ from position 3-4: $abbaba = abb(ab)a \rightarrow abba$
2. **Word $baa$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
3. **Word $ab$**: Removing $ab$ gives the empty word $\varepsilon$
4. **Word $a$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
5. **Word $b$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
Therefore:
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$.
Let me analyze what each operation does:
- $\Del(\Del(L))$: Removes one occurrence of $ab$ from words in $L$, then removes one occurrence of $ab$ from the resulting words
- $\DelTwo(L)$: Removes exactly two occurrences of $ab$ from words in $L$ that contain at least two such occurrences
The key insight is that these operations can differ when removing one $ab$ creates a new $ab$ substring that wasn't originally present as a separate occurrence.
**Counterexample:** Let $L = \{aabb\}$
First, let's compute $\Del(\Del(L))$:
- $\Del(\{aabb\})$: The word $aabb$ contains one occurrence of $ab$ at positions 1-2. Removing it gives: $aabb = a(ab)b \rightarrow ab$
- So $\Del(\{aabb\}) = \{ab\}$
- $\Del(\Del(\{aabb\})) = \Del(\{ab\})$: Removing $ab$ from $ab$ gives $\varepsilon$
- Therefore $\Del(\Del(\{aabb\})) = \{\varepsilon\}$
Now let's compute $\DelTwo(L)$:
- $\DelTwo(\{aabb\})$ requires words with at least two occurrences of $ab$ as substrings
- The word $aabb$ contains only ONE occurrence of $ab$ (at positions 1-2)
- Therefore $\DelTwo(\{aabb\}) = \emptyset$
Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, we have found a counterexample.
The statement is **false**.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
**Counterexample:** Consider the finite language $L = \{aabb\}$.
The word $aabb$ contains exactly one occurrence of the substring $ab$ (at positions 1-2).
Computing $\Del(\Del(L))$:
- $\Del(\{aabb\}) = \{ab\}$ (removing the $ab$ from $a\underline{ab}b$ gives $ab$)
- $\Del(\{ab\}) = \{\varepsilon\}$ (removing $ab$ from $ab$ gives the empty word)
- Therefore: $\Del(\Del(\{aabb\})) = \{\varepsilon\}$
Computing $\DelTwo(L)$:
- $\DelTwo(L)$ consists of words obtained by removing exactly two occurrences of $ab$ from words in $L$
- Since $aabb$ contains only one occurrence of $ab$, we cannot remove two occurrences
- Therefore: $\DelTwo(\{aabb\}) = \emptyset$
Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, the statement is false.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me understand what we need to do: 1. We have a CFG $G=(V,\Sigma,P,S)$ in Chomsky Normal Form (CNF) 2. We want to construct $G'=(V',\Sigma,P',S')$ such that $L(G')=\Del(L(G))$ 3. We're given $V' = V \cup \{X_{ab} \mid X \in V\} \cup \{X_a \mid X \in V\} \cup \{X_b \mid X \in V\}$ We need to define $P'$ and $S'$ such that: 1. $L_{G'}(X) = L_G(X)$ for all $X \in V$ 2. $L_{G'}(X_{ab}) = \Del(L_G(X))$ for all $X \in V$ 3. $L_{G'}(X_a) = \{w \in \Sigma^* \mid wa \in L_G(X)\}$ for all $X \in V$ 4. $L_{G'}(X_b) = \{w \in \Sigma^* \mid bw \in L_G(X)\}$ for all $X \in V$ Since $G$ is in CNF, its productions are of the form: - $X \rightarrow YZ$ (binary productions) - $X \rightarrow a$ where $a \in \Sigma$ (terminal productions) Let me think about each type of nonterminal: For $X \in V$: We want $L_{G'}(X) = L_G(X)$, so we should keep all original productions. For $X_{ab}$: We want $L_{G'}(X_{ab}) = \Del(L_G(X))$. This means words derivable from $X_{ab}$ are words from $L_G(X)$ with one occurrence of $ab$ removed. I'll focus on constructing productions for $X_a$ and $X_b$ that capture words with specific positioning of $a$ and $b$. The goal is to create rules that allow generating words that, when modified with $a$ or $b$, belong to the original language of $X$. This requires carefully designing production rules that track word contexts around specific symbols. For original productions $X \rightarrow YZ$, I'll preserve the core structure while introducing mechanisms to handle $a$ and $b$ placements. This involves creating new productions that strategically remove or redistribute $a$ and $b$ across the derivation. The key strategy involves two main approaches: removing $ab$ from either the $Y$ or $Z$ part of the production, and handling cases where $ab$ spans across both nonterminals. This ensures comprehensive coverage of language transformations while maintaining the original grammatical structure. For $X_a$ and $X_b$ cases, I'll focus on specific conditions: when the last or first symbol must derive from specific parts of the original production, and handling direct terminal derivations that can result in the empty string. The goal is to systematically expand the production rules to capture all possible ways $a$ and $b$ can be positioned within the original grammatical framework, ensuring a robust transformation mechanism. Key transformations involve: - Preserving original productions - Creating new rules that track symbol positions - Allowing potential empty string derivations - Maintaining the structural integrity of the original grammar For productions involving concatenation, multiple variations are generated: - Tracking first and second symbol positions - Enabling partial symbol substitutions - Ensuring language preservation through strategic rule modifications The start symbol transformation ensures the derived grammar captures the deletion language, fundamentally expanding the grammatical representation to track symbol interactions more precisely. The approach systematically explores different positional derivations while maintaining the core language characteristics of the original grammar. I'll derive a clear set of grammar transformation rules for handling terminal and non-terminal productions, focusing on the systematic approach for creating $G'$ from $G$. For each non-terminal production $X \rightarrow YZ$, I'll generate four corresponding productions in $G'$: - A direct copy of the original production - A version tracking both $a$ and $b$ simultaneously - Separate productions tracking $a$ and $b$ independently - A mixed tracking production For terminal productions, I'll carefully construct rules that preserve the original derivation semantics while allowing tracking of specific symbol occurrences. The key is maintaining a systematic mapping between the original grammar $G$ and the transformed grammar $G'$, ensuring equivalent language recognition capabilities. We retain the production $X \rightarrow b$ and explore its implications. For $X_b$, we find a word $w$ where $bw$ belongs to $L_G(X)$, and since $L_G(X)$ contains $b$, we determine $w$ must be $\varepsilon$. Examining $X_a$, we seek words $w$ such that $wa \in L_G(X)$, but with $L_G(X)$ containing $b$, this condition becomes impossible. Investigating $X_{ab}$, we aim to match $\Del(L_G(X))$ with $\Del(\{b\})$, noting that $b$ does not contain $ab$, leading to an empty derivative set. The production transformation follows a systematic approach, generating new productions for each original rule. We create variants that capture different letter combinations and contexts, ensuring comprehensive coverage of the original grammar's language properties. The process involves generating multiple production rules for terminal and non-terminal symbols, strategically expanding the grammar's representational capabilities while maintaining the core structural integrity of the original productions.
Answer
Looking at this problem, I need to construct a grammar $G'$ where: - Nonterminals $X$ generate the same language as in $G$ - Nonterminals $X_{ab}$ generate words from $L_G(X)$ with one $ab$ removed - Nonterminals $X_a$ generate words that, when followed by $a$, give words in $L_G(X)$ - Nonterminals $X_b$ generate words that, when preceded by $b$, give words in $L_G(X)$ Since we want $L(G') = \Del(L(G))$, the start symbol should be $S_{ab}$. For the productions, I need to consider how CNF productions transform: 1. For binary productions $X \rightarrow YZ$: - The substring $ab$ could be removed from the $Y$ part, the $Z$ part, or span across both - For $X_a$: the trailing $a$ must come from $Z$ - For $X_b$: the leading $b$ must come from $Y$ 2. For terminal productions: - $X_a$ derives $\varepsilon$ if $X$ derives $a$ (since $\varepsilon \cdot a = a$) - $X_b$ derives $\varepsilon$ if $X$ derives $b$ (since $b \cdot \varepsilon = b$) <answer id="1"> Startsymbol $S' := S_{ab}$ Produktionen $P'$: Für jede Produktion $X \rightarrow YZ \in P$: - $X \rightarrow YZ$ - $X_{ab} \rightarrow Y_{ab}Z$ - $X_{ab} \rightarrow YZ_{ab}$ - $X_{ab} \rightarrow Y_a Z_b$ - $X_a \rightarrow YZ_a$ - $X_b \rightarrow Y_b Z$ Für jede Produktion $X \rightarrow a \in P$: - $X \rightarrow a$ - $X_a \rightarrow \varepsilon$ Für jede Produktion $X \rightarrow b \in P$: - $X \rightarrow b$ - $X_b \rightarrow \varepsilon$ </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen : Für jede Produktion : - - - - - - Für jede Produktion : - - Für jede Produktion : - -
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at each word in the given language $\{abbaba, baa, ab, a, b\}$:
1. **Word $abbaba$**: We can remove $ab$ from two positions:
- Remove $ab$ from position 0-1: $abbaba = (ab)baba \rightarrow baba$
- Remove $ab$ from position 3-4: $abbaba = abb(ab)a \rightarrow abba$
2. **Word $baa$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
3. **Word $ab$**: Removing $ab$ gives the empty word $\varepsilon$
4. **Word $a$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
5. **Word $b$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
Therefore:
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$.
Let me analyze what each operation does:
- $\Del(\Del(L))$: Removes one occurrence of $ab$ from words in $L$, then removes one occurrence of $ab$ from the resulting words
- $\DelTwo(L)$: Removes exactly two occurrences of $ab$ from words in $L$ that contain at least two such occurrences
The key insight is that these operations can differ when removing one $ab$ creates a new $ab$ substring that wasn't originally present as a separate occurrence.
**Counterexample:** Let $L = \{aabb\}$
First, let's compute $\Del(\Del(L))$:
- $\Del(\{aabb\})$: The word $aabb$ contains one occurrence of $ab$ at positions 1-2. Removing it gives: $aabb = a(ab)b \rightarrow ab$
- So $\Del(\{aabb\}) = \{ab\}$
- $\Del(\Del(\{aabb\})) = \Del(\{ab\})$: Removing $ab$ from $ab$ gives $\varepsilon$
- Therefore $\Del(\Del(\{aabb\})) = \{\varepsilon\}$
Now let's compute $\DelTwo(L)$:
- $\DelTwo(\{aabb\})$ requires words with at least two occurrences of $ab$ as substrings
- The word $aabb$ contains only ONE occurrence of $ab$ (at positions 1-2)
- Therefore $\DelTwo(\{aabb\}) = \emptyset$
Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, we have found a counterexample.
The statement is **false**.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
**Counterexample:** Consider the finite language $L = \{aabb\}$.
The word $aabb$ contains exactly one occurrence of the substring $ab$ (at positions 1-2).
Computing $\Del(\Del(L))$:
- $\Del(\{aabb\}) = \{ab\}$ (removing the $ab$ from $a\underline{ab}b$ gives $ab$)
- $\Del(\{ab\}) = \{\varepsilon\}$ (removing $ab$ from $ab$ gives the empty word)
- Therefore: $\Del(\Del(\{aabb\})) = \{\varepsilon\}$
Computing $\DelTwo(L)$:
- $\DelTwo(L)$ consists of words obtained by removing exactly two occurrences of $ab$ from words in $L$
- Since $aabb$ contains only one occurrence of $ab$, we cannot remove two occurrences
- Therefore: $\DelTwo(\{aabb\}) = \emptyset$
Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, the statement is false.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at this problem, I need to construct a grammar $G'$ where:
- Nonterminals $X$ generate the same language as in $G$
- Nonterminals $X_{ab}$ generate words from $L_G(X)$ with one $ab$ removed
- Nonterminals $X_a$ generate words that, when followed by $a$, give words in $L_G(X)$
- Nonterminals $X_b$ generate words that, when preceded by $b$, give words in $L_G(X)$
Since we want $L(G') = \Del(L(G))$, the start symbol should be $S_{ab}$.
For the productions, I need to consider how CNF productions transform:
1. For binary productions $X \rightarrow YZ$:
- The substring $ab$ could be removed from the $Y$ part, the $Z$ part, or span across both
- For $X_a$: the trailing $a$ must come from $Z$
- For $X_b$: the leading $b$ must come from $Y$
2. For terminal productions:
- $X_a$ derives $\varepsilon$ if $X$ derives $a$ (since $\varepsilon \cdot a = a$)
- $X_b$ derives $\varepsilon$ if $X$ derives $b$ (since $b \cdot \varepsilon = b$)
<answer id="1">
Startsymbol $S' := S_{ab}$
Produktionen $P'$:
Für jede Produktion $X \rightarrow YZ \in P$:
- $X \rightarrow YZ$
- $X_{ab} \rightarrow Y_{ab}Z$
- $X_{ab} \rightarrow YZ_{ab}$
- $X_{ab} \rightarrow Y_a Z_b$
- $X_a \rightarrow YZ_a$
- $X_b \rightarrow Y_b Z$
Für jede Produktion $X \rightarrow a \in P$:
- $X \rightarrow a$
- $X_a \rightarrow \varepsilon$
Für jede Produktion $X \rightarrow b \in P$:
- $X \rightarrow b$
- $X_b \rightarrow \varepsilon$
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me apply the construction from part c to the given grammar. Given grammar: - $G = (\{S,A\}, \{a,b\}, P, S)$ - $P$: $S \to SA \mid a$ and $A \to a \mid b$ First, the start symbol should be $S' = S_{ab}$ as we determined in part c. Now let me apply the construction rules: For production $S \to SA$: - $S \to SA$ (keep original) - $S_{ab} \to S_{ab}A$ (remove $ab$ from $S$ part) - $S_{ab} \to SA_{ab}$ (remove $ab$ from $A$ part) - $S_{ab} \to S_a A_b$ (remove $ab$ spanning across) - $S_a \to SA_a$ ($a$ comes from $A$) - $S_b \to S_b A$ ($b$ comes from $S$) For production $S \to a$: - $S \to a$ (keep original) - $S_a \to \varepsilon$ (since $S \to a$) For production $A \to a$: - $A \to a$ (keep original) - $A_a \to \varepsilon$ (since $A \to a$) For production $A \to b$: - $A \to b$ (keep original) - $A_b \to \varepsilon$ (since $A \to b$) Now let me organize all productions: $S \to SA \mid a$ $S_{ab} \to S_{ab}A \mid SA_{ab} \mid S_a A_b$ $S_a \to SA_a \mid \varepsilon$ $S_b \to S_b A$ $A \to a \mid b$ $A_{ab} \to$ (no productions since $A$ doesn't have binary productions) $A_a \to \varepsilon$ $A_b \to \varepsilon$ I'll continue analyzing the grammar's productions for the $A$ symbol. The $A_{ab}$ has no productions because $A$ lacks binary productions. The $A_a$ and $A_b$ productions reduce to $\varepsilon$, indicating empty derivations for single-letter cases.
Answer
Looking at the given grammar, I need to apply the construction from part c. Given: - $S \to SA \mid a$ - $A \to a \mid b$ Applying the construction rules: For $S \to SA$ (binary production): - Keep original: $S \to SA$ - Remove $ab$ from left part: $S_{ab} \to S_{ab}A$ - Remove $ab$ from right part: $S_{ab} \to SA_{ab}$ - Remove $ab$ spanning across: $S_{ab} \to S_a A_b$ - For $S_a$: $S_a \to SA_a$ - For $S_b$: $S_b \to S_b A$ For $S \to a$ (terminal production): - Keep original: $S \to a$ - Since $S \to a$: $S_a \to \varepsilon$ For $A \to a$ (terminal production): - Keep original: $A \to a$ - Since $A \to a$: $A_a \to \varepsilon$ For $A \to b$ (terminal production): - Keep original: $A \to b$ - Since $A \to b$: $A_b \to \varepsilon$ <answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab}A\mid SA_{ab}\mid S_a A_b$ $S_a\rightarrow SA_a\mid\varepsilon$ $S_b\rightarrow S_b A$ $A\rightarrow a\mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
0 mistakes
anthropic/claude-sonnet-4
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
I need to find all words in $\Del(\{abbaba, baa, ab, a, b\})$. The definition is: $\Del(L) := \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$ So for each word in $L$, I need to find all possible ways to split it as $vabw$ where $ab$ appears as a substring, and then the resulting word is $vw$ (i.e., we remove the $ab$ substring). Let me go through each word in $L = \{abbaba, baa, ab, a, b\}$: 1. Word: $abbaba$ I need to find all occurrences of $ab$ as a substring: - Position 0-1: $ab|baba$ → $v = \varepsilon$, $w = baba$ → $vw = baba$ - Position 3-4: $abb|ab|a$ → $v = abb$, $w = a$ → $vw = abba$ So from $abbaba$ I get: $\{baba, abba\}$ 2. Word: $baa$ Looking for $ab$ as a substring: - No occurrence of $ab$ in $baa$ So from $baa$ I get: $\{\}$ (empty set) 3. Word: $ab$ Looking for $ab$ as a substring: - Position 0-1: $\varepsilon|ab|\varepsilon$ → $v = \varepsilon$, $w = \varepsilon$ → $vw = \varepsilon$ So from $ab$ I get: $\{\varepsilon\}$ 4. Word: $a$ Looking for $ab$ as a substring: - No occurrence of $ab$ in $a$ So from $a$ I get: $\{\}$ (empty set) 5. Word: $b$ Looking for $ab$ as a substring: - No occurrence of $ab$ in $b$ So from $b$ I get: $\{\}$ (empty set) Combining all results: $\Del(\{abbaba, baa, ab, a, b\}) = \{baba, abba, \varepsilon\}$ I'll verify the calculation carefully. For $abbaba$, I find two $ab$ substrings: - First at positions 0-1, splitting into $\varepsilon$ and $baba$ - Another at positions 3-4, splitting into $abb$ and $a$ These splits yield $\{baba, abba\}$ from this word. I'll order the resulting set: $\{\varepsilon, abba, baba\}$
Answer
Looking at the definition $\Del(L) := \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$, I need to find all words that result from removing exactly one occurrence of the substring $ab$ from words in the given language. Let me examine each word in $L = \{abbaba, baa, ab, a, b\}$: **Word: $abbaba$** - Looking for occurrences of $ab$: - Position 0-1: $\varepsilon \cdot ab \cdot baba$ → removing $ab$ gives $baba$ - Position 3-4: $abb \cdot ab \cdot a$ → removing $ab$ gives $abba$ **Word: $baa$** - No occurrence of $ab$ as substring → contributes nothing **Word: $ab$** - Position 0-1: $\varepsilon \cdot ab \cdot \varepsilon$ → removing $ab$ gives $\varepsilon$ **Word: $a$** - No occurrence of $ab$ as substring → contributes nothing **Word: $b$** - No occurrence of $ab$ as substring → contributes nothing <answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the definition $\Del(L) := \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$, I need to find all words that result from removing exactly one occurrence of the substring $ab$ from words in the given language.
Let me examine each word in $L = \{abbaba, baa, ab, a, b\}$:
**Word: $abbaba$**
- Looking for occurrences of $ab$:
- Position 0-1: $\varepsilon \cdot ab \cdot baba$ → removing $ab$ gives $baba$
- Position 3-4: $abb \cdot ab \cdot a$ → removing $ab$ gives $abba$
**Word: $baa$**
- No occurrence of $ab$ as substring → contributes nothing
**Word: $ab$**
- Position 0-1: $\varepsilon \cdot ab \cdot \varepsilon$ → removing $ab$ gives $\varepsilon$
**Word: $a$**
- No occurrence of $ab$ as substring → contributes nothing
**Word: $b$**
- No occurrence of $ab$ as substring → contributes nothing
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L \subseteq \Sigma^*$. Let me first understand what these operations do: 1. $\Del(L) = \{vw \mid v,w \in \Sigma^* \wedge vabw \in L\}$ - removes exactly one occurrence of $ab$ from words in $L$ 2. $\DelTwo(L) = \{uvw \mid u,v,w \in \Sigma^* \wedge uabvabw \in L\}$ - removes exactly two occurrences of $ab$ from words in $L$ 3. $\Del(\Del(L))$ - first applies $\Del$ to $L$, then applies $\Del$ again to the result Let me think about what $\Del(\Del(L))$ does: - First, $\Del(L)$ gives us all words obtained by removing one $ab$ from words in $L$ - Then, $\Del(\Del(L))$ removes one $ab$ from each word in $\Del(L)$ So $\Del(\Del(L))$ should give us words obtained by removing two occurrences of $ab$ from words in $L$, but with a specific constraint: the two removals happen sequentially. Now let me think about $\DelTwo(L)$: - This removes exactly two occurrences of $ab$ from words in $L$ directly The question is: are these the same? Let me try to find a counterexample. I need to find a finite language $L$ such that $\Del(\Del(L)) \neq \DelTwo(L)$. Let me consider $L = \{ababab\}$. First, let's compute $\Del(L)$: - From $ababab$, I can remove $ab$ at positions: - Position 0-1: $\varepsilon \cdot ab \cdot abab$ → $abab$ - Position 2-3: $ab \cdot ab \cdot ab$ → $abab$ - Position 4-5: $abab \cdot ab \cdot \varepsilon$ → $abab$ So $\Del(L) = \{abab\}$. Now let's compute $\Del(\Del(L)) = \Del(\{abab\})$: - From $abab$, I can remove $ab$ at positions: - Position 0-1: $\varepsilon \cdot ab \cdot ab$ → $ab$ - Position 2-3: $ab \cdot ab \cdot \varepsilon$ → $ab$ I see an interesting pattern emerging in how the $ab$ removals work sequentially. So $\Del(\Del(L)) = \{ab\}$. Now let's compute $\DelTwo(L)$: - I'll explore removing two $ab$ occurrences from $ababab$ - Three distinct ways emerge where two $ab$ sequences can be removed: - Starting with $\varepsilon \cdot ab \cdot \varepsilon \cdot ab \cdot ab$ → $ab$ - Alternating with $\varepsilon \cdot ab \cdot ab \cdot ab \cdot \varepsilon$ → $ab$ - Ending with $ab \cdot ab \cdot \varepsilon \cdot ab \cdot \varepsilon$ → $ab$ Interestingly, all paths converge to the same result. So $\DelTwo(L) = \{ab\}$. The deletion operations reveal a consistent transformation pattern. I continue analyzing the deletion operation on the language $L = \{ababab\}$. By systematically decomposing the word, I find that $\Del(\Del(L))$ reduces to $\{ab\}$ through repeated applications of the deletion rule. I now explore $\DelTwo(L)$ by examining decompositions involving two $ab$ substrings, seeking patterns in how the word can be systematically broken down. The decompositions consistently yield $ab$ as the result, suggesting a potential equivalence between $\Del(\Del(L))$ and $\DelTwo(L)$ for this specific language structure. Intrigued by this observation, I decide to investigate further by testing a slightly modified language with more complex overlapping substring patterns. I'll explore the removal process systematically, tracking how repeated $ab$ substrings transform the original string through multiple deletion iterations. From $abababab$, I'll methodically decompose the string, seeking valid ways to split it into $uabvabw$ where $ab$ appears exactly twice. The goal is to find unique transformations that preserve the string's structure while removing specific $ab$ segments. I'll carefully examine each possible position and decomposition, ensuring I capture the precise pattern of substring removal and reconstruction. I continue analyzing the possible ways to split $abababab$ into $uvw$ where $uv^2w = abababab$. By systematically exploring different position combinations, I can see multiple valid decompositions. Each case reveals a unique way to partition the string while maintaining the critical property that $|v| \geq 1$ and $|uv^2w| = |abababab|$. The current cases demonstrate how $ab$ can be strategically selected from different positions, creating equivalent representations of the original string. These decompositions show the flexibility in choosing $u$, $v$, and $w$ while preserving the fundamental constraint of the problem. I'm now focusing on understanding the relationship between $\Del(\Del(L))$ and $\DelTwo(L)$, carefully examining their structural similarities and potential differences in word generation. The critical insight emerges from analyzing the order of $ab$ substring removals. By considering different removal sequences, I can explore whether these operations might produce distinct word sets. When examining a word like $w = uabvabx$, the removal paths diverge based on which $ab$ substring gets eliminated first. This sequence dependency could potentially create unique word outcomes in each deletion process. My current exploration suggests the removal order might significantly impact the final result, potentially revealing subtle distinctions between $\Del(\Del(L))$ and $\DelTwo(L)$. I explore removing $ab$ substrings from different language examples, carefully tracking how deletion changes the string. By systematically examining cases like $\{aabbab\}$, I discover that sequential $ab$ removals can lead to interesting transformations. When multiple $ab$ occurrences exist, the order and simultaneous removal become critical considerations in understanding the language's behavior. The process reveals nuanced patterns where repeated substring deletion might converge to specific results or create unique string representations. My systematic approach helps uncover potential relationships between $\Del$ and $\DelTwo$ operations across different input languages. I'm carefully tracking substring positions and potential removal strategies, recognizing that precise indexing and careful decomposition are critical for understanding these transformations. The current exploration suggests complex interactions between substring removal rules, where initial assumptions might require careful verification and step-by-step validation. Methodically examining each substring position reveals nuanced patterns in the sequence that aren't immediately obvious at first glance. I carefully track substring occurrences, noting $ab$ appears in two distinct locations. By systematically removing these substrings, I transform the original sequence through a precise deletion process. Removing $ab$ progressively reduces the sequence, first to $aab$, then ultimately to a single character $a$. Each deletion step reveals interesting structural characteristics of the original string. The deletion process converges to a minimal representation, demonstrating how strategic substring removal can systematically deconstruct a sequence. I'm developing an intuition about the relationship between successive deletions, sensing a potential underlying pattern that might generalize to a broader proof strategy. My next step involves carefully examining how these deletion transformations interact, seeking to understand their fundamental properties and potential invariant characteristics. By systematically exploring specific word examples like $abab$ and $ababab$, I'm noticing that the order of $ab$ removal seems to preserve some consistent structural elements, which suggests a deeper mathematical relationship worth investigating rigorously. The complexity of tracking these transformations requires a methodical approach, breaking down each potential scenario to see if a general principle emerges. I'll construct a specific test case with $L = \{aabbab\}$ to probe the behavior of $ab$ removal, carefully tracking how the language changes through successive deletions. Removing the single $ab$ from $aabbab$ results in $aabb$. When I apply deletion again to $aabb$, no $ab$ remains, yielding an empty set. I notice the deletion process seems consistent, with the result matching the expected outcome for this specific language. Exploring a more complex example with $\{ababababab\}$, I find that removing $ab$ repeatedly leads to a predictable pattern. Each deletion reduces the string by one $ab$, converging to a stable result. The systematic removal of $ab$ substrings appears to generate a consistent transformation across different input strings. I want to investigate whether this pattern holds true for more intricate language sets, particularly those with varied $ab$ substring placements. Consider the word $\{ababaabab\}$, which contains multiple $ab$ substrings at different positions. When systematically removing these substrings, I notice each removal produces a distinct intermediate result. Specifically, removing $ab$ from different positions yields unique strings: $abaabab$ and $ababab$. Subsequent $ab$ removals from these intermediate results generate additional unique strings like $baabab$, $abab$, and $abaab$. This complexity suggests the deletion operation might not consistently converge to a single result, challenging my previous assumptions about the behavior of $\Del$ and $\DelTwo$. I see the pattern of removing $ab$ occurrences systematically. From $ababaabab$, I'm identifying all possible ways to remove two $ab$ substrings. By carefully tracking positions, I find four unique removal strategies that generate distinct resulting strings: $aabab$, $abab$, and $abaab$. These represent the unique results after deleting two $ab$ substrings from the original sequence. The detailed decomposition reveals how strategic substring removal transforms the original word, creating a set of derived strings through precise positional deletions. I've systematically explored different substring removal combinations, uncovering three distinct resulting strings: $aabab$, $abaab$, and $ababa$. Critically, when comparing $\Del(\Del(L))$ and $\DelTwo(L)$, the sets differ - one includes $abab$ while the other contains $ababa$, highlighting the nuanced behavior of repeated deletion operations. The conclusion is clear: the proposed statement cannot hold true.
Answer
Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$. Let me analyze what each operation does: - $\Del(L)$: removes exactly one occurrence of $ab$ from words in $L$ - $\DelTwo(L)$: removes exactly two occurrences of $ab$ from words in $L$ - $\Del(\Del(L))$: first removes one $ab$, then removes another $ab$ from the result I'll try to find a counterexample. Let me consider $L = \{ababaabab\}$. First, let me identify where $ab$ appears in $ababaabab$: - Position 0-1: $ab$ - Position 2-3: $ab$ - Position 5-6: $ab$ - Position 7-8: $ab$ **Computing $\Del(L)$:** Removing one $ab$ from $ababaabab$: - Remove position 0-1: $ababaabab \rightarrow abaabab$ - Remove position 2-3: $ababaabab \rightarrow abaabab$ - Remove position 5-6: $ababaabab \rightarrow ababab$ - Remove position 7-8: $ababaabab \rightarrow ababab$ So $\Del(L) = \{abaabab, ababab\}$. **Computing $\Del(\Del(L))$:** From $abaabab$ ($ab$ at positions 0-1, 3-4, 5-6): - Remove position 0-1: $abaabab \rightarrow aabab$ - Remove position 3-4: $abaabab \rightarrow abaab$ - Remove position 5-6: $abaabab \rightarrow abaab$ From $ababab$ ($ab$ at positions 0-1, 2-3, 4-5): - Remove any position: $ababab \rightarrow abab$ So $\Del(\Del(L)) = \{aabab, abaab, abab\}$. **Computing $\DelTwo(L)$:** From $ababaabab$, choosing 2 of the 4 occurrences of $ab$: - Remove positions 0-1 and 2-3: $\varepsilon \cdot ab \cdot \varepsilon \cdot ab \cdot aabab \rightarrow aabab$ - Remove positions 0-1 and 5-6: $\varepsilon \cdot ab \cdot aba \cdot ab \cdot ab \rightarrow abaab$ - Remove positions 0-1 and 7-8: $\varepsilon \cdot ab \cdot abaab \cdot ab \cdot \varepsilon \rightarrow abaab$ - Remove positions 2-3 and 5-6: $ab \cdot ab \cdot a \cdot ab \cdot ab \rightarrow abaab$ - Remove positions 2-3 and 7-8: $ab \cdot ab \cdot aab \cdot ab \cdot \varepsilon \rightarrow abaab$ - Remove positions 5-6 and 7-8: $ababa \cdot ab \cdot \varepsilon \cdot ab \cdot \varepsilon \rightarrow ababa$ So $\DelTwo(L) = \{aabab, abaab, ababa\}$. **Comparing the results:** - $\Del(\Del(L)) = \{aabab, abaab, abab\}$ - $\DelTwo(L) = \{aabab, abaab, ababa\}$ These sets are different! $\Del(\Del(L))$ contains $abab$ but not $ababa$, while $\DelTwo(L)$ contains $ababa$ but not $abab$. Therefore, the statement is **false**. <option id="1">0</option> <option id="2">1</option> <answer id="3"> The statement is false. I provide a counterexample: Let $L = \{ababaabab\}$. Computing $\Del(L)$: The word $ababaabab$ has $ab$ at positions 0-1, 2-3, 5-6, and 7-8. Removing one occurrence gives us $\Del(L) = \{abaabab, ababab\}$. Computing $\Del(\Del(L))$: - From $abaabab$: removing one $ab$ gives $\{aabab, abaab\}$ - From $ababab$: removing one $ab$ gives $\{abab\}$ So $\Del(\Del(L)) = \{aabab, abaab, abab\}$. Computing $\DelTwo(L)$: From $ababaabab$, removing two occurrences of $ab$ simultaneously gives us all possible combinations of removing 2 out of 4 occurrences, resulting in $\DelTwo(L) = \{aabab, abaab, ababa\}$. Since $\Del(\Del(L)) = \{aabab, abaab, abab\} \neq \{aabab, abaab, ababa\} = \DelTwo(L)$, the statement is false. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
The statement is false. I provide a counterexample: Let . Computing : The word has at positions 0-1, 2-3, 5-6, and 7-8. Removing one occurrence gives us . Computing : - From : removing one gives - From : removing one gives So . Computing : From , removing two occurrences of simultaneously gives us all possible combinations of removing 2 out of 4 occurrences, resulting in . Since , the statement is false.
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the definition $\Del(L) := \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$, I need to find all words that result from removing exactly one occurrence of the substring $ab$ from words in the given language.
Let me examine each word in $L = \{abbaba, baa, ab, a, b\}$:
**Word: $abbaba$**
- Looking for occurrences of $ab$:
- Position 0-1: $\varepsilon \cdot ab \cdot baba$ → removing $ab$ gives $baba$
- Position 3-4: $abb \cdot ab \cdot a$ → removing $ab$ gives $abba$
**Word: $baa$**
- No occurrence of $ab$ as substring → contributes nothing
**Word: $ab$**
- Position 0-1: $\varepsilon \cdot ab \cdot \varepsilon$ → removing $ab$ gives $\varepsilon$
**Word: $a$**
- No occurrence of $ab$ as substring → contributes nothing
**Word: $b$**
- No occurrence of $ab$ as substring → contributes nothing
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$.
Let me analyze what each operation does:
- $\Del(L)$: removes exactly one occurrence of $ab$ from words in $L$
- $\DelTwo(L)$: removes exactly two occurrences of $ab$ from words in $L$
- $\Del(\Del(L))$: first removes one $ab$, then removes another $ab$ from the result
I'll try to find a counterexample.
Let me consider $L = \{ababaabab\}$.
First, let me identify where $ab$ appears in $ababaabab$:
- Position 0-1: $ab$
- Position 2-3: $ab$
- Position 5-6: $ab$
- Position 7-8: $ab$
**Computing $\Del(L)$:**
Removing one $ab$ from $ababaabab$:
- Remove position 0-1: $ababaabab \rightarrow abaabab$
- Remove position 2-3: $ababaabab \rightarrow abaabab$
- Remove position 5-6: $ababaabab \rightarrow ababab$
- Remove position 7-8: $ababaabab \rightarrow ababab$
So $\Del(L) = \{abaabab, ababab\}$.
**Computing $\Del(\Del(L))$:**
From $abaabab$ ($ab$ at positions 0-1, 3-4, 5-6):
- Remove position 0-1: $abaabab \rightarrow aabab$
- Remove position 3-4: $abaabab \rightarrow abaab$
- Remove position 5-6: $abaabab \rightarrow abaab$
From $ababab$ ($ab$ at positions 0-1, 2-3, 4-5):
- Remove any position: $ababab \rightarrow abab$
So $\Del(\Del(L)) = \{aabab, abaab, abab\}$.
**Computing $\DelTwo(L)$:**
From $ababaabab$, choosing 2 of the 4 occurrences of $ab$:
- Remove positions 0-1 and 2-3: $\varepsilon \cdot ab \cdot \varepsilon \cdot ab \cdot aabab \rightarrow aabab$
- Remove positions 0-1 and 5-6: $\varepsilon \cdot ab \cdot aba \cdot ab \cdot ab \rightarrow abaab$
- Remove positions 0-1 and 7-8: $\varepsilon \cdot ab \cdot abaab \cdot ab \cdot \varepsilon \rightarrow abaab$
- Remove positions 2-3 and 5-6: $ab \cdot ab \cdot a \cdot ab \cdot ab \rightarrow abaab$
- Remove positions 2-3 and 7-8: $ab \cdot ab \cdot aab \cdot ab \cdot \varepsilon \rightarrow abaab$
- Remove positions 5-6 and 7-8: $ababa \cdot ab \cdot \varepsilon \cdot ab \cdot \varepsilon \rightarrow ababa$
So $\DelTwo(L) = \{aabab, abaab, ababa\}$.
**Comparing the results:**
- $\Del(\Del(L)) = \{aabab, abaab, abab\}$
- $\DelTwo(L) = \{aabab, abaab, ababa\}$
These sets are different! $\Del(\Del(L))$ contains $abab$ but not $ababa$, while $\DelTwo(L)$ contains $ababa$ but not $abab$.
Therefore, the statement is **false**.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
The statement is false. I provide a counterexample:
Let $L = \{ababaabab\}$.
Computing $\Del(L)$: The word $ababaabab$ has $ab$ at positions 0-1, 2-3, 5-6, and 7-8. Removing one occurrence gives us $\Del(L) = \{abaabab, ababab\}$.
Computing $\Del(\Del(L))$:
- From $abaabab$: removing one $ab$ gives $\{aabab, abaab\}$
- From $ababab$: removing one $ab$ gives $\{abab\}$
So $\Del(\Del(L)) = \{aabab, abaab, abab\}$.
Computing $\DelTwo(L)$: From $ababaabab$, removing two occurrences of $ab$ simultaneously gives us all possible combinations of removing 2 out of 4 occurrences, resulting in $\DelTwo(L) = \{aabab, abaab, ababa\}$.
Since $\Del(\Del(L)) = \{aabab, abaab, abab\} \neq \{aabab, abaab, ababa\} = \DelTwo(L)$, the statement is false.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me think through this step by step. We have a CFG $G = (V, \Sigma, P, S)$ in Chomsky normal form, and we want to construct $G' = (V', \Sigma, P', S')$ such that $L(G') = \Del(L(G))$. We're given that: $V' = V \cup \{X_{ab} \mid X \in V\} \cup \{X_a \mid X \in V\} \cup \{X_b \mid X \in V\}$ And we need to satisfy: 1. $L_{G'}(X) = L_G(X)$ for all $X \in V$ 2. $L_{G'}(X_{ab}) = \Del(L_G(X))$ for all $X \in V$ 3. $L_{G'}(X_a) = \{w \in \Sigma^* \mid wa \in L_G(X)\}$ for all $X \in V$ 4. $L_{G'}(X_b) = \{w \in \Sigma^* \mid bw \in L_G(X)\}$ for all $X \in V$ Since $\Del(L) = \{vw \mid v,w \in \Sigma^* \wedge vabw \in L\}$, we want $X_{ab}$ to generate words that result from removing exactly one occurrence of $ab$ from words generated by $X$. Let me think about how to achieve this: For condition 1: We need all the original productions from $P$ to be in $P'$. For condition 2: $X_{ab}$ should generate words from $\Del(L_G(X))$. This means we need to find places where $ab$ can be removed from words generated by $X$. For condition 3: $X_a$ should generate words $w$ such that $wa \in L_G(X)$. Words from $L_G(X)$ with the last letter $a$ removed will help satisfy this condition. For condition 4: $X_b$ should generate words $w$ such that $bw \in L_G(X)$. Words from $L_G(X)$ with the first letter $b$ removed will help satisfy this condition. Since $G$ is in CNF, the productions are of the form: - $X \to YZ$ where $Y, Z \in V$ - $X \to a$ where $a \in \Sigma$ I'll focus on how to construct productions that meet these conditions systematically. For productions involving $X \to YZ$ and $X \to a$, I'll ensure the new grammar preserves the original language properties while allowing strategic letter removals. The key is generating words that can have specific letters strategically removed while maintaining the core language structure. I'll construct three production types to handle different letter removal scenarios: removing $ab$ from the middle, end, or across word boundaries. These productions ensure comprehensive coverage of potential letter elimination strategies. The goal is creating a mechanism where $\Del(L_G(X))$ can systematically generate languages with specific letter sequences removed, maintaining the fundamental grammatical relationships of the original productions. Terminal productions with single letters won't help, since they cannot generate the required substring $ab$. We need more complex derivation rules that allow precise letter manipulation. The next step involves examining how $X_a$ can generate words with specific letter positioning constraints. If $X \to YZ$, words in $L_G(X)$ involve decomposing into parts from $L_G(Y)$ and $L_G(Z)$. When considering specific letter transitions, we examine cases where a word can be generated with an additional terminal symbol. This involves checking possible productions and language generation conditions for different non-terminal symbols. For terminal symbol $a$, we investigate scenarios where $X$ can produce words ending with or containing $a$, analyzing the constraints on word generation through specific grammatical rules. The analysis explores conditions for word formation, focusing on how different productions impact language generation and terminal symbol incorporation. I'll systematically organize the grammar productions for $P'$, breaking them into distinct categories that capture different transformation rules for generating words with specific deletion patterns. The productions cover multiple scenarios: - Preserving original grammar structure - Handling concatenated productions with specific symbol deletions - Managing cases where specific symbols can be deleted - Creating new productions for tracking symbol deletions Each category introduces nuanced transformations that allow tracking symbol deletions while maintaining the original grammar's core structure. The goal is constructing a grammar $G'$ that precisely captures the deletion language $\Del(L(G))$. The productions methodically handle different symbol deletion scenarios, ensuring comprehensive coverage of potential word transformations through carefully designed production rules. If $X \to YZ$, then $L_G(X) = L_G(Y) \cdot L_G(Z)$. For condition 3, I'm exploring how $L_{G'}(X_a)$ relates to $L_G(X)$ by examining possible decompositions of words ending with $a$. Two key scenarios emerge: first, when the entire word is in $L_G(Y)$ and $a$ is in $L_G(Z)$; second, when the word splits into a prefix in $L_G(Y)$ and a suffix containing $a$ in $L_G(Z)$. These decompositions help characterize the language transformation under the new grammar construction. I see the continuation of the previous mathematical reasoning about language generation in a context-free grammar transformation. The next steps involve exploring terminal production cases, specifically examining conditions where a production rule directly generates a terminal symbol. The analysis focuses on scenarios where a production rule $X \to a$ exists, which means the language generated by $X$ is the single terminal symbol $a$. This leads to examining how this impacts the language generation in the transformed grammar $G'$. The partial thought suggests investigating the language $L_{G'}(X_a)$ when a terminal production is present, specifically looking at strings that can be generated before the terminal symbol. The reasoning appears to be building a systematic approach to understanding language transformations and how different production rules affect language generation across grammar variants.
Answer
Looking at this problem, I need to construct productions for $G'$ that satisfy the four conditions. Since we want $L(G') = \Del(L(G))$, the start symbol should be $S' = S_{ab}$. Let me analyze what productions are needed for each type of variable: **For condition 1:** Include all original productions to preserve $L_{G'}(X) = L_G(X)$. **For condition 2:** $X_{ab}$ generates $\Del(L_G(X))$. If $X \to YZ$, then words in $L_G(X)$ are $uv$ where $u \in L_G(Y)$, $v \in L_G(Z)$. To remove one $ab$: - Remove $ab$ from $u$: need $Y_{ab}Z$ - Remove $ab$ from $v$: need $YZ_{ab}$ - Remove $a$ from end of $u$ and $b$ from start of $v$: need $Y_aZ_b$ **For condition 3:** $X_a$ generates words $w$ where $wa \in L_G(X)$. If $X \to YZ$ and $wa = uv$: - If $v = a$ and $u = w$: need $Y$ (when $Z \to a$) - If $v = v'a$ and $w = uv'$: need $YZ_a$ **For condition 4:** $X_b$ generates words $w$ where $bw \in L_G(X)$. If $X \to YZ$ and $bw = uv$: - If $u = b$ and $v = w$: need $Z$ (when $Y \to b$) - If $u = bw'$ and $w = w'v$: need $Y_bZ$ **For terminal productions:** - If $X \to a$: then $L_G(X) = \{a\}$, so $X_a \to \varepsilon$ (since $wa = a$ implies $w = \varepsilon$) - If $X \to b$: then $L_G(X) = \{b\}$, so $X_b \to \varepsilon$ (since $bw = b$ implies $w = \varepsilon$) <answer id="1"> Startsymbol $S' := S_{ab}$ Produktionen $P'$: - All productions from $P$: $X \to YZ$ and $X \to a$ for all such productions in $P$ - For each $X \to YZ \in P$: - $X_{ab} \to Y_{ab}Z$ - $X_{ab} \to YZ_{ab}$ - $X_{ab} \to Y_aZ_b$ - For each $X \to YZ \in P$: - $X_a \to YZ_a$ - If $Z \to a \in P$, then $X_a \to Y$ - For each $X \to YZ \in P$: - $X_b \to Y_bZ$ - If $Y \to b \in P$, then $X_b \to Z$ - For each $X \to a \in P$: - $X_a \to \varepsilon$ - For each $X \to b \in P$: - $X_b \to \varepsilon$ </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen : - All productions from : and for all such productions in - For each : - - - - For each : - - If , then - For each : - - If , then - For each : - - For each : -
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the definition $\Del(L) := \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$, I need to find all words that result from removing exactly one occurrence of the substring $ab$ from words in the given language.
Let me examine each word in $L = \{abbaba, baa, ab, a, b\}$:
**Word: $abbaba$**
- Looking for occurrences of $ab$:
- Position 0-1: $\varepsilon \cdot ab \cdot baba$ → removing $ab$ gives $baba$
- Position 3-4: $abb \cdot ab \cdot a$ → removing $ab$ gives $abba$
**Word: $baa$**
- No occurrence of $ab$ as substring → contributes nothing
**Word: $ab$**
- Position 0-1: $\varepsilon \cdot ab \cdot \varepsilon$ → removing $ab$ gives $\varepsilon$
**Word: $a$**
- No occurrence of $ab$ as substring → contributes nothing
**Word: $b$**
- No occurrence of $ab$ as substring → contributes nothing
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$.
Let me analyze what each operation does:
- $\Del(L)$: removes exactly one occurrence of $ab$ from words in $L$
- $\DelTwo(L)$: removes exactly two occurrences of $ab$ from words in $L$
- $\Del(\Del(L))$: first removes one $ab$, then removes another $ab$ from the result
I'll try to find a counterexample.
Let me consider $L = \{ababaabab\}$.
First, let me identify where $ab$ appears in $ababaabab$:
- Position 0-1: $ab$
- Position 2-3: $ab$
- Position 5-6: $ab$
- Position 7-8: $ab$
**Computing $\Del(L)$:**
Removing one $ab$ from $ababaabab$:
- Remove position 0-1: $ababaabab \rightarrow abaabab$
- Remove position 2-3: $ababaabab \rightarrow abaabab$
- Remove position 5-6: $ababaabab \rightarrow ababab$
- Remove position 7-8: $ababaabab \rightarrow ababab$
So $\Del(L) = \{abaabab, ababab\}$.
**Computing $\Del(\Del(L))$:**
From $abaabab$ ($ab$ at positions 0-1, 3-4, 5-6):
- Remove position 0-1: $abaabab \rightarrow aabab$
- Remove position 3-4: $abaabab \rightarrow abaab$
- Remove position 5-6: $abaabab \rightarrow abaab$
From $ababab$ ($ab$ at positions 0-1, 2-3, 4-5):
- Remove any position: $ababab \rightarrow abab$
So $\Del(\Del(L)) = \{aabab, abaab, abab\}$.
**Computing $\DelTwo(L)$:**
From $ababaabab$, choosing 2 of the 4 occurrences of $ab$:
- Remove positions 0-1 and 2-3: $\varepsilon \cdot ab \cdot \varepsilon \cdot ab \cdot aabab \rightarrow aabab$
- Remove positions 0-1 and 5-6: $\varepsilon \cdot ab \cdot aba \cdot ab \cdot ab \rightarrow abaab$
- Remove positions 0-1 and 7-8: $\varepsilon \cdot ab \cdot abaab \cdot ab \cdot \varepsilon \rightarrow abaab$
- Remove positions 2-3 and 5-6: $ab \cdot ab \cdot a \cdot ab \cdot ab \rightarrow abaab$
- Remove positions 2-3 and 7-8: $ab \cdot ab \cdot aab \cdot ab \cdot \varepsilon \rightarrow abaab$
- Remove positions 5-6 and 7-8: $ababa \cdot ab \cdot \varepsilon \cdot ab \cdot \varepsilon \rightarrow ababa$
So $\DelTwo(L) = \{aabab, abaab, ababa\}$.
**Comparing the results:**
- $\Del(\Del(L)) = \{aabab, abaab, abab\}$
- $\DelTwo(L) = \{aabab, abaab, ababa\}$
These sets are different! $\Del(\Del(L))$ contains $abab$ but not $ababa$, while $\DelTwo(L)$ contains $ababa$ but not $abab$.
Therefore, the statement is **false**.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
The statement is false. I provide a counterexample:
Let $L = \{ababaabab\}$.
Computing $\Del(L)$: The word $ababaabab$ has $ab$ at positions 0-1, 2-3, 5-6, and 7-8. Removing one occurrence gives us $\Del(L) = \{abaabab, ababab\}$.
Computing $\Del(\Del(L))$:
- From $abaabab$: removing one $ab$ gives $\{aabab, abaab\}$
- From $ababab$: removing one $ab$ gives $\{abab\}$
So $\Del(\Del(L)) = \{aabab, abaab, abab\}$.
Computing $\DelTwo(L)$: From $ababaabab$, removing two occurrences of $ab$ simultaneously gives us all possible combinations of removing 2 out of 4 occurrences, resulting in $\DelTwo(L) = \{aabab, abaab, ababa\}$.
Since $\Del(\Del(L)) = \{aabab, abaab, abab\} \neq \{aabab, abaab, ababa\} = \DelTwo(L)$, the statement is false.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at this problem, I need to construct productions for $G'$ that satisfy the four conditions.
Since we want $L(G') = \Del(L(G))$, the start symbol should be $S' = S_{ab}$.
Let me analyze what productions are needed for each type of variable:
**For condition 1:** Include all original productions to preserve $L_{G'}(X) = L_G(X)$.
**For condition 2:** $X_{ab}$ generates $\Del(L_G(X))$. If $X \to YZ$, then words in $L_G(X)$ are $uv$ where $u \in L_G(Y)$, $v \in L_G(Z)$. To remove one $ab$:
- Remove $ab$ from $u$: need $Y_{ab}Z$
- Remove $ab$ from $v$: need $YZ_{ab}$
- Remove $a$ from end of $u$ and $b$ from start of $v$: need $Y_aZ_b$
**For condition 3:** $X_a$ generates words $w$ where $wa \in L_G(X)$. If $X \to YZ$ and $wa = uv$:
- If $v = a$ and $u = w$: need $Y$ (when $Z \to a$)
- If $v = v'a$ and $w = uv'$: need $YZ_a$
**For condition 4:** $X_b$ generates words $w$ where $bw \in L_G(X)$. If $X \to YZ$ and $bw = uv$:
- If $u = b$ and $v = w$: need $Z$ (when $Y \to b$)
- If $u = bw'$ and $w = w'v$: need $Y_bZ$
**For terminal productions:**
- If $X \to a$: then $L_G(X) = \{a\}$, so $X_a \to \varepsilon$ (since $wa = a$ implies $w = \varepsilon$)
- If $X \to b$: then $L_G(X) = \{b\}$, so $X_b \to \varepsilon$ (since $bw = b$ implies $w = \varepsilon$)
<answer id="1">
Startsymbol $S' := S_{ab}$
Produktionen $P'$:
- All productions from $P$: $X \to YZ$ and $X \to a$ for all such productions in $P$
- For each $X \to YZ \in P$:
- $X_{ab} \to Y_{ab}Z$
- $X_{ab} \to YZ_{ab}$
- $X_{ab} \to Y_aZ_b$
- For each $X \to YZ \in P$:
- $X_a \to YZ_a$
- If $Z \to a \in P$, then $X_a \to Y$
- For each $X \to YZ \in P$:
- $X_b \to Y_bZ$
- If $Y \to b \in P$, then $X_b \to Z$
- For each $X \to a \in P$:
- $X_a \to \varepsilon$
- For each $X \to b \in P$:
- $X_b \to \varepsilon$
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me apply the construction from part c to the given grammar. Given grammar $G = (\{S,A\}, \{a,b\}, P, S)$ with productions: - $S \to SA$ - $S \to a$ - $A \to a$ - $A \to b$ From my construction in part c: **Start symbol:** $S' = S_{ab}$ **Original productions:** Include all productions from $P$ - $S \to SA$ - $S \to a$ - $A \to a$ - $A \to b$ **For $X_{ab}$ productions:** For each $X \to YZ \in P$: - $X_{ab} \to Y_{ab}Z$ - $X_{ab} \to YZ_{ab}$ - $X_{ab} \to Y_aZ_b$ From $S \to SA$: - $S_{ab} \to S_{ab}A$ - $S_{ab} \to SA_{ab}$ - $S_{ab} \to S_aA_b$ No productions for $A_{ab}$ since $A$ doesn't appear on the left side of any production with two nonterminals. **For $X_a$ productions:** For each $X \to YZ \in P$: - $X_a \to YZ_a$ - If $Z \to a \in P$, then $X_a \to Y$ From $S \to SA$: - $S_a \to SA_a$ - Since $A \to a \in P$, we have $S_a \to S$ For each $X \to a \in P$: - $X_a \to \varepsilon$ From $S \to a$: $S_a \to \varepsilon$ From $A \to a$: $A_a \to \varepsilon$ I'll carefully analyze the $X_b$ productions, focusing on the implications of $A \to b$. The construction requires examining how this production affects the $b$-marked variants of nonterminals. For each $X \to YZ \in P$, I'll generate $b$-marked productions that track the presence of $b$. When $Y \to b$ exists, additional rules emerge that allow skipping $Y$. The $S$ productions reveal a complex transformation, marking how nonterminals can be derived with or without $b$. The key observation is tracking the possible derivations while preserving the original grammar's structure. Specifically, the $A$ nonterminal's productions show how terminal symbols $a$ and $b$ can be marked and potentially eliminated in certain derivation paths.
Answer
Looking at the given grammar with productions: - $S \to SA$ - $S \to a$ - $A \to a$ - $A \to b$ I'll apply my construction from part c: **Start symbol:** $S' = S_{ab}$ (since we want $L(G') = \Del(L(G))$) **Original productions:** All productions from $P$ **For $X_{ab}$:** From $S \to SA$, I get: - $S_{ab} \to S_{ab}A$ (remove $ab$ from first part) - $S_{ab} \to SA_{ab}$ (remove $ab$ from second part) - $S_{ab} \to S_aA_b$ (remove $a$ from end of first, $b$ from start of second) **For $X_a$:** From $S \to SA$, I get: - $S_a \to SA_a$ (general case) - $S_a \to S$ (since $A \to a$, so when $wa = uv$ with $v = a$, we have $w = u$) From terminal productions $S \to a$ and $A \to a$: - $S_a \to \varepsilon$ (since $wa = a$ implies $w = \varepsilon$) - $A_a \to \varepsilon$ **For $X_b$:** From $S \to SA$, I get: - $S_b \to S_bA$ (general case) From terminal production $A \to b$: - $A_b \to \varepsilon$ (since $bw = b$ implies $w = \varepsilon$) <answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab}A\mid SA_{ab}\mid S_aA_b$ $S_a\rightarrow SA_a\mid S\mid\varepsilon$ $S_b\rightarrow S_bA$ $A\rightarrow a\mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
1 mistakes
deepseek/deepseek-chat-v3.1
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
First, the problem is about finding Del(L) for L = {abbaba, baa, ab, a, b}. Del(L) is defined as the set of words obtained by removing exactly one occurrence of "ab" from any word in L. So, for each word in L, I need to consider all possible ways to remove "ab" exactly once, and then collect all resulting words. Let's list out each word in L and find all possible v and w such that vabw is in L, and then vw is in word in Del(L). Start with the word "abbaba". - This word has multiple occurrences of "ab". I need to remove exactly one "ab" at a time. Find all substrings "ab" in "abbaba". Positions: let's index the characters: a b b a b a → positions 1:a, 2:b, 3:b, 4:a, 5:b, 6:a Substrings "ab": - At position 1-2: "ab" (characters 1 and 2) - At position 4-5: "ba" – not "ab" - At position 5-6: "ba" – not "ab" Wait, "ab" only appears at the beginning: positions 1-2. But "abbaba" – let's write it out: a b b a b a Substrings: "ab" at index 1-2. Is there another "ab"? After that, it's "b", then "a", but "ba" is not "ab". "bb" is not, "ba" is not. So only one occurrence of "ab" at the start. But "ab" is a substring, but in "abbaba", from index 1-2 is "ab", and that's it. But let's confirm: the word is "a b b a b a", so substrings of length 2: ab, bb, ba, ab, ba. Oh, wait, at index 4-5: characters 4:a and 5:b, which is "a b" – yes, that's "ab"! I missed that. Index: let's say positions 1 to 6. - Chars 1-2: a b → "ab" - Chars 2-3: b b → "bb" - Chars 3-4: b a → "ba" - Chars 4-5: a b → "ab" // another "ab" - Chars 5-6: b a → "ba" So two occurrences of "ab": at positions 1-2 and 4-5. Position 4-5: char 4 is a, char 5 is b, so yes, "ab". So for "abbaba", we can remove "ab" at two different places. First removal: remove the first "ab" at positions 1-2. Then v is the prefix before, which is empty since it's at start, so v = ε, and w is the suffix after, which is from position 3 onwards: "baba". So vw = ε + "baba" = "baba" Second removal: remove the second "ab" at positions 4-5. Then v is the prefix up to position 3, which is "abb" (chars 1-3: a,b,b), and w is the suffix from position 6, which is "a" (char 6:a). So vw = "abb" + "a" = "abba" "abb" + "a" is "abba", yes. So from "abbaba", we get "baba" and "abba". Now, next word: "baa" L has "baa". Does "baa" contain "ab"? Substrings: b a a → "ba", "aa" – no "ab". So there is no occurrence of "ab" in "baa". Therefore, we cannot remove "ab" from it, so it contributes nothing to Del(L). Because to have vabw in L, but "baa" doesn't have "ab", so no such v and w. Next word: "ab" L has "ab". This is exactly "ab". So we can remove "ab". vabw = "ab", so v could be ε, w could be ε, since vabw = ε ab ε = ab. So vw = ε ε = ε. So we get the empty word ε. Next word: "a" L has "a". Does "a" contain "ab"? No, it's a single character, so no "ab". So no removal, contributes nothing. Next word: "b" Similarly, no "ab", contributes nothing. So overall, from L: - From "abbaba": "baba" and "abba" - From "ab": ε - Others: nothing But Del(L) should be the set of all such vw, so we have "baba", "abba", and ε. Now, are there any duplicates? "baba" and "abba" are different, and ε is different. But let's list them: ε, baba, abba. In the example, it says {ε, ab, bbab} but that's an example, not the answer. The example is for illustration, not correct for this L. The example is: Del({abbaba,baa,ab,a,b}) = {ε, ab, bbab} but that might be a mistake or for different L, but no, the example is given as an example of how to format, but it says "example" so it might not be correct. Looking back: <example> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$ </example> But according to my calculation, it should be ε, baba, abba. Perhaps I miscounted. For "abbaba": when I remove first "ab", I get v=ε, w="baba", so vw="baba" When I remove second "ab", v="abb" (chars 1-3), w="a" (char 6), so vw="abba" But "abba" is a b b a, which is fine. Now, for "ab", we get ε. But in the example, it has "ab" and "bbab", which might be from something else. Perhaps for "abbaba", if I remove "ab" at positions 1-2, v=ε, w="baba" → "baba" But "baba" is b a b a, not "bbab". Maybe I need to consider the word "baa", but "baa" has no "ab", so no. Another thought: perhaps when removing, it has to be exactly one removal, but for words that don't have "ab", they are not included, which is correct. But let's check "ab" itself: when we remove "ab", we get ε. Now, is there another word? "a" and "b" no. But in the example, it includes "ab", which might be from a different removal. Perhaps for "abbaba", if I consider removing "ab" but in a different way. Maybe I misidentified the substrings. In "abbaba", the substrings "ab" are at indices 1-2 and 4-5. Index 4-5: char 4 is a, char 5 is b, so yes "ab". After removal, v is prefix before, w is suffix after. For first removal: remove chars 1-2, so v is chars before, which is nothing, w is chars after, which is from 3 to end: "baba" → positions 3:b,4:a,5:b,6:a → "baba" For second removal: remove chars 4-5, so v is chars 1-3: "abb", w is chars 6: "a", so "abba" Now, "abba" is a b b a. But in the example, it has "bbab", which is b b a b, which is not from here. Perhaps for "baa", but no "ab". Another word: "ab" itself, we have ε, but not "ab". Unless for "ab", if we remove "ab", we get ε, but "ab" is not obtained from removal, it's the original word, but Del is the result after removal, so for "ab", after removal, we get ε, not "ab". So why does the example have "ab"? Maybe the example is incorrect or for a different set. The example is just to show the format, so I should ignore it and compute based on the definition. Perhaps I need to consider that for words without "ab", they might still be in Del if they can be formed, but no, Del(L) is defined as {vw | v,w in Σ* and vabw in L}, so for a word to be in Del(L), it must be that vabw is in L for some v,w, meaning that L must contain some word that has "ab" which can be removed to get vw. So for L = {abbaba, baa, ab, a, b}, only words that contain "ab" are "abbaba" and "ab". For "ab", vabw = ab, so v=ε, w=ε, vw=ε. For "abbaba", as above. But let's list all possible v and w for each word in L. First, for word "abbaba": find all ways to write it as vabw. vabw = abbaba So ab must be a substring. Possible splits: - v = ε, abw = abbaba, so abw = abbaba, which implies w must be such that abw = abbaba, so w = baba? ab w = a b w, and it should equal a b b a b a, so w must be b a b a, so w = "baba", and v=ε, so vw = "baba" - Another split: v ends with something, and abw starts with ab. Set vabw = abbaba. Let the position where ab starts be after v. So if ab starts at position 1, then v=ε, w="baba" If ab starts at position 2? But position 2 is b, not a. ab must be consecutive. The substring "ab" can be at beginning or elsewhere. In "abbaba", the first character is a, second is b, so that's "ab" at start. Then after that, at position 4-5: a and b, so "ab" at index 4-5. Index: let's say the string is s[1]=a, s[2]=b, s[3]=b, s[4]=a, s[5]=b, s[6]=a s[4]=a, s[5]=b, so yes "ab" at positions 4-5. So for this, v is the prefix before this ab, so v = s[1] to s[3] = a,b,b = "abb" w is the suffix after ab, so after s[5], s[6] = a, so w = "a" Thus vw = "abb" + "a" = "abba" Are there more? Is there another "ab"? s[5]=b, s[6]=a, which is "ba", not "ab". s[3]=b, s[4]=a, "ba". So only two occurrences. So from "abbaba", we have vw: "baba" and "abba" Now for "baa": does it contain "ab"? s[1]=b, s[2]=a, s[3]=a → substrings: "ba", "aa" — no "ab", so no v and w such that vabw = baa, because vabw would contain "ab", but baa does not contain "ab". So no contribution. For "ab": vabw = ab, so v and w must be such that vabw = ab. This implies that v must be empty, and w must be empty, because if v is not empty, vabw would be longer than ab. Similarly, if w is not empty, it would be longer. So only v=ε, w=ε, vw=ε. For "a": no "ab", so no. For "b": no "ab", so no. So Del(L) = { "baba", "abba", ε } But in the set, we need to list the words explicitly. "baba" is b a b a "abba" is a b b a ε is empty word. Now, the answer should be in the format {ε, abba, baba} or something, but let's write them in set notation. In the example, it has {ε, ab, bbab}, but "bbab" is not what we have. Perhaps for "abbaba", if we remove "ab" at a different place, but there are only two. Maybe I need to consider that "ab" can be removed from within, but I think I have it. Another thought: when we remove "ab", it might be that the word has multiple "ab", but we remove only one, so for each occurrence, we get a word. But in this case, only two for "abbaba". Perhaps for "ab", we get only ε. But let's confirm the word "abbaba": it is a b b a b a, so after removing first "ab", we get b a b a, which is "baba". After removing the second "ab" at positions 4-5, we get the prefix up to 3: a b b, and suffix from 6: a, so a b b a, which is "abba". Yes. Now, is "abba" in Σ*? Yes. Similarly, "baba". And ε. So Del(L) = { ε, "abba", "baba" } But in the example, it has "ab" and "bbab", which might be a mistake, or perhaps I have a error. "bbab" is b b a b, which is not from here. Perhaps for "baa", if it had "ab", but it doesn't. Maybe the language L includes the words, but perhaps for "ab", if we consider that vabw = ab, and v could be something, but no, v and w are strings, and vabw must equal ab, so the only possibility is v=ε, w=ε, because if v is not empty, say v=x, then xabw = ab, so x must be empty and abw=ab, so w=ε. Similarly, if w is not empty, it can't be. So only one way. Perhaps the definition allows removing "ab" even if it's not contiguous or something, but no, it says "an einer beliebigen Stelle", but it must be a substring, I think. The definition is vabw, so ab is contiguous. So I think my calculation is correct. But let's see the points: this is 1 point, so probably simple. Perhaps I need to list all words, including duplicates, but there are no duplicates. Another idea: for the word "ab", when we remove "ab", we get ε, but is it possible to get "ab" itself? No, because we are removing "ab", so the result is shorter. Unless we remove nothing, but the definition says "genau einmal entfernt", so exactly once removed, so we must remove one occurrence. So for "ab", we can only remove it and get ε. Similarly, for "abbaba", we remove one "ab" and get either "baba" or "abba". So Del(L) should be {ε, baba, abba} But in the example, it has "ab" and "bbab", which is confusing. Perhaps the example is for a different L, but it says the same L. Maybe I misread the set L. L = {abbaba, baa, ab, a, b} "abbaba" is one word, "baa" is another, etc. Perhaps for "abbaba", there is another "ab" if we consider overlapping, but no, "ab" is two characters, so no overlapping occurrences. For example, at positions 1-2 and 4-5, no overlap. So I think it's correct. Perhaps for "baa", if we consider that vabw = baa, but since baa does not contain "ab", it's impossible unless v or w contains it, but vabw must equal baa, so if vabw = baa, and vabw has "ab" in it, but baa does not have "ab", contradiction, so no. So I think Del(L) = {ε, abba, baba} Now, to write it in the answer format. The answer template is: $\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$ So I need to list the words inside. In the example, it has \{\varepsilon, ab, bbab\}, so probably I should write similar, with words in string form. So for me, \{\varepsilon, abba, baba\} But "abba" is a string, so in math mode, it might be written as \text{abba} or just abba, but in the example, it has "ab" and "bbab", so probably we can write the strings directly. In LaTeX, for words, we can write them as text or just in math mode. In the example, it's written as \varepsilon, ab, bbab, so without quotes, so I can do the same. So \varepsilon, abba, baba But abba might be confused with the word, but in context, it's fine. To be precise, I can write them as strings. Perhaps I should list them in alphabetical order or something, but not necessary. Another thing: in the set, are "abba" and "baba" both in Σ*, yes. But let's double-check if there are more. For "abbaba", is there a third occurrence? s[5]=b, s[6]=a, which is "ba", not "ab". s[3]=b, s[4]=a, "ba". So only two. Perhaps when we remove "ab", for the second removal, v="abb", w="a", vw="abba", which is correct. Maybe the word "abba" is written, but in the example, it has "bbab", which is different. Perhaps I have a off-by-one error. Indexing: if we consider the string from 0, but usually in strings, positions are 1-based or 0-based, but it doesn't matter. Perhaps for "abbaba", the substring "ab" at positions 1-2 and 4-5. After removing first "ab", we get the string from index 3 to end: s[3] to s[6] = b,a,b,a → "baba" After removing second "ab", we remove s[4] and s[5], so we have s[1] to s[3] and s[6]: a,b,b and a → "abba" Yes. Now, for "ab", we get ε. So I think it's correct. Perhaps the example is wrong, or perhaps I need to include the original words if no removal, but no, the definition is only for words where we remove "ab", so only if vabw in L. So for words without "ab", they are not in Del(L) unless they can be formed by removal from other words, but in this case, no. For example, "baa" is in L, but since it has no "ab", it doesn't contribute to Del(L), and Del(L) doesn't include it because to have vabw = baa, it must contain "ab", which it doesn't. So Del(L) is only from words that contain "ab". So I think {ε, abba, baba} is correct. But let's write it in the answer. So for <answer id="1">, I need to put the set. So $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ But in the example, it has "ab" and "bbab", which might be from a different interpretation. Perhaps for "abbaba", if we remove "ab" but consider that after removal, the word might be different. Another thought: when we remove "ab", it might be that the word has "ab" at the end or something, but I think I have it. Perhaps for "baa", if we consider that v could be such that vabw = baa, but the only way is if v is prefix, but baa does not start with ab or contain ab, so no. Unless v is not empty, but vabw must equal baa, so for example, if v="b", then abw must be "aa", but abw starts with ab, so abw cannot be "aa" because it starts with a,b. abw = a b w, which must equal something, but in baa, if v="b", then abw = "aa", but abw begins with "ab", so it must begin with a,b, but "aa" begins with a,a, contradiction. Similarly, if w is not empty, etc. So impossible. So I think my answer is correct. Perhaps the word "ab" itself can be obtained if we remove "ab" from a longer word, but in this L, the only longer word is "abbaba", and from it, we get "baba" and "abba", not "ab". "ab" is not obtained from any removal, because to have vabw in L, and vw="ab", then vabw must be longer than "ab" unless v and w are empty, but then vabw="ab", which is in L, but vw=ε, not "ab". For example, if vw="ab", then vabw must be v a b w, and if vw="ab", say v="a", w="b", then vabw = a a b b = "aabb", which is not in L. If v="", w="ab", then vabw = abab, not in L. If v="ab", w="", then vabw = abab, not in L. So "ab" cannot be in Del(L) because there is no word in L that contains "ab" whose removal gives "ab". The only word that could give "ab" is if vabw = something and vw="ab", but vabw would be longer than "ab" if v or w is not empty, and if both empty, vabw="ab", vw=ε. So indeed, "ab" is not in Del(L). Similarly, "bbab" is not from any. So the example must be incorrect for this L. Therefore, for this L, Del(L) = {ε, abba, baba} So I'll go with that. Now to write the answer.
Answer
<answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
First, I need to understand the definitions. For a language L, Del(L) is defined as {vw | v,w ∈ Σ* and vabw ∈ L}. So, it's removing exactly one occurrence of "ab" from words in L. Now, DelTwo(L) is defined as {uvw | u,v,w ∈ Σ* and uabvabw ∈ L}. This seems like removing two occurrences of "ab", but it's specified that both are removed, and the word is split into three parts. The question is to show or disprove that for every finite language L ⊆ Σ*, Del(Del(L)) = DelTwo(L). I need to check if applying Del twice is the same as removing two "ab" substrings directly. Let me denote Del(Del(L)) first. Del(L) is applying Del once, so it removes one "ab". Then applying Del again to that result would remove another "ab" from the words in Del(L). But note that the words in Del(L) might not have "ab" in them, or might have multiple ways to remove. DelTwo(L) directly removes two "ab" substrings from words in L that have at least two "ab"s. Since L is finite, I should consider a small finite language to test this. Let me take a simple example. Suppose L = {abab}. Then, what is Del(L)? Del(L) = {vw | vabw ∈ L}. Since L has only "abab", vabw = abab. So, possible ways: if v is empty, then abw = abab, so w = ab, thus vw = empty string concatenated with ab = ab. If v = a, then a ab w = aabw, but aabw must equal abab, so aabw = abab implies that the first character doesn't match unless a=a, but then abw = bab, so w must be b, but then vw = a b = ab. Similarly, if v = ab, then ab ab w = ababw, which must equal abab, so w must be empty, thus vw = ab. If v = aba, then aba ab w = abaabw, which must equal abab, but abaabw ≠ abab unless w is negative or something, impossible. So only possibilities are when the "ab" removed is the first or the second. So Del(L) = {ab} for L={abab}. Is that right? vabw = abab. So, the "ab" that is removed can be at position 1-2 or 3-4. - If we remove the first "ab", then v is empty, w is "ab", so vw = "ab" - If we remove the second "ab", then v is "ab", w is empty, so vw = "ab" So yes, Del(L) = {"ab"} Now, Del(Del(L)) = Del({"ab"}) = {vw | vabw ∈ {"ab"}} So, vabw must be "ab". So, if vabw = "ab", then possible v and w. If v is empty, abw = ab, so w must be empty, thus vw = empty string. If v = a, then a ab w = aabw, which must equal ab, so aabw = ab, which implies that after a, it should be a, but it's b, contradiction. Similarly, other v not empty don't work. So only possibility is v empty, w empty, so vw = ε. Thus Del(Del(L)) = {ε} Now, what is DelTwo(L) for L={abab}? DelTwo(L) = {uvw | uabvabw ∈ L} L has only "abab", so uabvabw = abab. This means that the word must contain two "ab"s, but "abab" has two "ab"s, so we need to remove both. Possible ways: if we remove the first "ab" and the second "ab", but DelTwo is defined as uabvabw, so for uabvabw to be "abab", we can set u empty, v empty, w empty, then uabvabw = abab, so uvw = empty string. If u empty, v empty, w empty, yes. Could there be other ways? For example, if u = a, then a ab v ab w = aabvabw, which must equal abab, so aabvabw = abab, which might force v and w, but let's see: the string is a a b v a b w, and it must equal a b a b, so positions: char1: a vs a, char2: a vs b? No, aabvabw has char2 as a, but abab has char2 as b, so mismatch. Similarly, other u not empty won't work. So only u=v=w=empty, so uvw=ε. Thus DelTwo(L) = {ε} So for L={abab}, Del(Del(L)) = {ε} and DelTwo(L) = {ε}, so they are equal. But I need to see if this is always true or not. Perhaps I need a counterexample. Another example. Suppose L = {ababab}. But L is finite, so I can choose a small L. Let me try L = {aab} or something without "ab", but Del requires "ab" to be present. Suppose L has a word with no "ab", then Del(L) might be empty if no "ab" to remove, but Del is defined only if vabw ∈ L, so if L has no "ab", then for any v,w, vabw has "ab", so if L has no substring "ab", then Del(L) is empty. Similarly, DelTwo would be empty if no two "ab"s. But for equality, if L has no "ab", both are empty, so equal. If L has one "ab", Del(L) might have words, but Del(Del(L)) might be empty or not, but DelTwo(L) would be empty because need two "ab"s. For example, L={ab}, then Del(L) = {vw | vabw = ab}. vabw=ab, so if v empty, w empty, vw=ε. Or if v=a, but aabw=ab, impossible. Only v empty, w empty. So Del(L)={ε}. Then Del(Del(L)) = Del({ε}) = {vw | vabw ∈ {ε}} but vabw must be ε, which is impossible since vabw has at least "ab" if v and w are strings, but v and w could be empty? If v and w empty, vabw = ab ≠ ε. So no v,w such that vabw=ε. Thus Del({ε}) = empty set. So Del(Del(L)) = ∅. Now DelTwo(L) for L={ab}: uabvabw ∈ {ab}, but uabvabw has at least two "ab"s if u,v,w are strings, but even if u,v,w empty, uabvabw = abab ≠ ab. So no such u,v,w, so DelTwo(L) = ∅. So both empty, equal. Now, where might they differ? Perhaps when there are multiple ways to remove "ab", and the order matters. Consider L = {abab, something else}, but let's think carefully. Another idea: Del(Del(L)) applies Del twice, which might remove two "ab"s, but the removal might be in different orders, and it might include words where the two "ab"s are not disjoint or something, but in this definition, since we remove exactly one "ab" at a time, and "ab" is a specific substring, it should be fine. But let's look at the definition of DelTwo: it removes two "ab"s, but it doesn't specify that they are distinct or non-overlapping. In uabvabw, the two "ab"s are separated by v, so they are distinct substrings, probably non-overlapping since "ab" is two characters, so if they overlap, it might be like "aba" but "aba" has "ab" at position 1-2 and "ba" but not "ab" at 2-3, so "ab" substrings don't overlap because "ab" ends with b and starts with a, so adjacent "ab"s might share boundaries but not overlap in characters? For example, in "abab", the first "ab" is positions 1-2, second is positions 3-4, so they are disjoint. In general, "ab" substrings can be adjacent but not overlapping in the sense of sharing characters, since each "ab" uses two distinct characters. So when we remove two "ab"s, they are removed from possibly different positions. Now, Del(Del(L)) first removes one "ab", then removes another "ab" from the result. But the result might have been altered, so the second removal might be on a different "ab" or one that was created by the first removal, but since we're just removing a fixed substring, it should be fine. I recall that in formal languages, sometimes such operations can behave differently based on order. Let me try a word with three "ab"s or something. Suppose L = {ababab}. Then compute Del(L). Del(L) = {vw | vabw ∈ {ababab}} So, vabw = ababab. The "ab" can be removed from any of the three positions. - Remove first "ab": v=ε, w=abab, so vw=abab - Remove second "ab": v=ab, w=ab, so vw=abab - Remove third "ab": v=abab, w=ε, so vw=abab So Del(L) = {"abab"}? All are "abab", so yes, Del(L) = {"abab"} Then Del(Del(L)) = Del({"abab"}) = as before, for L2={"abab"}, Del(L2) = {vw | vabw ∈ {"abab"}} vabw = abab. - If remove first "ab": v=ε, w=ab, so vw=ab - Remove second "ab": v=ab, w=ε, so vw=ab So Del({"abab"}) = {"ab"} Then Del(Del(L)) = {"ab"} Now DelTwo(L) for L={ababab}: DelTwo(L) = {uvw | uabvabw ∈ {ababab}} uabvabw = ababab. This means we remove two "ab"s from ababab. Possible ways: - Remove first and second "ab": u=ε, v=ε, w=ab, so uvw=ab - Remove first and third "ab": u=ε, v=ab, w=ε, so uvw=ab? uab v ab w = u ab v ab w If we remove first and third "ab", then after removing first "ab", we have abab, but DelTwo removes both at once. Set uabvabw = ababab. If we want to remove the first "ab", we can set u=ε, then ab v ab w = ababab, so ab v ab w = a b v a b w, and this must equal a b a b a b. So, after the first "ab", we have v ab w, and it must match the rest. Better to think of the string as having two "ab"s removed. The string is ababab. If we remove the first "ab" and the second "ab", the remaining is ab (from the third part), so uvw should be ab. Similarly, if we remove the first and third "ab", after removing first "ab", we have abab, but we remove another "ab", which could be the second or third. If we remove the third "ab" from original, but in DelTwo, we specify uabvabw, so for example, to remove first and third "ab", we can set u=ε, v=ab, w=ε, then uabvabw = ab ab ab = ababab, yes, so uvw = u v w = ε ab ε = ab. Similarly, if we remove second and third "ab": u=a, v=ε, w=ε, then uabvabw = a ab ε ab ε = a ab ab = aabab, but aabab ≠ ababab. Mistake. uabvabw = u + "ab" + v + "ab" + w For removing second and third "ab" from ababab. The original string: positions 1a,2b,3a,4b,5a,6b. Remove positions 3-4 and 5-6? But "ab" at 3-4 is the second "ab", and at 5-6 is the third "ab". After removal, we have ab (from first two characters). So uvw should be ab. How to express with uabvabw. Set u=a, then uab = aab, but we need the string to start with ab, so perhaps u should be such that uab starts with ab. uabvabw must equal ababab. Suppose we want to remove the second "ab" (positions 3-4) and the third "ab" (positions 5-6). Then the remaining is the first two characters "ab". So, in uabvabw, the part before the first removed "ab" is u, which should be "ab" because the first removed "ab" is at position 3-4, so u is positions 1-2, which is "ab". Then after first removed "ab", we have v, but since we remove another "ab" later, but in this case, the second removed "ab" is at positions 5-6, which is after, so between the two removed "ab"s, there is nothing, so v should be empty. Then after second removed "ab", w is empty. So u = "ab", v = ε, w = ε, then uabvabw = ab ab ε ab ε = ababab, yes. So uvw = ab ε ε = ab. Similarly, for removing first and second "ab": u=ε, v=ε, w=ab, uvw=ab First and third: u=ε, v=ab, w=ε, uvw=ab Second and third: u=ab, v=ε, w=ε, uvw=ab So DelTwo(L) = {"ab"} But earlier Del(Del(L)) = {"ab"} for L={ababab}, so same. Now, is there a case where they differ? Perhaps when the "ab" substrings are not independent. Consider a word where "ab" can be removed in a way that creates new "ab" or something, but since we're removing, not adding, it might not create new ones. Another idea: suppose L has a word with overlapping possible removals, but "ab" doesn't overlap, as I thought. Suppose L = {aabab} or something. Let me try L = {aabab}. First, compute Del(L): vabw ∈ {aabab} So vabw = aabab. Possible ways: - The "ab" could be at the end: if we remove the last "ab", then v = aab, w = ε, so vw = aab - Or, is there another "ab"? The word is aabab, so it has "ab" at positions 3-4: a a b a b, so positions 1a,2a,3b,4a,5b. "ab" substrings: at positions 3-4: b a? No, position 3 is b, 4 is a, so not "ab". "ab" requires a then b. Here, the substrings: from index 1-2: aa, not ab; 2-3: ab? position 2 is a, 3 is b, yes, "ab" at positions 2-3. Also, positions 4-5: a b, so "ab" at 4-5. So two "ab" substrings: at (2,3) and (4,5). So for Del(L), we can remove either one. Remove "ab" at (2,3): then v is the prefix before, so v = a (first character), w is the suffix after, so after removing positions 2-3, we have character 1 and then 4-5, so w = ab, thus vw = a ab = aab Remove "ab" at (4,5): then v is prefix up to position 3, so v = aab, w is empty, so vw = aab So Del(L) = {"aab"} (only one word, but same string from both removals) Now, Del(Del(L)) = Del({"aab"}) Now, Del({"aab"}) = {vw | vabw ∈ {"aab"}} vabw must be "aab". But "aab" does not contain "ab" as substring? "aab" has "aa" and "ab" at the end? positions: 1a,2a,3b. Substrings: 2-3: a b, yes, "ab" at positions 2-3. So vabw = aab. So, if we remove that "ab", then v is prefix before, so v = a (first character), w is suffix after, but after removing positions 2-3, we have only character 1, so w = ε, thus vw = a ε = a Alternatively, if we think of v and w: vabw = aab. So, the "ab" is at the end, so v = a, w = ε, since vab = aab? vab = aab, so if v = a, then ab = ab, so a ab = aab, yes, and w = ε. If v = aa, then aa ab w = aaabw, which must be aab, impossible. So only possibility, v=a, w=ε, vw=a. Thus Del({"aab"}) = {"a"} So Del(Del(L)) = {"a"} Now, what is DelTwo(L) for L={aabab}? DelTwo(L) = {uvw | uabvabw ∈ {aabab}} uabvabw must equal aabab. But aabab has only two "ab" substrings, as above. We need to remove two "ab"s, but the word has only two "ab"s, so we remove both. After removing both "ab"s, what remains? The word is aabab, characters:1a,2a,3b,4a,5b. Remove "ab" at (2,3): remove characters 2 and 3, so left with char1 and char4-5: a and ab, so aab? No, after removal, the string is char1 and then char4 and char5, but since we remove a substring, the remaining parts are concatenated, so after removing positions 2-3, we have position 1 and positions 4-5, so "a" + "ab" = "aab" But we need to remove two "ab"s, so after removing one, we have "aab", which has another "ab", but DelTwo removes both at once. In DelTwo, we specify uabvabw = aabab. This means that we identify two "ab" substrings to remove. The two "ab" are at (2,3) and (4,5). If we remove both, the remaining is character 1, which is "a". So uvw should be "a". Now, how to express with uabvabw. Suppose the first removed "ab" is at (2,3), so u is prefix before, so u = "a" (character 1) Then after first "ab", we have v, but since the next "ab" is at (4,5), which is immediately after, so between the two "ab"s, there is no character, so v should be empty. Then after second "ab", w is empty. So u = "a", v = ε, w = ε, then uabvabw = a ab ε ab ε = a ab ab = aabab, yes. If we remove the "ab" in different order, but since they are distinct, we can always set u,v,w accordingly. So uvw = a ε ε = a. Thus DelTwo(L) = {"a"} So again, same as Del(Del(L)). Now, I need to find if there is a finite L where they differ. Perhaps when there are multiple words, or when the removals interact. Another idea: suppose L has a word where "ab" can be removed in a way that the order affects the result, but in Del(Del(L)), we apply Del twice, which might remove two "ab"s in sequence, but since the language might have words with only one "ab", after first Del, some words might not have "ab", so Del(Del(L)) might have fewer words than DelTwo(L) if DelTwo(L) includes words from longer strings. But in the examples above, it worked. Suppose L has a word with three "ab"s, but we already did ababab, which worked. Perhaps when "ab" is not present, but both empty. Consider L = {ab, ba} or something. L = {ab, ba} Del(L): for ab, as before, Del({ab}) = {ε} For ba, vabw ∈ {ba}, but vabw must be ba, which does not contain "ab", so no v,w such that vabw=ba, since vabw has "ab". So Del({ba}) = ∅ Thus Del(L) = {ε} ∪ ∅ = {ε} Then Del(Del(L)) = Del({ε}) = ∅, as before. DelTwo(L): uabvabw ∈ L, which is {ab, ba} For ab: uabvabw = ab, but uabvabw has at least two "ab"s if u,v,w are strings, but even empty, it has abab if u,v,w empty, but abab ≠ ab. So no for ab. For ba: uabvabw = ba, which is impossible since left has "ab". So DelTwo(L) = ∅. So both empty, equal. Now, perhaps a language where some words have multiple "ab"s and others don't, but DelTwo might include words from those with two "ab"s, while Del(Del(L)) might not if the first Del removes something. But let's think about the sets. Del(Del(L)) = { x | there exists y in Del(L) such that x in Del({y}) } = { x | there exists y, and there exists v,w such that y = vw and for some word in L, but better to use the definition. From definition, Del(L) = { vw | vabw ∈ L } So Del(Del(L)) = { pq | pabq ∈ Del(L) } = { pq | there exists r,s such that pabq = rs and rabs ∈ L } pabq = rs, and rabs ∈ L. This is a bit messy. Since r and s are arbitrary, pabq could be split into r and s such that rabs ∈ L. But for DelTwo(L) = { uvw | uabvabw ∈ L } I need to see if for finite L, these are equal. Perhaps they are not equal, and I need a counterexample. Suppose L = {abab} but we did that, same. Another idea: suppose L has a word like "aabb", but "aabb" has "ab" at positions 2-3? a a b b, substrings: 2-3: a b, so "ab" at 2-3. Only one "ab", so Del(L) for L={aabb} would be {vw | vabw = aabb} vabw = aabb. The "ab" is at positions 2-3, so v = a (first character), w = b (last character), so vw = a b = ab Or, v could be empty, but if v empty, abw = aabb, so w must be abb, but abb has "ab", but we need exact string. abw = aabb implies that the string starts with ab, so w must be such that ab + w = aabb, so w = abb, but then vw = empty + abb = abb, but is abb in the set? Let's see: vabw = empty + ab + abb = ababb ≠ aabb. Mistake. vabw must equal aabb. So the string vabw is exactly aabb. So, the "ab" must be a substring of aabb. The substring "ab" appears only at positions 2-3. So, to have vabw = aabb, we need that v is the prefix before "ab", so v = "a" (character 1), and w is the suffix after "ab", so after position 3, characters 4, so w = "b", thus vw = "a" + "b" = "ab" If we try v = "aa", then aa ab w = aaabw, which must be aabb, so aaabw = aabb, then w must be b, but aaab + b = aaab b = aaabb ≠ aabb. No. Similarly, other v not "a" don't work. So only v="a", w="b", vw="ab" Thus Del({aabb}) = {"ab"} Then Del(Del(L)) for L={aabb} is Del({"ab"}) = {vw | vabw = ab} = as before, only v=ε, w=ε, vw=ε? vabw=ab. If v=ε, then abw=ab, so w=ε, vw=ε If v=a, then aabw=ab, which implies aabw=ab, so after a, it should be a, but it's b, contradiction. So only v=ε, w=ε, vw=ε So Del(Del(L)) = {ε} DelTwo(L) for L={aabb}: uabvabw = aabb But uabvabw has at least two "ab"s, so it must be longer than aabb, which has only 4 characters, while uabvabw has at least 4 characters from the two "ab"s and u,v,w, so minimum length is 4 if u,v,w empty, but uabvabw = abab ≠ aabb. So no such u,v,w, so DelTwo(L) = ∅ But Del(Del(L)) = {ε}, which is not empty, so they are not equal! Oh! So for L = {aabb}, Del(Del(L)) = {ε} and DelTwo(L) = ∅, so not equal. Is L finite? Yes, {aabb} is finite. So this is a counterexample. In L={aabb}, there is only one "ab", so Del(L) has words where one "ab" is removed, which is "ab" itself, then Del of that gives ε. But DelTwo(L) requires two "ab"s to be removed, but there is only one, so no word, so empty. Thus they are not equal. So the statement is false. Now, to confirm: L = {aabb} Del(L) = { vw | vabw ∈ {aabb} } = as above, only when v="a", w="b", so vw="ab" So Del(L) = {"ab"} Then Del(Del(L)) = Del({"ab"}) = { pq | pabq ∈ {"ab"} } = { pq | pabq = "ab" } pabq = "ab", so the only possibility is p=ε, q=ε, because if p or q not empty, pabq would be longer than 2 characters. So only p=ε, q=ε, pq=ε. Thus Del(Del(L)) = {ε} DelTwo(L) = { uvw | uabvabw ∈ {aabb} } uabvabw must be "aabb", but uabvabw has at least two "ab" substrings, so its length is at least 4, but even with u,v,w empty, it is "abab", which is not "aabb". Since "aabb" has only one "ab" substring, it cannot be written as uabvabw for any u,v,w, because uabvabw always contains at least two "ab"s if vabw is considered, but actually, uabvabw has the substring "ab" from the first part and "ab" from the second part, so yes, it always contains at least two non-overlapping "ab" substrings (unless v contains "ab" but still, the fixed "ab" are there). Specifically, the string uabvabw has the substrings "ab" at positions |u|+1 to |u|+2 and |u|+2+|v|+1 to |u|+2+|v|+2, etc., but in any case, it has at least two occurrences of "ab" as substrings, while "aabb" has only one, so indeed, no such u,v,w. Thus DelTwo(L) = ∅ ≠ {ε} Therefore, for this finite L, Del(Del(L)) ≠ DelTwo(L). So the statement is false. Now, for the answer format. First, for subproblem b, I need to choose between wahr or falsch. <option id="1">Wahr</option> should be 0 if false, and <option id="2">Falsch</option> should be 1 if true that it's false. The options are: <option id="1">Wahr</option> means true, so if I think it's true, set to 1, else 0. <option id="2">Falsch</option> means false, so if I think it's false, set to 1, else 0. In this case, since it's false, I should set <option id="1"> to 0 and <option id="2"> to 1. Then I need to provide an answer with the counterexample. So <answer id="3"> should explain. The format is to give the options and then the answer. So for subproblem b.
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Die Aussage ist falsch. Betrachten Sie das Gegenbeispiel $L = \{aabb\}$. - $\Del(L) = \{vw \mid vabw \in \{aabb\}\}$. Da $aabb$ nur ein Vorkommen von $ab$ an den Positionen 2–3 hat, ist $v = a$ und $w = b$, also $vw = ab$. Somit $\Del(L) = \{ab\}$. - $\Del(\Del(L)) = \Del(\{ab\}) = \{pq \mid pabq \in \{ab\}\}$. Die einzige Möglichkeit ist $p = \epsilon$ und $q = \epsilon$, also $pq = \epsilon$. Thus $\Del(\Del(L)) = \{\epsilon\}$. - $\DelTwo(L) = \{uvw \mid uabvabw \in \{aabb\}\}$. Da $uabvabw$ mindestens zwei $ab$-Teilwörter enthält (z.B. die fixen $ab$ in der Definition), aber $aabb$ nur ein $ab$-Teilwort hat, gibt es keine $u, v, w$ mit $uabvabw = aabb$. Somit $\DelTwo(L) = \emptyset$. Da $\Del(\Del(L)) = \{\epsilon\} \neq \emptyset = \DelTwo(L)$, gilt die Gleichheit nicht für alle endlichen Sprachen $L$. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Die Aussage ist falsch. Betrachten Sie das Gegenbeispiel . - . Da nur ein Vorkommen von an den Positionen 2–3 hat, ist und , also . Somit . - . Die einzige Möglichkeit ist und , also . Thus . - . Da mindestens zwei -Teilwörter enthält (z.B. die fixen in der Definition), aber nur ein -Teilwort hat, gibt es keine mit . Somit . Da , gilt die Gleichheit nicht für alle endlichen Sprachen .
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Die Aussage ist falsch. Betrachten Sie das Gegenbeispiel $L = \{aabb\}$.
- $\Del(L) = \{vw \mid vabw \in \{aabb\}\}$. Da $aabb$ nur ein Vorkommen von $ab$ an den Positionen 2–3 hat, ist $v = a$ und $w = b$, also $vw = ab$. Somit $\Del(L) = \{ab\}$.
- $\Del(\Del(L)) = \Del(\{ab\}) = \{pq \mid pabq \in \{ab\}\}$. Die einzige Möglichkeit ist $p = \epsilon$ und $q = \epsilon$, also $pq = \epsilon$. Thus $\Del(\Del(L)) = \{\epsilon\}$.
- $\DelTwo(L) = \{uvw \mid uabvabw \in \{aabb\}\}$. Da $uabvabw$ mindestens zwei $ab$-Teilwörter enthält (z.B. die fixen $ab$ in der Definition), aber $aabb$ nur ein $ab$-Teilwort hat, gibt es keine $u, v, w$ mit $uabvabw = aabb$. Somit $\DelTwo(L) = \emptyset$.
Da $\Del(\Del(L)) = \{\epsilon\} \neq \emptyset = \DelTwo(L)$, gilt die Gleichheit nicht für alle endlichen Sprachen $L$.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
First, I need to construct a context-free grammar G' such that L(G') = Del(L(G)), where G is in Chomsky Normal Form (CNF). The new grammar G' will have variables V' which includes the original V plus new variables: X_ab, X_a, and X_b for each X in V. The meanings are defined: - L_G'(X) = L_G(X) for X in V - L_G'(X_ab) = Del(L_G(X)) - L_G'(X_a) = { w in Σ* | w a in L_G(X) } - L_G'(X_b) = { w in Σ* | b w in L_G(X) } I need to define the start symbol S' and the productions P'. Since L(G') should be Del(L(G)), and Del(L(G)) is defined as { v w | v ab w in L(G) }, I think S' should be related to S_ab, because L_G'(S_ab) should be Del(L_G(S)), which is exactly Del(L(G)). So, probably S' = S_ab. Now, for the productions P'. I need to define rules for all variables in V'. First, for the original variables X in V, I need L_G'(X) = L_G(X). Since G is in CNF, its productions are of the form: - X -> Y Z for Y,Z in V - X -> a for a in Σ But in G', I need to keep these productions for X, so I should include all original productions from P for X in V. Additionally, I need to define productions for the new variables: X_ab, X_a, X_b. Let me think about what these sets represent. L_G'(X_ab) = Del(L_G(X)) = { v w | v ab w in L_G(X) } L_G'(X_a) = { w | w a in L_G(X) } L_G'(X_b) = { w | b w in L_G(X) } Since G is in CNF, I can use recursive definitions. I recall that in formal language theory, when we remove substrings, we often use techniques like simulating the grammar with states that remember what has been seen or what is expected. Here, the new variables seem to be handling the "before" and "after" parts. For X_ab, which generates Del(L_G(X)), meaning we remove one occurrence of ab from strings in L_G(X). To generate this, I need to simulate the derivation in G but skip one ab. Similarly, X_a generates strings that, when followed by a, are in L_G(X). So it's like the prefix before a in some string. X_b generates strings that, when preceded by b, are in L_G(X). Now, since G is in CNF, the strings are built recursively. I need to define productions for X_ab, X_a, X_b based on the productions of X. Let me denote the productions. First, for X in V, I include all productions from P. Now, for X_ab: I need to generate strings that are missing one ab. This can happen in different parts of the derivation. I think I need to consider the cases where the ab is removed from the left, right, or middle. Since CNF has only binary productions or terminals, I can handle it recursively. A standard way is to have productions that allow skipping the ab at some point. Let me think about L_G'(X_ab) = Del(L_G(X)) This means that for some string in L_G(X), we remove one ab, so the string has a part before ab, and a part after ab. In terms of derivation, from X, we derive a string that contains ab, and we remove it. But since we're building a grammar, we need to simulate that. I recall that for operations like substring removal, we can use grammar transformations. Perhaps for each production in G, I need corresponding productions for the new variables. Let me start with the terminal productions. For X -> a in P, where a is terminal. Then L_G(X) = {a} Now, Del(L_G(X)) = Del({a}) = empty set, because there is no ab to remove. Similarly, L_G'(X_a) = { w | w a in {a} } = {ε}, because if w a = a, then w=ε. Similarly, L_G'(X_b) = { w | b w in {a} } = empty set, since b w cannot be a. But since G is in CNF, X -> a only for terminals, and CNF doesn't have ε-productions, so L_G(X) for X -> a is a single terminal, so Del is empty unless a is part of ab, but ab is two symbols, so for single terminal, Del is always empty. Similarly for X_a and X_b. But in the grammar, I need to define productions for X_ab, X_a, X_b for all X, even if it might be empty, but since CFG can have variables that don't generate anything, it's fine. Now for binary productions. Suppose X -> Y Z in P. Then L_G(X) = L_G(Y) L_G(Z) (concatenation). Now, Del(L_G(X)) = Del(L_G(Y) L_G(Z)) But Del of concatenation: if we have uv, and we remove one ab from uv, it could be that ab is entirely in u, entirely in v, or across u and v. Similarly for the other sets. So, for X_ab, which is Del(L_G(X)), with X -> Y Z. Then Del(L_G(X)) = Del(L_G(Y) L_G(Z)) = { v w | v ab w in L_G(Y) L_G(Z) } This can be: - ab is entirely in L_G(Y): so v w such that v ab w in L_G(Y) and nothing from Z, but since it's concatenation, if ab is in Y, then for some string in L_G(Y) that has ab, we remove it, and concatenate with full L_G(Z). So Del(L_G(Y)) L_G(Z) - ab is entirely in L_G(Z): similarly, L_G(Y) Del(L_G(Z)) - ab is split between Y and Z: that is, the ab is at the end of Y and beginning of Z. Specifically, if Y ends with a and Z begins with b, then we might have a b from the boundary. For example, if s in L_G(Y) ends with a, and t in L_G(Z) begins with b, then s t contains ab at the boundary. When we remove this ab, we remove the last a of s and first b of t, so we get s' and t' where s = s' a and t = b t', so the resulting string is s' t'. But s' is such that s' a is in L_G(Y), so s' in L_G'(Y_a) (since L_G'(Y_a) = {w | w a in L_G(Y)}) Similarly, t' such that b t' in L_G(Z), so t' in L_G'(Z_b) And the removed ab is from the boundary. So, Del(L_G(X)) = Del(L_G(Y)) L_G(Z) ∪ L_G(Y) Del(L_G(Z)) ∪ L_G'(Y_a) L_G'(Z_b) Similarly, for other cases. Now, L_G'(X_ab) should be Del(L_G(X)), so for X -> Y Z, we can have: X_ab -> Y_ab Z | Y Z_ab | Y_a Z_b Because Y_ab generates Del(L_G(Y)), Z generates L_G(Z), so Y_ab Z generates Del(L_G(Y)) L_G(Z)) Similarly, Y Z_ab generates L_G(Y) Del(L_G(Z)) And Y_a Z_b generates L_G'(Y_a) L_G'(Z_b) Now, is that all? In the case where ab is entirely in Y or Z, or at boundary, yes. But what if there are multiple occurrences? But since we are removing only one ab, and we are generating the language where one ab is removed, this should cover all cases because we are specifying where the removal happens: either in left child, right child, or at the boundary. And since we are building the grammar recursively, it should be fine. Now, for the start, we need to handle terminal productions. But for terminal productions, since Del for single terminal is empty, we might not have productions for X_ab when X is terminal, but X_ab is a variable, so we need to define it for all X. For example, if X -> a, then L_G(X) = {a}, so Del(L_G(X)) = ∅, so X_ab should not generate anything. Similarly, if X -> b, same thing. But what if X -> something that generates ab? But in CNF, X -> a or X -> b or X -> Y Z. For X -> a, we need to define X_ab. Since Del({a}) = ∅, we should have no productions for X_ab that generate anything. So perhaps we don't add any production for X_ab when X is terminal, or we add nothing, but since variables might be used in other productions, we need to ensure that X_ab derives nothing if no ab can be removed. Similarly for X_a and X_b. First, let's define L_G'(X_a) = { w | w a in L_G(X) } For X -> a in P, L_G(X) = {a}, so L_G'(X_a) = { w | w a = a } = {ε} So X_a should generate ε. Similarly, for X -> b, L_G(X) = {b}, so L_G'(X_a) = { w | w a = b } = ∅, since w a cannot be b for any w. Similarly, L_G'(X_b) for X -> a: { w | b w = a } = ∅ For X -> b: L_G'(X_b) = { w | b w = b } = {ε} Now, for binary productions, X -> Y Z. L_G'(X_a) = { w | w a in L_G(X) } = { w | w a in L_G(Y) L_G(Z) } Now, w a is in the concatenation of L_G(Y) and L_G(Z). This can happen in two ways: - w a is entirely in L_G(Y), meaning that w a is a suffix of some string in L_G(Y), but since w a is the whole string for X, but L_G(X) is concatenation, so if w a is in L_G(Y) L_G(Z), it could be that w a = u v with u in L_G(Y) and v in L_G(Z), and since w a ends with a, we need to see how it splits. Let me think: w a is a string, and it is in L_G(Y) L_G(Z), so there exists u in L_G(Y) and v in L_G(Z) such that u v = w a. Now, depending on where the split is: - If v is not empty, then w a = u v, so v must end with a, since w a ends with a. But v is in L_G(Z), so if v ends with a, then we can write v = v' a for some v', but v' might not be in L_G(Z), but L_G'(Z_a) is defined as { w | w a in L_G(Z) }, so if v ends with a, then v' such that v' a = v, so v' in L_G'(Z_a) But in the concatenation, u v = w a. If v ends with a, then w a = u v, so let v = v'' a, then w a = u v'' a, so w = u v'', and since u in L_G(Y) and v'' in L_G'(Z_a) because v'' a = v in L_G(Z), so v'' in L_G'(Z_a) Thus, w = u v'' with u in L_G(Y) and v'' in L_G'(Z_a) Alternatively, if v is empty, but since G is CNF, no ε-productions, so L_G(Z) does not contain ε, so v cannot be empty? In CNF, there are no ε-productions, so all strings in L_G(Z) have length at least 1, so v is non-empty. But L_G(Z) could contain strings of length 1 or more. In the case where u v = w a, and v ends with a, we have w = u v'' with v'' in L_G'(Z_a) But another case: if v does not end with a, but u ends with a, but since w a ends with a, if v does not end with a, then u must end with a, but let's see: u v = w a. Let |u| = k, |v| = m, |w| = n, so n+1 = k + m. The last character of u v is the last character of v, since v is last. So for u v to end with a, v must end with a. Because the last character of concatenation is the last character of the second part. So, always, if u v ends with a, then v ends with a. Therefore, for u v = w a, v must end with a. Thus, we can write v = v' a for some v', and then w a = u v' a, so w = u v' Now, u in L_G(Y), and v' such that v' a = v in L_G(Z), so v' in L_G'(Z_a) Therefore, L_G'(X_a) = L_G(Y) L_G'(Z_a) Similarly, is there another case? What if the split is such that the a is from Y? But since v must end with a, it seems only this case. But L_G'(X_a) is the set of w such that w a in L_G(X) = L_G(Y) L_G(Z) And as above, w a = u v with u in L_G(Y), v in L_G(Z), and v ends with a, so w = u v' with v' in L_G'(Z_a) So yes, L_G'(X_a) = L_G(Y) L_G'(Z_a) But is that correct? What if Y generates strings that end with a, but in this case, for w a to be in L_G(Y) L_G(Z), it must be that the last character comes from Z, so indeed, only if Z generates strings ending with a, and we take the prefix. Similarly, for L_G'(X_b) = { w | b w in L_G(X) } = { w | b w in L_G(Y) L_G(Z) } Then b w = u v with u in L_G(Y), v in L_G(Z) Now, b w begins with b, so u must begin with b, because the first character of concatenation is the first character of u. So u begins with b, so we can write u = b u' for some u', and then b w = b u' v, so w = u' v Now, u' such that b u' = u in L_G(Y), so u' in L_G'(Y_b) And v in L_G(Z) Thus, L_G'(X_b) = L_G'(Y_b) L_G(Z) Now, back to X_ab. For X -> Y Z, we have L_G'(X_ab) = Del(L_G(X)) = Del(L_G(Y) L_G(Z)) = Del(L_G(Y)) L_G(Z) ∪ L_G(Y) Del(L_G(Z)) ∪ L_G'(Y_a) L_G'(Z_b) As I thought earlier. Now, for the base cases, when X is terminal. We need to define productions for X_ab, X_a, X_b for each X in V. But X in V could be defined with productions, but for the new variables, we need direct productions. Since G is in CNF, for each terminal, there might be variables that produce them, but we have to handle all X in V. First, for X such that X -> a is in P for some a. Then L_G(X) = {a} So: - L_G'(X_ab) = Del({a}) = ∅ - L_G'(X_a) = { w | w a = a } = {ε} - L_G'(X_b) = { w | b w = a } = ∅ Similarly, if X -> b, then: - L_G'(X_ab) = Del({b}) = ∅ - L_G'(X_a) = { w | w a = b } = ∅ - L_G'(X_b) = { w | b w = b } = {ε} Now, how do we represent this in productions? For X_a, when X -> a, we want X_a to generate ε. Similarly, when X -> b, X_b generates ε. But in CFG, we can have ε-productions, even though G is CNF without ε, G' can have ε-productions, as per the hint: "G' muss nicht in CNF sein." So, we can add productions like X_a -> ε for appropriate X. Similarly, for X_ab, when X produces a single terminal, we want no production, so it doesn't generate anything. But we might need to define productions only when necessary. Now, for variables that are not terminals, but through productions. But in the recursive definition, we need to define for all X in V. Also, we have the new variables like X_ab, which are in V', so we need productions for them based on the type of X. Now, for the start symbol, S' should be S_ab, because L_G'(S_ab) = Del(L_G(S)) = Del(L(G)) So S' = S_ab Now, let's write the productions P'. First, include all original productions from P for the variables in V. That is, for each production in P, add it to P'. But P' is for G', which has variables V', so we need to define productions for all symbols in V'. Now, for each X in V, we have: - If X -> a is in P for a in Σ, then: - Add production X_a -> ε if a = a? No. From above, for X -> a: - X_a should generate ε only if a = a? Let's see. L_G'(X_a) = { w | w a in L_G(X) } = { w | w a = a } so if the terminal is a, then w must be ε, so X_a -> ε But if X -> b, then L_G'(X_a) = ∅, so no production for X_a. Similarly, for X_b: if X -> b, then X_b -> ε; if X -> a, no production. For X_ab: always no production for terminal cases. But we need to define productions for X_ab, X_a, X_b for all X, so for X that has terminal production, we add specific productions. Similarly, for X that has binary production, we add the recursive productions. Now, for binary productions, X -> Y Z in P. Then we add: - For X_ab: add productions X_ab -> Y_ab Z | Y Z_ab | Y_a Z_b - For X_a: add production X_a -> Y Z_a (since L_G'(X_a) = L_G(Y) L_G'(Z_a)) - For X_b: add production X_b -> Y_b Z (since L_G'(X_b) = L_G'(Y_b) L_G(Z)) Is that correct? From earlier: L_G'(X_a) = L_G(Y) L_G'(Z_a) And L_G(Y) is generated by Y, and L_G'(Z_a) by Z_a, so yes, X_a -> Y Z_a Similarly, X_b -> Y_b Z And for X_ab, X_ab -> Y_ab Z | Y Z_ab | Y_a Z_b Now, we also need to consider if Y or Z are terminals, but since we have defined the base cases, it should be fine. But in the productions, when we write Y_ab Z, etc., Y_ab is a variable, Z is a variable, so it's fine. Now, what about the case where X is not directly defined but through multiple productions, but since we are adding for each production, it should cover recursively. Also, for the start symbol, S' = S_ab Now, we need to ensure that for all X, the definitions hold. But in the base case, for terminal productions, we need to add productions for X_a and X_b only if applicable. Specifically: For each production X -> a in P: - If a = 'a', then add X_a -> ε - If a = 'b', then add X_b -> ε - No production for X_ab For each production X -> Y Z in P: - Add X_ab -> Y_ab Z - Add X_ab -> Y Z_ab - Add X_ab -> Y_a Z_b - Add X_a -> Y Z_a - Add X_b -> Y_b Z Now, is that all? We also need to include the original productions for X in V, so that L_G'(X) = L_G(X) So for each production in P, we add it to P'. But P' should contain all productions for all variables in V'. Now, the variables in V' include V and the new ones. So, let's define P' clearly. First, P' includes all productions from P. Then, for each variable X in V: - If there is a production X -> a in P for some a in Σ, then: - If a = 'a', add production X_a -> ε - If a = 'b', add production X_b -> ε - (no production for X_ab) - If there is a production X -> Y Z in P (with Y,Z in V), then: - Add production X_ab -> Y_ab Z - Add production X_ab -> Y Z_ab - Add production X_ab -> Y_a Z_b - Add production X_a -> Y Z_a - Add production X_b -> Y_b Z Now, we need to do this for all X in V, but since X -> Y Z is a production, we add for that X. But what if X has multiple productions? For example, X might have both terminal and binary productions? But in CNF, each variable has productions either to terminals or to pairs, but not mixed? No, in CNF, a variable can have multiple productions, some to terminals, some to binaries. For example, X -> a and X -> Y Z both possible. In that case, for X, we need to add productions for X_ab, X_a, X_b based on all its productions. For instance, if X -> a is in P, then from terminal production, we add X_a -> ε if a='a', etc. But if X -> Y Z is also in P, then we also add the binary productions for X_ab, etc. And since L_G(X) is the union of all, it should be fine. Now, for X_ab, it should generate Del(L_G(X)), which includes strings from all productions, so by adding productions for each rule, it should be correct. Similarly for X_a and X_b. Now, we also need to consider that for variables that are not productive, but that should be handled. Now, for the start symbol, S' = S_ab Now, I think this should work. But let's verify with a small example. Suppose G has S -> a | b | S S, but in CNF, we need to have variables for terminals, but typically in CNF, we have variables for each terminal, but actually, in CNF, productions are to two variables or to one terminal. But for simplicity, assume we have variables like A -> a, B -> b, and S -> A B | etc. But in the definition, for X in V, which includes all variables. In the production X -> a, a is terminal, so we need to handle that. In the recursive productions, when we have X -> Y Z, Y and Z are variables. So in P', when we add X_ab -> Y_ab Z, etc., Y_ab is a variable, so we need to ensure that Y_ab is defined for Y. Similarly for others. Now, for the base, if Y has a terminal production, we have defined Y_ab, etc., as per above. Now, I think we need to add productions for all X in V, for X_ab, X_a, X_b, based on the productions of X. But in the case where X has no production that can generate strings with ab, then X_ab should generate nothing, which is achieved by having no productions for X_ab, or productions that lead to nothing. In our case, for terminal productions, we add no productions for X_ab, so if X only has terminal productions, X_ab has no productions, so L_G'(X_ab) = ∅, which is correct since Del of a single terminal is empty. Similarly, if X has binary productions but never generates ab, then through the recursive productions, it might still generate nothing if children don't, so it should be fine. Now, for X_a and X_b, similarly. Now, another thing: in the production X_a -> Y Z_a, this is only added if X -> Y Z is in P. Similarly for others. Now, I think we have all. So, to write P' precisely. First, S' = S_ab Now, P' includes: 1. All productions from P. 2. For each production X -> a in P: - If a = 'a', then add X_a -> ε - If a = 'b', then add X_b -> ε 3. For each production X -> Y Z in P: - Add X_ab -> Y_ab Z - Add X_ab -> Y Z_ab - Add X_ab -> Y_a Z_b - Add X_a -> Y Z_a - Add X_b -> Y_b Z And that should be it. Now, for the answer format. I need to write this in the template. The template is: <answer-template id="1"> Startsymbol $S':=?$ Produktionen $P'$: ??? </answer-template> So, I need to specify S' and then list P'. Since P' might be large, I need to describe it generally. In the context, it says "vermeiden Sie unstrukturierten Fließtext", so I should avoid unstructured text, so probably list the rules in a structured way. I can write: S' = S_{ab} P' = P ∪ { ... } with the additional productions. But since P is already there, I need to include it. I can write: P' consists of the following productions: - All productions from P. - For each variable X in V such that X → a is in P for a ∈ Σ: - If a = a, then add X_a → ε - If a = b, then add X_b → ε - For each production X → Y Z in P: - X_{ab} → Y_{ab} Z - X_{ab} → Y Z_{ab} - X_{ab} → Y_a Z_b - X_a → Y Z_a - X_b → Y_b Z Now, in the output, I need to write it properly. Also, in the template, it might expect LaTeX. So, let's write it. First, S' = S_{ab} Now for P': I need to write the productions. In LaTeX, I can use \rightarrow or \to. Since it's a list, I can itemize. But to be precise. Perhaps: $P' = P \cup \{ X_a \to \epsilon \mid X \to a \in P \} \cup \{ X_b \to \epsilon \mid X \to b \in P \} \cup \{ X_{ab} \to Y_{ab} Z, X_{ab} \to Y Z_{ab}, X_{ab} \to Y_a Z_b, X_a \to Y Z_a, X_b \to Y_b Z \mid X \to Y Z \in P \}$ But I need to include all for each production. In the set notation, it might be messy. Since the question says "geben Sie die Produktionen P' präzise an", I should list the types. I think for the answer, I can write: Startsymbol $S' = S_{ab}$ Produktionen $P'$: - Alle Produktionen aus $P$. - Für jede Produktion $X \to a$ in $P$: - Wenn $a = a$, dann $X_a \to \epsilon$ - Wenn $a = b$, dann $X_b \to \epsilon$ - Für jede Produktion $X \to Y Z$ in $P$: - $X_{ab} \to Y_{ab} Z$ - $X_{ab} \to Y Z_{ab}$ - $X_{ab} \to Y_a Z_b$ - $X_a \to Y Z_a$ - $X_b \to Y_b Z$ And that should be fine. Now, to box the answer. But in the format, it's <answer id="1"> So, I'll write that. But let's make sure about the variables: in the production X_a -> Y Z_a, Y and Z are variables, and Z_a is a variable, so it's fine. Similarly for others. I think this is correct.
Answer
<answer id="1"> Startsymbol $S' = S_{ab}$ Produktionen $P'$: - Alle Produktionen aus $P$. - Für jede Produktion $X \to a$ in $P$: - Wenn $a = a$, dann füge $X_a \to \epsilon$ hinzu. - Wenn $a = b$, dann füge $X_b \to \epsilon$ hinzu. - Für jede Produktion $X \to Y Z$ in $P$: - Füge $X_{ab} \to Y_{ab} Z$ hinzu. - Füge $X_{ab} \to Y Z_{ab}$ hinzu. - Füge $X_{ab} \to Y_a Z_b$ hinzu. - Füge $X_a \to Y Z_a$ hinzu. - Füge $X_b \to Y_b Z$ hinzu. </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen : - Alle Produktionen aus . - Für jede Produktion in : - Wenn , dann füge hinzu. - Wenn , dann füge hinzu. - Für jede Produktion in : - Füge hinzu. - Füge hinzu. - Füge hinzu. - Füge hinzu. - Füge hinzu.
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Die Aussage ist falsch. Betrachten Sie das Gegenbeispiel $L = \{aabb\}$.
- $\Del(L) = \{vw \mid vabw \in \{aabb\}\}$. Da $aabb$ nur ein Vorkommen von $ab$ an den Positionen 2–3 hat, ist $v = a$ und $w = b$, also $vw = ab$. Somit $\Del(L) = \{ab\}$.
- $\Del(\Del(L)) = \Del(\{ab\}) = \{pq \mid pabq \in \{ab\}\}$. Die einzige Möglichkeit ist $p = \epsilon$ und $q = \epsilon$, also $pq = \epsilon$. Thus $\Del(\Del(L)) = \{\epsilon\}$.
- $\DelTwo(L) = \{uvw \mid uabvabw \in \{aabb\}\}$. Da $uabvabw$ mindestens zwei $ab$-Teilwörter enthält (z.B. die fixen $ab$ in der Definition), aber $aabb$ nur ein $ab$-Teilwort hat, gibt es keine $u, v, w$ mit $uabvabw = aabb$. Somit $\DelTwo(L) = \emptyset$.
Da $\Del(\Del(L)) = \{\epsilon\} \neq \emptyset = \DelTwo(L)$, gilt die Gleichheit nicht für alle endlichen Sprachen $L$.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Startsymbol $S' = S_{ab}$
Produktionen $P'$:
- Alle Produktionen aus $P$.
- Für jede Produktion $X \to a$ in $P$:
- Wenn $a = a$, dann füge $X_a \to \epsilon$ hinzu.
- Wenn $a = b$, dann füge $X_b \to \epsilon$ hinzu.
- Für jede Produktion $X \to Y Z$ in $P$:
- Füge $X_{ab} \to Y_{ab} Z$ hinzu.
- Füge $X_{ab} \to Y Z_{ab}$ hinzu.
- Füge $X_{ab} \to Y_a Z_b$ hinzu.
- Füge $X_a \to Y Z_a$ hinzu.
- Füge $X_b \to Y_b Z$ hinzu.
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
First, I need to apply the construction from subproblem c to the given grammar G. The grammar G is: V = {S, A}, Σ = {a, b}, P = {S → SA | a, A → a | b}. It's not in Chomsky Normal Form (CNF) because S → SA is not in CNF; CNF requires productions to be either to two nonterminals or to a single terminal. But the problem says "Sei G eine kontextfreie Grammatik in Chomsky-Normalform", meaning we should assume G is in CNF. However, in this subproblem, G is given with productions S → SA | a and A → a | b, which is not CNF. But the construction in subproblem c assumes G is in CNF. There might be a mistake. Looking back at subproblem c: "Sei G=(V,Σ,P,S) eine kontextfreie Grammatik in Chomsky-Normalform." So for subproblem d, we are to apply the construction to this G, but G is not in CNF. Perhaps I need to convert G to CNF first? But the problem doesn't say that; it just gives G as is. Maybe I should proceed with the given G and apply the construction as if it were in CNF, but since it's not, I might need to adjust. The construction in subproblem c relies on CNF because it handles productions of the form X → Y Z and X → a. In G, we have S → SA which is like X → Y Z, and S → a which is X → a, and A → a and A → b which are X → a and X → b. So actually, for the purpose of this construction, since we have only productions to terminals or to two nonterminals, it might be okay, but S → SA has S and A which are nonterminals, so it should be fine. CNF requires that all productions are to two nonterminals or to a single terminal, and here S → SA is to two nonterminals, and S → a is to a terminal, similarly for A. So actually, this G is in CNF? No, CNF also requires that the start symbol doesn't appear on the right-hand side of any production, but here S appears in S → SA, so it might not be strict CNF, but for this exercise, we can proceed as is. I think for this subproblem, we should just apply the construction directly to the given productions. So, from subproblem c, we have V' = V ∪ {X_{ab} | X ∈ V} ∪ {X_a | X ∈ V} ∪ {X_b | X ∈ V}. So for V = {S, A}, we have new nonterminals: S_{ab}, S_a, S_b, A_{ab}, A_a, A_b. The start symbol S' should be S_{ab}, because we want L(G') = Del(L(G)), and from subproblem c, L_{G'}(X_{ab}) = Del(L_G(X)), so for the start symbol, we need S' = S_{ab}. Now, for productions P', we need to include all productions from P, and then add new productions based on the rules. First, list all productions from P: S → SA, S → a, A → a, A → b. Now, according to the construction: - For each production X → a in P: - If a = a, add X_a → ε - If a = b, add X_b → ε So for S → a: since a = a, add S_a → ε For A → a: add A_a → ε For A → b: since b = b, add A_b → ε - For each production X → Y Z in P: - Add X_{ab} → Y_{ab} Z - Add X_{ab} → Y Z_{ab} - Add X_{ab} → Y_a Z_b - Add X_a → Y Z_a - Add X_b → Y_b Z In this case, we have one production X → Y Z: S → S A (here Y is S, Z is A) So for S → S A: - Add S_{ab} → S_{ab} A - Add S_{ab} → S A_{ab} - Add S_{ab} → S_a A_b - Add S_a → S A_a - Add S_b → S_b A [Since X_b → Y_b Z] Also, we need to include the original productions from P, so we have S → SA and S → a and A → a and A → b. But in the construction, we include all productions from P, so yes. Now, for the terminals, we have handled X → a cases. But what about the productions for A? A has productions to terminals, which we handled, but since A is also used in other productions, we need to consider if there are other productions for A, but in this case, only S → S A involves A. Also, for the new nonterminals, we need to define their productions based on the rules. In the construction, we add productions for each X based on its productions in P. So, for A, we have productions A → a and A → b. For A → a: we add A_a → ε (already done) For A → b: we add A_b → ε (already done) But since A → a and A → b are not of form X → Y Z, we don't add more for A_{ab} etc. from these? But we need to have productions for A_{ab}, A_a, A_b. From the construction, for productions X → a, we only add X_a or X_b → ε, but for X_{ab}, how do we get it? In the construction, for X → a, we don't directly add anything for X_{ab}. But Del(L_G(X)) for X that produces a single terminal: if X → a, then L_G(X) = {a}, so Del({a}) = { } because to remove ab, but a doesn't contain ab, so Del({a}) = ∅. Similarly for X → b, Del({b}) = ∅. So for A, since A → a and A → b, L_G(A) = {a,b}, so Del({a,b}) = ∅ because neither a nor b contains ab. So A_{ab} should generate nothing, meaning no strings, so we might need to ensure that A_{ab} has no productions, or perhaps we need to add productions only when applicable. In the construction, for X → a, we don't add any production for X_{ab}, so if there are no other productions for X, then X_{ab} will not generate anything, which is correct. Similarly for X_a and X_b: for X → a, we add X_a → ε, which is correct because if X generates a, then {w | wa ∈ L_G(X)} = {w | wa = a} so w = ε, so L_{G'}(X_a) = {ε}. Similarly for X_b → ε when X → b. Now, for S, we have S → SA and S → a. So for S → a: we add S_a → ε For S → SA: we add the productions as above. But S also has multiple productions, so we need to combine them. In the construction, for each production, we add the corresponding productions for the new nonterminals. So for S, we have two productions: S → SA and S → a. For S → a: we add S_a → ε For S → SA: we add the five productions as above. Now, for S_{ab}, it should generate Del(L_G(S)). Similarly for others. We also need to include the original productions from P, so S → SA and S → a are in P', and A → a and A → b are in P'. But in the answer template, it lists productions for each nonterminal, so I need to list all productions for each symbol in V'. The template has: S → ?, S_{ab} → ?, S_a → ?, S_b → ?, A → ?, A_{ab} → ?, A_a → ?, A_b → ? So for A, since A has only terminal productions, A → a and A → b are already there. For A_{ab}, from above, we have no productions added from A → a or A → b for A_{ab}, so A_{ab} has no productions, meaning it doesn't derive anything. Similarly, for A_a, we have A_a → ε from A → a. For A_b, we have A_b → ε from A → b. Now for S: S → SA and S → a (original) S_{ab} → ? From S → SA, we added S_{ab} → S_{ab} A, S_{ab} → S A_{ab}, S_{ab} → S_a A_b But from S → a, we don't add anything for S_{ab}, so only these three productions for S_{ab}. S_a → ? From S → SA, we added S_a → S A_a From S → a, we added S_a → ε So S_a → S A_a | ε S_b → ? From S → SA, we added S_b → S_b A From S → a, we don't add anything for S_b, so S_b → S_b A But S_b should generate {w | bw ∈ L_G(S)}. Since L_G(S) includes strings starting with a or derived from SA, but we need to see what S_b generates. In the construction, S_b → S_b A is added, but this might not be sufficient if there are other ways, but since from S → a, we have no direct addition for S_b, and S_b → S_b A is recursive, but without a base case, it might not generate anything. But let's see what L_G(S) is. L_G(S): from S → a, so a is in L(S). Also S → SA, so S can generate strings like a, aA, aAA, etc., and A generates a or b, so L(S) includes strings starting with a followed by any sequence of A's, which can be a or b, so basically all strings that start with a and have any number of a or b after, but since S → SA and S → a, it's actually all non-empty strings that start with a? Let's see: S → a, so a. S → SA → aA → aa or ab. S → SA → SAA → aAA → aaa, aab, aba, abb, etc. So yes, L(S) is all non-empty strings over {a,b} that start with a. So {a}{a,b}*. Now, for S_b, L_{G'}(S_b) = {w | bw ∈ L_G(S)}. But L_G(S) contains only strings that start with a, so bw must start with a, which means b must be followed by a, but bw starts with b, so for bw to start with a, it's impossible unless w is empty and b is a, but b ≠ a, so actually, no string bw can be in L_G(S) because all strings in L_G(S) start with a. Therefore, L_{G'}(S_b) should be empty. But in our construction, we have S_b → S_b A, which has no base case, so indeed, S_b generates no strings, which is correct. Similarly, for S_a, L_{G'}(S_a) = {w | wa ∈ L_G(S)}. Since L_G(S) contains strings starting with a, wa must end with a, and since strings in L_G(S) start with a, w could be strings that start with a and end with, but actually, for example, if wa ∈ L(S), then wa must start with a, so w must start with a if w is non-empty, but since wa ends with a, it's fine. Specifically, if wa ∈ L(S), then wa is a string starting with a, so w could be ε if a ∈ L(S), which it is, so ε is in S_a. Also, if sa ∈ L(S) for some s, then w could be s. But from our construction, S_a → ε | S A_a, and A_a → ε, so S A_a can generate S, since A_a generates ε, so S A_a generates strings from S. But L_{G'}(S_a) should be {w | wa ∈ L(S)}. Since L(S) = {a}{a,b}*, then wa ∈ {a}{a,b}* implies that wa starts with a, so w must start with a if non-empty, and wa ends with a, so w is a string that, when appended with a, is in L(S). But since L(S) is all strings starting with a, wa starts with a only if w starts with a or is empty? If w is empty, wa = a, which starts with a, so yes. If w starts with a, then wa starts with a, so yes. But also, if w starts with b, then wa starts with b, which is not in L(S), so indeed, w must start with a. So L_{G'}(S_a) = {w | w starts with a} because for any w that starts with a, wa starts with a and ends with a, so it's in L(S). But wait, is that true? For example, w = ab, then wa = aba, which starts with a, so yes. But L(S) includes all strings starting with a, so yes, any w that starts with a will have wa starting with a, so wa ∈ L(S). But what about w = ε? wa = a ∈ L(S). So indeed, L_{G'}(S_a) = {ε} ∪ {a}{a,b}* which is all strings that start with a or are empty? But empty string starts with nothing, but we include it. Actually, {w | wa ∈ L(S)} = {w | wa starts with a} = {w | w is any string such that wa starts with a}. Since wa starts with a if and only if w is empty or w starts with a? If w is empty, wa = a, starts with a. If w starts with a, wa starts with a. If w starts with b, wa starts with b, not a. So yes, L_{G'}(S_a) = {ε} ∪ {a}{a,b}*. But in our construction, S_a → ε | S A_a. Now S generates L(S) = {a}{a,b}*, and A_a generates ε, so S A_a generates exactly L(S), which is {a}{a,b}*, and plus ε from the other production, so indeed S_a generates {ε} ∪ {a}{a,b}*, which is correct. Now back to S_{ab}. We have productions from S → SA: S_{ab} → S_{ab} A | S A_{ab} | S_a A_b And from S → a, no addition for S_{ab}. Now, what is Del(L_G(S))? L_G(S) = {a}{a,b}*, so we remove exactly one occurrence of ab from strings in L(S). So for example, if a string has no ab, then Del returns nothing? No, Del(L) is only if we can remove ab, so if a string contains ab, we remove one occurrence. Since L(S) contains strings that start with a, many strings contain ab, but not all. For example, "a" contains no ab, so not in Del. "aa" contains no ab. "ab" contains ab, so removing ab gives ε. "aba" contains ab, removing ab gives a? Let's see: vabw = aba, if we remove ab, if v=a and w=a, then vw=aa? But ab is at position 2-3? Actually, in aba, the substring ab appears from index 1-2 if we consider indices from 1, but in terms of string, aba has ab as a substring? Yes, from position 1-2: ab, and then a. So if we remove that ab, we get a from the remaining? vabw = aba, so if v=a and w=a, then vw=aa? No: if vabw = aba, then v=a, ab=ab, w=a, so vw= a a = aa. But also, if we consider where to remove ab, but in the definition, Del(L) = {vw | vabw ∈ L}, so for each occurrence of ab in the string, we get a string by removing that ab. So for "aba", it has one occurrence of ab, so we get only one string: v=a, w=a, so vw=aa. But is aa in Del? Yes. Similarly, for "ab", v=ε, w=ε, so vw=ε. So Del(L(S)) includes strings that are obtained by removing ab from some string in L(S). Since L(S) is all strings starting with a, after removing ab, the string might not start with a anymore? For example, if we have a string like "aab", which starts with a, and remove ab, if we remove the ab at the beginning? "aab" has substrings: if we take v=ε, ab=ab, w=b, then vw=b, which starts with b. So Del(L(S)) includes strings that start with b as well. So it's not limited to strings starting with a. Now, in our construction, S_{ab} has productions: S_{ab} → S_{ab} A | S A_{ab} | S_a A_b S_{ab} should generate Del(L(S)). S generates L(S) = {a}{a,b}* A_{ab} generates Del(L(A)) = Del({a,b}) = ∅, since neither a nor b contains ab, so A_{ab} generates nothing. S_a generates {w | wa ∈ L(S)} = {ε} ∪ {a}{a,b}* as above. A_b generates {w | bw ∈ L(A)} = {w | bw ∈ {a,b}} so if bw=a, then w=ε? bw=a implies b followed by w equals a, so w must be such that bw=a, but since b ≠ a, it's impossible? bw=a only if w=ε and b=a, but b≠a, so no. Similarly, if bw=b, then w=ε? bw=b implies that b followed by w equals b, so w must be ε, because if w has characters, bw would be longer than b. So actually, bw ∈ {a,b} only if bw=a or bw=b. But bw=a is impossible because b ≠ a. bw=b is possible only if w=ε. So L_{G'}(A_b) = {w | bw ∈ L(A)} = {w | bw = b} so w=ε. So A_b generates {ε}. But from construction, we have A_b → ε from A → b, so yes. So in S_{ab} → S_a A_b, S_a generates {ε} ∪ {a}{a,b}*, and A_b generates {ε}, so S_a A_b generates concatenation: which is {ε} · {ε} ∪ {a}{a,b}* · {ε} = {ε} ∪ {a}{a,b}*. But this is exactly L(S) itself? L(S) is {a}{a,b}*, which includes strings starting with a, but does not include ε? No, L(S) does not include ε because S → a and S → SA, both produce non-empty strings, so L(S) has no ε. So L(S) = {a}{a,b}*, which does not include ε. But S_a A_b includes ε because S_a includes ε and A_b includes ε, so ε · ε = ε. So S_a A_b generates {ε} ∪ {a}{a,b}*, which is L(S) with ε added? But Del(L(S)) should include ε only if ab ∈ L(S), which it is, since ab ∈ L(S), so ε is in Del(L(S)). Also, Del(L(S)) includes other strings, like b from earlier example. But from S_{ab} → S_a A_b, it generates strings that are in L(S) or ε, but Del(L(S)) includes strings that are not in L(S), like b, so this production alone is not sufficient. We also have S_{ab} → S_{ab} A and S_{ab} → S A_{ab}. S A_{ab}: since A_{ab} generates nothing, S A_{ab} generates nothing. S_{ab} A: this is recursive, so S_{ab} generates some language, and then we append A, which generates a or b. So overall, S_{ab} can generate strings from S_a A_b and from S_{ab} A. S_a A_b generates {ε} ∪ {a}{a,b}*. Then S_{ab} A generates (Del(L(S))) · {a,b} because A generates {a,b}. But Del(L(S)) should include strings like b, which is not generated by S_a A_b alone. For example, take the string "aab" in L(S). We can remove the ab after the first a? "aab" has ab at indices 2-3? Let's see: "aab" can be split as v="a", ab="ab", w="", so vw="a". Or if we consider the ab substring, but in "aab", the only ab is from index 2-3? If indices: position 1:a, 2:a, 3:b. So ab appears only if we have a followed by b, but here position 2 and 3 are a and b, so yes, ab at positions 2-3. So removing that, v="a", w="", so vw="a". But also, if we have "ab" itself, we get ε. But what about a string like "abb": "abb" has ab at positions 1-2? position 1:a,2:b,3:b. So ab at 1-2, so remove ab, v=ε, w="b", so vw="b". So b is in Del(L(S)). How do we generate b from S_{ab}? From S_{ab} → S_a A_b, we can generate strings from S_a and A_b. S_a includes strings starting with a or ε, A_b includes ε, so S_a A_b can generate ε or strings starting with a, but not b. So we need another way. From S_{ab} → S_{ab} A, if S_{ab} can generate b, then S_{ab} A can generate b a or b b, i.e., ba or bb. But how does S_{ab} generate b? We need a base case. In the construction, for productions X → a, we don't add anything for X_{ab}, so for S → a, we don't add S_{ab} production, so S_{ab} has no base case from S → a. But from S → SA, we have S_{ab} → S_a A_b, which can generate ε, since S_a has ε and A_b has ε. But ε is not b. So how do we generate b? Perhaps I missed something. In the construction, for X → Y Z, we have X_{ab} → Y_a Z_b, which in this case for S → S A, we have S_{ab} → S_a A_b. S_a generates {w | wa ∈ L(S)} = {ε} ∪ {a}{a,b}*, and A_b generates {w | bw ∈ L(A)} = {ε} as above. So S_a A_b generates {ε} ∪ {a}{a,b}* · {ε} = {ε} ∪ {a}{a,b}*, which is L(S) with ε added. But L(S) is {a}{a,b}*, so this is {ε} ∪ {a}{a,b}*. But Del(L(S)) includes strings that start with b, like b, so this is not enough. The issue is that when we remove ab from a string in L(S), the resulting string might start with b, but in our construction, S_{ab} only produces strings that start with a or are empty, from this production. But we also have S_{ab} → S_{ab} A, which can add symbols after, but if S_{ab} initially only produces strings starting with a, then S_{ab} A produces strings starting with a followed by a or b, so still starting with a, or if S_{ab} produces ε, then S_{ab} A produces a or b, so yes! If S_{ab} can generate ε, then S_{ab} A can generate A, which is a or b, so it can generate b. So from S_{ab} → S_{ab} A, if S_{ab} derives ε, then it can derive A, which is b, so b can be generated. And how does S_{ab} derive ε? From S_{ab} → S_a A_b, S_a can derive ε, A_b can derive ε, so S_a A_b derives ε, so S_{ab} derives ε. Then from S_{ab} → S_{ab} A, S_{ab} can derive ε, then derive A, so derive a or b. Then from S_{ab} → S_{ab} A, it can derive longer strings. So indeed, S_{ab} can generate strings that start with b. For example, to generate b: S_{ab} → S_{ab} A → (using S_{ab} → ε? But S_{ab} → S_a A_b → ε if we derive S_a → ε and A_b → ε, but S_{ab} → S_{ab} A requires S_{ab} to derive something, but since we have multiple productions, we can derive S_{ab} → S_a A_b → ε · ε = ε, so S_{ab} can derive ε. Then from S_{ab} → S_{ab} A, we can have S_{ab} derives ε, then A derives b, so S_{ab} A derives b. Similarly, to generate a: S_{ab} → S_{ab} A → and A derives a, so a. But a is also generated from S_{ab} → S_a A_b → a · ε = a, since S_a can derive a (from S → a, S_a → ε? No, S_a can derive strings from S A_a, but S A_a can derive S since A_a → ε, and S can derive a, so S_a can derive a? Let's see the productions for S_a. S_a → ε | S A_a S A_a: S can derive a, and A_a → ε, so S A_a can derive a · ε = a, so S_a can derive a directly from S A_a → a if we derive S → a and A_a → ε. So S_a can derive a. Then S_{ab} → S_a A_b → a · ε = a. So multiple ways. But for b, only through S_{ab} → S_{ab} A. Now, back to the productions for the given grammar. So for the answer, we need to list all productions. First, original productions from P: S → SA | a A → a | b Now, for the new nonterminals: From S → a: add S_a → ε From A → a: add A_a → ε From A → b: add A_b → ε From S → SA (which is X → Y Z with X=S, Y=S, Z=A): - Add S_{ab} → S_{ab} A - Add S_{ab} → S A_{ab} - Add S_{ab} → S_a A_b - Add S_a → S A_a - Add S_b → S_b A Now, for A, since A has no productions of the form X → Y Z, we don't add anything else for A_{ab}, A_a, A_b except what we have from the terminal productions. But A_{ab} has no productions from above, so it doesn't derive anything. A_a → ε A_b → ε Now, for S_b, we have S_b → S_b A from above, and no other productions, so S_b derives nothing, which is correct as we said. Now, for the list, we need to write all productions for each symbol. The template asks for: S → ?, S_{ab} → ?, S_a → ?, S_b → ?, A → ?, A_{ab} → ?, A_a → ?, A_b → ? So let's compile. S → SA | a (original) S_{ab} → S_{ab} A | S A_{ab} | S_a A_b (from S → SA) S_a → S A_a | ε (from S → SA and S → a: from S → SA add S_a → S A_a, from S → a add S_a → ε) S_b → S_b A (from S → SA) A → a | b (original) A_{ab} → ? (no productions, so we should leave it blank or say nothing, but in the template, it says "A_{ab}\rightarrow ?" so probably we need to write what productions it has, but since none, we can put nothing or perhaps indicate no production, but since it's a grammar, if there is no production, it doesn't derive anything, so we can leave it blank or write nothing. But in the example, they have productions like "S_{ab}\rightarrow S_{ab}A\mid\varepsilon" so we need to list the productions. Similarly, A_a and A_b have productions. A_a → ε (from A → a) A_b → ε (from A → b) A_{ab} has no productions, so we should not list any production for A_{ab}. In the template, it says "A_{ab}\rightarrow ?" so perhaps we leave it with no right-hand side, but in grammar, we usually list productions only if they exist. Looking at the example: in the example, they have "S_{ab}\rightarrow S_{ab}A\mid\varepsilon" so they list multiple productions. So for A_{ab}, since no productions, we might write nothing or perhaps put a placeholder, but I think we should only list productions that exist. Similarly, for S_b, we have S_b → S_b A, so we list that. So for the answer, I'll list the productions as per the construction. Now, for S', the start symbol is S_{ab}. So let's write the answer.
Answer
<answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA \mid a$ $S_{ab}\rightarrow S_{ab}A \mid S A_{ab} \mid S_a A_b$ $S_a\rightarrow S A_a \mid \varepsilon$ $S_b\rightarrow S_b A$ $A\rightarrow a \mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
0 mistakes
deepseek/deepseek-r1-0528
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Wir betrachten die Sprache L = {abbaba, baa, ab, a, b}. Wir müssen Del(L) berechnen, definiert als { vw | v, w ∈ Σ* und vabw ∈ L }. Das heißt, für jedes Wort in L, entferne genau ein Vorkommen von "ab" und füge den Rest zusammen. Wir gehen jedes Wort in L einzeln durch: 1. Wort: abbaba Mögliche Wege, "ab" zu entfernen: - Wenn v = ε, dann wäre vabw = abw = abbaba, also w = baba. Dann ist vw = ε · baba = baba. - Wenn v = a, dann vabw = a·ab·w = aabw. Aber aabw soll abbaba sein? aabw = abbaba → w müsste bbaba sein, aber aabw ≠ abbaba. Also nicht möglich. - Wenn v = ab, dann vabw = ab·ab·w = ababw. Setze gleich abbaba: ababw = abbaba → w = aba. Dann vw = ab · aba = ababa? Nein: vw ist v und w ohne das entfernte "ab". Wenn wir vabw haben und vabw ∈ L, dann ist vw = v·w (ohne das ab in der Mitte). In dem Fall: v = ab, ab·w (w hier ist der Teil nach dem entfernten ab) -> vabw = ab·ab·w, also ist das entfernte "ab" das zweite "ab". Aber in abbaba: Positionen: a b b a b a Mögliche "ab" Vorkommen: - Index 0-1: "ab" - Index 3-4: "ab" (b an Index 1? Nein, Index 0:a,1:b,2:b,3:a,4:b,5:a. Also "ab" bei 0-1 und auch bei 3-4? Position 3:a,4:b -> ja, "ab" bei 3-4. Also zwei Vorkommen. Wir können entweder das erste "ab" (Indizes 0-1) entfernen: Dann v = ε (das vor dem entfernten ab), w = baba (nach dem ab). Dann vw = εbaba = baba. Oder das zweite "ab" (Indizes 3-4) entfernen: Dann v = abb (Teil vor dem ab, also Zeichen 0,1,2: a,b,b -> abb), w = a (Teil nach dem ab, Zeichen 5: a). Also vw = abb·a = abba. Also für abbaba: Entweder baba oder abba. Prüfen: ursprünglich: abbaba Erstes 'ab' entfernen: von vorne das erste ab: dann bleibt baba -> vw = baba. Zweites 'ab' entfernen: die letzten zwei Zeichen? Nein, das ab bei Index 3-4: v = a b b (erste drei Zeichen), w = a (letztes Zeichen), also vw = abba. Also: abbaba ergibt zwei Wörter in Del: baba und abba. 2. Wort: baa Gibt es "ab" als Teilwort? In baa: b, a, a. Kein "ab" als Teilwort. Daher gibt es kein v und w, so dass vabw = baa. Denn wenn vabw = baa, dann muss "ab" irgendwo vorkommen. Hier kommt es nicht vor. Also trägt baa nichts bei. 3. Wort: ab Das Wort ist "ab". Wir können entfernen: v = ε, w = ε, denn vabw = ε ab ε = ab ∈ L. Also vw = εε = ε. Also: ε. 4. Wort: a Kein "ab" enthalten, also kein Beitrag. 5. Wort: b Kein "ab", also kein Beitrag. Somit haben wir aus ab: ε, aus abbaba: baba und abba. Jetzt sammeln wir alle: - ε (von ab) - baba (von abbaba, erstes ab entfernt) - abba (von abbaba, zweites ab entfernt) Gibt es noch andere Wörter? Nein. Aber im Beispiel steht: Del({abbaba,baa,ab,a,b}) = {ε, ab, bbab} ? Das passt nicht zu uns. Beispiel: Beispiel behauptet: {ε, ab, bbab} Wir haben: Aus ab: ε Aus abbaba: baba und abba baba und abba sind nicht in der Beispielmenge. Das Beispiel muss falsch sein? Oder wir haben einen Fehler. Vielleicht ist das Beispiel für eine andere Menge. Lass uns die Definition überprüfen: Del(L) := {vw | v,w ∈ Σ* ∧ vabw ∈ L} Für ab: vabw = ab. Sei v=ε, w=ε, dann vabw=ε ab ε = ab ∈ L → vw=εε=ε. Für abbaba: Option 1: v=ε, abw = abbaba → w = baba → vw = ε w = baba Option 2: v = a, abw = abbaba? vabw = a ab w = aabw. Setze gleich abbaba: aabw = abbaba? Das geht nur wenn aabw gleich abbaba ist, aber aab... vs abb... (zwei a vs a b) → nein. Option 2: wir haben gesehen: wenn das "ab" bei Index 3-4 entfernt: v = Zeichen 0..2 = a,b,b also "abb", und w = Zeichen 5 = a, also vw = abb a = abba. Option 3: noch ein Vorkommen? Wir könnten das erste a und das zweite b? Aber als Teil muss "ab" zusammenhängend sein. Nicht möglich. Also: baba und abba. Aber was ist mit "bbab"? Im Beispiel genannt. Vielleicht für baa? baa enthält kein "ab", also nichts. Oder wir haben einen Fehler beim Wort baa? Das Wort baa: b,a,a. Wenn wir vabw=baa setzen, dann müsste "ab" irgendwo vorkommen, aber in baa nicht. Also unmöglich. Aber vielleicht kann w oder v mehr enthalten? Nein, denn vabw muss genau baa sein. Vielleicht durch Entfernen an anderen Stellen? Aber da kein "ab", gibt es keine Zerlegung. Also: {ε, baba, abba} Aber das Beispiel sagt {ε, ab, bbab}. Das passt nicht. Vielleicht habe ich die Definition falsch verstanden: Andere Möglichkeit: Beim Entfernen von "ab", könnten wir es als Teil eines Wortes sehen. Für das Wort "baa": kein "ab", also nichts. Vielleicht gibt es noch ein anderes Wort? L = {abbaba, baa, ab, a, b} Vielleicht aus "ab": Können wir v und w so wählen, dass vabw = ab. Nur v=ε, w=ε -> vw=ε. Kein anderer Weg, denn wenn v=a, dann vabw = a ab w. Dann müsste aabw = ab sein, was unmöglich. Also nur ε. Vielleicht interpretiere ich das Beispiel falsch? Es ist nur ein Beispiel und muss nicht stimmen. Aber vielleicht ist im Beispiel L anders? Nein, es steht: Del({abbaba,baa,ab,a,b}) Vielleicht für "baa": wenn wir v=b, a, w=a, dann vabw = ba a? Nein, vabw muss baa ergeben. Aber vabw: v, dann ab, dann w. Also z.B. v=b, ab, w=a -> b·ab·a = baba, nicht baa. Also geht nicht. Vielleicht ist die Definition: man entfernt ein Vorkommen von "ab", aber das Wort muss vorhanden sein. Bei baa nicht. Also: nur ε (von ab) und baba, abba (von abbaba). Aber baba und abba, und ε. Vielleicht ist das Beispiel falsch oder bezieht sich auf eine alte Version. Wir sind festgelegt. Aber lass uns das Wort "a" betrachten: Wort a. Suche vabw=a. Geht nur, wenn v=ε, w=ε: ε ab ε = ab ≠ a. Oder v=a, abw -> a ab w = aabw = a? Dann müsste abw = ε, so dass a und dann noch abw kommt? Nein, aabw ≠ a. Also kein Beitrag. Wort "b": ähnlich. Also: Del(L) = {ε, baba, abba} Aber das Beispiel gibt {ε, ab, bbab}. Vielleicht handelt es sich um einen anderen Faltung. Vielleicht entfernen wir genau ein Vorkommen, und es kann vorkommen, dass das Wort nicht mehrfach erscheint. Oder ich habe die Zerlegung für abbaba falsch gemacht. Alternative Zerlegung: vabw = abbaba - Wenn wir das erste 'ab' nehmen: v = ε, w = baba -> vw= baba - Wenn wir das letzte 'ab' nehmen: ... das letzte 'ab' ist bei Position 3-4: v = Zeichen 0 bis 2: a,b,b -> "abb", w = Zeichen 5: a -> vw=abb+a=abba Gibt es ein drittes? Nein. Vielleicht: v= a, w = aba? Dann vabw = a ab aba = aababa, nicht abbaba. Oder v= ab, w = ba: vabw = ab ab ba = ababba ≠ abbaba. Also nur zwei. Aber im Beispiel wird "bbab" erwähnt. Wie käme das zustande? Vielleicht von baa? baa: b,a,a. Wenn wir einfügen? Nein, Entfernen. Kein "ab". Vielleicht: Wenn wir für a oder b was bekommen? Eher nein. Vielleicht wegen der Definition: ist abba = (abb) und a, also w=a. Aber nicht bbab. Neue Idee: Im Wort abbaba, wenn wir das 'ab' entfernen, aber nicht als zusammenhängendes Teil, sondern z.B. a entfernen und b an anderer Stelle? Aber nein, es muss genau das Teilwort "ab" sein, das entfernt wird. Also: {ε, baba, abba} Aber im Beispiel: {ε, ab, bbab} Vielleicht ist "bbab" von abbaba, wenn wir anfangen? Zum Beispiel: v= a, abw = abbaba? Wenn v=a, dann a ab w = aabw = abbaba -> dasselbe wie oben, nicht möglich. Oder: man kann das ab in der Mitte entfernen? Etwa: Wort: a b b a b a Wenn wir das ab bei Index 3-4 entfernen: v=abb (Schrift: Zeichen 0,1,2: a,b,b -> "abb"), w=a -> abba Wenn wir das ab bei Index 0-1 entfernen: v=ε, w=baba -> baba Jetzt: wenn wir v= b, w= aba: vabw = b ab aba = bababa ≠ abbaba Oder v= ab, w= aba? ab ab aba = abababa Nicht gleich. Vielleicht ist "bbab" von einem anderen Wort. L ist auch baa -> b a a. Angenommen, wir interpretieren baa als b und dann aa, aber für vabw: Wenn vabw = baa, und v und w: z.B. v=b, abw = baa -> also abw = aa? Dann w = a, dann vabw = b ab a = baba, nicht baa. Oder v=ε, abw = baa? Dann abw = baa, so w muss baa sein? ab (w) = baa? Also abw: ab gefolgt von w, also ab baa? ab+baa = abbaa, nicht baa. Also unmöglich. Vielleicht ist das Wort "a" oder "b" anders, aber nein. Vielleicht im Wort "ab": außer ε auch andere? Zum Beispiel wenn v=a, w=ε? Dann vabw = a ab ε = aab, nicht ab. Oder v=ε, w=ε -> ab. Einzige Möglichkeit: v=ε, w=ε -> ε. Also ich glaube, das Beispiel ist falsch oder bezieht sich auf eine andere Aufgabe. Wir machen weiter. Vielleicht für abbaba: wenn wir "ab" am Anfang entfernen, bekommen wir "baba". Wenn wir "ab" am Ende entfernen? am Ende: a b a - die letzten beiden sind a b, also "ab"? Indizes: 4:b,5:a? Position 4: b, 5:a => b a, nicht a b. Das letzte Zeichen ist a, davor b: 4 und 5: b und a -> b a, was "ba" ist, nicht "ab". Also nur die beiden Stellen: Anfang (0-1) und Mitte (3-4). Also baba und abba. Jetzt sammeln: Aus ab: ε Aus abbaba: baba, abba Aus den anderen: nichts Also Del(L) = {ε, baba, abba} Aber warum sagt das Beispiel {ε, ab, bbab}? Vielleicht ist bbab aus abbaba? Wenn v= a, w= bba: vabw = a ab bba = aabbba, nicht abbaba. Oder v= ab, w= ba: ab ab ba = ababba, nicht gleich. Vielleicht ist es ein Tippfehler im Beispiel. Vielleicht meinen sie Del für ein anderes L. Wir müssen es so machen, wie wir es verstehen. Also unsere Antwort: {ε, baba, abba} Aber lass uns schön aufschreiben: die Wörter sind ε (das leere Wort), baba, und abba. Jetzt in normaler { } Notation. In der Antwort müssen wir es als Menge aufschreiben. Aber im angegebenen Template: $\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$ Und das Beispiel hat eine geschriebene Menge. Also schreiben wir: $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$ Aber überprüfe, ob abba wohlgeformt ist. Ja. Vielleicht müssen wir die Wörter alphabetisch sortieren oder so? Nicht spezifiziert. Also würde ich das so machen. Aber bin immer noch verwirrt von dem Beispiel. Vielleicht muss ich die Definition Zählen. Nochmal: Del(L) = { vw | v,w in Σ* und vabw in L } Für jedes wört in L, prüfe ob es als vabw geschrieben werden kann für ein Vorkommen von "ab" im Wort. Für ab: vabw = ab -> v=ε, abw = ab -> w = ε? abw bedeutet ab gefolgt von w, also wenn abw = ab, then w muss ε sein, und v=ε. -> vw=ε. Könnte v = ab, und w so dass abw = ε? Un möglich. Also nur eine Möglichkeit. Für abbaba: Möglichkeiten: - v=ε, abw=abbaba -> w muss baba sein, also vw = ε w = baba. - v aus ersten k Zeichen, dann "ab", dann w. Zeichen: 0:a,1:b -> v=ε, abw: ab baba = abbaba -> w=baba, vw= baba Oder Zeichen 3:a,4:b -> ab an Position 3-4. Dann v = abb (0..2: a,b,b -> abb), ab, w = a (nur letztes a). -> vw = abba Oder vielleicht: Teilt bei Index 1-2? aber Zeichen 1:b, 2:b -> bb, nicht ab. Index 2-3: b und a -> b a -> "ba", nicht ab. Index 4-5: b und a -> b a -> "ba", nicht ab. Also nur zwei. Kein anderen. Für baa: kein "ab" drin, also keine Möglichkeit vabw=baa zu haben, dass "ab" drin ist. Für a und b: ähnlich. Also drei Wörter: ε, baba, abba. Jetzt schreiben wir in das Template. Vielleicht das Beispiel hat ein anderes L? Aber es steht explicit das selbe. Vielleicht ist in {abbaba,baa,ab,a,b} das wort “baa” “bab” oder so? Steht aber baa. Oder beim entfernen aus baa: wenn wir “ab” an einer Stelle einfügen? Nein, wir entfernen, nicht einfügen. Die Definition: wir nehmen wörter aus L und entfernen ein "ab". Da “baa” kein “ab” enthält, können wir auch nichts entfernen. Also: Ich gebe: ε, baba, abba. Für das Antwortfeld. Das Format: <answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$ </answer> Da das Beispiel im Exercise falsch sein kann, so muss es sein.
Answer
Gemäß der Definition, $\Del(L) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in L\}$, werden die Wörter in $\Del(\{abbaba,baa,ab,a,b\})$ berechnet, indem für jedes Wort in $L$ alle möglichen Wege betrachtet werden, das Teilwort $ab$ genau einmal zu entfernen. Dabei ist $v$ der Teil vor dem entfernten $ab$ und $w$ der Teil nach dem entfernten $ab$, und $vw$ ist das resultierende Wort. - **$abbaba$:** - Nur zwei Vorkommen von $ab$: 1. Entferne $ab$ an den Positionen 0-1: $v = \varepsilon$, $w = baba$, $vabw = ab baba = abbaba \in L$ $\Rightarrow$ $vw = \varepsilon \cdot baba = baba$. 2. Entferne $ab$ an den Positionen 3-4: $v = abb$ (Zeichen 0-2), $w = a$ (Zeichen 5), $vabw = abb \cdot ab \cdot a = abbaba \in L$ $\Rightarrow$ $vw = abb \cdot a = abba$. - Keine weiteren Vorkommen, da keine anderen zusammenhängenden $ab$-Teilwörter existieren (Position 2-3: $bb$; Position 4-5: $ba$, nicht $ab$). Beitrag: $\{baba, abba\}$. - **$baa$:** Das Wort enthält kein Teilwort $ab$. Es gibt keine Zerlegung $vabw = baa$, da sonst $ab$ als Infix enthalten sein müsste. Beitrag: $\emptyset$. - **$ab$:** - Einziges Vorkommen von $ab$ an Position 0-1: $v = \varepsilon$, $w = \varepsilon$, $vabw = ab \in L$ $\Rightarrow$ $vw = \varepsilon$. Beitrag: $\{\varepsilon\}$. - **$a$:** Kein Teilwort $ab$. Beitrag: $\emptyset$. - **$b$:** Kein Teilwort $ab$. Beitrag: $\emptyset$. Alle Ergebnisse vereinigen: $\Del(\{abbaba,baa,ab,a,b\}) = \{baba, abba, \varepsilon\}$. Sortiert ergibt sich: $\{\varepsilon, abba, baba\}$ (die Sortierung folgt der lexikografischen Ordnung, ist aber für die Antwort nicht zwingend erforderlich). <answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Gemäß der Definition, $\Del(L) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in L\}$, werden die Wörter in $\Del(\{abbaba,baa,ab,a,b\})$ berechnet, indem für jedes Wort in $L$ alle möglichen Wege betrachtet werden, das Teilwort $ab$ genau einmal zu entfernen. Dabei ist $v$ der Teil vor dem entfernten $ab$ und $w$ der Teil nach dem entfernten $ab$, und $vw$ ist das resultierende Wort.
- **$abbaba$:**
- Nur zwei Vorkommen von $ab$:
1. Entferne $ab$ an den Positionen 0-1:
$v = \varepsilon$, $w = baba$, $vabw = ab baba = abbaba \in L$ $\Rightarrow$ $vw = \varepsilon \cdot baba = baba$.
2. Entferne $ab$ an den Positionen 3-4:
$v = abb$ (Zeichen 0-2), $w = a$ (Zeichen 5), $vabw = abb \cdot ab \cdot a = abbaba \in L$ $\Rightarrow$ $vw = abb \cdot a = abba$.
- Keine weiteren Vorkommen, da keine anderen zusammenhängenden $ab$-Teilwörter existieren (Position 2-3: $bb$; Position 4-5: $ba$, nicht $ab$).
Beitrag: $\{baba, abba\}$.
- **$baa$:**
Das Wort enthält kein Teilwort $ab$. Es gibt keine Zerlegung $vabw = baa$, da sonst $ab$ als Infix enthalten sein müsste. Beitrag: $\emptyset$.
- **$ab$:**
- Einziges Vorkommen von $ab$ an Position 0-1:
$v = \varepsilon$, $w = \varepsilon$, $vabw = ab \in L$ $\Rightarrow$ $vw = \varepsilon$. Beitrag: $\{\varepsilon\}$.
- **$a$:**
Kein Teilwort $ab$. Beitrag: $\emptyset$.
- **$b$:**
Kein Teilwort $ab$. Beitrag: $\emptyset$.
Alle Ergebnisse vereinigen:
$\Del(\{abbaba,baa,ab,a,b\}) = \{baba, abba, \varepsilon\}$.
Sortiert ergibt sich: $\{\varepsilon, abba, baba\}$ (die Sortierung folgt der lexikografischen Ordnung, ist aber für die Antwort nicht zwingend erforderlich).
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Wir betrachten die Behauptung: Für jede endliche Sprache L gilt Del(Del(L)) = DelTwo(L). Zuerst erinnern wir uns an die Definitionen: - Del(L) = { vw | v,w ∈ Σ* und vabw ∈ L } - DelTwo(L) = { uvw | u,v,w ∈ Σ* und uabvabw ∈ L } Del(Del(L)) bedeutet, dass wir Del auf L anwenden und dann noch einmal auf das Ergebnis anwenden. Also Del(Del(L)) = Del( { vw | vabw ∈ L } ). Wir müssen zeigen oder widerlegen, dass dies gleich DelTwo(L) ist für jede endliche Sprache L. Angenommen, die Gleichheit gilt. Wir sollten versuchen, ein Gegenbeispiel zu finden, wenn sie nicht gilt. Betrachten wir eine endliche Sprache L, für die Del(Del(L)) ≠ DelTwo(L) ist. Wir brauchen ein Wort, das in DelTwo(L) ist, aber nicht in Del(Del(L)), oder umgekehrt. Beachte: DelTwo(L) erfordert, dass wir zwei "ab" entfernen, aber auf eine bestimmte Weise: wir entfernen zwei "ab"-Teilwörter, wobei das erste "ab" vor dem zweiten kommt, und sie können sich überlappen? Die Definition sagt: u ab v ab w ∈ L. u, v, w sind beliebige Wörter, also können die "ab" überlappen. In Del(Del(L)) entfernen wir zuerst ein "ab" und dann auf dem Ergebnis noch einmal ein "ab". Aber bei diesem zweifachen Entfernen könnte sich die Position ändern, besonders wenn die entfernten "ab" überlappen. Konstruieren wir ein Gegenbeispiel. Nehmen wir L = {abab}. Das ist endlich. Jetzt berechnen wir Del(L). Del(L) = { vw | vabw ∈ L } L hat nur ein Wort: abab. Mögliche Zerlegungen, wo vabw = abab. - Fall 1: v leer, w beginnt nach ab. Also v=ε, abw=abab ⇒ w=ab. Dann vw=ε * ab = ab. - Fall 2: v endet mit a, w beginnt mit b? Wir suchen v, w so dass vabw=abab. - Wenn das entfernte "ab" an Position 0: v=ε, w=ab? vabw= ab ab ≠ abab? abab ist a b a b. besser: abab = a b a b. "ab" Teilwörter: - Position 0-1: a b (erste beiden Zeichen) - Position 2-3: a b (letzte beiden Zeichen) Also zwei Vorkommen. Erstes Vorkommen entfernen: v=ε, w=ab (denn vabw=ε ab ab = abab? Nein: εabw = abw, setze gleich abab ⇒ w=bab? Falsch. vabw= L-Wort. Also vabw = abab. Wenn ich das erste ab entferne: von vorne, v leer, dann muss abw = abab ⇒ w=bab? "abw" sollte abab ergeben: ab + w = abab ⇒ w = ab. Aber w=ab, dann v=ε, vw=ε * ab = ab. Wenn ich das zweite ab entferne: v ist der Teil davor, also v=ab, w=ε (denn v ab w = ab + ε = ab, aber L ist abab. vabw muss abab sein: v + ab + w = abab. Also vabw = v ab w = abab. Also wenn ab entfernt wird am Anfang: v=ε, ab + w = abab ⇒ w=ab, vw=ε ab=ab. Wenn ab entfernt wird am Ende: v ab w = abab, also v muss ab, w=ε, vabw = ab + ab + φ = abab, ja. Also vw=ab. Also Del(L) = {ab} für beide Fälle? Also {ab}. Aber {ab} aus erster Entfernung, egal welches, es ist so. Del(L) = {ab}. Jetzt Del(Del(L)) = Del( {ab} ). Del angewendet auf {ab}: Del({ab}) = { vw | vabw = ab } vabw = ab. Möglich: v=ε, w=ε? vabw=ε ab ε=ab ∈ L? L={ab}, ja. vw=εε=ε. Gibt es andere? Nur wenn v leeres oder nicht? Wenn ab entfernt von ab: v=ε,w=ε oder? Aber vabw=ab. Wenn v leer, w muss so dass abw=ab, w=ε. Wenn w leer, v muss so dass vab=ab, v=ε. Keine anderen Möglichkeiten. Also Del({ab}) = {ε}. Jetzt berechnen wir DelTwo(L) für L={abab}. DelTwo(L) = { uvw | u ab v ab w ∈ L } L hat abab, also u ab v ab w = abab. Möglichkeiten: Es kann mehrere Arten geben, zu sehen, wo die zwei "ab" sind. Beide "ab" können überlappen? u, v, w sind beliebige Wörter, so dass u ab v ab w = abab. Überlegen wir uns die Länge: |u| + |v| + |w| + 4 = |abab| = 4, also |u| + |v| |w| = 0? Nein, u ab v ab w, Länge |u| + 2 + |v| + 2 + |w| = |u| + |v| + |w| + 4 = 4, also |u| + |v| + |w| = 0, also u=v=w=ε. Aber dann u ab v ab w = ε ab ε ab ε = abab, ja. Also wenn u,v,w leer, dann ist es abab, also sollte uvw = ε ε ε = ε. Aber gibt es andere Möglichkeiten? Zum Beispiel, wenn die zwei "ab" überlappen? In abab, die Teilwörter ab bei 0-1 und ab bei 2-3, keine Überlappung. Könnten wir das erste ab von 0-1 und ein anderes ab? Es gibt nur zwei. Wenn die "ab" sich überlappen sollen, zum Beispiel in "aba", aber hier nicht. Nur eine Möglichkeit: die beiden ab sind separat. Also u = ε (vor dem ersten ab), dann ab, dann v für zwischen den ab, hier zwischen Position 2? u ab v ab w = ε ab v ab w. Das muss gleich abab sein. Also: ε ab v ab w = ab v ab w = abab. Also ab v ab w = abab. Kürzen: v ab w = ab. Kann v und w weniger sein. v ab w = ab. Wie zuvor: wenn v=ε, w=ε, dann v ab w = ε ab ε = ab, ja. Wenn v=a, w ungleich? v ab w = ab: muss a ab w = ab? aab w = ab, das geht nicht, denn aab ≠ ab. Ähnlich, v=ε, w=b? ab b = abb ≠ ab. Oder v=b, w beliebig, aber v ab w = b ab w, sollte ab ergeben? babw=ab, unmöglich. Also nur v=ε, w=ε. In diesem Fall, u=ε, v=ε, w=ε, uvw=ε. Könnten wir die Reihenfolge der Entfernung ändern? Sagen wir, das erste ab zu entfernen ist das am Ende. DelTwo(L) erlaubt es, die zwei ab in beliebiger Reihenfolge in uvw zu haben, da u, v frei sind. Aber hier ist u ab v ab w = abab. Wenn u das Stück vor dem ersten ab, dann ab, dann v für zwischen, dann ab, dann w. In diesem Fall, wenn wir das zweite ab zuerst nehmen möchten. In abab: Positionen. Angenommen, das erste entfernte ab ist bei Position 2-3: also das Ende. Dann: davor ist u, dann das erste ab, dann v, dann das zweite ab? Nein, die Definition ist u ab v ab w, wo die zwei ab in der Reihenfolge auftreten. Also muss das erste ab vor dem zweiten ab kommen. In abab, das erste ab bei 0-1, das zweite bei 2-3, so dass u von 0-0 leer, ab, dann v von 2-1? Nein: zwischensstück. Nach dem ersten ab kommt v ab w. Also für abab: nach erstem ab (Position 0-1) ist wen? Position 2 ist a, 3 b, also zwischen erster ab und zweiter ab ist nichts? Also v = ε, dann ab w. u ab v ab w: u ist vor erstem ab, hier u=ε, dann ab, dann v, was zwischen den ab ist, hier Position 2? Index: Wort a b a b. Nach erstem ab (Zeichen 1), Zeichen 2 ist a (Anfang der zweiten "ab"?). Zwischen erster "ab" und zweiter "ab": Zeichen 1 bis? Erste "ab": Index 0-1, dann Index 2-3 zweite "ab", also zwischen ist nichts, v=ε. dann ab w, und w sollte kommen nach zweitem ab? Nach zweitem ab ist Ende, also w=ε. Also u=ε, v=ε, w=ε. Wenn wir lokalisieren, dass das erste ab bei Index 0-1 und das zweite bei Index 2-3. Gibt es andere Möglichkeiten? Ja, wenn das Wort "abab" betrachtet wird und man die beiden "ab" auf verschiedene Weise entfernt. Zum Beispiel, könnte das erste ab aus dem ersten und zweiten Zeichen stammen und das zweite ab überlappend? In Literal ein Mal, nicht überlappend. Aber aus Zuweisung: u ab v ab w muss genau solche sein, dass wenn man die zwei "ab" einfügt, bekommt man L-Word. Aber für L={abab} gibt es nur eine Möglichkeit: u=v=w=ε, uvw=ε. Anderes Beispiel: Angenommen das Wort mit überlappenden "ab". Betrachten Sie L = {aba}. Aber aba enthält ein "ab" bei Position 0-1, aber kein zweites "ab". Position 1-2 ist "ba", nicht "ab". Also ein "ab". L muss zwei "ab"s haben, damit DelTwo nicht leer ist. Nehmen Sie L = {ababab}. Das ist groß. Besser einfacher. Ich brauche die Möglichkeit von Überlappung oder ähnlich. Definieren wir L = {ab}. DelTwo(L) = { uvw | u ab v ab w ∈ L } = leere Menge, denn L hat nur {ab}, |ab|=2 aber u ab v ab w hat mindestens 4 Zeichen (da ab + ab = 4, plus u,v,w etc.), also |L Wort| = 2 < 4, also unmöglich. Also DelTwo(L) = ∅. Del(L) = für L={ab} Del({ab}) = {ε}, wie oben. Del(Del(L)) = Del({ε}) = ? Del angewendet auf {ε} = { vw | vabw ∈ {ε} }, aber vabw=ε, aber vabw muss Gleich ε sein, aber ε hat Länge 0, vabw has mindestens 2, so unmöglich. Deshalb Del({ε}) = ∅. Also Del(Del(L)) = ∅, und DelTwo(L) = ∅, gleich also. Nicht hilfreich. Um den Unterschied zu sehen, nehmen wir ein Wort in dem die zwei zu entfernenden "ab" überlappen. Zum Beispiel, L = {abab}, obwohl es nicht überlappt. L = {aabb}? Aber aabb hat Teilworts "ab" nur bei Positions 1-2: a a b b, bei Index 0-1: aa, nicht ab; 1-2 ab? a und b, ab ja; 2-3: b b, nicht ab. Also ein "ab" bei 1-2. Nur ein "ab", so DelTwo leer und Del geht zu {vw} mit vabw=aabb, if we remove ab at 1-2: v von 0-0: a, w von 3-3: b, also vw= a b = ab. Del(L) = {ab}, Del(Del(L)) Del von {ab} zu {ε}, wie vorher. DelTwo für L={aabb} u ab v ab w muss einfügen zwei ab mit u,v,w. u ab v ab w = aabb. Mindestens 4 Zeichen, |aabb|=4. Also u ab v ab w = aabb. Für |u|+|v|+|w| = 0? Weglänge 4, so |u| + |v| + |w| + 4 =4, also leere, u=v=w=ε, ε ab ε ab ε = abab ≠ aabb. Kein Weg, also DelTwo(L)= ∅. Aber Del(Del(L)) = Del({ab}) = {ε} ≠ ∅, also nicht gleich. Del(L) für L= {aabb}: vabw = aabb. Entferne ab: das einzige ab bei Position 1-2. v = Prefix bis vor ab, also v=a (Index 0-0), w = Suffix nach ab, b (Index 3-3), also vw= a * b = ab. Also Del(L) = {ab}. Dann Del(Del(L)) = Del({ab}) = { vw | vabw ∈ {ab} }. vabw = ab. Wie vorher, nur Möglichkeit v=ε, w=ε, vw=ε. So Del(Del(L)) = {ε}. DelTwo(L) = { uvw | u ab v ab w = aabb }, aber u ab v ab w ist mindestens 4 Zeichen, und |aabb| ist 4, also uvw +4 Zeichen, |uvw| =0, also u=v=w=ε, then uabvabw= ab ab = abab ≠ aabb. Kein anderes Weg, da keine Variation. zB falls u="a", dann u ab v ab w = a ab v ab w, muss gleich aabb. Also a + ab + v + ab + w = aabb. Also "aab" + v ab w = aabb , also v ab w = bb. v ab w = bb. Mit geht nur wenn v=bb und w leer, aber vabw = bb ab? vabw=bb, unmöglich. Oder v=ε, abw=bb, w=bb, dann vabw= abbb ≠ bb. Oder v=b, abw=bb? bambw=bb, falsch. Also keine Möglichkeit, DelTwo(L) = ∅ ≠ {ε} = Del(Del(L)). Also für L = {aabb}, haben wir Del(Del(L)) = {ε} ≠ ∅ = DelTwo(L). Ist L endlich? Ja, ein Element. Also die Aussage ist falsch. Jetzt müssen wir prüfen, ob aabb ein giltiges Wort ist, und L = {aabb}. Ja, mit Σ={a,b}. Und formal: DelTwo(L) muss leer sein, wie gezeigt. Del(L) = {ab}, wie berechnet. Del(Del(L)) = Del({ab}) = {ε}. Also nicht gleich. Ein weiteres Gegenbeispiel: nimm L = {abab}, haben wir Del(Del(L)) = {ε} und DelTwo(L) = {ε}, gleich? Für L={abab}, DelTwo(L) = {ε}, Del(Del(L)) = {ε}, gleich. Aber mit L={aabb} ist es anders. Also Gegenbeispiel mit L={aabb}. Oder zur Klarstellung, aabb bedeutet a,a,b,b. Jetzt für Punkt b, die Behauptung: für jede endliche Sprache L, Del( Del(L) ) = DelTwo(L). Wir haben ein Gegenbeispiel, so müssen wir "Falsch" antworten und das Gegenbeispiel geben. Also Option: sehen die Optionen. <option id="1">Wahr</option> <!-- 0 oder 1 --> <option id="2">Falsch</option> <!-- 0 oder 1, also wenn Falsch, dann hier 1, und id="1" 0 --> Und dann den <answer> mit dem Gegenbeispiel. Das Format. <option id="1">0</option> // not Wahr <option id="2">1</option> // Falsch, da wir widerlegen Und <answer id="3"> sollte das Gegenbeispiel beschreiben. Wahrscheinlich müssen wir L angeben und zeigen. Beispiel: L = {aabb} Dann: Del(L) = {ab} (weil wir "ab" aus aabb entfernen, wobei v=a, w=b, da vabw = a + ab + b = aabb ∈ L, so vw=ab) Del(Del(L)) = Del({ab}) = {ε} (weil aus "ab" entfernen wir "ab", v=ε, w=ε, vabw=ab) DelTwo(L) ist leer, weil es keine Möglichkeit gibt, zwei nicht-überlappende oder überlappende "ab"s in aabb zu entfernen? u ab v ab w = aabb. We wie oben, keine Lösung: |u ab v ab w| min 4, gleich 4, also u=v=w=ε, dann abab ≠ aabb. Und sonst keine, da Wort nicht genug Zeichen. Also DelTwo(L) = ∅ ≠ {ε} = Del(Del(L)) Also genau. Beachten Sie, dass in der Definition von DelTwo, u,v,w können null sein, aber selbst dann. Eine Sache: in DelTwo, man kann überlappende entfernen? Zum Beispiel, wenn ein Wort "aab" oder so. Aber in L={aabb}, es gibt kein überlappendes "ab", also nicht. Aber im Wort aabb, der einziges "ab" ist bei Position 1-2. Kein zweites "ab" überlappend oder nicht. Also DelTwo sollte ∅. Für Del, wenn man zweimal entfernt, in Del(Del(L)), entfernen wir ein "ab" aus L zu {ab}, dann entfernen wir ein "ab" aus {ab} zu {ε}. Aber wenn L kein "ab" hatte, oder. In diesem Fall funktioniert es. Also Antwort ist falsch.
Answer
## Antwort zu subproblem b Die Behauptung, dass für jede endliche Sprache $L \subseteq \{a,b\}^*$ gilt $\Del(\Del(L)) = \DelTwo(L)$, ist **falsch**. ### Gegenbeispiel Betrachte die endliche Sprache $L = \{aabb\}$. 1. **Berechnung von $\Del(L)$:** $\Del(L) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in L\}$. $L = \{aabb\}$: - Einzige Möglichkeit: $vabw = aabb$. - Das Teilwort $ab$ ist an Position 1-2 enthalten (Indizierung ab 0: $w[0] = a, w[1] = a, w[2] = b, w[3] = b$). - Entfernen von $ab$ an Position 1-2: $v = a$ (Präfix bis Index 0), $w = b$ (Suffix ab Index 3), so dass $vw = ab$. - Damit ist $\Del(L) = \{ab\}$. 2. **Berechnung von $\Del(\Del(L))$:** $\Del(\Del(L)) = \Del(\{ab\})$. $\Del(\{ab\}) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in \{ab\}\}$. $vabw = ab$: - Einzige Möglichkeit: $v = \varepsilon$, $w = \varepsilon$, da $vabw = \varepsilon \cdot ab \cdot \varepsilon = ab \in \{ab\}$. - $vw = \varepsilon \cdot \varepsilon = \varepsilon$. - Damit ist $\Del(\Del(L)) = \{\varepsilon\}$. 3. **Berechnung von $\DelTwo(L)$:** $\DelTwo(L) = \{uvw \mid u, v, w \in \Sigma^* \wedge uabvabw \in L\}$. $L = \{aabb\}$, also $uabvabw = aabb$: - Die minimale Länge von $uabvabw$ ist $|u| + |v| + |w| + 4$. - $|aabb| = 4$, also $|u| + |v| + |w| + 4 = 4$, was $u = v = w = \varepsilon$ impliziert. - Aber $\varepsilon \cdot ab \cdot \varepsilon \cdot ab \cdot \varepsilon = abab \neq aabb$. - Es gibt keine anderen Zerlegungen (z. B. für $u = a$, $v = \varepsilon$, $w = b$: $a \cdot ab \cdot \varepsilon \cdot ab \cdot b = aababb \neq aabb$; andere Kombinationen sind ebenfalls unmöglich). - Damit ist $\DelTwo(L) = \emptyset$. **Ergebnis:** $\Del(\Del(L)) = \{\varepsilon\}$ und $\DelTwo(L) = \emptyset$, also $\Del(\Del(L)) \neq \DelTwo(L)$. Somit ist die Aussage für die endliche Sprache $L = \{aabb\}$ widerlegt. <option id="1">0</option> <option id="2">1</option> <answer id="3"> Die Behauptung ist falsch. Ein Gegenbeispiel ist $L = \{aabb\}$. - $\Del(L) = \{ab\}$, - $\Del(\Del(L)) = \Del(\{ab\}) = \{\varepsilon\}$, - $\DelTwo(L) = \{uvw \mid u ab v ab w \in \{aabb\}\} = \emptyset$, da $aabb$ nicht als $u ab v ab w$ mit $u, v, w \in \Sigma^*$ geschrieben werden kann. Daher gilt $\Del(\Del(L)) \neq \DelTwo(L)$. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Die Behauptung ist falsch. Ein Gegenbeispiel ist . - , - , - , da nicht als mit geschrieben werden kann. Daher gilt .
Subproblem c (6.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Gemäß der Definition, $\Del(L) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in L\}$, werden die Wörter in $\Del(\{abbaba,baa,ab,a,b\})$ berechnet, indem für jedes Wort in $L$ alle möglichen Wege betrachtet werden, das Teilwort $ab$ genau einmal zu entfernen. Dabei ist $v$ der Teil vor dem entfernten $ab$ und $w$ der Teil nach dem entfernten $ab$, und $vw$ ist das resultierende Wort.
- **$abbaba$:**
- Nur zwei Vorkommen von $ab$:
1. Entferne $ab$ an den Positionen 0-1:
$v = \varepsilon$, $w = baba$, $vabw = ab baba = abbaba \in L$ $\Rightarrow$ $vw = \varepsilon \cdot baba = baba$.
2. Entferne $ab$ an den Positionen 3-4:
$v = abb$ (Zeichen 0-2), $w = a$ (Zeichen 5), $vabw = abb \cdot ab \cdot a = abbaba \in L$ $\Rightarrow$ $vw = abb \cdot a = abba$.
- Keine weiteren Vorkommen, da keine anderen zusammenhängenden $ab$-Teilwörter existieren (Position 2-3: $bb$; Position 4-5: $ba$, nicht $ab$).
Beitrag: $\{baba, abba\}$.
- **$baa$:**
Das Wort enthält kein Teilwort $ab$. Es gibt keine Zerlegung $vabw = baa$, da sonst $ab$ als Infix enthalten sein müsste. Beitrag: $\emptyset$.
- **$ab$:**
- Einziges Vorkommen von $ab$ an Position 0-1:
$v = \varepsilon$, $w = \varepsilon$, $vabw = ab \in L$ $\Rightarrow$ $vw = \varepsilon$. Beitrag: $\{\varepsilon\}$.
- **$a$:**
Kein Teilwort $ab$. Beitrag: $\emptyset$.
- **$b$:**
Kein Teilwort $ab$. Beitrag: $\emptyset$.
Alle Ergebnisse vereinigen:
$\Del(\{abbaba,baa,ab,a,b\}) = \{baba, abba, \varepsilon\}$.
Sortiert ergibt sich: $\{\varepsilon, abba, baba\}$ (die Sortierung folgt der lexikografischen Ordnung, ist aber für die Antwort nicht zwingend erforderlich).
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:## Antwort zu subproblem b
Die Behauptung, dass für jede endliche Sprache $L \subseteq \{a,b\}^*$ gilt $\Del(\Del(L)) = \DelTwo(L)$, ist **falsch**.
### Gegenbeispiel
Betrachte die endliche Sprache $L = \{aabb\}$.
1. **Berechnung von $\Del(L)$:**
$\Del(L) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in L\}$.
$L = \{aabb\}$:
- Einzige Möglichkeit: $vabw = aabb$.
- Das Teilwort $ab$ ist an Position 1-2 enthalten (Indizierung ab 0: $w[0] = a, w[1] = a, w[2] = b, w[3] = b$).
- Entfernen von $ab$ an Position 1-2: $v = a$ (Präfix bis Index 0), $w = b$ (Suffix ab Index 3), so dass $vw = ab$.
- Damit ist $\Del(L) = \{ab\}$.
2. **Berechnung von $\Del(\Del(L))$:**
$\Del(\Del(L)) = \Del(\{ab\})$.
$\Del(\{ab\}) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in \{ab\}\}$.
$vabw = ab$:
- Einzige Möglichkeit: $v = \varepsilon$, $w = \varepsilon$, da $vabw = \varepsilon \cdot ab \cdot \varepsilon = ab \in \{ab\}$.
- $vw = \varepsilon \cdot \varepsilon = \varepsilon$.
- Damit ist $\Del(\Del(L)) = \{\varepsilon\}$.
3. **Berechnung von $\DelTwo(L)$:**
$\DelTwo(L) = \{uvw \mid u, v, w \in \Sigma^* \wedge uabvabw \in L\}$.
$L = \{aabb\}$, also $uabvabw = aabb$:
- Die minimale Länge von $uabvabw$ ist $|u| + |v| + |w| + 4$.
- $|aabb| = 4$, also $|u| + |v| + |w| + 4 = 4$, was $u = v = w = \varepsilon$ impliziert.
- Aber $\varepsilon \cdot ab \cdot \varepsilon \cdot ab \cdot \varepsilon = abab \neq aabb$.
- Es gibt keine anderen Zerlegungen (z. B. für $u = a$, $v = \varepsilon$, $w = b$: $a \cdot ab \cdot \varepsilon \cdot ab \cdot b = aababb \neq aabb$; andere Kombinationen sind ebenfalls unmöglich).
- Damit ist $\DelTwo(L) = \emptyset$.
**Ergebnis:** $\Del(\Del(L)) = \{\varepsilon\}$ und $\DelTwo(L) = \emptyset$, also $\Del(\Del(L)) \neq \DelTwo(L)$.
Somit ist die Aussage für die endliche Sprache $L = \{aabb\}$ widerlegt.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Die Behauptung ist falsch. Ein Gegenbeispiel ist $L = \{aabb\}$.
- $\Del(L) = \{ab\}$,
- $\Del(\Del(L)) = \Del(\{ab\}) = \{\varepsilon\}$,
- $\DelTwo(L) = \{uvw \mid u ab v ab w \in \{aabb\}\} = \emptyset$,
da $aabb$ nicht als $u ab v ab w$ mit $u, v, w \in \Sigma^*$ geschrieben werden kann.
Daher gilt $\Del(\Del(L)) \neq \DelTwo(L)$.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Wir müssen eine Grammatik \(G'\) konstruieren, die \(\text{Del}(L(G))\) erzeugt. Gegeben ist eine CFG \(G = (V, \Sigma, P, S)\) in CNF. Die nichtterminalen Symbole von \(G'\) sind \(V' = V \cup \{X_{ab} \mid X \in V\} \cup \{X_a \mid X \in V\} \cup \{X_b \mid X \in V\}\), wobei alle \(X_{ab}, X_a, X_b\) neu sind. Die gewünschten Sprachen für die Nichtterminale sind: 1. Für jedes \(X \in V\), \(L_{G'}(X) = L_G(X)\) 2. \(L_{G'}(X_{ab}) = \text{Del}(L_G(X))\) 3. \(L_{G'}(X_a) = \{w \in \Sigma^* \mid wa \in L_G(X)\}\) 4. \(L_{G'}(X_b) = \{w \in \Sigma^* \mid bw \in L_G(X)\}\) Da \(G\) in CNF ist, gibt es nur Produktionen der Form: - \(X \to YZ\) (wobei \(Y, Z \in V\)) - \(X \to a\) (wobei \(a \in \Sigma\)) Wir müssen \(P'\) definieren, das die obigen Bedingungen erfüllt. **Startsymbol \(S'\):** Da \(L(G') = \text{Del}(L(G))\) sein soll, und \(\text{Del}(L(G)) = \text{Del}(L_G(S))\), sollte \(S' = S_{ab}\) sein, denn \(L_{G'}(S_{ab}) = \text{Del}(L_G(S))\). Also: \(S' = S_{ab}\). **Produktionen \(P'\):** Wir müssen Produktionen für alle Nichtterminale in \(V'\) definieren. **1. Produktionen für \(X \in V\) (um \(L_{G'}(X) = L_G(X)\) zu gewährleisten):** Wir können einfach alle alten Produktionen aus \(P\) übernehmen. Aber da wir neue Nichtterminale haben, müssen wir sicherstellen, dass die Ableitungen nicht durch die neuen Symbole beeinflusst werden. Also nehmen wir alle Produktionen aus \(P\) in \(P'\) auf. **2. Produktionen für \(X_{ab}\):** Wir wollen, dass \(L_{G'}(X_{ab}) = \text{Del}(L_G(X))\). Nach Definition ist \(\text{Del}(L) = \{ v w \mid v, w \in \Sigma^*, vabw \in L \}\). Wir müssen die Sprache \(\text{Del}(L_G(X))\) generieren. Idee: Wenn ein Wort in \(L_G(X)\) das Teilwort \(ab\) enthält, können wir es entfernen. Aber wir müssen alle möglichen Positionen berücksichtigen. Da \(G\) in CNF ist, können wir eine Art "Nonterminal" einführen, das das Entfernen von \(ab\) an verschiedenen Positionen in der Ableitung simuliert. Wir betrachten die Struktur der Ableitung. In CNF gibt es zwei Arten von Produktionen. Wir können die Produktionen für \(X_{ab}\) basierend auf den Produktionen von \(X\) definieren. Fall 1: Wenn \(X \to a\) ein Terminal ist, dann ist \(L_G(X) = \{a\}\). Dann ist \(\text{Del}(\{a\}) = \emptyset\), weil \(a\) nicht \(ab\) enthält. Also brauchen wir keine Produktion, die etwas ableitet, oder wir können es als leere Menge lassen. Fall 2: Wenn \(X \to YZ\), dann ist ein Wort in \(L_G(X)\) die Konkatenation eines Wortes aus \(L_G(Y)\) und \(L_G(Z)\). Um \(\text{Del}(L_G(X))\) zu erhalten, können wir \(ab\) in \(Y\)'s Teil, in \(Z\)'s Teil oder über die Grenze hinweg entfernen. - Entfernen innerhalb von \(Y\): Dann sollten wir \(Y_{ab} Z\) ableiten, wobei \(Y_{ab}\) \(\text{Del}(L_G(Y))\) generiert und \(Z\) \(L_G(Z)\). - Entfernen innerhalb von \(Z\): \(Y Z_{ab}\) - Entfernen über die Grenze: Teil von \(Y\) und Teil von \(Z\). Wenn \(Y\) mit einem Suffix endet, das auf \(a\) endet, und \(Z\) mit \(b\) beginnt, dann können wir \(a\) aus \(Y\) und \(b\) aus \(Z\) entfernen, aber wir entfernen das Paar \(ab\). Erinnern wir uns an die Definitionen von \(X_a\) und \(X_b\): - \(L_{G'}(X_a) = \{ w \mid wa \in L_G(X) \}\) - \(L_{G'}(X_b) = \{ w \mid bw \in L_G(X) \}\) Diese entsprechen dem "Anhängen" eines Buchstabens, aber umgekehrt. Wenn wir \(ab\) an der Grenze zwischen \(Y\) und \(Z\) entfernen, dann: wenn \(Y\) ein Wort erzeugt, das mit \(a\) endet, und \(Z\) ein Wort erzeugt, das mit \(b\) beginnt, aber tatsächlich: wenn \(v \in L_G(Y)\) und \(w \in L_G(Z)\), und \(v = v' a\), \(w = b w'\), dann könnte es ein Entfernen von \(ab\) zwischen \(v' a\) und \(b w'\) geben, was \(v' w'\) ergibt. Aber beachte: \(ab\) ist an der Grenze: das letzte Zeichen von \(v\) ist \(a\), das erste von \(w\) ist \(b\). Also, wenn wir \(ab\) entfernen, entfernen wir das \(a\) von \(Y\) und das \(b\) von \(Z\), also bleibt \(v'\) von \(Y\) und \(w'\) von \(Z\), so dass \(v' w'\). Und \(v' \in L_{G'}(Y_a)\) denn \(v'a = v\) (da \(v = v'a\)) und \(v \in L_G(Y)\), also \(v' \in L_{G'}(Y_a)\). Analog, \(w' \in L_{G'}(Z_b)\) denn \(b w' = w\) und \(w \in L_G(Z)\). Somit, für das Entfernen an der Grenze: \(X_{ab} \to Y_a Z_b\). Zusammenfassend haben wir für \(X \to Y Z \in P\) folgende Produktionen für \(X_{ab}\): - \(X_{ab} \to Y_{ab} Z\) (Entfernen in \(Y\)) - \(X_{ab} \to Y Z_{ab}\) (Entfernen in \(Z\)) - \(X_{ab} \to Y_a Z_b\) (Entfernen an der Grenze) Das ist die Kernidee. Jetzt für terminale Regeln. Wenn \(X \to a\) (ein Terminal): - \(L_G(X) = \{a\}\), \(\text{Del}(\{a\}) = \emptyset\), also keine Produktion für \(X_{ab}\). Oder wir könnten sagen, es gibt keine Ableitung. Aber formal brauchen wir vielleicht eine Regel, die auf die leere Menge führt, typischerweise haben wir keine Produktion oder eine, die nicht terminal. Wir betrachten den allgemeinen Fall. Um genau zu sein, wir definieren Produktionen für jedes Nichtterminal. Zusätzlich zu den Kombinationen oben, für Terminale müssen wir die Basisfälle für \(X_{ab}\), \(X_a\), \(X_b\) definieren. Zuerst für \(X_{ab}\): - Falls \(X \to a\) mit \(a \in \Sigma\): - Wenn \(a = a\), \(\text{Del}(\{a\}) = \emptyset\), also keine Produktion. - Wenn \(a = b\), ebenfalls kein \(ab\), also auch leer. - Aber wenn \(X \to ab\)? In CNF sind die Produktionen nur zu einzelnen Symbolen, also \(X \to a\) oder \(X \to YZ\), kein \(\to ab\). CNF erlaubt keine Produktion mit zwei Terminalen. Also nur Einzelterminalproduktionen. Für \(X_{ab}\) ohne passende Regel, bleibt es leer. Jetzt müssen wir auch \(X_a\) und \(X_b\) definieren. Für \(X_a\): \(L_{G'}(X_a) = \{ w \mid w a \in L_G(X) \}\) Analog für \(X_b\). Basierend auf den Produktionen von \(X\). Fall 1: \(X \to c\) mit \(c \in \Sigma\). - \(L_G(X) = \{c\}\), also \(\{w \mid w a \in \{c\} \} = \{w \mid w a = c\}\). Das ist nicht leer nur wenn \(a = c\) und \(w = \epsilon\)? - Wenn \(c = a\), dann \(w a = a\) impliziert \(w = \epsilon\). - Wenn \(c \neq a\), dann leer. - Also für \(X \to a\), dann \(L_{G'}(X_a) = \{\epsilon\}\) weil \(\epsilon \cdot a = a \in L_G(X)\). - Für \(X \to b\), \(L_{G'}(X_a) = \emptyset\), denn es gibt kein Wort, das angehängt a ergibt b. Also: Wenn \(X \to a\), dann müssen wir eine Regel für \(X_a \to \epsilon\) hinzufügen. Wenn \(X \to b\), keine Regel (oder leere Menge). Fall 2: \(X \to YZ\). Wir wollen \(X_a\) definieren, so dass es \(w\) erzeugt mit \(w a \in L_G(X)\). Ein Wort \(w a\) in \(L_G(X)\) kommt von einer Ableitung, die mit \(X \to YZ\) beginnt, und muss in \(Y\) oder \(Z\) enden. Optionen: - Wenn \(Z\) das \(a\) erzeugt: d.h. \(Y\) erzeugt \(u\), \(Z\) erzeugt \(v a\), dann ist \(w = u v\), und \(w a = u v a\). Hier ist \(v a \in L_G(Z)\), also \(v \in L_{G'}(Z_a)\). Und \(u \in L_G(Y)\). Also \(w = u v\), also \(X_a \to Y Z_a\). Beachte: \(w = u v\), mit \(w a = u (v a) = (Y) (Z a)\). - Wenn das \(a\) im rechten Teil von \(Z\) generiert ist, aber nicht am Ende? In CNF, da Z ein Terminal erzeugt oder ein Nonterminal. Aber das Wort wird links-gerecht abgeleitet. Wenn Z in v a ableitet, dann ist v a in L_G(Z), also ist v in L_{G'}(Z_a). - Was, wenn Y das a erzeugt? Aber wenn Y das letzte Zeichen erzeugt, dann muss Z ε ableiten? Aber in CNF gibt es keine ε-Produktionen. Also in X → YZ, wenn das Wort mit einem Symbol aus Y endet, dann muss Z zu ε ableiten, was nicht geht. Daher kann in CNF X nur dann auf ein Wort endend mit einem Buchstaben ableiten, wenn dieser von dem äußersten rechten Symbol in der Ableitung stammt. Genauer: Das letzte Symbol des Wortes muss aus dem Nonterminal kommen, das die Ableitung beginnt, bis zu einem Terminal. Da keine ε, muss für X → YZ, der Suffix des Wortes von Z erzeugt werden. Daher, wenn das Wort mit a endet, dann muss Z ein Suffix erzeugen, das mit a endet, und Y erzeugt den Präfix. Deshalb, in diesem Fall: wenn w a mit einem a endet, muss Z ein Wort erzeugen, das mit a endet. Also muss Z_a eine Rolle spielen. Alternative: wenn Z ein Wort erzeugt, das mit einem anderen Buchstaben endet, aber dann kann w a nicht mit a enden, wenn Z nicht mit a endet. Daher nur die eine Möglichkeit: \(X_a \to Y Z_a\) Genauso für den Fall, dass das Ende in Y liegt? Nein, denn wenn X → YZ, und das Wort endet mit einem Zeichen aus Y, dann muss Z ε erzeugen, was unmöglich ist. Also in einer Ableitung in CNF, die mit einem Wort der Länge ≥ 2, das letzte Zeichen wird immer von dem Nonterminal erzeugt, das in der letzten Regel rechts steht? Nicht genau, weil Z zu einem Terminal oder längerem führen kann. Aber prinzipiell, da die Ableitung binär verzweigt, das letzte Zeichen kommt von der rechten Komponente, wenn die rechte Regeln in Z ablaufen. Beispiel: Sei X → YZ, und Z → b, Y → c. Dann L_G(X) = {c b}. Wenn wir w a = c b haben wollen? Aber c b endet nicht mit a, also unmöglich. Angenommen, wir wollen, dass X ein Wort erzeugt, das mit a endet. Dann muss Z a erzeugen? Nein, Z kann eine Kette erzeugen, die mit a endet, aber speziell: wenn Z ein Wort erzeugt, das mit a endet, dann endet das gesamte Wort (von YZ) mit a. Wenn Z ein Wort erzeugt, das mit b endet, dann endet es mit b. Daher, um am Ende mit a zu enden, muss Z ein Wort erzeugen, das mit a endet. Für X_a wollen wir w, so dass w a in L_G(X). Aber w a soll in L_G(X) sein und endet mit a. Da X → YZ, endet w a mit einem Symbol, das von Z kommt, also muss Z ein Wort erzeugen, das mit a endet. Sei u aus L_G(Y), v aus L_G(Z) mit v endet mit a, so dass w a = u v. Aber w a = u v, also w = u v' wobei v = v' a, denn v endet mit a. Also v' \in L_{G'}(Z_a) und u \in L_G(Y). Daher X_a → Y Z_a. Das ist der einzige Fall. Gleiches für X_b. Für X_b: L_{G'}(X_b) = {w | b w in L_G(X)} Wenn X → YZ, dann b w muss aus Y und Z kommen. Hervorhebung des ersten Zeichens. b w muss mit b beginnen, also muss Y ein Wort erzeugen, das mit b beginnt. Warum? Weil das Wort b w von X → YZ generiert wird, und Y erzeugt den Präfix, also muss das erste Zeichen von Y bestimmt sein. Daher sei Y erzeugt u, das mit b beginnt, also u = b u', und Z erzeugt v, so dass b w = u v = b u' v, also w = u' v. Somit u' \in L_{G'}(Y_b) und v \in L_G(Z). Daher X_b → Y_b Z. Zusammenfassung für X → YZ: - \(X_a \to Y Z_a\) - \(X_b \to Y_b Z\) Und für X_{ab} haben wir drei Fälle, wie früher. Jetzt für Terminale: wie oben. Wir müssen auch für die ursprünglichen X die Produktionen beibehalten. Und für die neuen Symbole. Jetzt zurück zu X_{ab}. Für X → YZ: - X_{ab} → Y_{ab} Z (Entfernung in Y) - X_{ab} → Y Z_{ab} (Entfernung in Z) - X_{ab} → Y_a Z_b (Entfernung an der Grenze) Für termiale Regeln: - Wenn X → a, dann: - X_{ab}: keine Produktion (leer) - X_a: wenn a = a, dann X_a → ε. Wenn a = b, dann nichts. - X_b: wenn a = b, dann X_b → ε. Wenn a = a, dann nichts. Das scheint in Ordnung zu sein. Wir brauchen Produktionen für alle Nichtterminale. Starten wir mit S' = S_{ab}. Jetzt formale Definition. Also: **P' umfasst:** 1. Alle Regeln aus P (um sicherzustellen, dass für X ∈ V, L_{G'}(X) = L_G(X)). 2. Für jedes X → YZ in P: - Füge hinzu: - \(X_{ab} \to Y_{ab} Z\) - \(X_{ab} \to Y Z_{ab}\) - \(X_{ab} \to Y_a Z_b\) - Außerdem für X_a und X_b: - \(X_a \to Y Z_a\) (wie oben) - \(X_b \to Y_b Z\) 3. Für jedes X → a in P (mit a ∈ {a,b}): - X_a: - Wenn a = a, füge \(X_a \to \epsilon\) hinzu. - Wenn a = b, füge nichts hinzu (oder nehmen wir an, keine Regel). - X_b: - Wenn a = b, füge \(X_b \to \epsilon\) hinzu. - Wenn a = a, füge nichts hinzu. - X_{ab}: keine Produktion hinzufügen (da Leer) für beide. Aber es ist wichtig zu beachten, dass es Fälle gibt, wo keine Regel existiert, was impliziert, dass es keine Ableitung gibt. Ich denke, das deckt die grundlegenden Fälle ab. Eine Sache: wir müssen auch Regeln für die neuen Symbole haben, die nicht direkt Ziel sind. Zum Beispiel, für X_a und X_b, haben wir Regeln für X → YZ und X → a abgedeckt. Gibt es eine Notwendigkeit für Produktionen, die nur die neuen Symbole involvieren? Zum Beispiel, wenn wir Y_{ab} haben, haben wir bereits Produktionen für Y_{ab} basierend auf den Regeln von Y. In der Produktion X_{ab} \to Y_{ab} Z, dies ist von selbst konsistent. Eine potentielle Lücke: wenn wir die Basisterminalsymbole erreichen, also ε. Für die Fälle, in denen wir ε ableiten müssen, haben wir X_a → ε für X → a. In der Ableitung jedoch, wenn wir Z_a haben, und z.B. Z → a, dann Z_a → ε, das ist gut. Jetzt überprüfen wir ein kleines Beispiel. Beispiel: Sei G gegeben durch S → AB, A → a, B → b. Also L(G) = {ab}. Jetzt Del(L(G)) = Del({ab}) = {ε} (wie in Teil a). In G': S' = S_{ab} Produktionen nach oben: 1. Erbe von P: S → AB, A → a, B → b. 2. Für S → AB: - S_{ab} → A_{ab} B // A_{ab} hat kein Regel, da A → a, also leer - S_{ab} → A B_{ab} // B_{ab} leer - S_{ab} → A_a B_b // A_a: da A → a, und a = a, also A_a → ε. B_b: B → b, b = b, also B_b → ε. Also S_{ab} → A_a B_b → ε * ε = ε. Also S_{ab} ⇒ A_a B_b ⇒ ε, da A_a → ε und B_b → ε. Und es ist die einzige Ableitung. Also L(S_{ab}) = {ε}, was erwartet ist. Zweites Beispiel: Sei L = {abbaba}, wie in Teil a. Sei G in CNF so, dass L(G) = {abbaba}. Aber es ist einfach, die Grammatik zu konstruieren. Da wir wissen, dass Del({abbaba}) = {baba, abba}. Graphisch: S → A B C Für abbaba: S → ABC, A → a, B → b, C → C1 D usw., aber es kann ursprünglich lang sein. Genauer: definiere ein Minimalbeispiel für die Notwendigkeit der drei Fälle. Zum Beispiel: Sprache {bab, aba}, aber besser an einem einzelnen Wort. Wir haben bereits ein Gegenbeispiel gesehen. Kommen wir zur Vollständigkeit. Für den Fall, dass X → YZ, aber Y und Z können eigene Ableitungen haben. Jetzt macht es im Allgemeinen Sinn. Wir müssen auch die Basisfälle richtig machen. Bezüglich der Definition von X_a und X_b: In der Produktion X_a → Y Z_a, wenn Z_a Ableitungen hat. Was ist, wenn das Wort nicht in der Mitte endet? Es gibt keine Probleme. Jetzt, um sicherzustellen, dass die Sprache der anderen Symbole korrekt ist. Zum Beispiel für X_a: Wir nehmen an, dass für Y und Z, die Eigenschaften erfüllt sind per Induktion. In der obigen Ableitung haben wir w ∈ L_{G'}(X_a) iff w a ∈ L_G(X). - w wird abgeleitet von X_a → Y Z_a, so w = u v, mit u ∈ L_G(Y), und v ∈ L_{G'}(Z_a) => v a ∈ L_G(Z). Daher w a = u (v a) ∈ L_G(X), da X → YZ. Und umgekehrt, wenn w a ∈ L_G(X), dann muss es von X → YZ kommen, wobei Y erzeugt u und Z erzeugt v a, also w a = u (v a), so w = u v, mit u ∈ L_G(Y), v a ∈ L_G(Z), also v ∈ L_{G'}(Z_a), daher w ∈ L_{G'}(Y Z_a). Aber X_a → Y Z_a, also ist die Sprache gleich. Genau so für X_b. Für X_{ab}: Wir haben drei Produktionen. Wenn wir ein Wort w von X_{ab} ableiten: - Wenn über X_{ab} → Y_{ab} Z: dann w = w_y z, mit w_y ∈ L_{G'}(Y_{ab}) = Del(L_G(Y)), also w_y = v_y w_y' mit v_y ab w_y' ∈ L_G(Y) (faktisch aber w_y ist das Ergebnis des Entfernens). Also v_y ab w_y' ∈ L_G(Y), und z ∈ L_G(Z). Daher w = w_y z = (v_y w_y') z. Dann in X → YZ, können wir ableiten v_y ab w_y' und dann z, also v_y ab w_y' z. Und wir haben ab entfernt an einer Stelle in Y's Teil, so dass der Teil ab in Y vorkommt, also v ab w_y' in Y, dann das volle Wort enthält ab in der Mitte von Y's Teil. Also ist das resultierende Wort (nach Entfernen) in Del(L_G(X)). - Analog für Entfernung in Z: X_{ab} → Y Z_{ab}, w = y w_z mit w_z ∈ Del(L_G(Z)), so y w_z, und das Originalwort hat ab aus Z's Teil entfernt. - Entfernung an der Grenze: X_{ab} → Y_a Z_b, w = u v, mit u ∈ L_{G'}(Y_a), v ∈ L_{G'}(Z_b). Also u ∈ L_{G'}(Y_a) => u a ∈ L_G(Y) v ∈ L_{G'}(Z_b) => b v ∈ L_G(Z) Also im vollen Wort für X → YZ: (u a) (b v) = u a b v, was in L_G(X) ist. Nach Entfernen von ab an der Grenze haben wir u v. Und nach Definition ist u v in Del(L_G(X)) weil u ab v ∈ L_G(X) (hier w = u v, und v ab w = v ab w ist nicht korrekt; erinnern wir an die Definition: für ein Wort x = u a b v in L_G(X), dann entstehen durch Entfernen von ab an der Grenze u v. Und in der Form v' ab w' ist v' = u a? Nein. Im Kontext der Definition: Del(L) = { v w | v,w ∈ Σ*, v ab w ∈ L } Hier v ab w = u a b v? Setzen wir: v' = u a w' = v dann v' ab w' = (u a) ab v? Aber u a ab v hat ab zweimal? Niemals. Korrektur: im vollen Wort ist u a b v. Kann dies als v' ab w' geschrieben werden? Ja, mit v' = u und w' = b v? Dann v' ab w' = u ab (b v) = u a b b v, was nicht gleich u a b v ist. Problem: u a b v. Das Teilwort ab ist von Position |u|+1 bis |u|+2? Sequenz: Zeichen 0:|u| von u, dann Zeichen |u|: a, |u|+1: b, |u|+2...: v. Also wenn wir ab entfernen an Positionen i und i+1, mit i = |u|, dann v' = das Präfix vor i, w' = das Suffix nach i+2. Präfix: erste |u| Zeichen -> v' = u Suffix: ab Position i+2 -> w' = v Ja, v' ab w' = u ab v, aber das volle Wort ist u a b v, was gleich u a b v ist. Und u ab v würde bedeuten u, dann a, dann b, dann v, ist das identisch mit u a b v? Ja, die Symbolfolge ist u gefolgt von a gefolgt von b gefolgt von v. Also v' ab w' = v' · a · b · w' = u a b v, was gleich u a b v ist. Also ja. Volles Wort: x = u a b v. V' ab w' mit v' = u, w' = v, dann v' ab w' = u ab v = u a b v = x. Und nach dem Entfernen: v' w' = u v. Also ist u v in Del(L). Und unsere Produktion gibt X_{ab} → Y_a Z_b ⇒ u v, mit u in L_{G'}(Y_a), v in L_{G'}(Z_b). In der Ableitung ist alles richtig. Jetzt umgekehrt, wenn wir ein Wort w in Del(L_G(X)) haben, dann gibt es eine Zerlegung v' ab w' = v' a b w' ∈ L_G(X). L_G(X) wird von X abgeleitet, das die Produktionen hat. Da G in CNF, kann die Ableitung von v' a b w' analysiert werden. Es gibt drei Möglichkeiten, auf der Ebene von X, wenn X → YZ ist: 1. Der Einschnitt zwischen v' a b w' ist innerhalb von Y's Ableitung. 2. Innerhalb von Z's Ableitung. 3. An der Grenze zwischen Y und Z. Im dritten Fall: wenn der Einschnitt zwischen Y und Z innerhalb von v' a b w' fällt. Betrachte die Position, wo ab entfernt wird. Der Teil v' a b w' hat eine Ableitung mit X → YZ. Sei das Wort x = v' a b w'. Die Aufteilung zwischen Y und Z sei an einer Position. Da x = y z, mit y von Y, z von Z. Nun, der Block ab, den wir entfernen, kann: - Ganz in y sein: dann v' a b w' = y z, mit y = v'' a b y'' für ein y'', so dass wenn wir ab aus y entfernen, haben Y sollte v'' y'' erzeugen, also v'' y'' ∈ L_{G'}(Y_{ab}), und z = w'? Danach Entfernen, w = v' w' (hier ist w das Ergebnis), v' w' = v'' y'' w'? Nicht genau. Haben w = v' w' x = v' ab w' = v' a b w' Wenn der entfernte Block in Ys Teil ist, dann gibt es Gleichung x = y z, mit y = v' a b w'' (Teilwort ab in y), z = z (Rest). Entschuldige. v' a b w' = y z y hat das entfernte ab, also y = v'' a b y'' für ein Teilwort von y, und nach Entfernen von ab aus y, bekommen wir y' = v'' y''. Also das gesamte Wort nach Entfernen w = y' z = v'' y'' z Und da y' = v'' y'' ∈ L_{G'}(Y_{ab}) und z ∈ L_G(Z) Also w = y' z ∈ L_{G'}(Y_{ab}) L_G(Z), also abgedeckt durch X_{ab} → Y_{ab} Z. Entsprechend für Z. Wenn der entfernte Block das Überschneiden der Grenze involviert, das heißt, das Teilwort ab fällt über die Grenze. Insbesondere, so dass die Teilstelle von x = y z, und das ab hat a im Suffix von y und b im Präfix von z. Also, y endet mit a, und z beginnt mit b. Und das ab entfernt sich das letzte a von y und das erste b von z. Also sei y = u a, und z = b v, dann x = (u a) (b v) = u a b v Und wie vorher, v' = u, w' = v, also v' ab w' = u ab v = x. Nach Entfernen: w = u v Jetzt, u a = y, also a ist das letzte von y, also in L_G(Y), so u ∈ L_{G'}(Y_a) weil u a = y ∈ L_G(Y) Und b v = z, also v ∈ L_{G'}(Z_b) weil b v = z ∈ L_G(Z) Also w = u v ∈ L_{G'}(Y_a) L_{G'}(Z_b), also über die Produktion X_{ab} → Y_a Z_b. Und umgekehrt, alle Fälle sind abgedeckt. Für die terminalen Fälle scheint es in Ordnung und vollständig. Daher ist die Konstruktion korrekt. Jetzt fehlt nur die Definition von S'. Wie gesagt, S' = S_{ab}. Jetzt die formale Definition von P'. P' enthält: - Alle Produktionen in P (für die Original-Symbole) - Für jede Produktion X → YZ in P: - Füge hinzu: - \( X_{ab} \to Y_{ab} Z \) - \( X_{ab} \to Y Z_{ab} \) - \( X_{ab} \to Y_a Z_b \) - \( X_a \to Y Z_a \) // für das Suffix a - \( X_b \to Y_b Z \) // für das Präfix b - Für jede Produktion X → c in P, mit c ∈ Σ = {a,b}: - Wenn c = a, - \( X_a \to \epsilon \) Sonst (c = b), - keine Regel für X_a, oder wir fügen keine hinzu - Wenn c = b, - \( X_b \to \epsilon \) Sonst (c = a), - keine Regel für X_b - Keine Regel für X_{ab} in jedem Fall. Beachte, dass für X_{ab} im terminalen Fall keine Regeln. Jetzt sind wir fertig. Darstellung in P'. Beispiel: <Startsymbol: S_{ab}> Produktionen: Zunächst, alle aus P. Dann für jedes X in V und seine Regeln. Wir können es aufschreiben. In
Answer
Startsymbol \(S' = S_{ab}\), wobei \(S\) das Startsymbol von \(G\) ist. Produktionen \(P'\): - Alle Produktionen aus \(P\). - Für jede Produktion \(X \to YZ\) in \(P\): \[ X_{ab} \to Y_{ab} Z \mid Y Z_{ab} \mid Y_a Z_b \] \[ X_a \to Y Z_a \] \[ X_b \to Y_b Z \] - Für jede Produktion \(X \to a\) in \(P\): \[ \begin{cases} \text{falls } a = a: & X_a \to \epsilon \\ \text{sonst}: & \text{keine Produktion für } X_a \end{cases} \] \[ \begin{cases} \text{falls } a = b: & X_b \to \epsilon \\ \text{sonst}: & \text{keine Produktion für } X_b \end{cases} \] Keine Produktion für \(X_{ab}\). - Für jede Produktion \(X \to b\) in \(P\): \[ \begin{cases} \text{falls } a = a: & X_a \to \epsilon \\ \text{sonst}: & \text{keine Produktion für } X_a \end{cases} \] \[ \begin{cases} \text{falls } a = b: & X_b \to \epsilon \\ \text{sonst}: & \text{keine Produktion für } X_b \end{cases} \] Keine Produktion für \(X_{ab}\). **Erläuterung:** - Die Produktionen aus \(P\) werden übernommen, damit \(L_{G'}(X) = L_G(X)\) für \(X \in V\) gilt. - Die Produktionen für \(X_{ab}\) modellieren das Entfernen von \(ab\): entweder in der linken Komponente (\(Y_{ab} Z\)), in der rechten Komponente (\(Y Z_{ab}\)) oder an der Grenze (\(Y_a Z_b\)). - Die Produktionen für \(X_a\) und \(X_b\) modellieren die Links- bzw. Rechtsverkürzung um einen Buchstaben. - Für terminale Regeln \(X \to a\): - \(X_a \to \epsilon\) nur, wenn das Terminal \(a\) ist (d. h. für \(X_a\) wird \(\epsilon\) erzeugt, da \(\{\epsilon\} = \{w \mid w a = a\}\)). - Analog für \(X_b \to \epsilon\) nur bei Terminal \(b\). - Keine Produktion für \(X_{ab}\), da ein einzelnes Terminal kein \(ab\) enthält. <answer id="1"> Startsymbol $S' = S_{ab}$ Produktionen $P'$: - Alle Produktionen aus $P$. - Für jede Produktion $X \to YZ$ in $P$: $\quad X_{ab} \to Y_{ab} Z \mid Y Z_{ab} \mid Y_a Z_b$ $\quad X_a \to Y Z_a$ $\quad X_b \to Y_b Z$ - Für jede Produktion $X \to a$ in $P$: $\quad$ Wenn $a = a$: $X_a \to \epsilon$; sonst: keine Produktion für $X_a$ $\quad$ Wenn $a = b$: $X_b \to \epsilon$; sonst: keine Produktion für $X_b$ $\quad$ Keine Produktion für $X_{ab}$ - Für jede Produktion $X \to b$ in $P$: $\quad$ Wenn $a = a$: $X_a \to \epsilon$; sonst: keine Produktion für $X_a$ $\quad$ Wenn $a = b$: $X_b \to \epsilon$; sonst: keine Produktion für $X_b$ $\quad$ Keine Produktion für $X_{ab}$ </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen : - Alle Produktionen aus . - Für jede Produktion in : - Für jede Produktion in : Wenn : ; sonst: keine Produktion für Wenn : ; sonst: keine Produktion für Keine Produktion für - Für jede Produktion in : Wenn : ; sonst: keine Produktion für Wenn : ; sonst: keine Produktion für Keine Produktion für
Subproblem d (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Gemäß der Definition, $\Del(L) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in L\}$, werden die Wörter in $\Del(\{abbaba,baa,ab,a,b\})$ berechnet, indem für jedes Wort in $L$ alle möglichen Wege betrachtet werden, das Teilwort $ab$ genau einmal zu entfernen. Dabei ist $v$ der Teil vor dem entfernten $ab$ und $w$ der Teil nach dem entfernten $ab$, und $vw$ ist das resultierende Wort.
- **$abbaba$:**
- Nur zwei Vorkommen von $ab$:
1. Entferne $ab$ an den Positionen 0-1:
$v = \varepsilon$, $w = baba$, $vabw = ab baba = abbaba \in L$ $\Rightarrow$ $vw = \varepsilon \cdot baba = baba$.
2. Entferne $ab$ an den Positionen 3-4:
$v = abb$ (Zeichen 0-2), $w = a$ (Zeichen 5), $vabw = abb \cdot ab \cdot a = abbaba \in L$ $\Rightarrow$ $vw = abb \cdot a = abba$.
- Keine weiteren Vorkommen, da keine anderen zusammenhängenden $ab$-Teilwörter existieren (Position 2-3: $bb$; Position 4-5: $ba$, nicht $ab$).
Beitrag: $\{baba, abba\}$.
- **$baa$:**
Das Wort enthält kein Teilwort $ab$. Es gibt keine Zerlegung $vabw = baa$, da sonst $ab$ als Infix enthalten sein müsste. Beitrag: $\emptyset$.
- **$ab$:**
- Einziges Vorkommen von $ab$ an Position 0-1:
$v = \varepsilon$, $w = \varepsilon$, $vabw = ab \in L$ $\Rightarrow$ $vw = \varepsilon$. Beitrag: $\{\varepsilon\}$.
- **$a$:**
Kein Teilwort $ab$. Beitrag: $\emptyset$.
- **$b$:**
Kein Teilwort $ab$. Beitrag: $\emptyset$.
Alle Ergebnisse vereinigen:
$\Del(\{abbaba,baa,ab,a,b\}) = \{baba, abba, \varepsilon\}$.
Sortiert ergibt sich: $\{\varepsilon, abba, baba\}$ (die Sortierung folgt der lexikografischen Ordnung, ist aber für die Antwort nicht zwingend erforderlich).
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:## Antwort zu subproblem b
Die Behauptung, dass für jede endliche Sprache $L \subseteq \{a,b\}^*$ gilt $\Del(\Del(L)) = \DelTwo(L)$, ist **falsch**.
### Gegenbeispiel
Betrachte die endliche Sprache $L = \{aabb\}$.
1. **Berechnung von $\Del(L)$:**
$\Del(L) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in L\}$.
$L = \{aabb\}$:
- Einzige Möglichkeit: $vabw = aabb$.
- Das Teilwort $ab$ ist an Position 1-2 enthalten (Indizierung ab 0: $w[0] = a, w[1] = a, w[2] = b, w[3] = b$).
- Entfernen von $ab$ an Position 1-2: $v = a$ (Präfix bis Index 0), $w = b$ (Suffix ab Index 3), so dass $vw = ab$.
- Damit ist $\Del(L) = \{ab\}$.
2. **Berechnung von $\Del(\Del(L))$:**
$\Del(\Del(L)) = \Del(\{ab\})$.
$\Del(\{ab\}) = \{vw \mid v, w \in \Sigma^* \wedge vabw \in \{ab\}\}$.
$vabw = ab$:
- Einzige Möglichkeit: $v = \varepsilon$, $w = \varepsilon$, da $vabw = \varepsilon \cdot ab \cdot \varepsilon = ab \in \{ab\}$.
- $vw = \varepsilon \cdot \varepsilon = \varepsilon$.
- Damit ist $\Del(\Del(L)) = \{\varepsilon\}$.
3. **Berechnung von $\DelTwo(L)$:**
$\DelTwo(L) = \{uvw \mid u, v, w \in \Sigma^* \wedge uabvabw \in L\}$.
$L = \{aabb\}$, also $uabvabw = aabb$:
- Die minimale Länge von $uabvabw$ ist $|u| + |v| + |w| + 4$.
- $|aabb| = 4$, also $|u| + |v| + |w| + 4 = 4$, was $u = v = w = \varepsilon$ impliziert.
- Aber $\varepsilon \cdot ab \cdot \varepsilon \cdot ab \cdot \varepsilon = abab \neq aabb$.
- Es gibt keine anderen Zerlegungen (z. B. für $u = a$, $v = \varepsilon$, $w = b$: $a \cdot ab \cdot \varepsilon \cdot ab \cdot b = aababb \neq aabb$; andere Kombinationen sind ebenfalls unmöglich).
- Damit ist $\DelTwo(L) = \emptyset$.
**Ergebnis:** $\Del(\Del(L)) = \{\varepsilon\}$ und $\DelTwo(L) = \emptyset$, also $\Del(\Del(L)) \neq \DelTwo(L)$.
Somit ist die Aussage für die endliche Sprache $L = \{aabb\}$ widerlegt.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Die Behauptung ist falsch. Ein Gegenbeispiel ist $L = \{aabb\}$.
- $\Del(L) = \{ab\}$,
- $\Del(\Del(L)) = \Del(\{ab\}) = \{\varepsilon\}$,
- $\DelTwo(L) = \{uvw \mid u ab v ab w \in \{aabb\}\} = \emptyset$,
da $aabb$ nicht als $u ab v ab w$ mit $u, v, w \in \Sigma^*$ geschrieben werden kann.
Daher gilt $\Del(\Del(L)) \neq \DelTwo(L)$.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Startsymbol \(S' = S_{ab}\), wobei \(S\) das Startsymbol von \(G\) ist.
Produktionen \(P'\):
- Alle Produktionen aus \(P\).
- Für jede Produktion \(X \to YZ\) in \(P\):
\[
X_{ab} \to Y_{ab} Z \mid Y Z_{ab} \mid Y_a Z_b
\]
\[
X_a \to Y Z_a
\]
\[
X_b \to Y_b Z
\]
- Für jede Produktion \(X \to a\) in \(P\):
\[
\begin{cases}
\text{falls } a = a: & X_a \to \epsilon \\
\text{sonst}: & \text{keine Produktion für } X_a
\end{cases}
\]
\[
\begin{cases}
\text{falls } a = b: & X_b \to \epsilon \\
\text{sonst}: & \text{keine Produktion für } X_b
\end{cases}
\]
Keine Produktion für \(X_{ab}\).
- Für jede Produktion \(X \to b\) in \(P\):
\[
\begin{cases}
\text{falls } a = a: & X_a \to \epsilon \\
\text{sonst}: & \text{keine Produktion für } X_a
\end{cases}
\]
\[
\begin{cases}
\text{falls } a = b: & X_b \to \epsilon \\
\text{sonst}: & \text{keine Produktion für } X_b
\end{cases}
\]
Keine Produktion für \(X_{ab}\).
**Erläuterung:**
- Die Produktionen aus \(P\) werden übernommen, damit \(L_{G'}(X) = L_G(X)\) für \(X \in V\) gilt.
- Die Produktionen für \(X_{ab}\) modellieren das Entfernen von \(ab\): entweder in der linken Komponente (\(Y_{ab} Z\)), in der rechten Komponente (\(Y Z_{ab}\)) oder an der Grenze (\(Y_a Z_b\)).
- Die Produktionen für \(X_a\) und \(X_b\) modellieren die Links- bzw. Rechtsverkürzung um einen Buchstaben.
- Für terminale Regeln \(X \to a\):
- \(X_a \to \epsilon\) nur, wenn das Terminal \(a\) ist (d. h. für \(X_a\) wird \(\epsilon\) erzeugt, da \(\{\epsilon\} = \{w \mid w a = a\}\)).
- Analog für \(X_b \to \epsilon\) nur bei Terminal \(b\).
- Keine Produktion für \(X_{ab}\), da ein einzelnes Terminal kein \(ab\) enthält.
<answer id="1">
Startsymbol $S' = S_{ab}$
Produktionen $P'$:
- Alle Produktionen aus $P$.
- Für jede Produktion $X \to YZ$ in $P$:
$\quad X_{ab} \to Y_{ab} Z \mid Y Z_{ab} \mid Y_a Z_b$
$\quad X_a \to Y Z_a$
$\quad X_b \to Y_b Z$
- Für jede Produktion $X \to a$ in $P$:
$\quad$ Wenn $a = a$: $X_a \to \epsilon$; sonst: keine Produktion für $X_a$
$\quad$ Wenn $a = b$: $X_b \to \epsilon$; sonst: keine Produktion für $X_b$
$\quad$ Keine Produktion für $X_{ab}$
- Für jede Produktion $X \to b$ in $P$:
$\quad$ Wenn $a = a$: $X_a \to \epsilon$; sonst: keine Produktion für $X_a$
$\quad$ Wenn $a = b$: $X_b \to \epsilon$; sonst: keine Produktion für $X_b$
$\quad$ Keine Produktion für $X_{ab}$
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Wir haben eine Grammatik G in Chomsky-Normalform: G = ({S, A}, {a, b}, P, S) mit Produktionen: P: S → SA | a A → a | b Da G in CNF ist, müssten eigentlich alle Produktionen die Form X → YZ oder X → terminal haben. Hier haben wir aber S → SA (das ist in Ordnung) und S → a, A → a, A → b. Jetzt wollen wir G' konstruieren mit den zusätzlichen Nichtterminalen: für jedes X in V: X_{ab}, X_a, X_b. Startsymbol von G' ist S_{ab}. Wir müssen P' definieren, das die Produktionen von P enthält plus neue Produktionen für die neuen Nichtterminale. Schritt für Schritt: 1. Alle Produktionen aus P übernehmen: S → SA S → a A → a A → b 2. Für jede Produktion der Form X → YZ (hier: nur S → SA) müssen wir Produktionen für X_{ab}, X_a, X_b hinzufügen. Für X → YZ: X_{ab} → Y_{ab} Z | Y Z_{ab} | Y_a Z_b X_a → Y Z_a X_b → Y_b Z Hier: X = S, Y = S, Z = A. Also: S_{ab} → S_{ab} A | S A_{ab} | S_a A_b S_a → S A_a S_b → S_b A (da X_b → Y_b Z mit Y=S, Z=A) 3. Für jede Produktion X → terminal (hier: S → a, A → a, A → b): Für X → a: X_a → ε (wenn das Terminal a ist) X_b → ... (wenn das Terminal b ist, aber hier a, also keine für X_b, außer es wäre b) X_{ab} → ... (keine, da terminal) Genauer: - Für S → a: S_a → ε (da das Terminal a ist) S_b → ? (nichts, weil das Terminal nicht b ist) S_{ab} → ? (nichts, da für terminale Symbole kein ab entfernt werden kann) - Für A → a: A_a → ε A_b → ? (nichts) A_{ab} → ? (nichts) - Für A → b: A_b → ε A_a → ? (nichts) A_{ab} → ? (nichts) Jetzt müssen wir auch für A die Regeln hinzufügen, aber A hat keine Produktion mit zwei Nichtterminalen, nur terminale, also nur die für die terminalen Regeln. Was ist mit den Regeln für S_a, S_b, etc. bei den terminalen Produktionen? Wir haben sie bereits hinzugefügt. Wir müssen auch für A_{ab}, A_a, A_b Regeln für die terminalen Produktionen hinzufügen, aber nicht für Produktionen mit zwei Nichtterminalen, da A keine solche Produktion hat. Gibt es weitere Regeln? Wir müssen auch die Produktionen für die ursprünglichen Nichtterminale S und A behalten. Nun speziell für S → a: Wir haben S_a → ε, aber was ist mit S_{ab}? Keine Regel. Jetzt müssen wir auch die Produktionen für A_{ab}, A_a, A_b angeben, aber nur basierend auf den Produktionen für A. Für A → a: A_a → ε (keine anderen) Für A → b: A_b → ε (keine anderen) A hat keine Regel mit zwei Nichtterminalen, also keine zusätzlichen Regeln für A_{ab}, A_a, A_b von einer Zwei-Nonterm-Regel. Wichtig: Wir haben auch das Startsymbol S_{ab}. Jetzt setzen wir die Produktionen für G' zusammen. Startsymbol: S' = S_{ab} Produktionen: Vorhandene aus P: 1. S → SA 2. S → a 3. A → a 4. A → b Für S → SA (eine Regel mit zwei Nonterminals): S_{ab} → S_{ab} A | S A_{ab} | S_a A_b S_a → S A_a S_b → S_b A Aber A_{ab}, A_a, A_b haben Regeln aus den terminalen Produktionen? Ja, aber A_{ab} hat keine Regel, weil A nur terminale Regeln hat. Also bleiben diese. Jetzt die Regeln für die terminalen: Für S → a: S_a → ε (weil Terminal a) Für A → a: A_a → ε Für A → b: A_b → ε Nun, was ist mit S_b? Aus S → a: wir haben keine Regel, weil das Terminal nicht b ist. Also gibt es keine Regel S_b → ... außer aus der Produktion S → SA, aber dort S_b → S_b A. Das ist rekursiv, aber ohne Basis, wenn wir nicht auf S_b ableiten können. Analog: A_{ab} hat gar keine Regel, weil A keine Nichtterminalableitung hat, die ab entfernen könnte. Schreiben wir alle Produktionen auf: - S → SA | a (aus P) - A → a | b (aus P) - S_{ab} → S_{ab} A | S A_{ab} | S_a A_b (aus S→SA) Aber wir müssen A_{ab} und S_a und A_b definieren. S_a → S A_a (aus S→SA) S_b → S_b A (aus S→SA) Aber S_a → S A_a: was ist A_a? A_a → ε (aus A→a), aber S ist S selbst. Außerdem: S_a → ε (aus S→a). Also für S_a gibt es zwei Regeln: S_a → S A_a und S_a → ε. Analog: A_a → ε (aus A→a), und für A_b → ε (aus A→b). Für A_{ab}: es gibt keine Regel, weil A nur terminale Produktionen hat. Also kann A_{ab} nicht abgeleitet werden. Genauso, was ist mit S_b? S_b → S_b A, und es gibt keine Basis. Also wird S_b auf nichts ableitbar sein, es sei denn, wir hätten eine Basis, aber bei S → a gibt es nicht S_b, und S → SA: S_b → S_b A. Jetzt für das Beispiel: Um zu sehen, ob es passt. Beachten Sie: für S_{ab} haben wir: S_{ab} → S_{ab} A | S A_{ab} | S_a A_b Aber S A_{ab}: A_{ab} hat keine Regel, also keine Ableitung. S_a A_b: S_a kann ε werden, A_b kann ε werden (falls A → b), also S_a A_b → ε * ε = ε. Also: S_{ab} → ... | S_a A_b → wenn S_a und A_b jeweils ε werden. S_a: wenn S → a, dann S_a → ε. A_b: wenn A → b, dann A_b → ε. Also: wenn wir Ableitung von S_a → ε haben (wenn S das Wort a ableitet), und A_b → ε (wenn A das Wort b ableitet), dann kann S_{ab} → ε ableiten. Aber L(G) für S: S → SA: rekursiv, aber auch S → a. A → a | b. Also Wörter: a, aA -> a a, a b, dann SA -> a SA -> a a, a b, usw. bzw. S -> SA -> SA A -> ... letztlich endet es mit a und dann A's mit a oder b. Beispiel: von S ==> SA ==> aA ==> ab, also L(G) enthält ab. Del(L(G)): Entferne ein ab. Wenn wort vabw, z.B. ab: entferne ab -> ε. Also ε in Del(L). In unserer Grammatik: S_{ab} kann ableiten auf S_a A_b. Wir brauchen, dass S_a auf ε geht, was bedeutet: S muss a ableiten (denn S_a → ε nur wenn S -> a in G, aber S_a kann auch S A_a ableiten?). S_a hat zwei Regeln: S_a → ε (weil S → a) und S_a → S A_a (weil S → SA) Also S_a kann a ableiten? L_{G'}(S_a) = {w | w a in L_G(S)} In G: L_G(S): S startet, produziert eine Folge von A's, aber beginnend mit a: S -> SA^k, und dann jedes A -> a|b, also die Wörter sind von der Form a(a|b)^k. Also w a ist in L_G(S) nur wenn w a = a (a|b)^k? Nein, weil S -> SA führt zu Wörtern, die mit a beginnen, aber nicht notwendigerweise mit a enden. Zum Beispiel: S -> SA -> aA -> ab: Wort ab, dann w a: w a = ab, aber ab a = aba? Das ist nicht in L_G(S) notwendigerweise? Korrekter: Die Produktion ist: L_{G'}(S_a) = { w ∈ Σ* | w a ∈ L_G(S) } In L_G(S): Wörter, die mit a beginnen, da S -> a ... und dann A's, also jedes Wort in L_G(S) beginnt mit a. Das letzte Zeichen ist entweder a oder b, je nach A. Also w a in L_G(S): wenn das Wort in L_G(S) auf a endet. Also w a = ganzes Wort, also w ist alles außer dem letzten a? Z.B.: Wenn L_G(S) Wort hat: aba, dann w a = aba, also w = ab. Oder Wort a: w a = a, also w=ε. Wie wird w in S_a abgeleitet? Mit der Grammatik: S_a → ε [weil für Wort a: w=ε wenn a abgeschlossen wird] oder S_a → S A_a Nun, S leitet Wörter von L_G(S) ab? Ja, in G' ist L_{G'}(S) = L_G(S). A_a leitet { w | w a in L_G(A) } = { w | w a in {a,b} } wobei L_G(A)={a,b}. w a = a => w=ε w a = b => w=b? Aber w a=b ist nicht in L_G(A), da A->a oder b, aber das Wort ist a oder b, nicht länger. Also A_a → ε? Nur für A → a, und A_a = { w | w a ∈ L_G(A) }. Wenn A → a: dann w a = a => w=ε. Wenn A → b: dann w a = b => gibt kein w, da b nicht mit a endet. Also L_{G'}(A_a) = {ε} wenn A a ableitet? A → a: Ja, A_a → ε. Aber A → b: keine Regel, also A_a kann nicht abgeleitet werden für A → b. Also L_{G'}(A_a) = {ε} (nur wenn A a ableiten kann, was er kann). Jetzt S_a → S A_a: S leitet ein Wort u ab in L_G(S), A_a leitet w ab in {ε} (wenn A_a ableitbar), dann S A_a leitet u concatenatiert mit w = u * ε = u. Also S_a kann ableiten zu u für jedes u aus L_G(S) (unter der Annahme, dass A_a ableitbar ist, was es ist, wenn es verwendet wird, aber). Aber eigentlich: S_a → S A_a, und S leitet z.B. ab, sagen wir ab (S->SA->aA->a b), und A_a leitet ? Wenn A → b, dann hat A_a keine Regel, also A_a ist nicht ableitbar. Problem? In der Regel S_a → S A_a: dies nutzt A_a, aber wenn wir A->b haben, dann ist A_a nicht definiert? Wir haben nur A_a → ε, wenn A ausgewählt wurde, der a ableitet? Aber in der Ableitung kann A ein b ableiten. Tatsächlich: In S_a → S A_a, wenn S ein Wort ableitet, das mit einem endet, das nicht a ist, dann können wir nicht A_a verwenden? Aber A_a soll nur leiten, wenn A a ableitet. Was ist die Sprache von S_a? { w | w a in L_G(S) } L_G(S) = a((a|b)*) ...? Nicht ganz: die Produktion S→SA, also S =>* a A1 A2 ... An, wobei Ai → a oder b. Also L_G(S) = { a w | w in {a,b}* }? Nicht ganz, weil S => SA => aA => ab, oder S => SA => S A => aA (wenn S->a), oder S => SA => SA A => aAA -> a a a, usw. Also ja, L_G(S) = a {a,b}*. Dann L_{G'}(S_a) = { w | w a in L_G(S) } = { w | w a in a {a,b}* }. w a = a v, für ein v in {a,b}*, also w = a u, so dass u in {a,b}* und u = v? Nein: w a = a v, also w = a u mit u a = v? Einfacher: w a ist ein Wort, das mit a anfängt und auf a endet, und w ist das Präfix vor dem letzten a? Nein. Das Wort ist w a, und es beginnt mit a und endet auf a. w a = a v, dann w = a u, wenn v = u a? Z.B.: w a = a: w=ε w a = aa: w=a w a = ab: w=ab? Aber ab endet nicht auf a, also ab ist nicht in a{a,b}*, weil a{a,b}* = {a, aa, ab, aaa, aab, aba, abb, ...}, und ab endet auf b? Schnitt: w a muss in L_G(S) sein, und L_G(S)=a{a,b}*. Also w a beginnt mit a und endet mit a, so? Nicht notwendig: aba ist in L_G(S): S->SA->aA->a b (falsch, aA->a b? A->b, also ab, aber aba?). Um aba zu bekommen: S->SA->SA A->aAA, dann aA A->a a A->a a a? Oder aA A->a b A->a b a (wenn A->a am Ende). Also ja, aba ist möglich. Dann w a = aba, also w = ab. Also die Sprache L_{G'}(S_a) = { w | w a in a {a,b}* }. Zum Beispiel: w a = ab: nicht in L_G(S), weil L_G(S) beginnt mit a, aber ab endet auf b? ab ist in L_G(S), weil S->aA->ab, aber ab endet auf b, nicht auf a. Also w a = aba: w=ab. Also: w a muss in L_G(S) = a{a,b}* sein. Da w a ein Wort in a{a,b}* ist, und das letzte Zeichen a ist (weil w a mit a endet) oder? Nein, w a endet auf a, weil ein extra a angehängt ist. Aber das Wort w a ist in L_G(S), das mit a beginnt, aber nicht notwendig mit a endet. Fehler: L_{G'}(S_a) = { w ∈ Σ* | w a in L_G(S) } L_G(S) = { a } * { a,b }^*, d.h. alle Wörter, die mit a anfangen, aber nicht unbedingt mit a enden. Also w a in L_G(S). Da w a mit a beginnt? Ja, weil L_G(S) nur mit a beginnt. Aber w a muss mit a beginnen: also w a ist in L_G(S). Zum Beispiel: w a = a (Ziel): dann w=ε, und a in L_G(S) ja. w a = ab: dann w=a, aber ab ist in L_G(S), und w a = a b? Nein: w a ist w dann a, also wenn w=a, dann w a = a a = aa. Wir haben: w a = [Wort] ∈ L_G(S). Also für ein Wort v in L_G(S): w a = v. Dann v beginnt mit a. Also w a = v. Da v in L_G(S), wird v von S abgeleitet. Aber unsere Definition: für gegebenes S_a, es leitet w ab, so dass w a in L_G(S). Nun, wie können wir es ableiten? Mit den Regeln: S_a → ε (wenn v=a, dann w=ε) oder S_a → S A_a Und S leitet ein Wort ab? S leitet ein Wort in L_G(S) ab, und A_a leitet { u | u a in L_G(A) }. L_G(A) = {a,b}. Also u a = a → u=ε → A_a → ε möglich (wenn A a ableiten hat) oder A → b: u a = b? nicht möglich → nicht ableitbar. Also nur wenn A_a → ε, also für ein u=ε. Dann S_a → S A_a leitet s ε ab, wenn s von S abgeleitet wird. Also Wort s. Das bedeutet: w = s, und dann w a = s a. Also die Sprache von S_a sollte sein: { w | w a in L_G(S) }. Mit w = s, so dass s a in L_G(S). Um s a in L_G(S) zu haben, wenn s in L_G(S), dann s a ist nicht notwendig in L_G(S), es sei denn, wir hängen ein a an, aber die Wörter in L_G(S) sind nicht geschlossen unter Konkatenation. Besser: die Sprache ist nicht w a = s, sondern w = s u für u in L_{G'}(A_a). Aber u ist ε, also w=s. Nun, w a = s a. Also soll s a in L_G(S) sein. Aber s ist in L_G(S), also L_G(S) ist nicht notwendig geschlossen unter Anhängen von a. Zum Beispiel: ab in L_G(S), aber aba ist auch in L_G(S) (S->SA->aA->a bA -> aba). Ja. Aber was ist, wenn wir s = a haben: s a = aa in L_G(S). s = ab: s a = aba in L_G(S). Also die Sprache L_{G'}(S_a) = { w | w a in L_G(S) }. Und mit den Regeln: S_a → ε (wenn w=ε, also w a = a) S_a → S A_a → s ε = s (wenn S->s ableitet) und s a muss in L_G(S) sein? Nicht automatisch, aber in der Ableitung ist S_Aa nur anwendbar, wenn S ein Wort ableiten kann, das ...? Die Regel S_a → S A_a: dies erlaubt die Ableitung von jedem Wort, das von S abgeleitet wird, ungeachtet dessen, was hinten anhangen? Aber A_a leitet nur ε, wenn A a ableiten kann, was der Fall ist. Also leitet S A_a das Wort s ab, für jedes s in L_G(S). Aber dann hätten wir L_{G'}(S_a) = {ε} ∪ L_G(S). Also ε und L_G(S). Aber das ist nicht korrekt: L_{G'}(S_a) = { w | w a in a {a,b}*} = { w | w a in L_G(S) }. L_G(S) = a{a,b}*. Also w a in a{a,b}*. Für w a in a{a,b}*, dann w a = a v für v in {a,b}*. Also w a = a v. Setze w = u, dann u a = a v, also u = a v_{ohne letztes a}? Eliminiere das letzte Zeichen: wenn w a = a v, dann w = a w' und w' a = v? Nein. w a ist das volle Wort, also w a = a v. a v = a v. Wenn v=ε, dann w a = a, w=ε. Wenn v=b, dann w a = a b, also w=a? Aber a b endet nicht auf a. Also es muss gelten: "w a " = a v, und das muss in a{a,b}* sein, was es ist. Also w a = a v. Da v irgendein Wort über {a,b}* ist, also w = a v, und w a = a(v a). Also von w a = a v, und v ist ein Wort. Aber w a = a v, so dass w = (a v) mit dem letzten a abgeschnitten? Schreibe: w a = a x, wobei x in {a,b}*. Also w a = a x. Wir definieren: w a = a x. Dann ist w = a y, wobei y a = x? Beispiel: w a = a (leer) = a, also w=ε, x=ε. w a = aa = a a, also w=a, x=a. w a = ab = a b, also w=a, x=b? w a = a * b, so w muss leer sein? w a = wort w gefolgt von a. Schnell: w a = u, u beginnt mit a? Ja, weil in L_G(S). Also wenn u = a b, dann w a = a b, so w = a (denn wenn w=a, dann a gefolgt von a = aa, nein). Korrekt: w + a = u, also wenn u = a z für z in {a,b}*, dann w = a z' mit z' in {a,b}* so dass |w| = |u| - 1 und u = w a. Also u hat Länge |w|+1, u[0]=a, u[1..|w|]=w_0 ... w_{k-1}, und u[k]=a, w_i = u[i] für 0<=i<k, u[k]=a? Das letzte Zeichen von u ist a. Und das erste Zeichen ist a, aber w ist das Wort ohne das letzte a. Also u endet auf a. Also: L_{G'}(S_a) = { w | w a in L_G(S) } = { w | w a ∈ a {a,b}* } = { w | w a beginnt mit a }, was immer wahr ist, weil w a in a {a,b}*. Aber das letzte Zeichen ist a. Also w a ∈ a {a,b}* und |w a| >=1, und das letzte Zeichen ist a. Also die Wörter u in L_G(S), die auf a enden. Wenn u auf a endet, dann w = u ohne das letzte a. Also L_{G'}(S_a) = { w | u = w a in L_G(S) } = Wörter, die Präfixe von Wörtern in L_G(S) sind, die auf a enden, ohne das letzte a. Zum Beispiel: u = a: w=ε u = aa: w=a u = aba: w=ab u = abb: nicht, weil abb endet auf b, nicht in der Sprache? abb ist in L_G(S) (da a + bb), aber abb endet auf b, also w a = abb erfordert, dass w = ab, und w a = ab a = aba, nicht abb. Also nur wenn u auf a endet. In L_G(S): Wörter, die auf a enden: z.B. a, aa, aba, aaa, etc. Und w = das gesamte Wort ohne letztes a. Also w = ε, a, ab, etc. Nun mit den Regeln: S_a kann abgeleitet werden durch: S_a → ε (entspricht u = a) S_a → S A_a S leitet ein ganzes Wort s ab in L_G(S). L_G(S)=a{a,b}*. A_a leitet ε, also S A_a leitet s. Das bedeutet, dass S_a → S A_a jedes Wort s aus L_G(S) ableitet. Aber dann L_{G'}(S_a) = {ε} ∪ L_G(S) = {ε} ∪ a{a,b}*. Aber das ist nicht korrekt, denn es sollte nur für s, so dass s a in L_G(S)? Wir haben s = das Wort aus L_G(S), aber dann w = s, und w a = s a. Also müsste s a in L_G(S) sein. In unserer Grammatik: wenn s in L_G(S), dann s a ist auch in L_G(S)? Ja, weil S → SA können wir weiterleiten zu s a. Zum Beispiel: S ableitet s=aA! -> ab, dann für s a = ab a, die Grammatik kann S->SA->aA A->ab A->aba, also ja. Also für jedes w in L_G(S) ist w a in L_G(S). Denn: w = a v für v in {a,b}*, und dann können wir hinzufügen: S->SA -> w A -> w a (wenn A->a) oder w b. Also w a ist in L_G(S) für jedes w in L_G(S)? Ja, wir können ein weiteres A anhängen, das in a oder b ableitet. Also L_{G'}(S_a) = { w | w a in L_G(S) } = L_G(S), weil w a immer in L_G(S) ist, für w in L_G(S), oder? Wenn w in L_G(S), dann w a in L_G(S). Und umgekehrt, wenn w a in L_G(S), dann w ist ein Präfix davon, und da L_G(S) geschlossen ist unter Präfix? Nicht komplett, aber in diesem Fall: w a in L_G(S) = a {a,b}*, also w a = a v, also w selbst ist in a {a,b}* (da w = a v'). Und w in a {a,b}* ist in L_G(S)? Ja, denn L_G(S) = a {a,b}*. Also tatsächlich: w a in a {a,b}* impliziert w in a {a,b}* = L_G(S). Und w in L_G(S) = a {a,b}* impliziert w a in a {a,b}*? Ja, wenn w = a u, dann w a = a u a, was in a {a,b}*. Also L_{G'}(S_a) = L_G(S) = a {a,b}*. Dann ist die Ableitung: S_a → ε (was a, in L_G(S) erfüllt w=ε, w a =a) S_a → S A_a → s ε = s für jedes s in L_G(S). Aber das ist redundante Regel. How to derive "ab" in L_{G'}(S_a): S_a → S A_a S → SA -> ... ab (aber wie: S wird ab abgeleitet: S → SA → aA (wenn S->a) und A->b) dann ab. Und für ε: S_a → ε. Also funktioniert es. Aber in der Grammatik haben wir auch S_a → S A_a, was ableiten kann: S → SA -> aA, dann A → a, so S ableit aA -> a a, dann S A_A -> aa ε = aa. Und aa in L_G(S) ja. Also für S_b: L_{G'}(S_b) = { w | b w in L_G(S) } L_G(S)=a {a,b}*, also b w muss mit a anfangen? Das ist nicht möglich, da b w mit b anfängt. Also L_{G'}(S_b) = ? leere Sprache. Mit den Regeln: S_b → S_b A (from S->SA) und keine Basis, also nicht ableitbar. Ebenso für A_b: L_{G'}(A_b) = { w | b w in L_G(A) } = { w | b w = a oder b } => nicht möglich für a, da b w =a hat w Leerzeichen? Nein. b w = b, also w=ε? Ja, wenn A→b, then w=ε. Also L_{G'}(A_b) = {ε} wenn A→b. Zurück zu S_{ab}: S_{ab} → S_{ab} A | S A_{ab} | S_a A_b Wir wissen: A_{ab} hat keine Regel, und S_{ab} A: rekursiv. S_a A_b: S_a leitet einen String s in L_{G'}(S_a)=L_G(S)=a{a,b}* ab. A_b leitet { w | b w in L_G(A) } = {ε} (wenn A→b) und auch wenn A→a? dann b w =a geht nicht. Aber A kann sein, dass es mehrere Optionen hat. A_b leitet für eine bestimmte Ableitung? Aber nicht kontextfrei. In der Regel S_a A_b: wenn es einen nichtdeterministischen Pfad gibt, wo A_b ableitbar ist, dann. A_b → ε (if A→b, so A_b can derive ε) A_a → ε (nur wenn A→a) Also S_a A_b: if we choose for A_b the derivation to ε, und S_a to s, then we can get s. Aber für this to be valid, we need to use the nonterminal symbol correctly: the production is S_{ab} → S_a A_b, and then S_a derives some string, A_b derives ε, so overall we get the string from S_a. But what does it represent? Removing an ab, so the original word was v a b w in the sense? Here we are removing an ab at the boundary between what S_a represents and what A_b represents. Also, für das Wort in L_G(S) war: es war w a b w'? But the removal is of "ab". Recall definition: Del(L) = { v w | v w is the result of removing "ab" in the original, so v a b w in L } But here S_{ab} should derive Del(L_G(S)), so words where we remove one occurrence of "ab". How do we derive with this grammar? Let's take an example: L_G(S) contains "ab". We should be able to derive ε by removing that "ab". With S_{ab} → S_a A_b: S_a should be the prefix before the removed 'a'? also in the original word: ...a...b... But in this case: original word "ab", remove the entire ab. Then v=ε, w=ε, so v w = ε. Also we hope to derive ε in S_{ab} via S_a A_b. S_a: { w | w a in L_G(S) }, for "ab", we remove a from the end? But original has ab, so if we remove ab to get ε. How is this captured? Break down: the removed ab is at the boundary? In the production, we have S -> SA or? In this example, for the word generated by S, when we remove an ab, we break the word at the removal point. In this case, for "ab", it must be that S generates "ab" directly: S->a und dann... but S->a only? then ab is generated from S->SA with A->b? so rule S->SA, therefore. For S_{ab}: from the rule S_{ab} → S_a A_b To get the empty string: S_a must derive ε: which we can by S_a → ε (because for the word a, S_a->ε represents the removal of a at the end? but here the word is ab. Specifically: S_a --> ε: this corresponds to w=ε, so w a = a should be in L_G(S). And it is. But then A_b must derive ε, which requires that b (as the whole word for A) is in L_G(A). It is. Then S_{ab} → S_a A_b --> ε ε = ε. How about the entire word ab: it has the ab, and we remove it to get ε. The role: in this case, we consider the word generated by S as being decomposed into the part that is v and w for the removal of ab. But here we used S_a for v and A_b for the context? In the specification, for S (which is the starting symbol), we have: L_{G'}(S_{ab}) = Del(L_G(S)) This is achieved. Now for a longer word: aba. We should get: removing the first ab -> then v=ε, w=a -> word a also removing the last ab? But aba has only one occurrence of ab: at the beginning. Word "aba": generated by S -> SA -> aA -> abA -> aba (with A->a at end) Occurrences of "ab": positions 0-1: ab position 1-2: ba (not ab) So only one occurrence of ab. Removing it: take v a b w = aba: remove the ab at 0-1: v=ε, w=a, result=ε a = a. How to derive a? S_{ab} -> S_a A_b: we need S_a=A, and A_b=b? S_a: need to derive the prefix? But the decomposition is: v a b w = ε a b a -> vw = ε a = a. In the production: S_{ab} -> S_a A_b: then A_b should derive ε? but the rest is a. We have: S_{ab} -> S_a A_b S_a: can it derive a? Yes, because S_a can by S_a -> S A_a -> ... also a in L_G(S), and S -> a ... but we have: S_a -> S A_a: S -> a: but a have S->a rule, so we can say: S_a -> S A_a: S -> a: so we have a A_a A_a -> ε (because A->a, A_a->ε) so a ε = a. Then A_b must derive ε? A_b -> ε wenn A->b. So S_{ab} -> S_a A_b -> a ε = a. Yes. Now the recursive rules: S_{ab} -> S_{ab} A Meaning: remove an ab inside the first part (derived by S_{ab}), and then append A which is generated normally. Also S_{ab} -> S A_{ab}: but A_{ab} has no rule? because A only has terminal rules. So this branch is not derivable. Now for A_{ab}: should be empty, since from A we can only get a or b, so Del(L_G(A)) is empty. Now for the given grammar of the example. Let's list explicitly: G: V = {S, A}, P: S → SA | a, A → a | b G': V' = {S, A, S_{ab}, S_a, S_b, A_{ab}, A_a, A_b} Start symbol S' = S_{ab} Productions: Existing from P: 1. S → SA 2. S → a 3. A → a 4. A → b For X → YZ: only rule is S → SA S_{ab} → S_{ab} A | S A_{ab} | S_a A_b [Y=S, Z=A] S_a → S A_a [X_a → Y Z_a, with Y=S, Z=A] S_b → S_b A [X_b → Y_b Z, but in this formula: X_b → Y_b Z, so for X=S, Y_b is S_b, Z=A, so S_b → S_b A] But note: the general rule was: For X→YZ: X_{ab} → Y_{ab} Z | Y Z_{ab} | Y_a Z_b X_a → Y Z_a X_b → Y_b Z Here specifically: S_{ab} → S_{ab} A | S A_{ab} | S_a A_b S_a → S A_a S_b → S_b A Now for terminal rules: For S → a: Here the terminal is a. S_a → ε (because terminal a, and for X_a) S_b → ? not defined -> no rule S_{ab} → ? no rule For A → a: A_a → ε A_b → no rule A_{ab} → no rule For A → b: A_a → no rule A_b → ε A_{ab} → no rule Now, let's list all production rules clearly. We'll write them with | for alternatives. Non-terminals with rules: S: S → SA | a S_{ab}: S_{ab} → S_{ab} A | S A_{ab} | S_a A_b S_a: S_a → S A_a | ε (this |ε from S→a rule) S_b: S_b → S_b A A: A → a | b A_{ab}: no rule A_a: A_a → ε (from A→a) A_b: A_b → ε (from A→b) But wait, for the terminal rule of S→a, we added S_a→ε. And for S→SA, we also added S_a→ S A_a. Similarly, A_a has only ε from A→a, and A_b only ε from A→b. Write each nonterminal and its productions: S → SA | a A → a | b S_{ab} → S_{ab} A | S A_{ab} | S_a A_b S_a → S A_a | ε S_b → S_b A (which is recursive and has no base case, so equivalent to empty language) A_{ab} → (no rule) A_a → ε A_b → ε So effectively, we have for S_a: two rules: S_a → S A_a and S_a → ε. How do we parse? To derive the empty string (for Del(L_G(S)): The only possible is if we can derive S_{ab} => ε. Via S_{ab} -> S_a A_b: S_a => ε (direct rule) A_b => ε (rule for A_b) So S_{ab} => ε To derive "a": S_{ab} -> S_a A_b => (S_a must yield a) and A_b yield ε. So S_a => a: how? S_a can be: -> ε: but that is ε, not a. -> S A_a S: has two possibilities: -> a: then S A_a => a A_a => a ε = a (since A_a=>ε) or S → SA: but if we take S→SA, and then SA is not a. S_a => S A_a: S→a: then a A_a => a ε = a. Then S_{ab} => S_a A_b => a ε = a. What about a word ending with b? Shouldn't be removed, but we are deriving for S_{ab}=Del(L). For example, Del(L) for word "ab": we get ε. For word "aab": vabw = aab with ab at 0-1: v=ε, w=b -> eb = b; or ab at 1-2: v=a, w=ε -> aε = a. How to derive "a" is given above. For "b": Must be from removal in a word like "ab" somewhere? The word b by itself is in L_G? Yes, but how? S can generate ab, but not b? L_G(S) starts with a, so "b" is not there. Only words starting with a. We need to derive "b": Only if there is a word that contains ab and removing it gives b. For example: aab: if we remove the ab at 0-1: ab at front: then v=ε, w=b -> output b. So how to derive b in the grammar: S_{ab} -> S_{ab} A: that would give anything from S_{ab} and then an A. For example: if we have a string x in S_{ab}, then x A: if A yields b, then x b. But what x can we get? We can get ε (as above) and a. So: S_{ab} => S_{ab} A => ε A => A => b (since A->b) But that yields b. Also directly: wait, ε is already there, so S_{ab} -> S_a A_b: but to get b? S_a must yield u, A_b yield v such that u v = b. S_a: can yield ε, a, aa, etc.? But how b? For b: we want u v = b. With S_a=>ε, then A_b must produce b, but A_b only yields ε. Or S_a yields b? But can S_a yield b? S_a → S A_a => S yields b? But S only yields a followed by stuff. Minimal: a. So S cannot yield a word of only b? So S_a cannot yield b. But with the above derivation: S_{ab} => S_{ab} A => ε A => b. Is this valid? Why not? The rule S_{ab} -> S_{ab} A is part of our production. What does it represent? We remove the ab somewhere in the word generated by S, but then we add an extra A? The rule S_{ab} -> S_{ab} A means: the word is produced by first removing an ab from S (so it becomes a word in S_{ab}) and then appending an A. But A does not have ab? So the ab removal happens inside S, and then we add a suffix. But after removal, we get vw, and then we add an A, meaning we are appending a terminal? But A can be a or b. So if we remove an ab from the input word, then the word becomes something, and then we append b? For example: if the word is aab, and we remove the first ab: then we get the string b. But then we append b-> bb. But that's not necessary. Why do we have this rule? The rule for the (recursive) non-terminal production: if we have X→YZ, and the removal happens in the left part (Y), then X_{ab} → Y_{ab} Z. Here: for S→SA, if the ab is inside the part generated by S, then S_{ab} → S_{ab} A. So it covers the case: the word is generated as Y Z, and if the ab is removed in Y, then the new word is y' z (where y' is Y without the ab) and z is the original Z. So in our case: S generates a word: is u which comes from S ->SA... and then the last A. If in u we remove an ab, we get v from S_{ab}, and then the final A is kept. For example: word "aab" = a a b: generated by S → SA and S→SA, ... Suppose S1 → S2 A, S2→S3 A, S3→a. The word aab is generated as: S1, S2 A, S2 is S3 A, S3->a, so whole word: S3 A A = a a b. Removal of first ab: at positions 0-1? But a a b -> the first two are a and a -> no ab. Removal of ab at positions 1-2: now the second character is a, third is b? So positions: character0: a, 1: a, 2: b -> so the ab is at indices 1-2: remove it? After removal: a (from char0) + (void) + nothing else -> "a" How is this yielding? The removal is in the S part: but S2 generates "aa", and then the A at end becomes b. But in the word "aa" generated by S2, there is an occurrence of ab? "aa": characters: a, a -> no ab. Maybe the occurrence crosses the boundary? But we have specifically the boundary case with S_a A_b. Specifically: the occurrence of ab at positions 1 and2: indices 1 and2 in the entire word, but the entire word is a a b. The boundary: the removal is inside the last S? S generates the first two symbols: aa? How: S can generate only one a? We have S→a, so that's a. Or S→SA. S→SA: then S-> SA -> aA -> a a (if A->a). Then the whole word S1->SA is a a. But we have three symbols: a a b. Perhaps we need a different parse tree. Alternative: the entire tree: S (start) produces: SA left S: a right A: b so word a b. But that's two letters. For aab: S is start. S → SA: left S: produces a (say S->a) right A: produces a A (by A→ something? no) So better: S → SA SA: then the left S becomes a, so a A now the A → b? then word is ab. To get aab: S → SA S in left is also SA: S→SA then S' in left -> a, and A in left SA becomes b (A→b), so SA (in left) becomes a b plus the outer A: say a (A→a) then the whole word is ab a = aba. To get aab: S → SA left S → a right A → ab? but A can be a or b, not generate two letters. We must use multiple steps: S → SA then the S produces a? no: S can produce two letters. How about: S → SA then the S is S itself? no. Actually, S → SA means that the left part is a string from S and the right part is A. For two letters: why not S-> a directly. To get aab: Start with S' S → SA (outermost) then left S must be the string "aa"? How: left S → SA then left S → a right A → a so S (inner) => SA => a A => a a Then outer right A → b So overall: (a a) + b = a a b Now the tree: Outer production: S -> SA (S_left and A_right) S_left: generated by S with a value of "aa" A_right: b Now removal of "ab" at positions 1 and 2: The first a of the inner part, and the beginning of the outer suffix: the a at position 1 and the b at position2 are produced by different nonterminals. Specifically: the a at position1 is part of S_left (specifically, the first a is produced by the innermost S->a, and the second a by the A in the S_left->...A), and the b by outer A. Is there an ab at positions 1 and2? Position0: the first a (from innermost S->a) Position1: the second a (from A in the subproduction: S_left → SA => a A, A→a) Position2: b from A_right. So and Position1='a', Position2='b': that is an ab. Now removal: remove it, then the word becomes: a (from pos0) + b (appended? or the suffix after removal) How about in the decomposition? v a b w = ... then v w is the new word. We have the word u: positions: [0]:a, [1]:a, [2]:b if we remove the ab starting at position1: then v = char0: a, because we break after the first character: v = substring from 0 to 1-? Break: the removed ab is from index1 to2, so the prefix v is substring from0 to1, which is "a", then the suffix w: from index3 onward, empty. so v w = a. Now the derivation using the grammar for G' We start at S_{ab} (start) We choose the rule that uses the removal at the boundary? Production: S_{ab} -> S_a A_b (for this outermost production) How? Because the outermost production of S is -> SA, and the ab crosses the boundary between the S part and the A part: the last part of the first S and the first part of the A? Not exactly, in this case the ab is within the word: it's between the A in the first S (which produces the a at position1) and the outer A which produces b at position2. In the parse tree of the entire word, the removal point is between these two. So: the S for the outermost rule is derived by -> SA, so we use the rule: X_{ab} for X->YZ should have the option Y Z_{ab} or? no, but here the removal spans the boundary? Specifically, it is of the form where the 'a' is the last character of Y's generation, and the 'b' is the first character of Z's generation. So the rule: we use X_{ab} -> Y_a Z_b Here: outer rule for S: X=S, Y=S_left, Z=A_right. Then Y_a: is { w | w a in L(S_left) } For S_left: it generated "aa". L(S_left) = "aa" w a = "aa" ⇒ w=a? But w is the string generated by Y_a: so a. Z_b: is { w | b w in L(A_right) } = {ε} (because L(A_right) is "b" and b w =b ⇒ w=ε) Then S_{ab} -> S_a A_b yields a ε = a. Perfect. But in this derivation: we used S_{ab} -> S_a A_b. Is this valid? Yes. Now to derive a in S_{ab}: we did not use any other rule. How about the rule S_{ab} -> S_{ab} A? This would be for removing an ab in the prefix S, and then attaching the suffix A without change. For example: could we remove an ab in the inner part? In "aab": is there an ab in the first S_left production? The S_left generated "aa": and "aa" does not contain ab? But "aa" is derived by S_left → SA with S->a and A->a: so the word is a a, which has no ab substring? (adjacent a's) So no. Thus, the grammar works. Now to fill in the template for the problem. Startsymbol: S' = S_{ab} Produktionen P': For each nonterminal: S → ? : from original and added? But in the answer template, it lists fields: $S\rightarrow ?$ $S_{ab}\rightarrow ?$ $S_a\rightarrow ?$ $S_b\rightarrow ?$ $A\rightarrow ?$ $A_{ab}\rightarrow ?$ $A_a\rightarrow ?$ $A_b\rightarrow ?$ We have to fill the right-hand side. For S: S → SA | a For S_{ab}: S_{ab} → S_{ab} A | S A_{ab} | S_a A_b but A_{ab} has no rule, and we don't want to list it? The template allows us to write the alternatives. We write: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab} A \mid S A_{ab} \mid S_a A_b$ (even though A_{ab} has no rule) $S_a\rightarrow S A_a \mid \varepsilon$ $S_b\rightarrow S_b A$ (even though it might be empty, we still list) $A\rightarrow a\mid b$ $A_{ab}\rightarrow \emptyset$? but we should list the right-hand-sides, or leave empty? According to the template, it has ? so we write what is on the right. In the answered template example they give: $S_{ab}\rightarrow \dots$, but we should write the productions. For A_{ab}: no production, so we can write nothing or put $\emptyset$ but let us leave it empty explicitly? In the template: we write the sequence, and for empty we leave blank? The hint says: "Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer." But here each nonterminal is listed with a rule header, so we must say the right-hand side. Look at the template: it has $Nonterminal \rightarrow ?$ so for S_{ab} \rightarrow ? and then we put the alternatives. But for A_{ab}, it should have no production? So we put \text{ (no rule) }? But the specification: in the answer template, we are to fill the ? with the right-hand-sides. We can use | to separate alternatives, or if no rules, leave blank? According to the hint in the problem: "Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer." So for A_{ab} → no rule, we leave it empty. Similarly, for S_b, it has a rule: S_b → S_b A, so we write that. How to write alternatives: use \mid. So: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab} A \mid S A_{ab} \mid S_a A_b$ $S_a\rightarrow S A_a \mid \varepsilon$ $S_b\rightarrow S_b A$ $A\rightarrow a\mid b$ $A_{ab}\rightarrow$ (leer) $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ Now for $S A_{ab}$: this uses A_{ab} which has no rule, so any derivation using that path will fail? but we still list it. So we write as above. Therefore, putting together.
Answer
### Antwort zu subproblem c Die kontextfreie Grammatik \(G'\) wird wie folgt konstruiert, um \(L(G') = \text{Del}(L(G))\) zu erfüllen, wobei \(G\) in Chomsky-Normalform ist. <answer id="1"> Startsymbol $S' = S_{ab}$ Produktionen $P'$: - $S \rightarrow SA \mid a$ - $S_{ab} \rightarrow S_{ab} A \mid S A_{ab} \mid S_a A_b$ - $S_a \rightarrow S A_a \mid \varepsilon$ - $S_b \rightarrow S_b A$ - $A \rightarrow a \mid b$ - $A_{ab} \rightarrow$ - $A_a \rightarrow \varepsilon$ - $A_b \rightarrow \varepsilon$ </answer> ### Erklärung: - **Startsymbol**: \(S' = S_{ab}\), da \(L_{G'}(S_{ab}) = \text{Del}(L_G(S))\). - **Produktionen**: - Die ursprünglichen Regeln aus \(G\) werden übernommen für \(S\) und \(A\) (zur Gewährleistung von \(L_{G'}(X) = L_G(X)\) für \(X \in \{S, A\}\)). - Für $S \rightarrow SA$ (Chomsky-Produktion): - $S_{ab} \rightarrow S_{ab} A \mid S A_{ab} \mid S_a A_b$ entspricht dem Entfernen eines $ab$ in der linken Teilkette ($S_{ab} A$), in der rechten Teilkette ($S A_{ab}$) oder an der Grenze ($S_a A_b$). - $S_a \rightarrow S A_a$ für die Suffigierung mit $a$. - $S_b \rightarrow S_b A$ für die Präfigierung mit $b$ (hier ohne Basis, daher nicht ableitbar). - Für terminale Produktionen: - $S \rightarrow a$: - $S_a \rightarrow \varepsilon$ (da $\{w \mid wa = a\} = \{\varepsilon\}$). - Keine Regeln für $S_b$ oder $S_{ab}$, da kein $b$ bzw. kein $ab$. - $A \rightarrow a$: - $A_a \rightarrow \varepsilon$ (da $\{w \mid wa = a\} = \{\varepsilon\}$). - Keine Regeln für $A_b$ oder $A_{ab}$. - $A \rightarrow b$: - $A_b \rightarrow \varepsilon$ (da $\{w \mid bw = b\} = \{\varepsilon\}$). - Keine Regeln für $A_a$ oder $A_{ab}$. - $A_{ab}$ hat keine Regeln, da $L(A)$ nur Wörter mit einem Symbol enthält und kein $ab$ entfernbar ist. Diese Konstruktion gewährleistet die geforderten Sprachdefinitionen für die erweiterten Nichtterminale.
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen : - - - - - - - -
answer does not follow the template
google/gemini-2.5-pro
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
**Delving Into Delta** I'm tackling the language $\Del(L)$ computation, starting with the provided set $L$. The definition is clear, so I'm methodically applying it to each string in $L$, analyzing the prefixes and suffixes to determine the potential strings within the resulting language. It's a bit tedious but the steps are clear. **Applying the Algorithm** I'm carefully applying the delta function to each string in the language. Analyzing `abbaba`, I've correctly identified the initial "ab" and derived `baba`. Considering the remaining words is next, to form the complete language. The structure is starting to reveal itself. **Revisiting the Decomposition** I've rigorously analyzed the initial words and calculated $\Del(L)$, focusing on the substring "ab" to extract the correct $v$ and $w$ for each decomposition. I made an error in a prior step, and have revisited all steps. My answer is coming together, and I am now confident in its correctness. **Verifying The Output** I've meticulously analyzed the language again, word by word, and meticulously reviewed my calculations for $\Del(L)$. I'm now confident in the final set: {baba, abba, ε}. All steps have been double-checked and align with the given definition. **Concluding the Calculation** I've methodically analyzed each word in $L$, identified instances of "ab," and constructed the resulting language. Now, I am confident in providing the final result: $\Del(\{abbaba, baa, ab, a, b\}) = \{\varepsilon, baba, abba\}$. All computations have been rechecked.
Answer
<answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
**Examining the Core Equation** I'm now fully immersed in evaluating the equation's validity. Defining the terms is crucial. I've established the alphabet and the core definitions, specifically for $\Del(L)$. My focus is on how the equation holds for different sets of strings in $L$. **Unpacking the Definitions** I'm now stepping into the depths of the definitions, meticulously dissecting them. I'm mapping out how words in $L$ transform via $\Del$ operations. Currently, I am focused on building a solid bridge between the left-hand side and right-hand side of the main equation to compare. I'm striving to clarify the relationship of "ab" removal in order to understand the equation's potential validity. **Probing for the Proof** I'm now actively working on demonstrating the equation's validity. Considering a word $x$ derived from both sides, $\Del(\Del(L))$ and $\DelTwo(L)$, and finding a direct connection between the two. I believe my approach, which started with considering a word $x \in \Del(\Del(L))$, shows promise in solidifying the proof. **Refining the Approach** I'm now pinpointing the direct implications of the "ab" removal operations. I'm meticulously exploring the differences between $\Del(\Del(L))$ and $\DelTwo(L)$, aiming to expose any edge cases. I'm carefully looking at the language transformations, using example languages to illuminate potential counterexamples. **Evaluating the Core Concepts** I'm now considering the implications of multiple "ab" instances within the word. I'm looking at the consequences of removing one "ab," and then, from that result, removing a second. I'm seeing how this relates to the single operation of removing two "ab"s from the initial string. **Confirming the Proof's Foundations** I'm now working on providing a rigorous proof. From analyzing $\Del(\Del(L))$, I've deduced that removing an "ab" from a word in $\Del(L)$ implies a prior removal of an "ab" from the original language. This supports the need to show the equivalence of the equation. I'm focusing on how multiple "ab"s in a word affect this. **Connecting Both Sides** I'm now connecting $\Del(\Del(L))$ with $\DelTwo(L)$, focusing on a general case where a word has multiple "ab"s. By analyzing the "ab" removals and the resulting transformations, I'm trying to define the conditions needed to claim equivalence, based on the number of removals. **Confirming Equivalence** I'm now quite sure that $\Del(\Del(L)) = \DelTwo(L)$ holds for finite languages. The crucial part is demonstrating how removing two "ab"s via either method yields the same results. I've used examples with two and three "ab"s to verify this, and I believe the pattern is consistent across multiple removals. **Confirming the Hypothesis** I'm now confirming my hypothesis by demonstrating equivalence through counterexamples. Since $L$ is finite, I will proceed by proving the equation holds. I've built a strong framework based on my previous analysis, now validating my approach. **Confirming with a Formal Proof** I've defined the terms more formally, laying the groundwork for proving $\Del(\Del(L)) = \DelTwo(L)$. I've verified a few cases to build my proof. I will proceed to show that for any word $z$ with any number of "ab"s, removing two "ab"s in either way results in the same word. **Validating the Core Idea** I'm now verifying that I can find a definitive solution. With finite $L$, I'm considering removing two "ab" substrings from a word, regardless of the order. The key aspect is that I can remove the two "ab"s and end up with the same result, no matter which removal method I employ. **Finalizing the Proof** I'm now finishing the proof using my developed framework. With finite $L$, and the fact that order doesn't change results, I have a formal way to show the equation's consistency and validity. My formal proof is now complete. **Refining the Approach** I'm now solidifying the relationship between the two sides of the equation using a more formal structure. I am constructing a mapping to show that any word in $Del(Del(L))$ has an equivalent word in $DelTwo(L)$, and vice-versa, building a direct connection between the operations of "ab" removal. **Forming a Concise Argument** I'm now formalizing the general proof strategy, defining key assumptions to establish the equation's validity for finite languages. The focus is on demonstrating the equality through a direct match, showing a one-to-one correspondence between the two. **Defining Word Removal** I'm now defining the formal language, the symbols, and the operations used, to ensure rigor. I've finalized the key components, establishing the foundation for a structured proof. I will use a concise approach to keep the equations clear. **Confirming Proof Strategy** I'm now establishing the core structure of the proof, highlighting the implications and connections between $\Del(\Del(L))$ and $\DelTwo(L)$. My focus is on clearly illustrating how each word in one set has a corresponding word in the other. **Formally Defining the Operations** I'm now providing a precise framework for the operations by defining each. The goal is to ensure I'm using the same definitions as those in the question, and to show a rigorous and consistent approach for both sides of the equation. **Proof Synthesis** I'm now crafting a formal proof, aiming for brevity and clarity. I'll start by meticulously defining the two removal operations, then show that $\Del(\Del(L))$ and $\DelTwo(L)$ yield equivalent results for any finite language $L$. My current approach will be more of a direct match, and not a proof by contradiction. **Proof Formulation** I'm now focusing on structuring the proof and formalizing the inclusion $\Del(\Del(L)) \subseteq \DelTwo(L)$, and the reverse. I plan on using the word's internal "ab" structure. **Finalizing the Proof** I'm now presenting the final formal proof. This showcases how the consistent results from both removal methods, applied on words in a finite language, ensures the equation holds. The proof rests on how two 'ab' instances can be removed in either order, always leading to the same final word. **Refining the Argument** I'm now connecting the two sides through analyzing the potential issues. From a formal perspective, all the elements are now in place, and I can now consider edge cases related to finite languages, such as the presence of multiple "ab" substrings. **Confirming Proof Structure** I'm now showing how the core argument unfolds. The central idea is the removal of "ab" strings, regardless of the removal order. This is done to directly map the steps to two different ways to remove "ab"s. **Refining the Core Idea** I'm now reviewing the structure of the proof to guarantee its completeness. My main focus is to determine the essential features of $L$ to ensure the equality holds. I will also consider edge cases within the finite language constraints. **Confirming the Core Idea** I'm now trying to construct a full proof. My focus is the equation's validity for finite $L$, and the key is showing that two applications of $\Del$ is the same as $\DelTwo$. I'm now carefully working through all potential issues. **Analyzing the Proof Structure** I'm now organizing my proof in two parts: showing $\Del(\Del(L)) \subseteq \DelTwo(L)$ and $\DelTwo(L) \subseteq \Del(\Del(L))$. The first part is proving a relationship between sequential "ab" removals and the direct removal, while the second part will show how the direct approach maps to two sequential "ab" removals. **Proving Incorrectness** I'm now formalizing the proof to show the equation doesn't hold. I've identified a counterexample, $L=\{aabb\}$, which satisfies all constraints. I will demonstrate how this specific language leads to an inequality, confirming the hypothesis. **Identifying a Counterexample** I'm now identifying a finite language for a counterexample to the original claim. I've chosen $L = \{aabb\}$ and am analyzing its properties, specifically with respect to the $\Del$ and $\DelTwo$ operations. I now will confirm this choice leads to inequality, contradicting the claim. **Revisiting the Proof** I'm now circling back to the proof, thoroughly analyzing the edge cases and potential pitfalls. My priority is now to ensure that the counterexample is both sound and easy to interpret. **Evaluating the Proof's Structure** I'm now carefully constructing the proof, working towards a strong, formal argument. I'm carefully connecting the two ways to remove the "ab" substrings. The intent is to provide the most concise proof possible. **Proving Incorrectness** I've identified a counterexample that effectively disproves the equation. My analysis of $L=\{aabb\}$ reveals a discrepancy between sequential removal and direct application, confirming the core concept of this subproblem. The current focus is on the rigorous details of why my approach is a proper counterexample. **Confirming a Counterexample** The counterexample is established. I am confidently asserting the equation's failure. By utilizing the language $L = \{aabb\}$, I'm demonstrating an explicit discrepancy between the operator results, proving my final answer. **Confirming a Counterexample** I'm now very confident the core equation doesn't hold true for all finite languages. I'm establishing a formal counterexample and its implications. By demonstrating the inequality of $\Del(\Del(L))$ and $\DelTwo(L)$ for $L = \{aabb\}$, I am substantiating my final answer. **Formulating a Counterexample** I'm now designing a clear example to show the equation's fallacy, focusing on simplicity. I will meticulously outline the results of both the $\Del$ and $\DelTwo$ operators. The goal is to emphasize how the two operations create demonstrably different language outputs. **Proving Incorrectness** I'm now aiming for a concrete refutation. The plan is to use the language $L = \{aabb\}$. I'm going to use the properties of this language to find that the left side of the equation does not equal the right side. **Confirming the Solution** I'm now reframing the final proof steps, ready to showcase how my counterexample disproves the claim. I will show, through a language example, that one is a proper subset.
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Die Aussage ist **falsch**. Wir widerlegen sie mit einem Gegenbeispiel. Sei die endliche Sprache $L = \{aabb\}$ über dem Alphabet $\Sigma = \{a,b\}$ gegeben. **Linke Seite der Gleichung: $\Del(\Del(L))$** 1. Zuerst berechnen wir $\Del(L) = \Del(\{aabb\})$. Das einzige Wort in $L$ ist $z=aabb$. Wir suchen Zerlegungen von $z$ in der Form $vabw$. Die einzige Möglichkeit ist $v=a$ und $w=b$, da $a \cdot ab \cdot b = aabb$. Das resultierende Wort ist $vw=ab$. Somit ist $\Del(L) = \{ab\}$. 2. Als Nächstes berechnen wir $\Del(\Del(L)) = \Del(\{ab\})$. Das einzige Wort in der Sprache $\Del(L)$ ist $z'=ab$. Wir suchen Zerlegungen von $z'$ in der Form $vabw$. Die einzige Möglichkeit ist $v=\varepsilon$ (das leere Wort) und $w=\varepsilon$. Das resultierende Wort ist $vw=\varepsilon$. Somit ist $\Del(\Del(L)) = \{\varepsilon\}$. **Rechte Seite der Gleichung: $\DelTwo(L)$** Nun berechnen wir $\DelTwo(L) = \DelTwo(\{aabb\})$. Laut Definition ist $\DelTwo(L) = \{uvw \mid u,v,w \in \Sigma^* \wedge uabvw \in L\}$. Wir müssen also eine Zerlegung des Wortes $aabb \in L$ in der Form $uabvw$ finden. Diese Form erfordert, dass das Wort mindestens zwei (nicht überlappende) Vorkommen des Teilwortes "ab" enthält. Das Wort $aabb$ enthält das Teilwort "ab" jedoch nur genau einmal. Daher gibt es keine solchen $u,v,w \in \Sigma^*$, für die $uabvw = aabb$ gilt. Folglich ist die Menge $\DelTwo(L)$ leer: $\DelTwo(L) = \emptyset$. **Vergleich** Wir haben $\Del(\Del(L)) = \{\varepsilon\}$ und $\DelTwo(L) = \emptyset$. Da $\{\varepsilon\} \neq \emptyset$, gilt die Gleichung $\Del(\Del(L)) = \DelTwo(L)$ nicht für die Sprache $L=\{aabb\}$. Dies widerlegt die ursprüngliche Aussage. Der Grund für das Scheitern der Gleichheit liegt darin, dass die $\Del$-Operation neue Vorkommen von "ab" erzeugen kann. In unserem Beispiel wird aus $z=a(ab)b$ durch Entfernen von "ab" das Wort $y=ab$, welches selbst ein "ab" ist. Das zweite Anwenden von $\Del$ entfernt dieses neu entstandene "ab". $\DelTwo$ hingegen kann nur "ab"s entfernen, die bereits beide im ursprünglichen Wort vorhanden waren. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Die Aussage ist falsch. Wir widerlegen sie mit einem Gegenbeispiel. Sei die endliche Sprache über dem Alphabet gegeben. Linke Seite der Gleichung: 1. Zuerst berechnen wir . Das einzige Wort in ist . Wir suchen Zerlegungen von in der Form . Die einzige Möglichkeit ist und , da . Das resultierende Wort ist . Somit ist . 2. Als Nächstes berechnen wir . Das einzige Wort in der Sprache ist . Wir suchen Zerlegungen von in der Form . Die einzige Möglichkeit ist (das leere Wort) und . Das resultierende Wort ist . Somit ist . Rechte Seite der Gleichung: Nun berechnen wir . Laut Definition ist . Wir müssen also eine Zerlegung des Wortes in der Form finden. Diese Form erfordert, dass das Wort mindestens zwei (nicht überlappende) Vorkommen des Teilwortes "ab" enthält. Das Wort enthält das Teilwort "ab" jedoch nur genau einmal. Daher gibt es keine solchen , für die gilt. Folglich ist die Menge leer: . Vergleich Wir haben und . Da , gilt die Gleichung nicht für die Sprache . Dies widerlegt die ursprüngliche Aussage. Der Grund für das Scheitern der Gleichheit liegt darin, dass die -Operation neue Vorkommen von "ab" erzeugen kann. In unserem Beispiel wird aus durch Entfernen von "ab" das Wort , welches selbst ein "ab" ist. Das zweite Anwenden von entfernt dieses neu entstandene "ab". hingegen kann nur "ab"s entfernen, die bereits beide im ursprünglichen Wort vorhanden waren.
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Die Aussage ist **falsch**. Wir widerlegen sie mit einem Gegenbeispiel.
Sei die endliche Sprache $L = \{aabb\}$ über dem Alphabet $\Sigma = \{a,b\}$ gegeben.
**Linke Seite der Gleichung: $\Del(\Del(L))$**
1. Zuerst berechnen wir $\Del(L) = \Del(\{aabb\})$.
Das einzige Wort in $L$ ist $z=aabb$. Wir suchen Zerlegungen von $z$ in der Form $vabw$.
Die einzige Möglichkeit ist $v=a$ und $w=b$, da $a \cdot ab \cdot b = aabb$.
Das resultierende Wort ist $vw=ab$.
Somit ist $\Del(L) = \{ab\}$.
2. Als Nächstes berechnen wir $\Del(\Del(L)) = \Del(\{ab\})$.
Das einzige Wort in der Sprache $\Del(L)$ ist $z'=ab$. Wir suchen Zerlegungen von $z'$ in der Form $vabw$.
Die einzige Möglichkeit ist $v=\varepsilon$ (das leere Wort) und $w=\varepsilon$.
Das resultierende Wort ist $vw=\varepsilon$.
Somit ist $\Del(\Del(L)) = \{\varepsilon\}$.
**Rechte Seite der Gleichung: $\DelTwo(L)$**
Nun berechnen wir $\DelTwo(L) = \DelTwo(\{aabb\})$.
Laut Definition ist $\DelTwo(L) = \{uvw \mid u,v,w \in \Sigma^* \wedge uabvw \in L\}$.
Wir müssen also eine Zerlegung des Wortes $aabb \in L$ in der Form $uabvw$ finden. Diese Form erfordert, dass das Wort mindestens zwei (nicht überlappende) Vorkommen des Teilwortes "ab" enthält.
Das Wort $aabb$ enthält das Teilwort "ab" jedoch nur genau einmal.
Daher gibt es keine solchen $u,v,w \in \Sigma^*$, für die $uabvw = aabb$ gilt.
Folglich ist die Menge $\DelTwo(L)$ leer: $\DelTwo(L) = \emptyset$.
**Vergleich**
Wir haben $\Del(\Del(L)) = \{\varepsilon\}$ und $\DelTwo(L) = \emptyset$.
Da $\{\varepsilon\} \neq \emptyset$, gilt die Gleichung $\Del(\Del(L)) = \DelTwo(L)$ nicht für die Sprache $L=\{aabb\}$.
Dies widerlegt die ursprüngliche Aussage.
Der Grund für das Scheitern der Gleichheit liegt darin, dass die $\Del$-Operation neue Vorkommen von "ab" erzeugen kann. In unserem Beispiel wird aus $z=a(ab)b$ durch Entfernen von "ab" das Wort $y=ab$, welches selbst ein "ab" ist. Das zweite Anwenden von $\Del$ entfernt dieses neu entstandene "ab". $\DelTwo$ hingegen kann nur "ab"s entfernen, die bereits beide im ursprünglichen Wort vorhanden waren.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
**Decomposing the Problem** I'm working on constructing a context-free grammar $G'$ to generate $\Delta(L(G))$, given a CNF grammar $G$. Right now, I'm focusing on understanding the input, which is a CNF grammar, and figuring out the crucial steps to apply the $\Delta$ operation. I am trying to understand the relationship between $G$ and $G'$. **Defining Production Rules** I've now started thinking about how to translate the language specifications for the new non-terminals into production rules for $G'$. I'm wrestling with the details, specifically how to derive rules for $X_{ab}$, $X_a$, and $X_b$ based on the rules in the CNF grammar $G$. I'm focusing on how the original productions influence the derivation of strings in $\Delta(L(G))$. **Mapping Existing Rules** I've been working through the production rules and started by incorporating all productions from the original CNF grammar $G$ into $G'$. This preserves the original language, keeping the original non-terminals' behavior intact. I'm now focusing on ensuring that $X_a$ captures the right quotient behavior. I'm considering how to derive the productions needed for this, using the CNF structure to my advantage. I think this is going to involve a lot of substitutions. **Implementing the Quotients** I'm now focusing on how to create the right and left quotients in $G'$ using the CNF rules. For $X_a$, I've deduced that if $X \to YZ$ is a production in $G$, then $X_a \to YZ_a$ is in $G'$. I am also considering productions where the original rule has terminal characters to generate the terminal quotient, as they seem essential in this construction. I still need to figure out how to deal with the "ab" requirement. **Deriving Quotient Rules** I'm now developing the production rules for the right and left quotients in $G'$. I've concluded, from previous analysis of the CNF grammar, that for $X_a$ the productions are $X_a \to YZ_a$ where $X \to YZ$ and also $X_a \to \varepsilon$ when $X \to a$ is a production. The rules for $X_b$ follow a similar, symmetrical pattern. I have to still include the 'ab' element! **Refining Quotient Rules** I'm now working on the exact structure of the productions for $X_b$ and $X_a$. I'm confident in the logic for handling $X_a$: if $X \to YZ$, then $X_a \to Y Z_a$, and if $X \to a$, then $X_a \to \epsilon$. The productions for $X_b$ follow the exact mirror of that, but I need to refine the rule for $X_{ab}$ and handle the 'ab' cases. **Defining Deletion Rules** I'm now focusing on the crucial aspect: defining productions for $X_{ab}$. After examining the input grammar structure, I believe the rule is $X_{ab} \to Y_{ab}Z$ or $X_{ab} \to YZ_{ab}$ when $X \to YZ$ is in G. Also, I think a production rule of $X_{ab} \to Y_a Z_b$ will also be needed, because $X_{ab}$ is specifically designed for that "ab" deletion. **Constructing the Productions** I'm now meticulously examining the derivation paths within the original CNF grammar, specifically focusing on how the "ab" substring can appear in order to generate the deletion language. I'm focusing on productions of the form $X \to YZ$, and the roles each non-terminal plays. I think the productions for $X_{ab}$ will have to handle cases where "ab" is fully within a derivation or is spread across multiple parts of a production. **Finalizing Rule Definitions** I'm now combining the rules. If $X \to YZ$ in $G$, then $X_{ab} \to Y_{ab}Z$, $X_{ab} \to YZ_{ab}$, and $X_{ab} \to Y_aZ_b$ in $G'$. Also, if $X \to a$, then $X_a \to \epsilon$, and if $X \to b$, then $X_b \to \epsilon$. I've included all the original productions from $G$. I believe the grammar construction is complete. **Completing Rule Construction** I'm now confirming all the required production rules for the final grammar. The core is: for each $X \to YZ$ in the original grammar $G$, I add $X_{ab} \to Y_{ab}Z$, $X_{ab} \to YZ_{ab}$, and $X_{ab} \to Y_aZ_b$ to $G'$. Furthermore, for each production $X \to a$, I include $X_a \to \epsilon$ and if $X \to b$ I include $X_b \to \epsilon$. Finally I include the original productions, ensuring the original language is also supported. This seems to solve the entire problem. **Confirming the Construction** I've now fully codified the complete set of production rules, including the handling of original productions, the quotients ($X_a$, $X_b$), and, most importantly, the core "ab" deletion logic ($X_{ab}$). The structure is complete! I have tested all the test cases, and I am confident the grammar will generate the right $\Delta(L(G))$. **Validating the Construction** I'm now performing a final sweep over the entire process, ensuring that I haven't missed any specific edge cases or made incorrect assumptions. I'm re-examining each of the rule derivations, especially for $X_{ab}$, to ascertain that they will handle the various situations accurately, and to make certain that the quotients are well-defined. **Refining the Construction** I'm now integrating all the individual components of the production rules into the overall grammar structure. I'm going to incorporate the quotient rules, deletion rules, and original productions. The final step will include the start symbol, ensuring the grammar generates $\Delta(L(G))$. **Formalizing the Solution** I'm now composing the final construction in the required format. I'm confident in the theoretical underpinnings, and I am now systematically describing the complete set of production rules, starting with the initial set, followed by the quotient rules, and ending with the key deletion rules. I'm also defining the new start symbol, $S'$. **Formalizing the Answer** I'm now focusing on the specific construction of the grammar $G'$. The start symbol is $S_{ab}$. The production rules are constructed as follows and this ensures that $L(G') = \Delta(L(G))$. **Composing the Solution** I'm now building the final, formalized answer. The structure is: start symbol, followed by the defined production sets. I will use set notation to be very precise in my final response, as the prompt requires. I will also include an example walkthrough to clarify all rules. **Defining the Productions** I'm now ready to give the exact definition of the productions, using set notation. I'll start with $S' = S_{ab}$ and then systematically define the productions in $P'$, which will be constructed by combining several sets of productions, as I outlined previously. **Formalizing the Solution** I'm preparing the final answer using clear set notation, to ensure accuracy in defining the productions, and avoid unstructured text. The construction is ready, and I will now describe the solution precisely, as required. **Formulating the Final Answer** I'm now compiling the formal definitions of the start symbol and production rules, using precise set notation. The final answer will consist of well-defined sets. I've incorporated all previous analysis, and I will rigorously describe the grammar. **Formalizing Production Rules** I'm now set to formalize the solution. The construction is proven to generate the correct language. I'll use set notation to specify $P'$ clearly. I'll define each subset carefully.
Answer
<answer id="1"> Startsymbol $S':= S_{ab}$ Produktionen $P'$: Die Menge der Produktionen $P'$ ist die Vereinigung der folgenden vier disjunkten Mengen von Produktionen. Diese werden basierend auf den Produktionen $P$ der gegebenen Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform konstruiert. **1. Erhaltung der ursprünglichen Sprache:** Um sicherzustellen, dass $L_{G'}(X)=L_G(X)$ für alle $X\in V$ gilt, werden alle Produktionen aus $P$ in $P'$ übernommen: * Für jede Produktion $X \to \alpha$ in $P$, fügen wir $X \to \alpha$ zu $P'$ hinzu. Formell: $\{ X \to \alpha \mid (X \to \alpha) \in P \}$ **2. Produktionen für die Quotientensprache nach 'a' ($L_{G'}(X_a)$):** Diese Produktionen leiten ein Wort $w$ ab, wenn $wa$ ein Wort in $L_G(X)$ ist. * Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die Produktion $X_a \to Y Z_a$ zu $P'$ hinzu. * Für jede Produktion der Form $X \to a$ in $P$, fügen wir die Produktion $X_a \to \varepsilon$ zu $P'$ hinzu. Formell: $\{ X_a \to Y Z_a \mid (X \to YZ) \in P \} \cup \{ X_a \to \varepsilon \mid (X \to a) \in P \}$ **3. Produktionen für die Quotientensprache nach 'b' ($L_{G'}(X_b)$):** Diese Produktionen leiten ein Wort $w$ ab, wenn $bw$ ein Wort in $L_G(X)$ ist. * Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die Produktion $X_b \to Y_b Z$ zu $P'$ hinzu. * Für jede Produktion der Form $X \to b$ in $P$, fügen wir die Produktion $X_b \to \varepsilon$ zu $P'$ hinzu. Formell: $\{ X_b \to Y_b Z \mid (X \to YZ) \in P \} \cup \{ X_b \to \varepsilon \mid (X \to b) \in P \}$ **4. Produktionen für die $\Del$-Sprache ($L_{G'}(X_{ab})$):** Diese Produktionen leiten die Sprache $\Del(L_G(X))$ ab. Bei einer Ableitung $X \Rightarrow YZ$ kann das zu entfernende "ab" entweder komplett im von $Y$ oder $Z$ erzeugten Teilwort liegen, oder es kann an der Grenze zwischen den beiden Teilwörtern entstehen. * Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die folgenden drei Produktionen zu $P'$ hinzu: 1. $X_{ab} \to Y_{ab} Z$ *(Deletion findet im linken Teilwort statt)* 2. $X_{ab} \to Y Z_{ab}$ *(Deletion findet im rechten Teilwort statt)* 3. $X_{ab} \to Y_a Z_b$ *(Deletion findet an der Schnittstelle statt)* Formell: $\{X_{ab} \to Y_{ab} Z, X_{ab} \to Y Z_{ab}, X_{ab} \to Y_a Z_b \mid (X \to YZ) \in P\}$ Produktionen der Form $X \to c$ in $P$ (mit $c \in \Sigma$) erzeugen keine Wörter, die "ab" enthalten. Daher gibt es für sie keine Basisregeln für $X_{ab}$-Nichtterminale. </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol $S':= S_{ab}$ Produktionen $P'$: Die Menge der Produktionen $P'$ ist die Vereinigung der folgenden vier disjunkten Mengen von Produktionen. Diese werden basierend auf den Produktionen $P$ der gegebenen Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform konstruiert. **1. Erhaltung der ursprünglichen Sprache:** Um sicherzustellen, dass $L_{G'}(X)=L_G(X)$ für alle $X\in V$ gilt, werden alle Produktionen aus $P$ in $P'$ übernommen: * Für jede Produktion $X \to \alpha$ in $P$, fügen wir $X \to \alpha$ zu $P'$ hinzu. Formell: $\{ X \to \alpha \mid (X \to \alpha) \in P \}$ **2. Produktionen für die Quotientensprache nach 'a' ($L_{G'}(X_a)$):** Diese Produktionen leiten ein Wort $w$ ab, wenn $wa$ ein Wort in $L_G(X)$ ist. * Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die Produktion $X_a \to Y Z_a$ zu $P'$ hinzu. * Für jede Produktion der Form $X \to a$ in $P$, fügen wir die Produktion $X_a \to \varepsilon$ zu $P'$ hinzu. Formell: $\{ X_a \to Y Z_a \mid (X \to YZ) \in P \} \cup \{ X_a \to \varepsilon \mid (X \to a) \in P \}$ **3. Produktionen für die Quotientensprache nach 'b' ($L_{G'}(X_b)$):** Diese Produktionen leiten ein Wort $w$ ab, wenn $bw$ ein Wort in $L_G(X)$ ist. * Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die Produktion $X_b \to Y_b Z$ zu $P'$ hinzu. * Für jede Produktion der Form $X \to b$ in $P$, fügen wir die Produktion $X_b \to \varepsilon$ zu $P'$ hinzu. Formell: $\{ X_b \to Y_b Z \mid (X \to YZ) \in P \} \cup \{ X_b \to \varepsilon \mid (X \to b) \in P \}$ **4. Produktionen für die $\Del$-Sprache ($L_{G'}(X_{ab})$):** Diese Produktionen leiten die Sprache $\Del(L_G(X))$ ab. Bei einer Ableitung $X \Rightarrow YZ$ kann das zu entfernende "ab" entweder komplett im von $Y$ oder $Z$ erzeugten Teilwort liegen, oder es kann an der Grenze zwischen den beiden Teilwörtern entstehen. * Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die folgenden drei Produktionen zu $P'$ hinzu: 1. $X_{ab} \to Y_{ab} Z$ *(Deletion findet im linken Teilwort statt)* 2. $X_{ab} \to Y Z_{ab}$ *(Deletion findet im rechten Teilwort statt)* 3. $X_{ab} \to Y_a Z_b$ *(Deletion findet an der Schnittstelle statt)* Formell: $\{X_{ab} \to Y_{ab} Z, X_{ab} \to Y Z_{ab}, X_{ab} \to Y_a Z_b \mid (X \to YZ) \in P\}$ Produktionen der Form $X \to c$ in $P$ (mit $c \in \Sigma$) erzeugen keine Wörter, die "ab" enthalten. Daher gibt es für sie keine Basisregeln für $X_{ab}$-Nichtterminale.
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Die Aussage ist **falsch**. Wir widerlegen sie mit einem Gegenbeispiel.
Sei die endliche Sprache $L = \{aabb\}$ über dem Alphabet $\Sigma = \{a,b\}$ gegeben.
**Linke Seite der Gleichung: $\Del(\Del(L))$**
1. Zuerst berechnen wir $\Del(L) = \Del(\{aabb\})$.
Das einzige Wort in $L$ ist $z=aabb$. Wir suchen Zerlegungen von $z$ in der Form $vabw$.
Die einzige Möglichkeit ist $v=a$ und $w=b$, da $a \cdot ab \cdot b = aabb$.
Das resultierende Wort ist $vw=ab$.
Somit ist $\Del(L) = \{ab\}$.
2. Als Nächstes berechnen wir $\Del(\Del(L)) = \Del(\{ab\})$.
Das einzige Wort in der Sprache $\Del(L)$ ist $z'=ab$. Wir suchen Zerlegungen von $z'$ in der Form $vabw$.
Die einzige Möglichkeit ist $v=\varepsilon$ (das leere Wort) und $w=\varepsilon$.
Das resultierende Wort ist $vw=\varepsilon$.
Somit ist $\Del(\Del(L)) = \{\varepsilon\}$.
**Rechte Seite der Gleichung: $\DelTwo(L)$**
Nun berechnen wir $\DelTwo(L) = \DelTwo(\{aabb\})$.
Laut Definition ist $\DelTwo(L) = \{uvw \mid u,v,w \in \Sigma^* \wedge uabvw \in L\}$.
Wir müssen also eine Zerlegung des Wortes $aabb \in L$ in der Form $uabvw$ finden. Diese Form erfordert, dass das Wort mindestens zwei (nicht überlappende) Vorkommen des Teilwortes "ab" enthält.
Das Wort $aabb$ enthält das Teilwort "ab" jedoch nur genau einmal.
Daher gibt es keine solchen $u,v,w \in \Sigma^*$, für die $uabvw = aabb$ gilt.
Folglich ist die Menge $\DelTwo(L)$ leer: $\DelTwo(L) = \emptyset$.
**Vergleich**
Wir haben $\Del(\Del(L)) = \{\varepsilon\}$ und $\DelTwo(L) = \emptyset$.
Da $\{\varepsilon\} \neq \emptyset$, gilt die Gleichung $\Del(\Del(L)) = \DelTwo(L)$ nicht für die Sprache $L=\{aabb\}$.
Dies widerlegt die ursprüngliche Aussage.
Der Grund für das Scheitern der Gleichheit liegt darin, dass die $\Del$-Operation neue Vorkommen von "ab" erzeugen kann. In unserem Beispiel wird aus $z=a(ab)b$ durch Entfernen von "ab" das Wort $y=ab$, welches selbst ein "ab" ist. Das zweite Anwenden von $\Del$ entfernt dieses neu entstandene "ab". $\DelTwo$ hingegen kann nur "ab"s entfernen, die bereits beide im ursprünglichen Wort vorhanden waren.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Startsymbol $S':= S_{ab}$
Produktionen $P'$:
Die Menge der Produktionen $P'$ ist die Vereinigung der folgenden vier disjunkten Mengen von Produktionen. Diese werden basierend auf den Produktionen $P$ der gegebenen Grammatik $G=(V,\Sigma,P,S)$ in Chomsky-Normalform konstruiert.
**1. Erhaltung der ursprünglichen Sprache:**
Um sicherzustellen, dass $L_{G'}(X)=L_G(X)$ für alle $X\in V$ gilt, werden alle Produktionen aus $P$ in $P'$ übernommen:
* Für jede Produktion $X \to \alpha$ in $P$, fügen wir $X \to \alpha$ zu $P'$ hinzu.
Formell: $\{ X \to \alpha \mid (X \to \alpha) \in P \}$
**2. Produktionen für die Quotientensprache nach 'a' ($L_{G'}(X_a)$):**
Diese Produktionen leiten ein Wort $w$ ab, wenn $wa$ ein Wort in $L_G(X)$ ist.
* Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die Produktion $X_a \to Y Z_a$ zu $P'$ hinzu.
* Für jede Produktion der Form $X \to a$ in $P$, fügen wir die Produktion $X_a \to \varepsilon$ zu $P'$ hinzu.
Formell: $\{ X_a \to Y Z_a \mid (X \to YZ) \in P \} \cup \{ X_a \to \varepsilon \mid (X \to a) \in P \}$
**3. Produktionen für die Quotientensprache nach 'b' ($L_{G'}(X_b)$):**
Diese Produktionen leiten ein Wort $w$ ab, wenn $bw$ ein Wort in $L_G(X)$ ist.
* Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die Produktion $X_b \to Y_b Z$ zu $P'$ hinzu.
* Für jede Produktion der Form $X \to b$ in $P$, fügen wir die Produktion $X_b \to \varepsilon$ zu $P'$ hinzu.
Formell: $\{ X_b \to Y_b Z \mid (X \to YZ) \in P \} \cup \{ X_b \to \varepsilon \mid (X \to b) \in P \}$
**4. Produktionen für die $\Del$-Sprache ($L_{G'}(X_{ab})$):**
Diese Produktionen leiten die Sprache $\Del(L_G(X))$ ab. Bei einer Ableitung $X \Rightarrow YZ$ kann das zu entfernende "ab" entweder komplett im von $Y$ oder $Z$ erzeugten Teilwort liegen, oder es kann an der Grenze zwischen den beiden Teilwörtern entstehen.
* Für jede Produktion der Form $X \to YZ$ in $P$, fügen wir die folgenden drei Produktionen zu $P'$ hinzu:
1. $X_{ab} \to Y_{ab} Z$ *(Deletion findet im linken Teilwort statt)*
2. $X_{ab} \to Y Z_{ab}$ *(Deletion findet im rechten Teilwort statt)*
3. $X_{ab} \to Y_a Z_b$ *(Deletion findet an der Schnittstelle statt)*
Formell: $\{X_{ab} \to Y_{ab} Z, X_{ab} \to Y Z_{ab}, X_{ab} \to Y_a Z_b \mid (X \to YZ) \in P\}$
Produktionen der Form $X \to c$ in $P$ (mit $c \in \Sigma$) erzeugen keine Wörter, die "ab" enthalten. Daher gibt es für sie keine Basisregeln für $X_{ab}$-Nichtterminale.
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
**Examining Grammar's Structure** I've begun by scrutinizing the provided grammar G. My primary focus is now on understanding the interrelation of the variables and terminals within the grammar rules. I'm particularly keen on the implications of the production rules, specifically how they define the potential for string generation. The goal is to decompose this structure. **Revising CNF Conversion** I'm focusing on applying the construction rules to the provided grammar in Chomsky Normal Form. I've successfully verified the grammar's CNF status and am now concentrating on constructing the modified grammar. Specifically, I'm working through the rules for deriving the new variables and production rules, meticulously ensuring that the transformations adhere to the specified constraints, especially Rule 2, regarding $X_a$ productions. My immediate objective is a precise and complete implementation. **Refining Production Rules** I'm now focused on rule 3, and crafting the productions for Xb. Examining the production $S \to SA$, I've added $S_b \to S_b A$ to P'. Next, I'm moving on to analyzing how $A \to b$ affects rule 3, ensuring I correctly incorporate the rule and avoid omissions in this crucial stage. After completing the rule, I plan to start writing out all the productions into the final set of rules. **Synthesizing Production Sets** I've completed the analysis of all four production rules and have systematically created the new production sets. I am in the process of compiling a complete set of the productions for each of the variables in V'. I will have to then carefully review my calculations to verify accuracy and completeness. **Calculating New Production Rules** I've now fully established the sets of new variables, V', and production rules, P', for the grammar G. I am now working through the derived sets of rules, examining how the terminal substitutions impact the grammar. Specifically, I'm assessing the effect of substituting epsilon. Then, I will check if all the rules from c) are correctly incorporated and the final grammar is consistent. **Synthesizing Rule Application** I've completed the application of the construction rules from section c) to grammar G, creating the new production sets as instructed. My immediate next step is the final verification of the resulting productions to guarantee alignment with the established derivation rules. I need to review my derivations for errors. **Evaluating Derivations** I'm now focusing on the new derivation rules. I'm revisiting and refining the derivation for $aab$ to ensure it aligns with the modified grammar, specifically assessing the rules of the form $S_{ab} \to S_{ab} A \mid S A_{ab} \mid S_a A_b$. I'm looking to identify and resolve any potential ambiguities in the grammar's generation of strings. **Constructing the New Grammar** I've completed the application of the construction rules to create the expanded sets, $V'$ and $P'$, for the given grammar $G$. I meticulously followed the rules, and I'm now focused on the derivations and the resulting language generation. My immediate focus is on ensuring the completeness and consistency of these new production rules. **Evaluating the Transformation** I've successfully applied the construction rules, meticulously following each step to derive the new variables and production rules. I am now deeply immersed in assessing the resulting productions, especially focusing on how the epsilon productions interact with the overall structure of the grammar. I am focused on verifying my understanding of the resulting language. **Assessing the Grammar's Production** I've completed the detailed analysis of the given grammar and applied all construction rules as defined in c). I've now generated a complete set of new productions, specifically targeting how these new rules will generate strings. My focus is on checking the resulting languages for precision. **Applying the CNF Transformation** I've finished processing the construction from subproblem c) and fully applied it to the provided grammar. The derivation of the production rules is now complete. My focus is on making sure the rules for the new productions are correct. **Adjusting Rule Derivations** I've delved into constructing the new grammar G', paying specific attention to the production rules defined by rule 4, particularly for variables like $S_{ab}$. The objective now is the validation of my final rules, and I have found that my interpretation of the construction in Section c) might have some shortcomings. The current focus is on refining derivations. **Verifying Construction Accuracy** I'm now revisiting my derivation process, critically examining each step to pinpoint the origin of any inaccuracies. I am deeply focused on ensuring that the generation of the $X_a$, $X_b$, and $X_{ab}$ productions align precisely with the instructions, and in so doing, trying to ascertain where the misapplication lies. I've realized the derivations for the rules have errors. **Final Grammar Evaluation** I've just completed a comprehensive review of the new grammar G', including the final derivations and language generation. I am now confident that my application of the construction rules and the resulting productions accurately represent the language $L(G')$ and the intended transformation. My main objective has been to establish full consistency. **Assessing the Derivation Process** I'm deep in the assessment phase, comparing derived productions and languages. I'm now trying to comprehend the production of $G'$. I've rigorously reviewed the impact of $S_a A_b$ on the language's generated strings. **Testing Del Construction** I'm currently focused on determining the accuracy of the produced language $L(G')$ by constructing a derivation in $G'$. I am now examining $a(a,b)^*$, the original language $L(G)$, and tracing the impact of constructing the "ab" deletion mechanism as defined. **Assessing Derivation Paths** I'm currently navigating the complex production rules, specifically those related to $S_a$ and its interaction with $S A_a$ and $\epsilon$. I am focused on tracing derivations to determine if my earlier analysis of $L(S_a) = a(a|b)^* \cup \{\varepsilon\}$ is correct. I need to ensure that I'm generating accurate strings. **Deriving the Construction** I'm now deep into the application of the construction rules and the production set generation. I'm refining my analysis of the grammar and, critically, focusing on the definition of $L_G$. I'm specifically attempting to understand the relation between the grammar rules and the generated language. **Verifying the Transformation** I'm now stepping through the process and constructing the full grammar. Focusing on how the construction affects the new productions is vital. The goal is now to examine all the rules to construct the new production. **Assessing the Grammar's Production** I've now carefully examined the final productions for the derived grammar, G', and have worked to derive the language. I've identified some inconsistencies in generating strings. I'll need to re-examine the derivation process. **Re-evaluating the Language** I'm re-examining the language generated by the derived grammar G'. I've gone over the construction and am now focused on verifying the language's properties. My aim is to reconcile the derived language with the expected output. **Synthesizing Production Rules** I've now methodically completed the implementation of all production rules in section c), for the new grammar G'. I've carefully cross-referenced these against all the construction rule specifications. Now the focus is on testing the correct generation of the appropriate strings from G'. **Synthesizing Production Rules** I've meticulously built the productions in G', drawing upon the provided CNF grammar and the construction rules from Section c). My focus is on the correctness and completeness of these derivations, and my aim is to confirm that the new grammar accurately generates the language. My primary task is validation. **Applying Construction and Verifying** I've meticulously applied the construction rules from subproblem c) to generate the new grammar G'. I am now focused on the final review and verification of these derived productions, confirming the correct derivation. I'll look at the language generated.
Answer
<answer id="1"> Startsymbol $S':= S_{ab}$ Produktionen $P'$: $S\rightarrow SA \mid a$ $S_{ab}\rightarrow S_{ab} A \mid S A_{ab} \mid S_a A_b$ $S_a\rightarrow S A_a \mid \varepsilon$ $S_b\rightarrow S_b A$ $A\rightarrow a \mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
0 mistakes
openai/gpt-5
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
**Analyzing string deletions** Okay, let’s take a look at deleting characters from the string “abbaba.” When I remove the first two characters (“ab”), I end up with "baba." Then, by deleting positions 4 and 5 (removing “ab”), I'm left with “abba." I’ve verified my results, and it checks out, resulting in {baba, abba}. Now, I'm curious if there are any other character pairings that aren't aligned to these substrings since the definition relies on specific pairings. It seems I’m on the right track!**Checking string factors** Alright, I’m analyzing the string "baa." It has a length of 3 and I’m looking for the "ab" factor. The pairs (1,2) give 'ba' and (2,3) give 'aa'; neither is 'ab', so there are no contributions from "baa." For "ab," there is an occurrence at positions 1-2, and removing it yields an empty string ε, which means ε is included. The other single characters "a" and "b" don't provide any 'ab' contributions. So far, I have the combined set as {baba, abba, ε}. Checking for distinct results, I conclude: {ε, baba, abba}. I’ll format the output properly now.**Formatting the answer** I'm working with the template which is in a math environment, and I need to keep the structure: $\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$. For the results, I think it makes sense to list them as: ε, baba, abba—alphabetical order is nice, but there's no strict rule. I’ll definitely include spaces after each comma to keep it tidy. Now, let's format the answer properly in the XML structure: <answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$ </answer> Great, that looks good!
Answer
<answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
**Analyzing substring operations** I need to solve this exercise while focusing on subproblem b, which involves providing a truth value and proof or counterexample. I’ll check the previous assistant's response on subproblem a for correctness. The deletion operator Del removes one occurrence of the substring "ab" from a word in L, resulting in the concatenation of v and w. If "ab" isn't present, nothing changes. Then there's DelTwo, which removes two occurrences of "ab" potentially at different spots. That’s clear!**Clarifying substring deletion** I need to consider a word that contains "ab," followed by any string v, and then another "ab." When I remove both occurrences of "ab," what I'm left with is the concatenation of u, v, and w. It’s important to note these "ab" instances can't overlap since "ab" can't share characters with itself. For example, "abab" has distinct occurrences at positions 1-2 and 3-4. I’m thinking about the operation Del(Del(L)), which means applying the deletion twice.**Analyzing double deletion impacts** When I apply the deletion operator Del twice, I need to be careful about how this affects the words. The first Del gets rid of one "ab." Now the tricky part is that removing one "ab" could potentially create a new "ab" where the two sections meet. For instance, if the end of the first section v is 'a' and the start of the second section w is 'b,' the combined vw will have a new "ab." I'll double-check the original structure: v a b w, where v ends with 'a' and w starts with 'b.'**Understanding substring patterns** I’m trying to clarify the original pattern. The structure should be x a + a b + b y, which results in x a a b b y. This shows occurrences of "ab," where I see an "a a" followed by "a b" from the two segments. So, if I break it down: v ends with 'a' and w starts with 'b,' with v as x a and w as b y, it gets tricky. The first "ab" occurs in the middle, and the second arises from the 'a' at the end of v followed by the first 'b' of w.**Exploring substring deletion equality** It seems there's no "ab" across the boundary in the original because the "ab" substring sits between other characters. After the first deletion, it could create a new "ab," which didn’t exist in the original. Thus, Del(Del(L)) could potentially be larger than DelTwo(L), as the second "ab" removed might not correspond to any original "ab." To create a counterexample, I can use a single word containing one "ab," specifically "aabb." After deletion, I produce a new "ab," showing that Del(Del(L)) yields results that DelTwo(L) cannot match. Therefore, I can confidently say "Falsch" when asked if the statement holds for every finite language.**Providing counterexample and explanation** I need to provide a clear explanation about how deletions can create new "ab" substrings. Using my earlier counterexample, I’ll format it as per the instructions. Here’s how it breaks down: <option id="1">0</option> <option id="2">1</option> <answer id="3"> Der Gegenbeweis verwendet L = {aabb}. Es folgt: Del(L) = {"ab"}, Del(Del(L)) = {epsilon}. DelTwo(L) = leere Menge, da 'aabb' nur ein "ab" enthält. Daher sind sie nicht gleich. Die zweite Löschung kann ein "ab" entfernen, das nur nach der ersten Löschung entstanden ist; somit kann Del(Del(L)) größer sein als DelTwo(L). </answer>
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Gegenbeispiel: L = {aabb}. - Del(L) = {ab} (einziges Vorkommen von "ab" in aabb ist zwischen den mittleren Zeichen). - Del(Del(L)) = Del({ab}) = {ε}. - DelTwo(L) = ∅, da aabb nur ein einziges "ab" enthält und daher keine Darstellung uabvabw möglich ist. Also Del(Del(L)) ≠ DelTwo(L). Intuition: Beim ersten Löschen kann an der Nahtstelle ein neues "ab" entstehen, das in der Originalkette nicht vorhanden war. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Gegenbeispiel: L = {aabb}. - Del(L) = {ab} (einziges Vorkommen von "ab" in aabb ist zwischen den mittleren Zeichen). - Del(Del(L)) = Del({ab}) = {ε}. - DelTwo(L) = ∅, da aabb nur ein einziges "ab" enthält und daher keine Darstellung uabvabw möglich ist. Also Del(Del(L)) ≠ DelTwo(L). Intuition: Beim ersten Löschen kann an der Nahtstelle ein neues "ab" entstehen, das in der Originalkette nicht vorhanden war.
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Gegenbeispiel: L = {aabb}.
- Del(L) = {ab} (einziges Vorkommen von "ab" in aabb ist zwischen den mittleren Zeichen).
- Del(Del(L)) = Del({ab}) = {ε}.
- DelTwo(L) = ∅, da aabb nur ein einziges "ab" enthält und daher keine Darstellung uabvabw möglich ist.
Also Del(Del(L)) ≠ DelTwo(L). Intuition: Beim ersten Löschen kann an der Nahtstelle ein neues "ab" entstehen, das in der Originalkette nicht vorhanden war.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
**Constructing grammar for deletion** I'm thinking about how to construct grammar G' that can delete one "ab" substring from words generated by G. I also want to maintain X_a and X_b for the removal of characters 'a' and 'b', respectively. Definitions are important here: L_{G'}(X_a) relates to appending 'a' at the end to produce a word from L_G(X), which indicates removing trailing 'a'. Similarly, X_b denotes removing leading 'b'. Finally, X_{ab} captures the deletion of "ab" anywhere within the string.**Specifying rewriting for grammar** I need to specify the rewriting for all X in V. First, I can keep the original productions so that L_{G'}(X) = L_G(X), meaning the same productions apply. Then I should introduce productions for X_a, X_b, and X_{ab} that are built on the derivation structure. I want to figure out how to delete the "ab" substring across possible derivation boundaries in the binary tree that results from G in CNF. This involves defining contexts for deletion throughout the parse tree path. I must remember that "ab" should be treated as an adjacent substring.**Identifying nodes for deletion** To delete "ab," I need to find a node in the tree where the left child's derivation ends with "a" and the right child's begins with "b," or both might be from the same child. This calls for defining a process of mutual recursion. For terminals: If X produces 'a', then L_G(X) should be {a} and thus L_{G'}(X) will also be {a}. For X_a, it includes words where 'a' is removed as a trailing character from derivations. For instance, if X produces 'a', then removing the trailing 'a' leads to an empty string; similarly, if X results in 'b', there's no production for X_a. If X produces a concatenation, it refers to Y and Z as parts of the process.**Splitting and concatenating for productions** To derive w a from L(X), I need to consider the split where w a = y z, with y coming from L(Y) and z from L(Z). This indicates that either the trailing 'a' belongs to z (meaning z ends in 'a'), or it could potentially be in y if z is empty. However, in CNF, Z cannot produce an empty string except possibly for S, and they state strictly that there are no epsilon productions. So, z must be non-empty. Thus, when I remove the trailing 'a', it must effectively correspond to y concatenated with z', where z = z' a, leading to the conclusion that w = y z'.**Defining productions for grammar with deletions** To manage the deletion of "ab," I see we need to generate strings from Z with one trailing 'a' removed, defining Z_a for this purpose. So, X_a leads to Y Z_a. However, it’s crucial Z cannot derive ε, meaning we can't derive ε in our current CNF. For X_b, where b w is in L(X), removing a leading 'b' results in X_b leading to Y_b Z. For X_{ab}, we’re addressing strings where we need to remove one "ab" occurrence. If X produces 'a' or 'b', it can't contain "ab," leading to no productions. Progressing into Y Z concatenations, we'll need to handle cases of “ab” found in either part or across. I plan to define new nonterminals for each rule and ensure the grammar's output remains consistent with the original while allowing single deletions. I'll ensure to maintain appropriate start symbols and stay within the bounds of CNF as outlined before.**Structuring grammar productions for deletions** I'm focusing on structuring the grammar to manage deletions effectively. I need to establish new nonterminals while ensuring original rules are included. For instance, when considering a production like X -> Y Z, I want to ensure that deletions occur correctly, respecting boundaries. For my productions, I'll define rules that encompass both terminal and non-terminal cases, clearly specifying for terminals X -> a or b. It’s essential to keep properties intact, especially ensuring that the language generated by our new grammar matches the original grammar, with precise handling for deletions, including cases where overlaps occur in strings. I’ll draft out the rules for clarity and integration into P'.**Defining grammar productions** I’m structuring the productions based on the given requirements. The start symbol is defined as S' := S_{ab}. For the productions P', I’ll include all original productions from P and add specific rules for the new nonterminals. For each terminal production X -> a, I’ll specify X_a -> ε; for X -> b, I’ll specify X_b -> ε. For binary productions X -> Y Z, I'll detail X_a -> Y Z_a, X_b -> Y_b Z, and X_{ab} in multiple forms to cover all cases. It looks precise and clear, aligning with all requirements!
Answer
<answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: - $P\subseteq P'$ (alle Originalproduktionen bleiben erhalten) - Für jede Terminalproduktion $X\to a\in P$: $X_a\to \varepsilon$ - Für jede Terminalproduktion $X\to b\in P$: $X_b\to \varepsilon$ - Für jede binäre Produktion $X\to YZ\in P$: - $X_a\to Y\,Z_a$ - $X_b\to Y_b\,Z$ - $X_{ab}\to Y_{ab}\,Z$ - $X_{ab}\to Y\,Z_{ab}$ - $X_{ab}\to Y_a\,Z_b$ </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen : - (alle Originalproduktionen bleiben erhalten) - Für jede Terminalproduktion : - Für jede Terminalproduktion : - Für jede binäre Produktion : - - - - -
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, baba, abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Gegenbeispiel: L = {aabb}.
- Del(L) = {ab} (einziges Vorkommen von "ab" in aabb ist zwischen den mittleren Zeichen).
- Del(Del(L)) = Del({ab}) = {ε}.
- DelTwo(L) = ∅, da aabb nur ein einziges "ab" enthält und daher keine Darstellung uabvabw möglich ist.
Also Del(Del(L)) ≠ DelTwo(L). Intuition: Beim ersten Löschen kann an der Nahtstelle ein neues "ab" entstehen, das in der Originalkette nicht vorhanden war.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Startsymbol $S':=S_{ab}$
Produktionen $P'$:
- $P\subseteq P'$ (alle Originalproduktionen bleiben erhalten)
- Für jede Terminalproduktion $X\to a\in P$: $X_a\to \varepsilon$
- Für jede Terminalproduktion $X\to b\in P$: $X_b\to \varepsilon$
- Für jede binäre Produktion $X\to YZ\in P$:
- $X_a\to Y\,Z_a$
- $X_b\to Y_b\,Z$
- $X_{ab}\to Y_{ab}\,Z$
- $X_{ab}\to Y\,Z_{ab}$
- $X_{ab}\to Y_a\,Z_b$
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
**Evaluating grammar construction** I need to apply the construction from c to the specific grammar G, which has the rules S -> SA | a and A -> a | b. However, I realize that the original c assumed CNF grammar. It seems G isn’t truly in CNF due to S -> SA. That said, A -> BC is still a binary form, and terminal productions like A -> a and A -> b work fine. Since it doesn't have epsilon or unit productions, it should be okay overall.**Analyzing production rules** From the rules in c, I've included several for P'. I’m keeping all original productions P, along with adjustments for terminal productions like X->a, which leads to X_a -> ε, and similar rules for X->b. For binary productions like X-> Y Z, I’ve figured out several new rules focusing on terminal versions. However, I’m wondering if I need additional productions for X_a and X_b. The propagation for X_a looks sufficient with its given rule. I’m also checking the semantics to ensure languages match.**Clarifying language generation** The split with 'a = y z' implies that y is in L(Y) and z is in L(Z), suggesting that 'a' might be contributed by the Z suffix. Since terminals appear only at the leaves, the 'a' must come from Z at the end of the concatenation to generate w a in L(Y) L(Z). I derived that L(X_a) = L(Y) L(Z_a), which aligns with the rule X_a -> Y Z_a. For X_b, I see that 'b' must be from Y’s prefix, leading to L(Y_b) L(Z), consistent with X_b -> Y_b Z. For X_{ab}, I find that L_{G'}(X_{ab}) is related to deleting L_G(X).**Defining deletion rules** For the production X -> YZ, I need to account for deleting 'ab' from strings in L(Y)L(Z). The deletion can happen within Y or Z, or even across the boundary where 'a' at the end of Y and 'b' at the beginning of Z combine. This gives me rules like X_{ab} -> Y_{ab} Z | Y Z_{ab} | Y_a Z_b, which matches. However, for terminal productions like X -> a or X -> b, deleting 'ab' yields an empty set, so I won’t define productions for X_{ab} here. It's consistent to have X_a -> ε when X -> a, and X_b -> ε when X -> b, which might mean adding X_a/X_b for those terminals. For S', I plan to use S_{ab}. The hint also reminds me to leave fields empty if nonterminals don't appear on the left side.**Finalizing grammar productions** I see that I need to fill in productions for all eight nonterminals: S, S_ab, S_a, S_b, A, A_ab, A_a, and A_b. I’ll keep original productions from P, like S -> SA | a, and add rules for the derived nonterminals based on previous logic. For instance, for S_a, I realize I need S_a -> S A_a and S_a -> ε when considering S -> a. Additionally, terminal productions for A lead to A_a -> ε and A_b -> ε. I need to make sure to leave fields empty where needed, especially for A_ab. Now, I’ll properly format these in LaTeX and ensure clarity and correctness, including alternatives in the right style, and finalize the answer.
Answer
<answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab}A\mid S A_{ab}\mid S_a A_b$ $S_a\rightarrow S A_a\mid \varepsilon$ $S_b\rightarrow S_b A$ $A\rightarrow a\mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
0 mistakes
openai/gpt-oss-120b
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to compute Del of given set. Definition: Del(L) = { v w | v,w ∈ Σ* and v a b w ∈ L }. That is, we take each word in L, find a occurrence of substring "ab" and delete it exactly once, i.e., remove the letters a and b that appear consecutively as "ab". The result is the concatenation of the prefix before that "ab" (v) and suffix after (w). So for each word in L, we consider all possible ways to locate a substring "ab" and delete it, producing possibly multiple results. Then union over all words. Given L = { abbaba, baa, ab, a, b }. Let's compute. Alphabet Σ = {a,b}. Word1: "abbaba". Let's list positions of "ab". The string: a b b a b a. Indices 1-6. Substrings length2: 1-2: "ab"? positions 1 a,2 b => "ab". Yes at start. 2-3: "bb" no. 3-4: "ba" no. 4-5: "ab"? positions 4 a,5 b => "ab". Yes at positions 4-5. 5-6: "ba" no. So two occurrences: at 1-2 and at 4-5. Deleting each yields: - Delete first "ab" (positions1-2): remove a,b => remaining characters: positions 3-6: "b a b a"? Actually original: a b b a b a. Remove first two => left "b a b a"? That's "baba". So result "baba". - Delete second "ab" (positions4-5): remove a at pos4 and b at pos5 => remaining: positions1-3: "a b b" = "abb", and position6: "a". So "abb a" => "abba". So result "abba". Thus from "abbaba" we get "baba" and "abba". Word2: "baa". String: b a a. Substrings length2: 1-2: "ba" not "ab". 2-3: "aa" not. Thus no "ab". So cannot delete exactly one "ab". So no result from this word. Word3: "ab". Only one occurrence at positions1-2. Delete yields empty string ε. So result ε. Word4: "a". No "ab". No result. Word5: "b". No "ab". No result. Thus Del set = { "baba", "abba", ε }. Are there any duplicates? No. Thus answer: $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$? Wait example shows that but it's just example not correct. Our computed set: {ε, baba, abba}. Let's double-check "baba" and "abba". Are there any other possibilities? Could we also consider overlapping? No, "ab" is length2, cannot overlap with itself except if pattern "aba" but not here. Thus answer. We must follow answer-template: $\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$ where ? is list of words separated by commas. Use LaTeX? The template expects the whole expression inside. So we output: <answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon,\,baba,\,abba\}$ </answer> Make sure ordering maybe any. Use \varepsilon for empty string. Provide exactly.
Answer
<answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon,baba,abba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon,\;baba,\;abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need to decide statement: For any finite language L, Del(Del(L)) = DelTwo(L). Del removes exactly one occurrence of "ab". DelTwo removes two occurrences (not necessarily consecutive) but with one v in between (i.e., remove two "ab" strings, possibly with something between). Let's analyze. Definition: Del(L) = { v w | ∃v,w: v a b w ∈ L }. Here remove exactly one "ab". So if a word in L contains at least one "ab", we can delete one occurrence, yielding new word. Then Del(Del(L)): apply again, i.e., from a word that is result of deleting one "ab" from some original word, delete another "ab". This yields words that are obtained by deleting two (maybe overlapping?) occurrences of "ab" from original L? But careful: after first deletion, the resulting word may have new "ab" substrings formed by concatenating parts around removed "ab". Could yield different results than directly removing two distinct "ab" substrings from original? Let's examine. DelTwo(L) = { u v w | ∃u,v,w: u a b v a b w ∈ L }. So you remove two "ab" strings that are separated by some substring v (which can be empty?). Yes v ∈ Σ*; could be empty meaning two "ab" consecutive? Actually if v = ε, then you remove "ab" "ab" as consecutive substring "abab". So DelTwo removes two occurrences that are non-overlapping and maintaining original order. Now Del(Del(L)) could possibly delete overlapping occurrences? For instance, original word contains "aab". If you delete the first "ab" (starting at position 2?), but there is only one "ab". Overlap cannot happen because "ab" is length 2, overlapping would require "aba" pattern maybe? Let's consider a word "a b a b": "abab". Removing first "ab" yields "ab". Then second removal yields ε. This matches removing two "ab" as in DelTwo where v = ε, we would get ε as well. So maybe they are equal for finite languages? Need to find counterexample. Potential issue: Del(Del(L)) could remove the same "ab" twice via new "ab" formed after first removal that wasn't present in original, leading to removal of something not originally two distinct "ab". Example: original word "aab". It has substring "ab" at positions 2-3. Remove it -> left "a". No further "ab". So not a problem. Consider "abb". Contains "ab" at positions 1-2. Remove it -> "b". No further. So can't get two deletions. Consider "aab b"? hmm. Maybe overlapping case: original word "aab". Actually "aab" after removing "ab" (positions 2-3) gives "a". Not two. Consider "ababa". It has two overlapping occurrences? The substrings "ab" at positions 1-2 and 3-4. They are separate, not overlapping. Remove first -> yields "aba". Which still contains "ab" at positions 1-2. So you can delete again, giving "a". This corresponds to original word "ababa": remove two "ab" strings (positions 1-2 and after removal, the second originally at 3-4 becomes now at 2-3) which corresponds to removing two ab's maybe not captured by DelTwo? DelTwo would need to find u,v,w such that uabvabw is original. For "ababa": can we write as u a b v a b w? Let's see use u = ε, then need "ab v ab w" = "ababa". Choose v = ε? "ab"+"ab" = "abab", w = "a"? That gives "ababa". So u=ε, v=ε, w="a": gives uabvabw = "ab"+"ab"+"a" = "ababa". Thus DelTwo yields "a". So matches. Maybe need example where after first deletion a new "ab" is formed from letters that were not adjacent originally, meaning the two deletions correspond to overlapping original segments that are not two distinct "ab" substrings. Example: original word "a a b". No. Let's think: letters "a", then some stuff, then "b" ... after deletion of middle "ab", the preceding "a" and following "b" become adjacent, forming new "ab". In original these 'a' and 'b' were separated by the removed "ab". So they were not part of a single "ab" substring. So Del(Del(L)) could delete a composite formed by concatenating ending 'a' of first part and starting 'b' of latter part. That may not correspond to two separate "ab" substrings in original (they are overlapping across the deleted part). The definition of DelTwo requires that both "ab" substrings exist in the original as separate substrings, not overlapping across the middle region. So we can find counterexample. Take original word "a a b b": i.e., "aabb". Does it contain "ab"? Yes at positions 2-3? Actually letters: 1:a,2:a,3:b,4:b. Substring "ab" at positions 2-3. Remove it -> we get "ab" (first a and last b). That "ab" is new but originally letters were a (position1) and b (position4) not adjacent. So second removal yields ε. So Del(Del) yields ε from original "aabb". Does DelTwo produce ε? Need original word to have two "ab" substrings. Does "aabb" have two disjoint "ab"? Only one "ab". So DelTwo of language containing "aabb" can't produce ε because need uabvabw pattern, which requires two occurrences. So ε ∈ Del(Del({aabb})) but ε ∉ DelTwo({aabb}). Therefore equality fails. So statement false. Provide counterexample L = {aabb}. Finite language. Thus answer: option 1 false (0), option 2 true (1). Provide explanation in answer.
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Die Beh ist **falsch**. Ein Gegenbeispiel ist die endliche Sprache \[ L=\{\,aabb\,\}. \] * **Berechnung von \(\Del(\Del(L))\):** - Das Wort \(aabb\) enthält das Teilwort \(ab\) (Position 2‑3). - Entfernen wir dieses \(ab\), erhalten wir das Wort \(ab\). - Das resultierende Wort \(ab\) enthält erneut das Teilwort \(ab\); nach erneutem Entfernen erhalten wir \(\varepsilon\). Also \(\varepsilon \in \Del(\Del(L))\). * **Berechnung von \(\DelTwo(L)\):** - Für \(\DelTwo(L)\) muss das Ausgangswort die Form \(u\,ab\,v\,ab\,w\) haben, also mindestens **zwei** vorkommende Teilwörter \(ab\). - Das Wort \(aabb\) enthält nur ein einziges \(ab\) und lässt sich nicht als \(u\,ab\,v\,ab\,w\) schreiben. Deshalb \(\varepsilon \notin \DelTwo(L)\). Da \(\varepsilon\) in \(\Del(\Del(L))\) liegt, aber nicht in \(\DelTwo(L)\), gilt die Gleichheit nicht für alle endlichen Sprachen \(L\). \[ \boxed{\Del(\Del(L))\neq\DelTwo(L)\text{ im Allgemeinen}} \] Damit ist die Aussage **falsch**. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Die Beh ist falsch. Ein Gegenbeispiel ist die endliche Sprache * Berechnung von : - Das Wort enthält das Teilwort (Position 2‑3). - Entfernen wir dieses , erhalten wir das Wort . - Das resultierende Wort enthält erneut das Teilwort ; nach erneutem Entfernen erhalten wir . Also . * Berechnung von : - Für muss das Ausgangswort die Form haben, also mindestens zwei vorkommende Teilwörter . - Das Wort enthält nur ein einziges und lässt sich nicht als schreiben. Deshalb . Da in liegt, aber nicht in , gilt die Gleichheit nicht für alle endlichen Sprachen . Damit ist die Aussage falsch.
Subproblem c (5.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon,\;baba,\;abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Die Beh ist **falsch**.
Ein Gegenbeispiel ist die endliche Sprache
\[
L=\{\,aabb\,\}.
\]
* **Berechnung von \(\Del(\Del(L))\):**
- Das Wort \(aabb\) enthält das Teilwort \(ab\) (Position 2‑3).
- Entfernen wir dieses \(ab\), erhalten wir das Wort \(ab\).
- Das resultierende Wort \(ab\) enthält erneut das Teilwort \(ab\); nach erneutem Entfernen erhalten wir \(\varepsilon\).
Also \(\varepsilon \in \Del(\Del(L))\).
* **Berechnung von \(\DelTwo(L)\):**
- Für \(\DelTwo(L)\) muss das Ausgangswort die Form \(u\,ab\,v\,ab\,w\) haben, also mindestens **zwei** vorkommende Teilwörter \(ab\).
- Das Wort \(aabb\) enthält nur ein einziges \(ab\) und lässt sich nicht als \(u\,ab\,v\,ab\,w\) schreiben.
Deshalb \(\varepsilon \notin \DelTwo(L)\).
Da \(\varepsilon\) in \(\Del(\Del(L))\) liegt, aber nicht in \(\DelTwo(L)\), gilt die Gleichheit nicht für alle endlichen Sprachen \(L\).
\[
\boxed{\Del(\Del(L))\neq\DelTwo(L)\text{ im Allgemeinen}}
\]
Damit ist die Aussage **falsch**.
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to provide productions for G' given G in CNF. We need to define start symbol S' and productions P' that satisfy the four conditions. We have original nonterminals X in V. For each X we add X_ab, X_a, X_b. Goal: L_{G'}(X) = L_G(X) (so keep original productions for X). L_{G'}(X_ab) = Del(L_G(X)): remove exactly one occurrence of "ab". L_{G'}(X_a) = { w | w a ∈ L_G(X) } i.e., strings that can be extended by a to be in L_G(X). Similarly X_b. We need to define productions for these new nonterminals using original productions. Given G is CNF: productions are of form X → Y Z or X → a (terminal) (no epsilon). No unit productions. We need to construct P' that includes: - All original productions for X unchanged. - For X_ab: we need to generate strings that are derived from X with exactly one "ab" removed. That means we need to simulate removal of an "ab" somewhere in the derivation. Approach: For each production X → Y Z, we need to consider possibilities where the "ab" is removed crossing boundaries or inside Y or Z. Also for terminal productions X → a or X → b, we need to handle removal if the terminal is part of "ab". Since "ab" is two terminals, removal can happen when we have a terminal a followed by b consecutively in the yield. In CNF, terminals appear only at leaves, so adjacency can happen when Y yields a and Z yields b, via X → Y Z where Y → a and Z → b. So we need to capture that. Standard construction: define X_ab → Y_ab Z | Y Z_ab | Y_a Z_b (when Y yields a and Z yields b). Similarly for X_a: strings that when appended a become in L_G(X). So X_a can derive from Y_a Z, Y Z_a, and also if X → a then X_a → ε? Actually if X → a, then strings w such that w a ∈ L_G(X). If X → a, then w must be ε because ε a = a ∈ L_G(X). So X_a can produce ε. Similarly for X_b: if X → b then X_b → ε. Also need to handle X_a when X → Y Z: we need strings w such that w a ∈ L_G(X). That means either w a is derived from Y Z with a at end. Cases: w a = (string from Y) (string from Z) and the final a is either from Y's suffix or Z's suffix. Since concatenation, the final a could be the last terminal of Y Z. So we need productions: X_a → Y_a Z | Y Z_a. Similarly X_b: X_b → Y_b Z | Y Z_b. For X_ab: we need to remove exactly one "ab". Cases: removal occurs entirely inside Y, inside Z, or across boundary where Y yields a and Z yields b. So productions: X_ab → Y_ab Z | Y Z_ab | Y_a Z_b. Also need base cases: if X → a then X_ab cannot remove because need both a and b; but maybe if X → a then cannot produce anything? Actually removal of "ab" from a single terminal a is impossible, so no production. If X → b similarly none. If X → a, then X_a → ε (as above). If X → b, then X_b → ε. Also need productions for X_ab when X → a b? Not possible directly because CNF doesn't have X → a b (two terminals). So only via binary nonterminals. Thus P' includes: - For each original production X → Y Z: include same in P'. - For each original production X → a: include same. - For each X ∈ V: add productions: X_ab → Y_ab Z | Y Z_ab | Y_a Z_b for each X → Y Z. X_a → Y_a Z | Y Z_a for each X → Y Z. X_b → Y_b Z | Y Z_b for each X → Y Z. - For terminal productions: If X → a then add X_a → ε. If X → b then add X_b → ε. - For X_ab base: if X → a and X → b? Not needed. Also need productions for X_a and X_b when X → a? Already added ε. Similarly for X_ab when X → a? No. Thus start symbol S' should be S_ab? Actually we need L(G') = Del(L(G)). That means we need to generate strings that are original strings with exactly one "ab" removed. So start symbol should be S_ab. So S' = S_{ab}. Thus answer: start symbol S' = S_{ab}. Provide productions list. We need to present in answer template: "Startsymbol $S':=?$" and "Produktionen $P'$:" then list. We'll write in formal notation. Let's craft answer.
Answer
<answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: **1. Original‑Produktionen (beibehalten)** \[ \forall X\in V,\;X\rightarrow YZ\in P\quad\Longrightarrow\quad X\rightarrow YZ\in P' \] \[ \forall X\in V,\;X\rightarrow a\in P\quad\Longrightarrow\quad X\rightarrow a\in P' \] **2. Hilfs‑Nichtterminal $X_{ab}$** – Entfernt genau ein Vorkommen von $ab$ \[ \begin{aligned} X_{ab}&\rightarrow Y_{ab}\,Z \\ X_{ab}&\rightarrow Y\,Z_{ab} \\ X_{ab}&\rightarrow Y_{a}\,Z_{b} \end{aligned} \qquad\text{für jede Produktion }X\rightarrow YZ\in P \] **3. Hilfs‑Nichtterminal $X_{a}$** – Wörter, die durch Anhängen von $a$ zu $L_G(X)$ führen \[ \begin{aligned} X_{a}&\rightarrow Y_{a}\,Z \\ X_{a}&\rightarrow Y\,Z_{a} \end{aligned} \qquad\text{für jede Produktion }X\rightarrow YZ\in P \] Zusatz für terminale Produktionen: \[ \begin{aligned} X\rightarrow a &\in P \;\Longrightarrow\; X_{a}\rightarrow \varepsilon \\ X\rightarrow b &\in P \;\Longrightarrow\; X_{b}\rightarrow \varepsilon \end{aligned} \] **4. Hilfs‑Nichtterminal $X_{b}$** – Wörter, die durch Voranstellen von $b$ zu $L_G(X)$ führen \[ \begin{aligned} X_{b}&\rightarrow Y_{b}\,Z \\ X_{b}&\rightarrow Y\,Z_{b} \end{aligned} \qquad\text{für jede Produktion }X\rightarrow YZ\in P \] Zusatz für terminale Produktionen: \[ \begin{aligned} X\rightarrow a &\in P \;\Longrightarrow\; X_{b}\text{ hat keine neue Produktion} \\ X\rightarrow b &\in P \;\Longrightarrow\; X_{b}\rightarrow \varepsilon \end{aligned} \] Damit gelten für alle $X\in V$: \[ \begin{aligned} L_{G'}(X) &= L_G(X)\\ L_{G'}(X_{ab}) &= \Del\bigl(L_G(X)\bigr)\\ L_{G'}(X_{a}) &= \{w\mid wa\in L_G(X)\}\\ L_{G'}(X_{b}) &= \{w\mid bw\in L_G(X)\} \end{aligned} \] und das Startsymbol $S_{ab}$ erzeugt genau $\Del\!\bigl(L(G)\bigr)$. </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen : 1. Original‑Produktionen (beibehalten) 2. Hilfs‑Nichtterminal – Entfernt genau ein Vorkommen von 3. Hilfs‑Nichtterminal – Wörter, die durch Anhängen von zu führen Zusatz für terminale Produktionen: 4. Hilfs‑Nichtterminal – Wörter, die durch Voranstellen von zu führen Zusatz für terminale Produktionen: Damit gelten für alle : und das Startsymbol erzeugt genau .
Subproblem d (1.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon,\;baba,\;abba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Die Beh ist **falsch**.
Ein Gegenbeispiel ist die endliche Sprache
\[
L=\{\,aabb\,\}.
\]
* **Berechnung von \(\Del(\Del(L))\):**
- Das Wort \(aabb\) enthält das Teilwort \(ab\) (Position 2‑3).
- Entfernen wir dieses \(ab\), erhalten wir das Wort \(ab\).
- Das resultierende Wort \(ab\) enthält erneut das Teilwort \(ab\); nach erneutem Entfernen erhalten wir \(\varepsilon\).
Also \(\varepsilon \in \Del(\Del(L))\).
* **Berechnung von \(\DelTwo(L)\):**
- Für \(\DelTwo(L)\) muss das Ausgangswort die Form \(u\,ab\,v\,ab\,w\) haben, also mindestens **zwei** vorkommende Teilwörter \(ab\).
- Das Wort \(aabb\) enthält nur ein einziges \(ab\) und lässt sich nicht als \(u\,ab\,v\,ab\,w\) schreiben.
Deshalb \(\varepsilon \notin \DelTwo(L)\).
Da \(\varepsilon\) in \(\Del(\Del(L))\) liegt, aber nicht in \(\DelTwo(L)\), gilt die Gleichheit nicht für alle endlichen Sprachen \(L\).
\[
\boxed{\Del(\Del(L))\neq\DelTwo(L)\text{ im Allgemeinen}}
\]
Damit ist die Aussage **falsch**.
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Startsymbol $S':=S_{ab}$
Produktionen $P'$:
**1. Original‑Produktionen (beibehalten)**
\[
\forall X\in V,\;X\rightarrow YZ\in P\quad\Longrightarrow\quad X\rightarrow YZ\in P'
\]
\[
\forall X\in V,\;X\rightarrow a\in P\quad\Longrightarrow\quad X\rightarrow a\in P'
\]
**2. Hilfs‑Nichtterminal $X_{ab}$** – Entfernt genau ein Vorkommen von $ab$
\[
\begin{aligned}
X_{ab}&\rightarrow Y_{ab}\,Z \\
X_{ab}&\rightarrow Y\,Z_{ab} \\
X_{ab}&\rightarrow Y_{a}\,Z_{b}
\end{aligned}
\qquad\text{für jede Produktion }X\rightarrow YZ\in P
\]
**3. Hilfs‑Nichtterminal $X_{a}$** – Wörter, die durch Anhängen von $a$ zu $L_G(X)$ führen
\[
\begin{aligned}
X_{a}&\rightarrow Y_{a}\,Z \\
X_{a}&\rightarrow Y\,Z_{a}
\end{aligned}
\qquad\text{für jede Produktion }X\rightarrow YZ\in P
\]
Zusatz für terminale Produktionen:
\[
\begin{aligned}
X\rightarrow a &\in P \;\Longrightarrow\; X_{a}\rightarrow \varepsilon \\
X\rightarrow b &\in P \;\Longrightarrow\; X_{b}\rightarrow \varepsilon
\end{aligned}
\]
**4. Hilfs‑Nichtterminal $X_{b}$** – Wörter, die durch Voranstellen von $b$ zu $L_G(X)$ führen
\[
\begin{aligned}
X_{b}&\rightarrow Y_{b}\,Z \\
X_{b}&\rightarrow Y\,Z_{b}
\end{aligned}
\qquad\text{für jede Produktion }X\rightarrow YZ\in P
\]
Zusatz für terminale Produktionen:
\[
\begin{aligned}
X\rightarrow a &\in P \;\Longrightarrow\; X_{b}\text{ hat keine neue Produktion} \\
X\rightarrow b &\in P \;\Longrightarrow\; X_{b}\rightarrow \varepsilon
\end{aligned}
\]
Damit gelten für alle $X\in V$:
\[
\begin{aligned}
L_{G'}(X) &= L_G(X)\\
L_{G'}(X_{ab}) &= \Del\bigl(L_G(X)\bigr)\\
L_{G'}(X_{a}) &= \{w\mid wa\in L_G(X)\}\\
L_{G'}(X_{b}) &= \{w\mid bw\in L_G(X)\}
\end{aligned}
\]
und das Startsymbol $S_{ab}$ erzeugt genau $\Del\!\bigl(L(G)\bigr)$.
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to apply the construction from part c to the specific grammar G. Grammar G: V={S,A}, Σ={a,b}, productions: 1. S → S A 2. S → a 3. A → a 4. A → b In CNF? Actually S→SA is binary, S→a is terminal, A→a, A→b are terminal. So yes. We need to construct G' with V' = V ∪ {X_{ab},X_a,X_b | X∈V}. So we have S, A, plus S_ab, S_a, S_b, A_ab, A_a, A_b. We need to define P' as per the specification earlier. In part c we gave a generic set of productions: keep original productions for X, also productions for X_ab, X_a, X_b derived from each binary production X→YZ, plus epsilon productions for terminals. But we must output explicit productions for this particular G. Let's recall the definitions: Goal: For each X, - L_{G'}(X) = L_G(X) (so keep original productions) - L_{G'}(X_{ab}) = Del(L_G(X)) (remove exactly one occurrence of "ab") - L_{G'}(X_a) = { w | w a ∈ L_G(X) } (words that become in X after appending a) - L_{G'}(X_b) = { w | b w ∈ L_G(X) } (words that become in X after prefixing b) Construction we gave: For each binary production X → Y Z, - X_ab → Y_ab Z - X_ab → Y Z_ab - X_ab → Y_a Z_b (since we can delete the 'ab' across the boundary: the a could be last symbol of string from Y, b first from Z) Similarly for X_a: - X_a → Y_a Z - X_a → Y Z_a (and also if X → a then X_a → ε because removing the trailing a yields empty string) Similarly for X_b: - X_b → Y_b Z - X_b → Y Z_b (and if X → b then X_b → ε) We also need to handle terminal productions: for X → a (or b) we keep them for X; and also define X_a or X_b epsilon if appropriate. Now apply to our grammar. Binary productions: - S → S A That's the only binary production. Terminal productions: - S → a - A → a - A → b Now define P'. First keep original productions: S → S A S → a A → a A → b Now define S_ab productions using binary production S → S A: - S_ab → S_ab A - S_ab → S A_ab - S_ab → S_a A_b (since a from left side, b from right side) Similarly define A_ab: but A has no binary productions (no A → Y Z). So no such productions derived from binary ones. But we might need productions for A_ab from terminal productions? Deleting "ab" inside a string generated by A (which are just "a" or "b") can't happen because they are length 1. So A_ab should generate empty set? Could we have epsilon? Actually Del(L_G(A)) for L_G(A) = {a, b}. Removing "ab" from "a" or "b" yields nothing because they don't contain "ab". So L_{G'}(A_ab) = ∅. We can achieve that by having no productions for A_ab (or only non-generating). So leave empty. Now define S_a productions: From binary S → S A: - S_a → S_a A - S_a → S A_a Additionally from terminal production S → a: we need S_a → ε (since if X→a, then X_a can derive ε). So add S_a → ε. Now define S_b productions: From binary S → S A: - S_b → S_b A - S_b → S A_b No terminal S→b, so no epsilon rule for S_b. Now define A_a productions: A has no binary productions. From terminal productions: - A → a gives A_a → ε (since removing trailing a) - A → b does not give anything for A_a. So A_a → ε. Similarly A_b productions: - From A → b, we get A_b → ε. - A → a does not affect. Thus A_b → ε. Now we also need productions for A_ab? none. Potential extra productions for X_ab when X → a or b? No, because deletion of "ab" across terminal? Not needed. Now we need to define start symbol S' = S_ab (as per generic construction we set S' = S_{ab}) to generate Del(L(G)). So start symbol S' = S_ab. Thus final answer list: Startsymbol S' = S_ab Productions: List each. Let's format as required: they gave template with placeholders: $S\rightarrow ?$ $S_{ab}\rightarrow ?$ $S_a\rightarrow ?$ $S_b\rightarrow ?$ $A\rightarrow ?$ $A_{ab}\rightarrow ?$ $A_a\rightarrow ?$ $A_b\rightarrow ?$ We need to fill each with right-hand sides (possibly multiple alternatives separated by |). Use standard notation. S → SA | a S_ab → S_ab A | S A_ab | S_a A_b S_a → S_a A | S A_a | ε S_b → S_b A | S A_b A → a | b A_ab → (nothing) – leave empty field A_a → ε A_b → ε Make sure to follow format: each line ends with the production RHS (could be empty). For empty maybe just leave blank after arrow. Thus final answer.
Answer
<answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab}A\mid SA_{ab}\mid S_{a}A_{b}$ $S_a\rightarrow S_{a}A\mid SA_{a}\mid \varepsilon$ $S_b\rightarrow S_{b}A\mid SA_{b}$ $A\rightarrow a\mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
2 mistakes
qwen/qwen3-235b-a22b
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Okay, let's tackle this problem step by step. The question is about finding all the words in the Del(L) set for a given L. The given L here is {abbaba, baa, ab, a, b}. And Del(L) is defined as the set of all words that can be formed by removing exactly one occurrence of "ab" from some word in L. So my job is to look at each word in L, determine all possible places where an "ab" appears, and for each occurrence, remove it to generate the word in Del(L). Then collect all unique results. Let me start by processing each word in L one by one. First word: "abbaba". Let's look for occurrences of "ab" in this word. The word is of length 6. Let's index each character: Index: 0 1 2 3 4 5 Chars: a b b a b a Looking for "a" followed by "b", which is our "ab". The occurrences would be at positions where a[i] = 'a' and a[i+1] = 'b'. Let's check: At index 0: 'a' followed by 'b' (index 1). So "ab" starts at 0. Removing that gives the rest: positions 2 and beyond, which is "baba". So resulting word: "baba". Next possible occurrence: After index 0. Let's check index 2: 'b' here. No. Index 3: 'a' here. Next character is index 4 'b', so "ab" at position 3. Removing "ab" from position 3 would take characters 0-2 (which is "abb"), then skip 3-4 and append characters from 5 onwards. Wait, original word is "abbaba", so removing "ab" at position 3 (characters 3 and 4) would leave "abb" (positions 0,1,2), then the characters after 4, which is position 5. So "abb" followed by position 5 'a'? So the result would be "abba"? Wait let me re-express the word. Let's write "abbaba" as a sequence: a b b a b a So if the removed "ab" is the last two letters "b a b"? Wait no. The "ab" has to occur as a substring. So positions where "ab" occurs: Looking at each adjacent pair: Positions 0-1: "ab" → yes. So remove that. The resulting word is "baba". Next pair 1-2: "bb", no. 2-3: "ba", no. 3-4: "ab" again. So that's "ab" again. Wait so "ab" occurs in positions 0-1 and 3-4. Wait wait, in the word a b b a b a: - pair 0-1: ab → yes. Then positions 1-2: bb → no. Pair 2-3: ba → no. Pair 3-4: ab → yes. Pair 4-5: ba → no. So total of two "ab" instances. So removing "ab" once for each occurrence gives "baba" (from removing first "ab") and removing the second "ab" (positions 3-4) would split into v and w where v is the part before "ab" and w the part after. So v is "abb", and removing positions 3 and 4 (characters 'a' and 'b'), so the rest would be "abb" (positions 0-2) followed by 'a' (position 5). So "abbaa"? Wait wait: Wait the original word is length 6. Removing two characters starting at position i and i+1. So in the first case, removing positions 0-1, which leaves positions 2-5: baba (since characters are a b b a b a → removing first two characters gives remaining characters b a b a, wait wait no. Wait wait, original word "abbaba" as follows: Indices 0:a, 1:b, 2:b, 3:a, 4:b, 5:a. So if I remove "ab" at positions 0 and 1: a and b. Then the left part (v) is empty (since after removing, everything after position 1 is from index 2 onwards: "baba". Wait no. Wait, original word is vabw. So removing "ab" gives vw. So in the first case, v is empty, ab is at the start, and w is the substring starting from index 2 onwards (which is "baba"). So the result would be "baba". In the second case, removing "ab" at positions 3 and 4: a (position 3) and b (position 4). Then, v is the part before that, which is "abb", and w is the part after 4, which is position 5: 'a'. So v concatenated with w is "abb" + "a" = "abba". So removing each occurrence of "ab" gives two different words: "baba" and "abba". Wait, wait let's check: Wait in "abbaba", removing the first "ab" (positions 0-1) gives us "baba" (since the original word is a b b a b a, removing first two letters b, the remaining is b a b a? No wait: Original word is a b b a b a → removing the first "ab" (positions 0 and 1) would leave the remaining characters from index 2 onward: b a b a. So that's "baba". Then removing the "ab" at positions 3-4: the word before "ab" is positions 0-2: a b b, then the part after the "ab" is position 5: a. So positions 0,1,2 → a b b and position 5: a → combined as a b b a, which is "abba". Therefore, two words from this original: "baba" and "abba". But wait, what about overlapping? Since "abbaba" may have other "ab"s? Let's check again. The possible "ab" substrings are positions 0-1 and 3-4. Are there any others? Let's see: After the removal of which one? Wait in the original word, no. So for the first word, we get two words. Now moving to the second word in L: "baa". Let's check if this word has any "ab" as a substring. Let's look at the characters: b a a. The possible adjacent pairs are b-a and a-a. The first pair is b followed by a → "ba", not "ab". No "ab" occurs here. Thus, removing "ab" is impossible, so "baa" contributes nothing to Del(L). Third word: "ab". Let's check. The word "ab" is exactly "ab". So removing it once gives "ε", the empty string. Fourth word: "a". No possible "ab" substring here. Similarly for fifth word "b". So compiling all the contributions: From "abbaba": "baba", "abba". From "ab": "ε". Others: no contributions. So the total Del(L) would be { "baba", "abba", "ε" }, right? Wait wait hold on. Let's recheck all words. Original set L has words: "abbaba", "baa", "ab", "a", "b". For each word: "abbaba": as above → two words. "baa": no "ab" → nothing. "ab": remove "ab" → empty set. "a", "b": can't have "ab" → nothing. Wait, but wait another thought: when you remove exactly one "ab". What if a word contains "ab" in multiple positions, even overlapping (but can't here)? For example, the word "aabbaab". But in our case, in each original word, check for all instances. But in this case, only two instances in "abbaba". But wait, what about the word "ab" — contributes one word. So total elements: three words. Wait wait another example: if the word is "abab". Then "ab" occurs at positions 0-1 and 2-3. So removing each of those and combining gives "ab" and "ab", but since they're the same, only one is added. Also there's a possible "ab" in positions 0-1 and 2-1? Not sure. Wait for "abab" (a b a b), removing first "ab" (positions 0-1) gives empty string. Wait no, removing "ab" from "abab" would give "ab" (from removing first two letters and leaving the rest? Let me see. Let me re-express: Original word is "abab". If you remove "ab" starting at 0, then what's left is 'ab' (positions 2 and 3). So that's "ab". Similarly, removing "ab" starting at position 2: the part before is positions 0-1, which is 'ab', and nothing after. So result is "ab" again. So Del("abab") would be { "ab" }. But in our problem, the original "ab" when removed gives empty string. So back to our problem. So from "ab" we get empty string. From "abbaba", we get "baba" and "abba". So Del(L) is { ε, baba, abba }. Now let me check if there are other possibilities. For example, could any other words have "ab" embedded? Wait, the word "baa" has letters b, then a, then a. So "ba" and "aa" — no "ab". The word "a" has no possible anything. "b" likewise. So the final answer should be ε, baba, and abba. Wait, another check: let's write the words again. "abbaba": Looking at the word again: a b b a b a. Removing "ab" starting at position 0: result is positions 2-5: b a b a → "baba". Removing "ab" starting at position 3: positions 3-4, so the remaining is positions 0-2 (a, b, b), then positions 5 (a) → "abb"+"a" = "abba". Yes. So those are two words. Then the original "ab" → ε. So Del(L) is {baba, abba, ε}. So the answer should be: \{\varepsilon, abba, baba\}, sorted or in any order, but the problem didn't specify order, just all words. But the example shows the answer as {ε, ab, bbab}, so order does not matter. But wait wait: in the example, Del(L) for L being {abbaba,baa,ab,a,b} is shown as {ε, ab, bbab} which doesn't seem to correspond to this problem, but the example is probably not correct. Therefore, the correct answer here should be the set {ε, abba, baba}.
Answer
<answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, let's tackle subproblem b. The question is whether for every finite language L over Σ, it holds that Del(Del(L)) equals DelTwo(L). The user wants me to either prove this or find a counterexample. First, I need to make sure I understand the definitions correctly. Del(L) is the set of words you get by removing a single occurrence of 'ab' from any word in L. Specifically, for any word in L that can be split as vabw, Del(L) includes vw. DelTwo(L) is defined similarly, but now we remove two instances of 'ab'. The definition says that any word in DelTwo(L) is u v w, where the original word in L had u ab v ab w. So this is the result of removing two 'ab's in succession (but not necessarily in the same place, I suppose, as long as there's a decomposition with two 'ab's). The question is about whether applying Del twice (Del(Del(L))) gives the same result as DelTwo(L), and whether this holds for all finite L. And since L is finite, all derived languages should also be finite, so it's manageable. My initial thought is that Del(Del(L)) might include more words. Because after the first Del, you can end up with words that have 'ab's that weren't there before. For example, if a word in L has a single 'ab', removing that gives another word. But if in Del(L), that new word might have multiple 'ab's that could be removed in the second Del, leading to more words than just DelTwo(L), which is specifically removing two 'ab's from the original language. Let me try to create a counterexample. Since L has to be finite, let's think of a simple finite L. Let's take L = {abab}. Then let's compute Del(L) first. The word abab is ab followed by ab. So possible ways to split into vabw: first, if we split at the first 'ab', we get v = empty, ab as the first two letters, then w = ab. So removing ab gives w, so v w is ab. Alternatively, if we split at the second 'ab', then the word is a followed by ab (so v is 'a') and then w is 'b'. Wait, wait. Wait the original word is abab. So possible splits are: Breaking abab into vabw. The 'ab' as substring can be found in two positions: starting at position 0 (ab) followed by ab, or starting at position 2 (the last two letters, but in this case the entire word is abab, so the substrings are ab at positions 0 and 2. Wait, abab has length 4. So positions 0-1: ab, 1-2: ba, 2-3: ab. So possible 'ab' occurrences are positions 0-1 and 2-3. So Del(L) would consist of the words formed by removing either of those 'ab's. If we remove the first 'ab' (positions 0-1), then the remaining part is positions 2-3: ab. So Del(L) would have ab. If we remove the second 'ab' (positions 2-3), then the remaining part is positions 0-1: ab. So Del(L) is {ab}. So Del(L) = {ab} in this case. Now Del(Del(L)) means we apply Del to {ab}. Since the only word in this L is 'ab', which has a single 'ab' (since the entire word is ab), removing that gives us the empty word. So Del(Del(L)) in this case would be {ε}. On the other hand, DelTwo(L) is the words formed by removing two 'ab's from any word in L. Since L has only abab, which has exactly two 'ab's. So the way to split abab as u ab v ab w would be u = empty, v = empty, w = empty (since after removing two 'ab's, the word becomes empty). So DelTwo(L) should be {ε}. In this example, Del(Del(L)) equals DelTwo(L). But maybe another example would show a difference. Let me try another example. Let L = {abxab}, where x is a character that doesn't interfere. Wait, but Σ is {a,b}, so L can only have words made of a and b. Let's think of L = {aabab}? Let me think of a different example. Suppose L = {aabbab}. No, maybe a more structured approach. Suppose there's a word in L that, when you remove an 'ab', creates a new 'ab' in the resulting word. Then Del(Del(L)) can remove that new 'ab'. Whereas DelTwo(L) requires the original word to have two 'ab's that can be removed. So if a word has overlapping 'ab's, but after the first removal, a new 'ab' is formed, then Del(Del(L)) can have more possibilities. For example, take the word aab. It contains one 'ab' at positions 1-2. Removing it gives aa. Which does not have 'ab's, so Del(L) would be {aa}. Applying Del again to {aa} would give nothing. So Del(Del(L)) is empty. DelTwo(L) would also be empty because there are no words with two 'ab's. So in this case, same result. Another example: let's consider a word that after removing an 'ab' creates another 'ab'. Let me think of such a word. Consider the word 'abaab'. Wait, the word 'ab' followed by 'aab', but if I remove an 'ab' in some position. Maybe 'ab' followed by 'aab' would not create that. Let me think of a word that has an 'ab' break that creates a new 'ab'. Take the word 'aab'. If you remove the 'ab' portion as the substring 'ab' starting at position 1 (so it's 'a' followed by 'ab'), then you remove the 'ab' and you have 'a'. Which has no 'ab's. But how can removing 'ab' create another 'ab' in the result? Wait, how about the word 'aabbbbab'. Suppose the first 'ab' occurs at position 1-2, removing it gives 'abbbb' ... Wait maybe not. Another example: 'aabbab'? Wait, let me think of a specific example. Suppose we have the word 'aabba'. Wait, 'aabba' doesn't have any 'ab's. Maybe think of a word where removing a different 'ab' can create an 'ab' in the result. Let's take 'abbaab'. Wait, the original word: let's pick a word where after removing an 'ab', the remaining part has another 'ab' which was split across the removed part. Like, the word 'aab' with length 3: 'aab' (letters a, a, b). This has one 'ab' at positions 1-2. Removing that gives 'aa', which doesn't have an 'ab', so not helpful. Wait here's a classic example: take the word 'aabbab'. Let's see: Original word: a a b b a b. Does this word contain any 'ab's? Yes: the substring 'ab' occurs at positions 3-4 (since at position 3 is b, position 4 is a — wait no. Wait positions are 0-based? So let's index from 0: 0:a, 1:a, 2:b, 3:b, 4:a, 5:b. So where's 'ab'? Looking for 'a' followed by 'b'. At position 0-1: aa. 1-2: a-b? Position 1 is 'a', position 2 is 'b' — yes, there's an 'ab' from 1-2. Then positions 4 and 5 is 'a' followed by 'b' again. So two 'ab's: positions 1-2 and 4-5. So removing either of them would give us words. For example: Removing first 'ab' (positions 1-2): remaining part is a followed by b, then a, b → wait, the word is broken into prefix + 'ab' + suffix. So here, v is the prefix up to index 1, which is a, then removing ab, then suffix is the rest from position 2 onwards: but after removing positions 1 and 2, the suffix is positions 3 onwards: b b a b. Wait no: original word is a a b b a b. Breaking into vabw: v is a, ab is positions 1-2, then w is b b a b. So removing it gives v w = a followed by b b a b = ab bab? Wait no: Wait the original word is a a b b a b. If I split into v= a, ab is aab? No: Breaking vabw from original. Let me check: For the first 'ab' at positions 1-2 (letters a and b): v is substring before ab, which is 'a' (from position 0). w is substring after ab: positions 2 onwards is b followed by a in position 4? No: Wait, original positions 0:a, 1:a, 2:b, 3:b, 4:a, 5:b. The 'ab' here runs from position 1 to position 2. So the word is 'aab bab'? No: Breaking v as a, then 'ab' as (a at pos1 and b at pos2), then the w would start at position 3: 'b a b'? So w is b b a b (positions 3-5?), wait no. Wait: Original word: positions 0,1,2,3,4,5. Splitting after removing positions 1 and 2: the resulting word is a followed by positions 3,4,5. So positions 3 onwards are b, a, b. So the word becomes a followed by b a b → abbab. Wait, the total length after removal is 6 - 2 = 4. Wait perhaps another way: if the original word is a a b b a b, and you remove the substring 'ab' (which is the substring starting at position 1), the resulting word would be the first 'a' (from position 0), then positions 3 onwards (original positions 3 to 5 → 'b a b')? Wait yes: Remove positions 1 and 2 (the 'a' and 'b'), then what's left is a (pos 0) followed by pos 3 onwards: b, a, b. So the word becomes a followed by b a b. This gives the word 'abab'. Similarly, if we remove the second 'ab' in the original word, which starts at position 4 (char 'a') and position5 (char 'b'). Removing those gives us a a b b as prefix, which is the first four characters, then the suffix. So the resulting word would be a a b b (from pos 0-3) followed by nothing. So the word is aab b → aab². So Del(L) where L is {aabbab} would include 'abab' and 'aabb'. Now, in this case, if we apply Del again to Del(L), then consider for example the word 'abab' which was in Del(L). 'abab' has two 'ab's as before. Removing either gives us 'ab' in Del(Del(L)). Also, 'aabb' has no 'ab's except if there is any a followed by b. 'aabb' is a followed by a, then b, then b. So 'aab' in the first three positions, but 'aa' and 'ab' starts at position 2. So 'aabb' has one occurrence of 'ab' starting at position 2 (third letter being b, wait no: 'a a b b' — the sequence a followed by a, then b... So the 'ab's are where 'a' is at position 0, followed by b? Wait no. 'a a' is in the start. Then 'a' and 'b' occurs at position 2. Wait 'a a b b' → positions 0:a, 1:a, 2:b, 3:b. So 'ab' occurs where? There's no 'a' followed by 'b' except between position 1 and 2 (a followed by b). So that's the 'a' at position 1 followed by 'b' at position 2. So 'ab' at positions 1-2. So if you split into vabw, where ab is positions 1-2, then v is 'a' (position 0), and w is 'b' (position3). So removing that gives 'a'*'b' = 'ab', which is added to Del(Del(L)). So applying Del twice in this example could lead to more words. However, the original DelTwo(L) would be the set of words obtained by removing two 'ab's from any word in L. Since our L is {a a b b a b}, the DelTwo(L) would consist of all words that result from removing two 'ab's. But since the original word has two 'ab's, removing two would leave us with 'aabb' → remove first 'ab' → 'abab', but no: actually, DelTwo(L) is u v w where the original word is u ab v ab w. So in this case, the word has two 'ab's. To do this, the original word must have at least two 'ab's. So for DelTwo(L), you can remove both instances. But how many ways? For example, in the original word 'aabba b' (assuming the example is aabbab with two 'ab's), can I split into u ab v ab w? Let me try: Option 1: remove the first 'ab' (positions 1-2) and the second 'ab' (positions 4-5). But how exactly? The DelTwo requires that there exists such a decomposition. But since the first 'ab' and the second 'ab' are non-overlapping, we can write the original word as u ab v ab w. Let's see: u is 'a', then first ab, then v is 'bb a', then ab w 'b'? Wait, maybe I'm getting confused here. Let me re-express. The original word is 'aababaab'... No, original example's word is 'aabba b' — perhaps I should use a clear example. Let's take a different approach. Let me construct a finite L where Del(Del(L)) contains more words than DelTwo(L). For example, let L = {abab}. Then, as before: Del(L) = {ab}, Del(Del(L)) = { ε }, and DelTwo(L) = {ε}, so same. But suppose I have a word where after the first removal of 'ab', the resulting word has multiple 'ab's that weren't present in the original word. Let me think of such a case. Take L = {aab}. This word has exactly one occurrence of ab (positions 1-2). Del(L) is {aa}. Applying Del again would require 'ab' in the word 'aa', which isn't there. So Del(Del(L)) is ∅. Deltwo(L) is also ∅. Not a difference. Another example: L = {abbaab}. Let's say the word is abbaab. Let's split into 'ab' and 'baab' (the first 'ab'). Removing gives 'baab'. Or split into a, then b, then b, then aab — but maybe the word has another occurrence of 'ab'. Alternatively, take a word that after removing an 'ab' creates a new 'ab'. For example, consider the word 'aabba' — is there any? Wait, 'aabba' is a a b b a, no 'ab's. Not helpful. Another idea: take the word 'aabab'. This word has two 'ab's? Let's see: Original word: a a b a b. Possible positions for 'ab': - Starting at index 0: a followed by a → no. - Starting at index1: a followed by b → positions 1-2 (substring 'ab'). - Starting at index3: a followed by b → positions 3-4. So two 'ab's at positions 1-2 and 3-4. Now if you remove the first 'ab' (positions 1-2), the remaining word is 'aab' (original first letter a, then positions3 onwards which are a b). Then removing 'ab' from 'aab' (which has 'ab' at positions 1-2) gives 'a'. Similarly, removing the second 'ab' from original gives 'aab a'? Wait original word 'a a b a b', when you remove positions 3-4 'ab', then you have a a b (positions 0,1,2). Which is 'aab', again can be reduced to 'aaS' where 'aaS' has no 'ab'? No: 'aab' is a followed by a followed by b. Then, removing 'ab' (positions1-2) gives 'aa'. So Del(Del(L)) for L = {aabab} would include 'a' and 'aa'? Wait wait. Let's define: Original word is 'aabab', L = { 'aabab' }. Del(L) is { aab (from removing first ab), aba (from removing second ab) ? Let's see: Splitting vabw for 'aabab' (positions 0:a, 1:a, 2:b, 3:a, 4:b): First occurrence of 'ab' is at positions 1-2 (a followed by b). Removing that gives v w where v is 'aa' (prefix before ab?), wait no: vabw. Wait in this case, v is the part before 'ab' (which starts at position1). So 'aabab' → v = 'a' (positions 0: the part before the 'ab' that starts at position1?), no. Wait: The word a a b a b. First 'ab' starts at index 2? Let me redo this. For 'aabab': Indices: 0:a, 1:a, 2:b, 3:a, 4:b. Check each position: At position i and i+1, does 'ab' occur? i=0: a and a → no. i=1: a and b → yes. So positions1-2: 'a b'. i=2: b and a → no. i=3: a and b → yes. So two 'ab's. So when we split the word: First occurrence is positions1-2 ('ab'). So vabw would be v: a (prefix before the first ab), ab, w is 'a b' (positions3-4: 'ab'). So removing ab gives v w = a + 'ab' = aab. Second occurrence is positions3-4. Splitting into vabw, v is a a b (positions0-2), ab is 'ab' here, then w is empty. Removing ab gives 'aab'. Wait, first case: If removing first 'ab', the result is v w where v is 'a' (from positions0) and w is 'ab' (positions3-4 → original positions3 and4 are ab). So concatenation is 'aab'. If removing second 'ab', then v is the part before position3: 'aab' (positions0-2), and w is nothing. Removing ab gives 'aab'. So Del(L) is { 'aab', 'aab' }, but since sets remove duplicates, Del(L) = { 'aab' }. Now, applying Del to this gives Del(L') where L' = {'aab'}. The word 'aab' has one 'ab' (positions1-2), removing which gives 'aa'. So Del(Del(L)) = {'aa'}. Now, what about DelTwo(L)? For DelTwo(L), we need to remove two 'ab's from the original word 'aabab'. However, the original word has two 'ab's. Can we remove both of them? In the definition of DelTwo: each removal is of a single 'ab' in the word. So DelTwo(L) is removing two 'ab's from the original word. How can we write 'aabab' as u ab v ab w? For example, u is empty, first ab is at positions1-2, then v is 'b' (positions3-2?), no: Wait, the first 'ab' is 'aabab' → split at positions1-2. Then the remaining part after first 'ab' is 'aab' (from position2 onwards is 'b' followed by 'a', etc? I think breaking down the example: To decompose 'aabab' as u ab v ab w: Take u = empty, first ab is at positions1-2, then v must be the part between the two ab's, which in this case, between first ab (ends at position2) and second ab (starts at position3) is the 'a' at position3. Wait no, after removing the first ab, let's see: Between first 'ab' and second 'ab' in original word is a position2+1? Let's see: Original word: a (0) a (1) b (2) a (3) b (4) First 'ab' starts at 1: letters 1 and 2 are 'a' and 'b' → ab. Second 'ab' starts at 3: letters 3 and 4 → ab. So between the two 'ab's is nothing — right after the first ab (positions1-2) comes position3. So in the decomposition u ab v ab w: Let me do u = 'a', the first ab is the first 'ab' at position1-2. Then between first and second 'ab's is the substring starting at position3 (the a at 3) which is part of the second 'ab'. So v would be the part between the first ab and the next 'ab' in the decomposition. But since the two ab's are not adjacent, but separated by nothing? No: u ab v ab w → the first ab is positions1-2. The second ab is positions3-4. So after the first ab (position2), the next position is 3. So v would be the part between the two ab's, which is positions3-?... Wait, to include both 'ab's, the decomposition would require: u = a, ab is first one → then between first and second 'ab' is nothing (v is empty?), since after first ab (up to position2) comes position3. Then after v comes ab at position3-4. So v must be position3's letter minus... Hmm: Let me write u ab v ab w = 'aabab' → We need u concatenated with ab, then v, then ab, then w equals uabvabw = 'aabab'. So: Let u = 'a' ab is the first one. Then v = 'b' (position2?), then ab again (the second occurrence) Then w is empty. Wait: uabvabw → u = a a is u then ab is next (the first 'ab'), so after u ab = a ab = 'aab' then v ab w → not sure Alternative approach: Looking for u, v, w such that u ab v ab w = original. So: u ab v = the part up to the end of the second ab. Then multiplied by the original. Original: 'a a b a b' We need to split into: u ab v ab w We can take the first occurrence of 'ab' and the second. For example, u = empty, ab refers to the first 'ab', but then after that, we split into v and the second ab: Wait: Let me try u = empty, ab = a a → no. Wait better: The first ab is at positions1-2 ('aa'? Wait no: original word starts at 0: Original word: indexes 0 1 2 3 4: 0:a, 1:a, 2:b, 3:a, 4:b First ab is at 1-2: a followed by b. Second ab is at 3-4: a and b. So to split into u ab v ab w: Let u = the substring before first ab, which is a[0] = a (so u = 'a'). Then the first ab is at 1-2. Then v is the substring between the two ab's. Since after first ab ends at index2, next is index3. The substring from index2+1=3 up to index3 (inclusive of the positions that come before the next ab). So between first and second ab's is just 'a' (position3). But wait, the second ab is at 3-4. So after the first ab, next is the character at position3, which is part of the second ab. So between the two ab's is no letters. So v would be empty. Therefore: u='a' first ab → ab (positions1-2) v=empty string → between the first and second ab the second ab → positions3-4 w= empty (nothing after last ab) Then uabvabw = 'a' + 'ab' + '' + 'ab' + '' = 'aabab', which matches the original word. Therefore, this decomposition exists. Thus, according to DelTwo(L), the resulting word is u v w = a (u) + empty (v) + empty (w) = 'a'. Additionally, there may be other decompositions. For example, using the second ab first. But since order doesn't matter as long as both are present in the decomposition. So DelTwo(L) would include 'u v w' which in this case is 'a' (since u='a', v='', w=''). Are there other decompositions? For example, what if v covers some letters. Suppose taking the first ab as positions1-2, and the second as the same or something else. Wait no, each ab must be in the decomposition. Another possible decomposition: Let first 'ab' be at positions3-4. Then, can you find a decomposition where you also have another 'ab' before or after? But in this case, there's only two 'ab's, and removing both requires that you take both. So, other decompositions would have to select two 'ab's. Since there are two, the only possible way is to take both occurrences. So for DelTwo(L), the possible resulting words would be all u v w derived from such decompositions. In the previous decomposition, we had u='a', v=empty, w=empty, leading to 'a' + '' + '' = 'a'. Is there another decomposition? Like if the first ab is at 1-2, and the second is also at 1-2? That's not possible. No. Thus DelTwo(L) for this example is {'a'}, while Del(Del(L)) is {'aa'}. Because Del(Del(L)) for L={ 'aabab' } is {'aa'}, as we calculated earlier. This would show that Del(Del(L)) ≠ DelTwo(L), since 'aa' ≠ 'a'. Thus, this serves as a counterexample. So the statement is false. Therefore, the answer for part b is False (option 2 is 1), and part b says to select False. Wait, the question is "Wahr oder Falsch mit Beispiel". The options are option1: Wahr (True), option2: Falsch (False). Since we found a counterexample, the answer is Falsch. So the options should be answered with 1 (False) for option2. The answer for the proof part would explain the example. Thus, the correct answer is False, so option2 is 1. And the explanation gives the counterexample.
Answer
Während DelTwo(L) Wörter erzeugt, bei denen aus L zwei mal "ab" direkt entfernt wird, kann Del(Del(L)) durch Zwischenschritte zusätzliche Wörter erzeugen, die erst durch die erste Entferung entstehen. **Antwort auf die subproblem b:** Als Gegenbeispiel wählen wir L = {a²bab}. - **Del(L)-Berechnung:** Das einzige Wort in L ist *aabab*. Dieses enthält zwei Vorkommen von *ab* (in den Positionen 1-2 und 3-4). Entfernt man eine der beiden *ab*-Teilfolgen, erhält man jeweils *aab*. Damit ist $ \Del(L) = \{aab\} $. - **Del(Del(L))-Berechnung:** Anwenden von Del auf {aab}: Das Wort *aab* enthält ein *ab* (in den Positionen 1-2). Entfernt man dieses, bleibt *aa* übrig. Also ist $ \Del(\Del(L)) = \{aa\} $. - **DelTwo(L)-Berechnung:** Um zwei *ab*-Teilfolgen aus *aabab* zu entfernen, muss man sowohl das *ab* in den Positionen 1-2 als auch das in den Positionen 3-4 entfernen. Das führt zu $ u = a $, $ v = \varepsilon $, $ w = \varepsilon $ – also insgesamt $ u \cdot v \cdot w = a $. Somit ist $ \DelTwo(L) = \{a\} $. **Fazit:** Da $ \Del(\Del(L)) = \{aa\} \neq \{a\} = \DelTwo(L) $, ist die Aussage **falsch**. --- <option id="1">0</option> <option id="2">1</option> <answer id="3"> - L = {aabab} dient als Gegenbeispiel. - Del(L) = {aab}, Del(Del(L)) = {aa} - DelTwo(L) = {a} - Also: Del(Del(L)) ≠ DelTwo(L) </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
- L = {aabab} dient als Gegenbeispiel. - Del(L) = {aab}, Del(Del(L)) = {aa} - DelTwo(L) = {a} - Also: Del(Del(L)) ≠ DelTwo(L)
Subproblem c (5.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Während DelTwo(L) Wörter erzeugt, bei denen aus L zwei mal "ab" direkt entfernt wird, kann Del(Del(L)) durch Zwischenschritte zusätzliche Wörter erzeugen, die erst durch die erste Entferung entstehen.
**Antwort auf die subproblem b:**
Als Gegenbeispiel wählen wir L = {a²bab}.
- **Del(L)-Berechnung:**
Das einzige Wort in L ist *aabab*. Dieses enthält zwei Vorkommen von *ab* (in den Positionen 1-2 und 3-4). Entfernt man eine der beiden *ab*-Teilfolgen, erhält man jeweils *aab*. Damit ist $ \Del(L) = \{aab\} $.
- **Del(Del(L))-Berechnung:**
Anwenden von Del auf {aab}: Das Wort *aab* enthält ein *ab* (in den Positionen 1-2). Entfernt man dieses, bleibt *aa* übrig. Also ist $ \Del(\Del(L)) = \{aa\} $.
- **DelTwo(L)-Berechnung:**
Um zwei *ab*-Teilfolgen aus *aabab* zu entfernen, muss man sowohl das *ab* in den Positionen 1-2 als auch das in den Positionen 3-4 entfernen. Das führt zu $ u = a $, $ v = \varepsilon $, $ w = \varepsilon $ – also insgesamt $ u \cdot v \cdot w = a $. Somit ist $ \DelTwo(L) = \{a\} $.
**Fazit:**
Da $ \Del(\Del(L)) = \{aa\} \neq \{a\} = \DelTwo(L) $, ist die Aussage **falsch**.
---
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
- L = {aabab} dient als Gegenbeispiel.
- Del(L) = {aab}, Del(Del(L)) = {aa}
- DelTwo(L) = {a}
- Also: Del(Del(L)) ≠ DelTwo(L)
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Okay, let's tackle this problem step by step. The goal is to construct a context-free grammar G' such that L(G') = Del(L(G)), where Del(L) is the language obtained by deleting exactly one occurrence of 'ab' from the words in L(G). Since G is in Chomsky Normal Form (CNF), we can use that structure to define the rules for G'. First, let's understand the requirements. We need to define the productions P' and the start symbol S' for G' so that the four conditions hold for all non-terminals X in V. Specifically: 1. L_{G'}(X) = L_G(X): The original non-terminals in G' behave the same as in G. 2. L_{G'}(X_ab) = Del(L_G(X)): X_ab generates the language where one 'ab' has been deleted from words generated by X. 3. L_{G'}(X_a) = {w | wa ∈ L_G(X)}: X_a generates words that are prefixes ending with 'a', such that appending 'a' gives a word in L_G(X). 4. L_{G'}(X_b) = {w | bw ∈ L_G(X)}: X_b generates words that are prefixes ending with 'b', such that prepending 'b' gives a word in L_G(X). Given that G is in CNF, the productions in G are of the form A → BC or A → σ, where A, B, C are non-terminals and σ is a terminal (a or b). Let's start by considering how to define S'. Since Del removes exactly one 'ab', we need to ensure that G' starts by introducing the non-terminal that will handle this deletion. The non-terminal X_ab is supposed to generate Del(L_G(X)), so the start symbol S' should be S_ab, but wait. Wait, no. Let's check. Wait, the first requirement says that L_{G'}(X) = L_G(X), meaning the original non-terminals in G' should generate exactly what they did in G. So, the start symbol of G' must be S_ab, because we want G' to generate the deleted language. But let's verify. Actually, the problem states that we want L(G') = Del(L(G)). So the language of G' should be the result of deleting one 'ab' from words in G's language. Therefore, S' should be S_ab, as that non-terminal in G' produces exactly Del(L_G(S)) which is Del(L(G)), since L(G) = L_G(S). Now, the main challenge is defining all the productions in P'. Let's look at each of the four types of non-terminals and their required productions. For each non-terminal X in V, we have four types in G': X, X_ab, X_a, X_b. Each of these must generate the corresponding language as per the four conditions. Starting with the productions for X. The first condition says that X still generates L_G(X), so we need all productions from P to be in P' for X. So if X → BC is in P, then X → BC should also be in P', and similarly for X → a. Next, the productions for X_ab. These must generate words obtained by deleting a single 'ab' from L(X). So whenever there's a way to derive a word in L(X), there's a corresponding way in G' where, at exactly one point, an 'ab' was deleted. To handle this, we need to modify all possible production rules in G such that when building the derivation, we can delete an 'ab' at some point. But how to model that. Since G is in CNF, all the rules are A → BC or A → σ. So we have to adjust these rules to account for the possibility of skipping 'ab' in the generated word. For condition 2, X_ab must generate Del(L(X)). So, in G', whenever X would produce a word in L(X), X_ab must produce a word in Del(L(X)). This deletion can happen anywhere in the derivation. One standard approach when creating grammars for such problems is to create "copy" non-terminals and adjust the productions to simulate the operation. Here, for each original production in G, we need to create new productions in G' that, depending on the context, can introduce deletions. Let's look at the two types of productions in G: 1. A → BC 2. A → σ For each of these, we need to define corresponding productions in G' for the four types of non-terminals (X, X_ab, X_a, X_b). Let's start with A → BC. We need to define for all the four types (A, A_ab, A_a, A_b) how they produce via this production. For the first condition, A → BC is part of G', so A → BC is kept in P' for A, which is already in X (the original non-terminals). So that's handled. Now for A_ab. We need to consider how to derive the deletion of 'ab' from words generated by A. Since A produces BC, then any deletion in A must come from some deletion in B or C, but with the constraint that exactly one 'ab' is deleted in the entire word. Wait, more specifically, the idea is that for any word w derived by A, which would be in BC, when you delete one 'ab' from w, the way to generate it could involve either (1) deleting an 'ab' in the part derived from B and then taking the part from C normally, (2) deleting an 'ab' in the part from C, or (3) the deletion of 'ab' could span the B and C parts. For example, if B produces a word ending with 'a' and C produces a word starting with 'b', then deleting 'ab' between B and C would result in B followed by C with 'ab' removed. Therefore, we need to account for all these possibilities. So for each production A → BC in G, we need the following rules in P' for the different non-terminals: - A_ab → B_ab C: This captures the case where the 'ab' is deleted in B, and C is normal. - A_ab → B C_ab: Deletion of 'ab' in C, normal B. Additionally, we need: - A_ab → B_a C_b: Here, B_a generates a word u that becomes a word ua (since the definition of L_G'(X_a) is {w | wa ∈ L_G(X)}). Similarly, C_b generates a word v where b v ∈ L_G(C). If we concatenate u and v, then u * v is a word that comes from the word u a b v in A's language (since u a v b comes from B → ... leading to u a and C → ... leading to v b; combining via B C gives u a v b, but if we delete the 'ab' between B and C, we get u concatenated with v. Therefore, A_ab → B_a C_b handles the case where the 'ab' is removed exactly at the boundary between B and C. Similarly, for A_a, which generates words where the word + 'a' is in L_G(A). So A → BC can be part of a derivation where, for A_a, you have to generate words that end with 'a' when appended. So, for example, if the 'a' is generated in the C part, then B can be normal and C_a would generate the prefix. Alternatively, if the B part generates a prefix that ends with something, and C's part is such that the 'a' is in the C part. Also, considering that the 'ab' deletion might affect this. Wait, but according to the requirements: L_{G'}(X_a) = {w | wa ∈ L_G(X)}. So, X_a generates a word that when 'a' is added to the end becomes a word in L_G(X). Similarly for X_b, where the prefix is a word that when 'b' is prepended gives a word in L_G(X). Hmm, perhaps for A → BC, the A_a must generate words w such that w a is in L_G(A), which is L_G(B) L_G(C). So wa = u v, where u ∈ L_G(B), v ∈ L_G(C). Then w could be u v' where either: 1. u = u', and v' a = v, so a is the last character of v. That would be covered by B and C_a (since C_a generates words v' such that v' a ∈ L(C)). So A_a → B C_a. Or, 2. u = u' x (a word u' and a single character x, which is not allowed here since the derivation is via X → BC. So maybe another possibility: if the 'a' comes from B's part. For example, u = u' a and v = ε (but since G is in CNF, which has no ε productions, so ε can only be generated if the original grammar allowed it, but CNF grammars don't have ε productions. So, assuming no ε. Then, the other case would be that in B, we have a word u that has a trailing a (so w = u + v, where v is part of C, and u a is in L(B)? Wait, maybe not. Alternatively, perhaps the 'a' is part of B's word, which is u. If u = u' and the next part is such that the 'a' comes from v, but I think the proper way is to have two possibilities for generating A_a from B and C: Case 1: The 'a' is in C's part. So, A_a → B C_a. Case 2: The deletion of 'ab' in C affects the production, but no, wait, no. Wait, the A_a's definition doesn’t involve deletions, it's about wa being in L(G). So for A_a, we need to capture all possibilities where wa = u v with u in L(B), v in L(C). So wa = u v. Therefore, since wa ends with 'a', we have two possibilities: Either v is non-empty and ends with 'a', in which case, v is a word generated by C_a (since for C, v is generated by C_b if bv ∈ L(C), or by C_a if v a ∈ L(C)? Wait, no. Wait, for X_a, L_G'(X_a) is {w | wa ∈ L_G(X)}. So for the concatenation of B and C to have a word w such that wa is in L(B) L(C), then w must be such that wa = u v, where u ∈ L(B), v ∈ L(C). Therefore: Case 1: u ends with 'a' and v is ε. But since G has no ε productions, this can't happen (unless C can generate ε, but the problem states G has no ε productions. So, since G is in CNF, which doesn't include ε except for the start symbol sometimes, but the problem says G has no ε productions as a CNF grammar. Therefore, we can ignore ε. Case 2: u = x a and v = y, where y a ∈ L(C). Wait, no. If w = x (from B) and y (from C) such that wa = x y a = x (y a), and this must be in L(B) L(C). But we want x ∈ L(B), ya ∈ L(C). Then y ∈ L(C_a), because for C_a, y must satisfy y a ∈ L(C). Therefore, w = x y, which is generated by x ∈ L(B), y ∈ L(C_a). So A_a could be generated by B and C_a. Alternatively, the other case would be that u = x, v = y a, so w = x y, where x ∈ L(B) and y a ∈ L(C) → y ∈ L(C_a). Then x y ∈ A_a. Wait, that's the same as the first case. Alternatively, suppose that the 'a' comes from the B part. So if u is such that u ends with a, then w must be (u') where u = u' a. So then, u' = w', and a is the last character, hence w' = u' ∈ L(B_a) (since B_a's language is { w | wa ∈ L(B) }). Therefore, A_a can be generated by B_a C, since u' is in L(B_a), v is in L(C), so u' a v is in B C, hence w = u' v = u' a v with 'a' removed? No, that's getting confusing. Let me step back. The non-terminal A_a generates words w such that when you append 'a', you get a word in L(A), which is L(B) L(C). So, wa ∈ L(A) means wa is in L(B) L(C), which is the same as wa = bc, where b ∈ L(B), c ∈ L(C). Therefore, wa = bc. Now, since a is the last character of wa, either: - c ends with 'a'. In this case, c = c' a, so wa = b c' a. But since wa = b c, this would mean c = c', so then w = b c', and a is appended. But in that case, c' a = c, which means c' ∈ L(C_a) because C_a generates all c' with c' a ∈ L(C). Therefore, in that case, A_a can generate b c' where b is in L(B), c' in L(C_a). Therefore, A_a would be B C_a. Alternatively, the other possible case where the 'a' comes from the B part. That is, c is the empty string, but since we are in a CFG in CNF, which can't generate empty strings, this isn't possible. Or, the last character of B is 'a', so that B ends with 'a', so B → ... produces words ending with 'a'. Therefore, if wa = bc and c is the empty string is not possible (since c can't be empty), then we have to split wa into b and c, where c has to be non-empty. Therefore, the only way is to have c ending with 'a' (as in the first case) or B ends with a. Wait, another case could be that B's generated word ends with 'a', and C's generated word is non-empty. Then, if wa = bc, where B generates b = u a and C generates c. Then, w must be u c. But since a is at the end of b, we have w = u c. But then u a must be in L(B), so u is in L(B_a). Therefore, B_a generates u. Therefore, this suggests another production: A_a can be generated by B_a C. Therefore, for the production A → BC, the corresponding productions for A_a would be: A_a → B C_a | B_a C. Similarly, for A_b, which is {w | b w ∈ L(A)}. Since A generates BC, then bw must be in BC, so bw = bc with b in B and c in C. But b is the first character of the left part, or the right part. Wait, for the definition of A_b, it's {w | b w ∈ L(A)}. L(A) = {b1 c1, b2 c2, ... }, so for bw ∈ L(A), the concatenation of b and w must be one such word. Therefore, b w is equal to b1 b2 ... bn followed by c1...ck. So b w is a word in BC, which means that b w can be split into a prefix in B and a suffix in C. So, b must be the first character of the word. There are two possibilities: - The 'b' comes from the start of the B part. Then w is (v) c, where v is in B and v = b v', and the rest is v' c. Wait, this is getting complicated. Let's think: For w such that b w ∈ L(A) = L(B L(C), then b w = b w_1 w_2 ... is a concatenation of some b1 w1... from B and c1... from C. To have this, we can have two scenarios: 1. The 'b' is the first character of a word generated by B. Therefore, B must generate a word that starts with 'b', and then the rest is (w generated by B_b (which is defined as those words where b followed by the word is in L(B))? Wait, according to the problem, X_a is {w | wa ∈ L(G(X)}, but the X_b is {w | bw ∈ L(G(X)}. So for A_b, which is {w | b w ∈ L(A)}, and L(A) = L(B) L(C), we have that b w = u v, where u ∈ L(B), v ∈ L(C). So b w has to be split into u v. Now, there are two possible cases: - u starts with 'b': then u = b u', and w is u' v + v, but actually, w would be u' v. So since b * w = b * u' v = u v = (b u') v. Therefore, u' v = w. But then u' ∈ B_b (since for B_b, words v such that b v ∈ B's language. Here, u' is such that b u' is in L(B), so u' is in B_b. Then v is in C's language. So in this case, w must be in B_b followed by C. Therefore, A_b would have a rule A_b → B_b C. - Or the u is not starting with 'b', but the entire b w starts with 'b', which implies that u is empty (not possible here because in CNF without ε) and v starts with 'b'. So that case isn't possible unless v starts with 'b'. But u can't be empty. Therefore, the other case is when u is in B, but u starts with something else, but this isn't helpful. Wait, actually, the other case would be that u is the empty string, which is not allowed. So the only valid case is the first one. Wait, but what if the first character 'b' comes from C? Wait, if u ≠ ε, and the entire b w starts with 'b' that comes from C. That is possible if u is in B, but ends with a certain string, and the C part starts with 'b', but then the b would be the start of the C part. Wait, that would not help because in that case, the 'b' in the first position of b w comes from the C part, not the 'b' from the B part. For example, suppose u is in L(B), which starts with 'a', and v is in L(C), which starts with 'b'. Then, u v starts with 'a', so not the desired 'b' at the start. Therefore, the only way for the whole word b w to start with 'b' is either: Case 1: u starts with 'b' (i.e., u = b u'), and v is any string, then the concatenation u v starts with 'b'. Therefore, since b w = u v, we have w = (u v with the initial 'b' removed). Therefore, u v = b w → w = (u v) without the initial b. But u = b u', so this gives w = u' v. Then u' v must be w. Here, u' is in L(B_b) because B_b generates {w | b w ∈ L(B)}. Since u is b u', u' is in B_b. And v is in L(C). Therefore, A_b can be generated by B_b C. Case 2: u is empty (impossible in CNF) and v starts with 'b'. But since B can't generate ε, only if the grammar allows ε, which it doesn't (because CNF without ε). Therefore, case 2 is not possible. Wait, another possible case: What if u is non-empty but doesn't start with 'b', but v starts with 'b' and the first symbol of the concatenated word b w is this 'b' from v. That can't happen, though, because in that case, the 'b' is not the first character of b w. For instance, suppose u is 'a', v is 'b c...'. Then u v starts with 'a', not 'b'. So the entire word starts with 'a' and not 'b', so this isn't a word where 'b w' starts with 'b' unless u starts with 'b'. So, the only valid possibility is case 1 where u starts with 'b', so u = b u'. Hence, A_b should generate B_b C. But also, there might be another case where the deletion of 'ab' occurs in the C part. Wait, no. Wait, A_b is part of the helper non-terminals that allow the construction of the main Del language. But perhaps I need to also consider how the ab deletion could affect these helper non-terminals. But let's return to the main production rules for A → BC. We need productions in P' for A_ab, A_a, A_b. Let's handle them one by one. For A_ab, which should produce Del(L(A)): Any word in A_ab comes from deleting an 'ab' in some word in A's language. For words derived from A → BC, there are three possibilities for where the deleted 'ab' can be: 1. The 'ab' is entirely in the B part: then we can have B_ab C generate it, as B produces a word where an 'ab' is deleted, and C produces its normal word. 2. The 'ab' is entirely in the C part: then B produces its normal word, and C_ab produces the word where 'ab' is deleted in C. 3. The 'ab' spans the split between B and C. This would happen if B's generated word ends with 'a' and C's starts with 'b', and this pair 'ab' is deleted. To model this, we would need B to generate a prefix ending with 'a' and C to generate a suffix starting with 'b'. So if B generates u a and C generates b v, then deleting 'ab' would give u v. To capture this, we can have B_a followed by C_b generate u v. Thus, the productions for A_ab → would be B_ab C | B C_ab | B_a C_b. Now, moving to the productions for A_a, which generates all w such that w a is in L(A) = L(B) L(C). As earlier, w a is u v, where u ∈ L(B), v ∈ L(C). So w = u v', where u v' a = u (v' a) = u * (v' a). Since u ∈ L(B), v' a ∈ L(C) → v' ∈ L(C_a), where C_a is defined as {w | w a ∈ L(C)}. Therefore, A_a → B C_a. Alternatively, if the 'a' comes from B. That is, u ends with 'a', so u = u' a, then w = u' v, and u' a v a is u v a. Wait, no. Let me rephrase. If u = u' a, then u v is u' a v, and we want u a v = w a. So w = u' (a v), and w a would be u' a v a. But that would require that u' a v a = u v a. This doesn't seem to fit. Wait, no: w a is supposed to be u v. If w a = u v, and we want to split u v such that u ends with 'a'. Wait, perhaps: Case 1: In C, the 'a' in w a is generated, i.e., v (from C) ends with 'a', so v = v' a, then w = u v' and wa = u v' a = u v, which is in L(B) L(C). Since C_a generates v' where v' a ∈ L(C), this is covered by B C_a → A_a. Case 2: Maybe part of B's generated word ends with 'a' and v is empty? But since v cannot be empty in CNF. Or if the 'a' comes from B. If u ends with 'a', then u = u' a, and v is any in C. So wa = u' a v → this would be u' (a v). But since we need this entire thing to be in B's and C's language. However, a v may not be part of any C's language unless modified. But according to the helper non-terminals, B_a is for words w where wa ∈ L(B), so B_a is used here. Therefore, for the case where the 'a' comes from the B side, we need to generate u' v where u' a is in B and v is in C. Therefore, the production A_a → B_a C. Thus, for production A → BC, to produce A_a, the possibilities are: A_a → B C_a | B_a C. Similarly, for A_b, which generates w where b w ∈ L(A). Since b w = u v, where u ∈ L(B), v ∈ L(C), and b w = u v. So we have two cases: Case 1: u is the start of the word. If u starts with 'b', then u = b u', so b w = b u' v → w = u' v. Since u' is in B_b (since B_b generates those w where b w ∈ L(B), here u' satisfies b u' = u ∈ L(B), so u' is in L(B_b). Then v ∈ L(C), so combining gives B_b C. Case 2: Alternatively, perhaps B does not start with 'b', but C starts with 'b', and the 'b' in C is the first character of the entire string. For example, if u (from B) is some other character, but v starts with 'b', then u v starts with the character from u, which isn't 'b' in this case, so this is not helpful. So the only case is when the 'b' comes from B. Hence, the production is B_b C. But wait, what if 'b' comes from C? For example, if B generates a word that is non-empty and doesn't start with 'b', but v starts with 'b' and the combined word starts with that 'b'. But in that case, the entire word b w would start with the first character of u, which isn't 'b'. Therefore, only the first case is valid. However, another scenario might involve the deletion of 'ab' that spans between B and C. Wait, perhaps not here. For A_b, it's not about deletions but about prefixes. So maybe not. Therefore, the production for A_a and A_b would have these two rules each. So putting this together, for the production A → BC, we have: For A_ab: - A_ab → B_ab C | B C_ab | B_a C_b For A_a: - A_a → B C_a | B_a C For A_b: - A_b → B_b C | B C_b ? Wait, wait. For A_b, which is the set of w where b w ∈ L(A) = L(B) L(C). The word b w = u v, with u ∈ L(B), v ∈ L(C). We can have two scenarios: 1. u starts with 'b': u = b u', then b w = u v = b u' v → w = u' v, with u' ∈ L(B_b) (since b u' ∈ L(B) → u' is in L(B_b)), and v ∈ L(C). So A_b → B_b C. 2. u is not empty, but doesn't start with 'b', but v starts with 'b', so the entire word starts with 'b' from v. For example, u = a..., v starts with 'b...'. Then b w = a... b..., so the entire word starts with 'a', which doesn't have the leading 'b'. Therefore, this doesn't qualify. But there's another case: suppose that u is some string x a and v is b y, so that the concatenation x a b y is in L(A), but if you delete 'ab', you get x (from B) and y (from C), leading to x y. But this seems unrelated to A_b's definition. Alternatively, perhaps the correct production for A_b is to also consider the case where the 'a' comes from B and the 'b' comes from C, leading to the middle 'ab' which is deleted. Wait, no. Because for A_b, it's about generating words w where b w ∈ L(A). The 'b' is part of the beginning of the concatenated word from B and C. The only way for b w to be in B C is if some part of B or C starts with 'b'. The only possible valid case is when B itself produces a word starting with 'b', so case 1. Therefore, the only possibility is A_b → B_b C. Wait, maybe there's another case where the 'b' comes from C. For example, if u is the empty word (not possible here) and v starts with 'b', but since CNF doesn't have ε, this isn't possible. Therefore, the only valid production is A_b → B_b C. But another thought: perhaps there's a possibility where the deletion in A_ab could also affect A_b. But since we're building helper non-terminals to model the required conditions, not directly involving deletions for A_b, maybe not. Let me focus on each. So far, for production A → BC in G: - For X (original non-terminal): same as G, so A → BC is in P'. - For A_ab: three possibilities. So A_ab → B_ab C, A_ab → B C_ab, A_ab → B_a C_b. For A_a: two possibilities. So A_a → B C_a and A_a → B_a C. For A_b: similarly, perhaps A_b → B_b C and A_b → B C_b? Wait, no. Let's think again. Wait, what if the 'b' in w (such that b w ∈ L(A)) comes from C. Wait, that would require that b w = u v, with u ∈ L(B), v ∈ L(C). Suppose that v starts with 'b', so v = b v'. Then, b w = u b v' → but the left-hand side is b w, which would mean that u must end with a prefix that, when combined with v gives the leading 'b'. Wait, this seems not possible unless u is ε, which it isn't. Because for example, if u is 'a...' and v starts with 'b', then u v starts with 'a', not 'b'. Therefore, the only valid way for b w to be in B C is if the leading 'b' comes from B. Hence, production A_b → B_b C. But wait, could there be a situation where B generates a word ending with 'a' and C starts with 'b', leading to the middle being 'ab', but in this case, since we're not deleting 'ab', but constructing A_b which requires b w ∈ L(A), which is L(B) L(C), this doesn't apply. Thus, the only case is the first. Wait, now let's consider terminal productions. For A → a (since G has A → a), then: A_ab can't produce anything (no 'ab' to delete). A_a would produce ε if the production is A → a, since w a = a → w is ε. But according to the definition of A_a: {w | wa ∈ L(A)}. Since L(A) = {a}, then w must satisfy wa = a, so w = ε. So A_a's language here is {ε}. Wait, for terminal production A → σ (σ is a terminal), what are the corresponding productions for A_ab, A_a, A_b? For example, if A → a is in G, then: A generates 'a'. So Del(L(A)) is the set of words obtained by deleting 'ab' from 'a', which is nothing, since there's no 'ab' to delete. Therefore, A_ab → empty (no production? Or maybe not. Wait, in the grammar, how do we generate A_ab? For A → a, A_ab must generate nothing, so there should be no production for A_ab. Similarly, A_a should generate the words where wa ∈ L(A). Since L(A) is {a}, then wa must be a, so w is empty. So A_a → ε. For A_b: since b w must be a. No way because b w = a is impossible. Therefore, A_b has no productions (can't derive any words). So for each terminal production A → σ in G, we need to define the productions for A_ab, A_a, and A_b. But according to the problem statement, P includes productions of the form A → a and A → b because G is in CNF (assuming that CNF includes rules A → σ for σ ∈ Σ). So for terminal productions in G: For each A → a in G: - A must produce 'a' (retained in G'). - A_ab can't produce anything, since there's no 'ab' to remove. Therefore, no production for A_ab. - A_a generates words w where w a = a. So w must be ε, so A_a → ε. - A_b generates words w where b w = a, which is impossible. Therefore, no production for A_b. Similarly, for A → b in G: - A produces 'b' in G'. - A_ab no production. - A_a would need w where wa = b. But since wa ends with 'a', and b doesn't, A_a doesn't produce anything, so no production. - A_b would produce w where b w = b. Therefore, w must be ε. So A_b → ε. So for terminal rules, we need to have productions: If A → a is in G: - A → a (retained in P') - A_a → ε (since ε a is a) - A_b → nothing. If A → b is in G: - A → b (retained) - A_b → ε (since ε b = b) - A_a → nothing. Now, putting all of this together for the grammar G' = (V', Σ, P', S'). The start symbol S' should be S_ab, because we want the entire language of G' to be Del(L(G)). Because condition 2 says L_{G'}(X_ab) = Del(L_G(X)). So S' = S_ab. Now, for every production in G, we need to generate the corresponding productions in G'. For each A → BC in G, we add to P': A → BC A_ab → B_ab C | B C_ab | B_a C_b A_a → B C_a | B_a C A_b → B_b C | B C_b (Wait, this may not be correct. Wait, for A_b, the earlier analysis suggested only A_b → B_b C, since the 'b' can't come from C.) Wait, earlier analysis suggested for A → BC, A_b has only one production, which is B_b C. But wait, maybe there's another case where the 'b' comes from the start of C_b. Wait, no, because A_b generates w where b w ∈ L(A). If w is derived from the production A → BC, then b w must be equal to some u v where u ∈ L(B), v ∈ L(C). The 'b' comes from the beginning of u, so u starts with 'b', which is modeled via B_b. But let me reconsider for the productions for A_b. Another possibility: Could there be a case where the 'b' is inserted via the ab-deletion? No, because A_b is for generating prefixes for L(A), not directly related to deletions. So the correct productions for A_b are A_b → B_b C (if the 'b' comes from B's initial part) and possibly another case. Wait, perhaps when considering the case where B generates a word ending with 'b' and C starts with an 'a', but this doesn't help. Alternatively, perhaps the 'b' comes from the 'a' part of B and 'b' of C, but that seems unrelated. Alternatively, consider that maybe there's a production A_b → B C_b. Let me think. A_b should generate words w where bw is in L(A) = L(B) L(C). Suppose that v = b w = u v', where u ∈ B's language, v' ∈ C's language. Another scenario: u is a substring that ends with 'b' and v' starts with an 'a', but how does that contribute to the leading 'b'? It doesn't. Alternatively, maybe w is split such that v' starts with a word w' where b w' = v' → which would be part of C_b. But how? Alternatively, think of the following: Suppose that B produces a string that doesn't start with 'b', but C produces a string that starts with 'b', but then how does the entire concatenation have leading 'b'? It can't, since u starts with some other letter. Therefore, the only possibility is that u itself starts with 'b', which means that u = b u', then w = u' v', so u' ∈ B_b, v' ∈ C. Therefore, A_b → B_b C. Thus, for A → BC, the productions for A_b are only A_b → B_b C | ? Wait, but maybe there's another case where the first symbol of C is 'b', and the entire concatenation starts with it, but that would require that B generates the empty string, which isn't allowed. Hence, no. So only A_b → B_b C is needed. Wait, but let's take an example. Suppose A → BC, B → c d e, and C → f, but that's not CNF, but for illustration. If C generates a string starting with 'b', then to have b w = (B part)(C part), if B's part starts with something else, but C starts with 'b', then entire string starts with 'b', but in that case, 'b' is part of C's part. Then, how to represent that. But in this case, if C generates a word starting with 'b', then w would start with (B part) followed by (rest of C's part after 'b'), and the entire concatenation starts with 'b' from C's first symbol. Then, for A_b, the word w would be the concatenation of B's part and C_b's part, where C_b would be the part after the initial 'b'. Because C_b generates words v such that b v ∈ L(C). But in this case, since C produces the word that starts with 'b', then v must be the rest of the word such that b v ∈ L(C). Therefore, if C is the starting point, and C generates b v, then the entire 'w' would be u v, where u is in L(B), and C_b generates v. But here, since A → BC, and we want b w = u (b v) (since v must satisfy b v ∈ L(C)), then: b w = u (b v) → w = u v. Therefore, A_b should generate u v, which is L(B) L(C_b). Therefore, another production A_b → B C_b. Wait, this seems like a new possibility. For example, suppose that the 'b' in b w comes from the start of C's part. Then: b w = u v, where u is in L(B), v = b v' is in L(C). Therefore, v' ∈ L(C_b) since b v' = v ∈ L(C). Hence, w = (u v'), since b w = u * v = u * b v' → w = u v'. Thus, w is u v', where u ∈ L(B), v' ∈ L(C_b). Hence, A_b → B C_b. Ah, yes! I think I missed this case earlier. Therefore, there are two possibilities for generating A_b: 1. The leading 'b' comes directly from B: A_b → B_b C. 2. The leading 'b' comes from the start of C, so B generates any word (u), and C generates a word that starts with 'b' (so v = b v'), and thus w = u v', where v' ∈ C_b. Hence, w is B C_b. Therefore, the correct productions for A_b are A_b → B_b C | B C_b. This makes sense now. So, revisiting the earlier analysis, the two cases are: - The 'b' is the first character of B's generated word. Then w is B_b followed by C. - The 'b' is the first character of C's generated word. Then w is B followed by C_b. Similarly, this leads to two rules for A_b. The same logic would apply for the other helper non-terminals. Therefore, summarizing, for each production A → BC in G, we add the following to P': A → BC A_ab → B_ab C | B C_ab | B_a C_b A_a → B C_a | B_a C A_b → B_b C | B C_b Additionally, for the terminal productions A → a in G: - A → a - A_a → ε For A → b in G: - A → b - A_b → ε There may be some more nuances here. Let's check for a terminal production A → a. The A_a would generate ε because wa = a → w = ε. So the production A_a → ε is added. Similarly, for A → b, A_b → ε. Now, compiling all of this, we can write out the P' productions. The start symbol S' is S_ab. So putting all of this together into the answer. Final answer structure: Startsymbol S' := S_ab Produktionen P' enthält: - Für jedes A ∈ V: - (Für A's ursprüngliche Regeln) Alle Originalproduktionen aus P, d.h., wenn A → BC ∈ P, dann A → BC ∈ P', und ähnlich für A → a und A → b. - Für jede Regel A → BC ∈ P: - A_ab → B_ab C - A_ab → B C_ab - A_ab → B_a C_b - A_a → B C_a - A_a → B_a C - A_b → B_b C - A_b → B C_b - Für jede Regel A → a ∈ P: - A → a - A_a → ε - Für jede Regel A → b ∈ P: - A → b - A_b → ε Wait, but we need to ensure that for each production in P, we generate the corresponding rules. However, it's important to check that for each production A → x, we derive the necessary rules for A, A_ab, A_b, A_a. Therefore, the final P' includes: For each A → BC in P: 1. A → BC 2. A_ab → B_ab C 3. A_ab → B C_ab 4. A_ab → B_a C_b And for A_a: 5. A_a → B C_a 6. A_a → B_a C For A_b: 7. A_b → B_b C 8. A_b → B C_b For each A → σ in P, where σ ∈ Σ: 9. A → σ 10. If σ = a, then add A_a → ε 11. If σ = b, then add A_b → ε This should cover all necessary cases. So, the final answer is: S' = S_ab And the productions P' as outlined above.
Answer
<answer id="1"> Startsymbol $ S' := S_{ab} $ Produktionen $ P' $: - Für jede Regel $ A \rightarrow BC \in P $: - $ A \rightarrow BC $ - $ A_{ab} \rightarrow B_{ab}C \mid B C_{ab} \mid B_a C_b $ - $ A_{a} \rightarrow B C_{a} \mid B_a C $ - $ A_{b} \rightarrow B_b C \mid B C_b $ - Für jede Regel $ A \rightarrow a \in P $: - $ A \rightarrow a $ - $ A_{a} \rightarrow \varepsilon $ - Für jede Regel $ A \rightarrow b \in P $: - $ A \rightarrow b $ - $ A_{b} \rightarrow \varepsilon $ </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen : - Für jede Regel : - - - - - Für jede Regel : - - - Für jede Regel : - -
Subproblem d (1.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Während DelTwo(L) Wörter erzeugt, bei denen aus L zwei mal "ab" direkt entfernt wird, kann Del(Del(L)) durch Zwischenschritte zusätzliche Wörter erzeugen, die erst durch die erste Entferung entstehen.
**Antwort auf die subproblem b:**
Als Gegenbeispiel wählen wir L = {a²bab}.
- **Del(L)-Berechnung:**
Das einzige Wort in L ist *aabab*. Dieses enthält zwei Vorkommen von *ab* (in den Positionen 1-2 und 3-4). Entfernt man eine der beiden *ab*-Teilfolgen, erhält man jeweils *aab*. Damit ist $ \Del(L) = \{aab\} $.
- **Del(Del(L))-Berechnung:**
Anwenden von Del auf {aab}: Das Wort *aab* enthält ein *ab* (in den Positionen 1-2). Entfernt man dieses, bleibt *aa* übrig. Also ist $ \Del(\Del(L)) = \{aa\} $.
- **DelTwo(L)-Berechnung:**
Um zwei *ab*-Teilfolgen aus *aabab* zu entfernen, muss man sowohl das *ab* in den Positionen 1-2 als auch das in den Positionen 3-4 entfernen. Das führt zu $ u = a $, $ v = \varepsilon $, $ w = \varepsilon $ – also insgesamt $ u \cdot v \cdot w = a $. Somit ist $ \DelTwo(L) = \{a\} $.
**Fazit:**
Da $ \Del(\Del(L)) = \{aa\} \neq \{a\} = \DelTwo(L) $, ist die Aussage **falsch**.
---
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
- L = {aabab} dient als Gegenbeispiel.
- Del(L) = {aab}, Del(Del(L)) = {aa}
- DelTwo(L) = {a}
- Also: Del(Del(L)) ≠ DelTwo(L)
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Startsymbol $ S' := S_{ab} $
Produktionen $ P' $:
- Für jede Regel $ A \rightarrow BC \in P $:
- $ A \rightarrow BC $
- $ A_{ab} \rightarrow B_{ab}C \mid B C_{ab} \mid B_a C_b $
- $ A_{a} \rightarrow B C_{a} \mid B_a C $
- $ A_{b} \rightarrow B_b C \mid B C_b $
- Für jede Regel $ A \rightarrow a \in P $:
- $ A \rightarrow a $
- $ A_{a} \rightarrow \varepsilon $
- Für jede Regel $ A \rightarrow b \in P $:
- $ A \rightarrow b $
- $ A_{b} \rightarrow \varepsilon $
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Okay, I need to apply the construction from subproblem c to the given grammar G. Let me recall the rules for P' from the previous part. The grammar G is in CNF, with productions S → SA | a and A → a | b. The new grammar G' should generate Del(L(G)), which means removing exactly one 'ab' from each word in L(G). First, the start symbol was S' = S_ab in the previous answer. So here, S' should be S_ab, right? Now, for each non-terminal in G, we have X, X_ab, X_a, X_b. So we'll have S, S_ab, S_a, S_b, A, A_ab, A_a, A_b. For each production in G. Let's go step by step. Original productions for S: S → SA and S → a. For the rule S → SA (which is a BC-type rule in CNF), we need to add several productions for each of S, S_ab, S_a, S_b. According to the previous answer: - A → BC - A_ab → B_ab C | B C_ab | B_a C_b - A_a → B C_a | B_a C - A_b → B_b C | B C_b So applying this to S → SA: For S itself (the original rule), just copy it: S → SA. For S_ab: three options: S_ab → S_ab A, S A_ab, S_a A_b. Wait, the previous example had for A → BC, the productions A_ab → B_ab C | B C_ab | B_a C_b. So here, B is S and C is A. So S_ab → S_ab A | S A_ab | S_a A_b. For S_a: S_a → S A_a | S_a A. For S_b: S_b → S_b A | S A_b. Then, original S → a: a terminal rule. So for S, we have S → a. Then for S_a, we add S_a → ε? Wait, in the previous answer for when A → a, the productions are A → a and A_a → ε. Similarly for A → b (A_b → ε). Wait in subproblem c, for a rule A → a, the productions added are A → a and A_a → ε. Similarly, for A → b, A_b → ε. Wait, in the given G, S → a and A → a and A → b. So for S → a: in G', we have S → a as a terminal production, and S_a → ε. Similarly, A → a: A produces a, and A_a → ε. For A → b: the same, A produces b, and A_b → ε. But wait, the rules for A and A's different variables come from their own productions. So putting all together for each non-terminal: For each production in G, add the corresponding rules to P'. Let me go through each production in G: First, S → SA. So for S → SA, which is BC (B=S, C=A), we have: - S → SA (original rule, kept as in P) - S_ab → S_ab A | S A_ab | S_a A_b - S_a → S A_a | S_a A - S_b → S_b A | S A_b Second, S → a. So S → a is added as a production, and S_a → ε. Third, A → a. So A → a is added, and A_a → ε. Fourth, A → b. So A → b is added, and A_b → ε. So now, let's list all the productions for each Non-terminal in G': Startsymbol S' is S_ab. For S → SA, we get the S production, S_ab, S_a, S_b rules. Similarly for S → a, S's rules. But wait, the production for S itself is just the same as in the original G, because the original G's S produces via S → SA and S → a. So in G', S's productions are the same as in G. That is, S → SA | a. Wait, but in the answer template for subproblem d, the user leaves a line for S, S_ab, etc. So for each non-terminal in G' (S, S_ab, S_a, S_b, A, etc.), we have to list their productions. But according to the answer in c, for each production A → ... in G, we generate certain rules in G'. So for each non-terminal in V', which includes S, S_ab, S_a, S_b, A, A_ab, A_a, A_b. So let's process each production in G: Original grammar G's productions: 1. S → SA (a BC production) 2. S → a (a terminal production) 3. A → a (terminal production) 4. A → b (terminal production) For each of these, generate the necessary productions for all related variables in G'. First, S → SA (production 1): Add to G': - S → SA (same as original) - S_ab → S_ab A | S A_ab | S_a A_b - S_a → S A_a | S_a A - S_b → S_b A | S A_b Then, for S → a (production 2): Add S → a Add S_a → ε Then, for A's productions: A → a (production 3): Add A → a Add A_a → ε A → b (production 4): Add A → b Add A_b → ε Now, for each production where a non-terminal is the left-hand side: For example, for S_ab in G', the productions come from S → SA and S → a? No, S_ab's productions come from the productions of S in G. Since S_ab is responsible for Del(L_G(S)), which corresponds to removing one 'ab' from a derivation in S. So the way it works in the construction is that whenever S in G has a production rule, we generate the S_ab's rules accordingly, as per the general rules from part c. But according to part c's answer for c, the S_ab is handled via the rules generated from the S's production. So, for example, S_ab is handled via the rules generated by the S's productions. So in the answer, for each production in G, we generate the corresponding rules for all the new non-terminals. Therefore, in the answer for d, the answer needs to list all productions for each of the non-terminals in the answer-template, which includes S, S_ab, S_a, S_b, etc. Wait, but the user's answer template is: Startsymbol S' = ? Productions: S → ? S_ab → ? S_a → ? S_b → ? A → ? A_ab → ? A_a → ? A_b → ? Each of these lines is a production for that non-terminal. So, we have to collect all the productions generated into this structure. So for example, S appears in multiple rules, but in the answer, for the line S → ?, we put all the productions that S has. Similarly for others. Let me go through each non-terminal in the answer template: Startsymbol S' = S_ab, as per the answer in part c. So start symbol is S_ab. Now, S's productions: In c's answer, for each A → BC in P, the A → BC is added to P'. Since S has the production S → SA and S → a (the original ones). So S's productions are: S → SA | a (same as original) S_ab: Productions for S_ab come from the rules that S has. For each production in S's original set, apply the rules. Original S productions: 1. S → SA (BC type) 2. S → a (terminal a) For the BC rule S → SA, according to c's answer, S_ab gets productions: S_ab → S_ab A | S A_ab | S_a A_b But for the terminal rule S → a (generating a terminal), what happens here? In the c's answer, terminal rules for A → a would add A_a → ε and A → a. For the original grammar's A → a, the A's productions in G' have those. So in this case, S → a is a terminal production. For the terminal rules, we only add the A → a, and A_a → ε. Therefore, the S_ab's productions would not be affected by the S → a except in the case when this production contributes to generating a word with an 'ab' that could be removed. Wait, no. The S_ab's rules for S's productions would come from the S → SA rule, because the S → a would be a terminal production where S_ab cannot generate anything, because the production S → a would be used for the non-terminals in the left part of the grammar for the original language, but S_ab is supposed to generate Del(L(S)), which would only be non-empty if L(S) contains a word with at least one 'ab' substring. However, for the grammar G, S's productions here are S → SA | a, A → a | b. Let's think of the actual example's L(G). But putting that aside, we need to generate the productions according to the general construction. So according to part c's answer, for each production in G, we generate the appropriate productions for all of X, X_ab, X_a, X_b. So, for S's production S → SA (BC-type): - S → SA (goes into S's productions) - S_ab → S_ab A | S A_ab | S_a A_b (goes into S_ab's productions) - S_a → S A_a | S_a A (goes into S_a's productions) - S_b → S_b A | S A_b (goes into S_b's productions) For S's production S → a: - S → a (added to S's productions) - S_a → ε (added to S_a's productions) Since this is a terminal production, there would be no production for S_ab or S_b from this rule. Similarly, for A's productions: A → a: - A → a (added to A's productions) - A_a → ε (added to A_a's productions) A → b: - A → b (added to A's productions) - A_b → ε (added to A_b's productions) Now, putting this all together, and listing for each of the answer template's non-terminals: Startsymbol S' is S_ab (from part c's answer: start symbol S_ab). Now, let's list each non-terminal: S's productions: original rules: SA and a. So S → SA | a. That's the line for S. For S_ab's productions: generated from S's productions. The BC rule (S → SA) contributes S_ab → S_ab A | S A_ab | S_a A_b. But S also has a terminal production S → a, which doesn't contribute to S_ab's productions. So S_ab's productions are: S_ab → S_ab A | S A_ab | S_a A_b. Wait, in the first part, the original S has production S → SA, so S_ab adds those three rules. Are there others? S has another production S → a, but since it's a terminal, that rule doesn't contribute anything to S_ab (only to S_a for S → a). So S_ab's productions are exactly the three mentioned. So S_ab line: S_ab → S_ab A | S A_ab | S_a A_b S_a's productions: For S's productions: S → SA and S →a. For S → SA (BC rule), the S_a would get S_a → S A_a | S_a A. For S → a (terminal production), we add S_a → ε. So S_a → S A_a | S_a A | ε. But in the previous answer c's answer, for terminal rules, only the X_a (like S_a) gets ε. So yes. Wait, from the answer in c: For a production A → a, in P', we have A → a, and A_a → ε. So for S's production S →a, S_a would have the ε production. So S_a's productions are the ones from BC productions (S → SA) giving S_a → S A_a | S_a A, plus S →a gives S_a → ε. So overall: S_a → S A_a | S_a A | ε. Similarly, S's other BC production would affect S_b. Wait, no. S_b's productions come from the BC rules. S → SA is a BC, and we generate S_b → S_b A | S A_b. S's other production (S →a) doesn't generate anything for S_b, except perhaps when considering the a. But according to part c, the A_b gets ε only for productions where the terminal is b. So for S →a, since it's not a b, S_b doesn't get anything from that. The S_b's productions come from S's BC rules and any S's b productions. But S's other production is S →a, which is a, so no contribution. So S_b's production comes from S → SA: S_b → S_b A | S A_b. Now moving on to A's productions. A has productions in G of A → a and A → b. So in G', the productions for A would be the same as original: A → a | b. Because in the c's answer, the productions for X (original non-terminals) are kept as the same. So A's line is A → a | b. A_ab: productions for BC rules would come from A's production. But A has two terminal productions. However, since the original grammar's A has only terminal productions (A → a and A → b), then according to the c's answer, these are treated differently. For terminal productions: A → a, so A's production in G' is a, and A_a's production is ε. Similarly, A → b and A_b's production is ε. But for the BC production (which A does not have in the original grammar), so nothing contributes. So for A's productions: Original A → a gives A → a and A_a → ε. Original A → b gives A → b and A_b → ε. So for the A_ab production, how is it generated? Since A's productions are all terminal, then for each of A's productions, we have to see if they contribute to A_ab. Wait, the answer in part c for a production that's a terminal rule (like A → a) would not contribute to A_ab, since that production can't generate a word containing 'ab', so there's no need for any rules in A_ab from such productions. Wait, according to the answer in c, for any production in G, we generate certain rules. But for A → a, since A is a production with a terminal, then in P' we add A → a and A_a → ε. So A_ag would not get any productions from A's productions. Wait maybe I'm misunderstanding the rule. The productions for X_ab are generated only when the original rule applies. For non-terminals whose original productions are terminal, there is no BC-type rules for generating X_ab. But since A's productions are only the terminal rules, then the BC rule for A does not exist. So A_ab's productions would come from... no productions, because A's productions are not BC. Therefore, in this specific example, A's productions in G are the terminal a and b. Therefore, in G's rules for A, there are no BC-type productions. So for A_ab, the only way it would get rules is if A has BC productions (which it doesn't). So A_ab has no productions generated from that. So A_ab's productions would be nothing. Hence, in the answer for A_ab's line, there is nothing? Similarly, for A_a's line: since A has production A →a, the rule A_a → ε is added. Same for A →b: A_b → ε. So putting this together: Lines in the answer template: Startsymbol S' = S_ab. Productions: S → SA | a. (original S's productions) S_ab → S_ab A | S A_ab | S_a A_b. (from the BC rule S → SA) S_a → S A_a | S_a A | ε. (from S → SA and S → a's contribution) S_b → S_b A | S A_b. (from S → SA's BC rule) A → a | b. (original A's productions) A_ab → (nothing, since A's productions are all terminals and thus don't contribute to A_ab's rules) A_a → ε. (from A → a) A_b → ε. (from A → b) But the answer template specifies lines for each non-terminal, and if the non-terminal doesn't have any productions, we should leave it blank? The user's note says: "Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer." So, if a non-terminal on the left doesn't have any production, its field is left empty. For example, A_ab in this case doesn't have any productions generated, since A doesn't have any BC rules. Therefore, in the answer template line for A_ab, we leave it blank. Let me check again for each: S → SA | a. (yes, because S's production in G are same) S_ab: S_ab → S_ab A | S A_ab | S_a A_b. S_a: S A_a | S_a A | ε. S_b: S_b A | S A_b. A → a | b. A_ab: [nothing] A_a → ε. A_b → ε. Yes. So that's how it should go. Putting all this into the answer template: Startsymbol $S' := S_{ab} $ Produktionen $P'$: $S\rightarrow SA \mid a$ $S_{ab}\rightarrow S_{ab}A \mid SA_{ab} \mid S_{a}A_{b}$ $S_a\rightarrow SA_{a} \mid S_{a}A \mid \varepsilon$ $S_b\rightarrow S_b A \mid SA_{b}$ $A\rightarrow a \mid b$ $A_{ab}\rightarrow$ (empty) $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ Wait, in the S_a production, the term S A_a comes from B C_a where B is S and C is A (from S → SA, so B=S). So C is A, so C_a is A_a. Hence S A_a. Similarly S_a A is from B_a C with B=S, C=A. So yes, the S_a line should be S A_a | S_a A. Then from the S →a rule, add ε, hence the third disjunct. Yes. Now, the answer should be formatted as follows. Let me check the example given for d. The example shows lines like $S_{ab}\rightarrow S_{ab}A\mid\varepsilon$ But in our case, the S_{ab} has three productions. Also, for lines that have no rules, leave them blank. So for A_{ab}, we leave it as empty. Therefore, the answer should be: Startsymbol $S' := S_{ab} $ Produktionen $P'$: $S \rightarrow SA \mid a$ $S_{ab} \rightarrow S_{ab}A \mid SA_{ab} \mid S_{a}A_{b}$ $S_a \rightarrow SA_{a} \mid S_{a}A \mid \varepsilon$ $S_b \rightarrow S_{b}A \mid SA_{b}$ $A \rightarrow a \mid b$ $A_{ab} \rightarrow$ $A_a \rightarrow \varepsilon$ $A_b \rightarrow \varepsilon$ I need to confirm the notation. Let me check: Yes, in S_ab's production, it's S_ab A, S A_ab, S_a A_b. Similarly for S_a's line. So this should be correct.
Answer
<answer id="1"> Startsymbol $S':=S_{ab} $ Produktionen $P'$: $S\rightarrow SA \mid a$ $S_{ab}\rightarrow S_{ab}A \mid SA_{ab} \mid S_{a}A_{b}$ $S_a\rightarrow SA_{a} \mid S_{a}A \mid \varepsilon$ $S_b\rightarrow S_{b}A \mid SA_{b}$ $A\rightarrow a \mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
2 mistakes
qwen/qwen3-235b-a22b-thinking-2507
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Okay, let's see. I need to find the language Del(L) where L is {abbaba, baa, ab, a, b}. The definition says Del(L) is all words vw such that vabw is in L. So for each word in L, I have to check if it contains 'ab' as a substring, and if so, remove that 'ab' once to get vw. First, let's go through each word in L and see where 'ab' occurs. Starting with 'abbaba'. Let's look for all occurrences of 'ab' in this string. The word is a b b a b a. Breaking it down: Positions (0-based): 0: a 1: b 2: b 3: a 4: b 5: a Looking for 'a' followed by 'b'. At position 0-1: 'a' followed by 'b' → 'ab' here. So removing that would give v = empty (since it's the start), then after removing 'ab' (positions 0-1), the remaining string is positions 2-5: b b a b a? Wait, no. Wait, the original word is vabw. So if vabw is the original word, then removing 'ab' gives vw. So for 'abbaba', which is the full word. Let's see: Possible splits where 'ab' is somewhere inside. First occurrence of 'ab' is at the beginning: positions 0-1 (a followed by b). So v is empty, ab is the part removed, then w is the rest: positions 2 to end: 'baba'? Wait, original word is a b b a b a → length 6. Wait, vabw = abbaba. So v is up to before 'ab', then 'ab', then w. So first occurrence: 'ab' starts at index 0. So v is ε (empty), ab is positions 0-1, then w is positions 2-5: 'b' 'b' 'a' 'b' 'a' → 'bbaba'? Wait, no. Wait, the original string is a b b a b a. So positions: 0:a, 1:b, 2:b, 3:a, 4:b, 5:a. If we take vabw = a b b a b a, then v is some prefix, then 'ab', then w. Looking for where 'ab' occurs as a substring. First, check if there's 'ab' starting at position 0: a followed by b → yes, 'ab' at 0-1. So v = ε, w = the rest after removing those two characters. So the remaining string is positions 2-5: b, b, a, b, a → 'bbaba'? Wait, but 2-5 is four characters (since 5-2+1=4?), wait no: positions 0-5 is six characters. Removing positions 0-1 (two characters), remaining is positions 2-5, which is four characters: b (2), b (3), a (4), b (5)? Wait no, 5 is the last index. Wait, 0-1: a b, then the rest is 2-5: b, a, b, a? Wait, original word is a b b a b a. Let's spell it out: Indices: 0:a, 1:b, 2:b, 3:a, 4:b, 5:a. So 'ab' occurs at 0-1, and also maybe at 3-4 (a at 3, b at 4). Let's check. At 3-4: a followed by b → yes. So 'ab' at position 3-4. Also, check if there's another 'ab' somewhere else. Like, after that? 5 is a, so no. So for 'abbaba', there are two occurrences of 'ab'. First occurrence: positions 0-1. Remove them: the remaining is positions 2-5: b, b, a, b, a? Wait, no. Wait, removing two characters (ab) from the string. So original length is 6, so after removal, length 4. Wait, abbaba is 6 letters. Let's write it as a b b a b a. First occurrence of 'ab' is the first two characters: 'a' 'b'. So removing those gives 'b' 'a' 'b' 'a' → 'baba'? Wait, no. Wait, the string after removing the first two characters would be positions 2 to 5: 'b', 'b', 'a', 'b', 'a'? Wait, 0,1,2,3,4,5 indexes. Removing 0 and 1, so remaining are 2,3,4,5 → four characters: 'b', 'b', 'a', 'b'? No, wait, the original string is a b b a b a. So removing the first 'ab' (positions 0-1), the remaining is b a b a? Wait, no: Original: [a][b][b][a][b][a] Positions 0-1: 'a','b' → remove these, remaining is [b][a][b][a] → 'baba'? Wait, no. Wait, the third character is 'b' (position 2), then 'a' (3), 'b' (4), 'a' (5). So yes, 'b' 'a' 'b' 'a' → 'baba'. Wait, but position 2 is 'b', 3 is 'a', 4 is 'b', 5 is 'a' → 'baba'. Wait, but that's four characters, so 'baba'. Second occurrence of 'ab' in 'abbaba': looking for another 'a' followed by 'b'. In the original string, after position 0-1, next is position 3-4: 'a' at 3, 'b' at 4 → 'ab'. So removing those two characters: v is the part before 'ab', which is positions 0-2: 'a', 'b', 'b' → 'abb', then removing 'ab' (positions 3-4), then w is position 5: 'a'. So vw would be 'abb' + 'a' = 'abba'. Wait, let's verify. Original string: a b b a b a. The 'ab' at positions 3-4 is 'a' (3) and 'b' (4). So v is everything before that 'ab', which is a b b. Then the 'ab' is removed, and w is what's after, which is a (position 5). So vw is 'abb' + 'a' = 'abba'. So for 'abbaba', removing 'ab' at two different positions gives 'baba' and 'abba'. Wait, but wait: when we remove 'ab' from the string, for each occurrence of 'ab' as a substring, we have one word in Del(L). So 'abbaba' has two 'ab's, so two words from it. Now check other words in L. Next word: 'baa'. Letters: b, a, a. Check if 'ab' occurs as substring. 'baa' → 'b', 'a', 'a'. So no 'ab' here. Because 'ab' would require an 'a' followed by 'b', but here after 'b' we have 'a's. So 'baa' does not contain 'ab' as a substring. So nothing added to Del(L) from 'baa'. Third word: 'ab'. The word is 'ab'. So here, removing 'ab' once. According to definition, vabw = 'ab', so v is ε, w is ε. So vw is ε. So removing 'ab' from 'ab' gives ε. So ε is in Del(L). Fourth word: 'a'. This is length 1. Can't have 'ab' as substring. So no contribution. Fifth word: 'b'. Similarly, length 1, no 'ab' possible. So let's collect all the words. From 'abbaba' we get 'baba' and 'abba'. From 'ab' we get ε. Are there any others? Wait, wait. Let me double-check each word. Original L: {abbaba, baa, ab, a, b}. Check each word: 1. abbaba: check for 'ab' substrings. Positions: - 0-1: 'a' 'b' → yes. Removing gives bbaba? Wait, no. Wait, the original is a b b a b a. Removing the first 'a' 'b', so remaining is b a b a → 'baba' (since after removing first two characters, which are 'a' and 'b', the rest is 'b', 'a', 'b', 'a' → 'baba'). Another occurrence at position 3-4: third character (index 3) is 'a', next is 'b' (index4). So substring 'ab' there. Removing that 'ab' (positions3-4), the remaining string is a b b followed by a (position5). So 'abb' + 'a' → 'abba'. Another possible occurrence? Let's see. Index 4 is 'b', next is 'a' (index5), so 'ba', not 'ab'. So only two occurrences. Thus, adding 'baba' and 'abba' to Del(L). 2. 'baa': letters b, a, a. No 'ab' substring (since 'ab' requires 'a' followed by 'b', but here the 'a's come after 'b', and there's no 'a' before a 'b' in the string). Wait, 'baa' is 'b' 'a' 'a', so the only possible two-character substrings are 'ba' and 'aa'. Neither is 'ab', so no. 3. 'ab': the entire string is 'ab'. So removing 'ab' gives the empty string ε. 4. 'a' and 'b' are both length 1, no possible 'ab' substring. Now, wait, is that all? Wait, wait: the problem says "exactly once" remove the word 'ab' at an arbitrary position. So for each occurrence of 'ab' in a word of L, removing that occurrence once gives a word in Del(L). So for 'abbaba', two occurrences → two words. For 'ab', one occurrence → one word (ε). Others have none. So Del(L) should be {ε, 'baba', 'abba'}. Wait, but let's check again. Wait, 'abbaba' → first removal: Original: a b b a b a. Remove first 'ab' (positions 0-1), resulting in b a b a → 'baba'. Second occurrence: positions 3-4 (a at index3, b at 4). Removing them: the string becomes a b b a → 'abba'? Wait: Original: [a][b][b][a][b][a] → indices 0-5. If we remove positions3 and4 (the 'a' and 'b' at 3-4), then the remaining characters are: indices0,1,2,5 → a, b, b, a → 'abba'. Yes, that's correct. Another check: 'ab' is in L. Removing 'ab' from 'ab' gives ε. What about the first example? The example given was {ε, ab, bbab}, but that's just an example. The actual answer should be based on the given L. Wait, wait, the user's example says Del(L) = {ε, ab, bbab}, but that's not the correct answer for this problem. Wait, no, the example is provided as a sample format, not the correct answer. The user says "example may not be correct answers". So for our problem, Del(L) as per computation is ε, baba, abba. Wait, but let me check once more. Wait, for 'abbaba', removing the first 'ab' gives the rest as 'baba'? Let's see: abbaba minus the first 'ab' (positions 0-1) → the string is left with 'baba'? Wait, original: a b b a b a. Remove first two letters: 'ab', then the rest is 'b' 'a' 'b' 'a' → 'baba'? Wait, the third character is 'b', then 'a', 'b', 'a' → 'baba' yes. Yes. So 'baba' is correct. Second removal in 'abbaba': removing 'ab' at positions3-4. So the string is divided into v = first three characters (a b b), then 'ab', then w = last character (a). So vw is 'abb' + 'a' = 'abba'. Yes. From 'ab' we get ε. Other words contribute nothing. So the elements are ε, 'baba', 'abba'. Wait, but let's check if 'baba' and 'abba' are correctly spelled. Yes. 'baba' is b-a-b-a, 'abba' is a-b-b-a. So the set is { ε, abba, baba }. Wait, ordering doesn't matter in sets, but in the problem statement, they might list in any order. But according to the problem, the answer should be listed explicitly. So Del(L) = { ε, abba, baba }. Wait, but wait, in the word 'abbaba', is there another occurrence of 'ab'? Wait, after index3-4, is there another 'ab'? Index4 is 'b', index5 is 'a', so no. So only two occurrences. Thus, the answer should be three elements: ε, 'abba', 'baba'. Wait, but let's check if there's any other words in L that I missed. Wait, for example, the word 'ab' is in L, so removing 'ab' gives ε. No other words have 'ab' as substring. Wait, let's check 'baa' again. 'b' 'a' 'a' → substrings are 'ba' and 'aa', so no 'ab'. Similarly, 'a' and 'b' are too short. Thus, the Del(L) is { ε, abba, baba }. But wait, in the problem statement's example, they have {ε, ab, bbab}, but that's for a different L. So according to my analysis, the correct answer should be those three elements. Wait, but let me check another possible angle. Suppose for a longer word, can there be overlapping 'ab's? But 'ab' is two characters, so overlapping would require something like 'aab', which has 'aa' and 'ab', but no overlapping 'ab's. The 'ab' is two characters, so once you have 'ab', the next possible 'ab' starts two positions later, but in a string like 'abab', you have two 'ab's starting at 0 and 2. But in 'abbaba', the 'ab's are at 0-1 and 3-4. So yes, two occurrences. Thus, the answer should list ε, 'abba', 'baba'. Wait, but let's check the spelling again. abbaba: - Removing first 'ab' (positions0-1) gives 'baba' (positions2-5: b, b, a, b, a? No. Wait, the original string is a b b a b a. Length is 6. Indexes 0-5. After removing 0 and1 (a and b), remaining indexes are 2,3,4,5: b, a, b, a. So that's 'b' 'a' 'b' 'a' → 'baba'. Yes. Removing the 'ab' at indexes3-4: which is a (3) and b (4). So the characters before are indexes 0-2: a, b, b. Characters after are index5: a. So putting together: a b b a → 'abba'. Yes. So the words are 'baba' and 'abba' from 'abbaba', and ε from 'ab'. Therefore, the set is { ε, abba, baba }. But wait, the order in sets doesn't matter, but we need to list them explicitly. So according to the template: Del(...) = { ?, ... } In the example, they used { ε, ab, bbab }, so probably ε is written as \varepsilon. So the answer should be: \Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\} Wait, but need to check for any other possible words. Wait, let's check 'abbaba' again. Another possible split: is there another occurrence of 'ab'? Index4 is 'b', followed by 'a' (index5), so no. So only two splits. Another possible mistake: perhaps I'm missing a split where 'ab' is somewhere else. Wait, 'abbaba' is spelled a-b-b-a-b-a. Looking for 'a' followed by 'b'. At index0: a, next is b → yes. Then at index3: a, next is b (index4) → yes. Any others? After index3-4, index4 is b followed by a (index5), so no. So only two occurrences. So yes, two words from 'abbaba', one from 'ab'. Thus, the three elements. Wait, what about 'baa'—could there be an occurrence of 'ab' if it's written differently? No, 'baa' is b-a-a. No a followed by b. Another check: 'ab' is so short, only one way to remove the entire string. Okay. So the answer should be { ε, abba, baba }. But wait, in the problem statement's example, they wrote { ε, ab, bbab }, but our case is different. So the correct answer is as above. But let me check once more. Wait, for 'abbaba', another way: Is there a different way to have vw such that vabw = abbaba? Yes, for each occurrence of 'ab' in the string. Each occurrence corresponds to one way. So two ways, leading to two words. And then 'ab' gives ε. Others give nothing. Yes. Thus, the answer is { ι, abba, baba }, but no, ι is not used. ε is the empty string. So written as \varepsilon in LaTeX. Hence, the set is { \varepsilon, abba, baba }. But to write in the template: \Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\} But need to check the order. Maybe alphabetically? Or as found. But since sets don't have order, it's fine. So the answer should be exactly those three elements. I think that's correct.
Answer
<answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, let's tackle subproblem b. The question is whether for every finite language L over {a, b}, Del(Del(L)) equals DelTwo(L). First, let's recall the definitions. Del(L) is the set of all strings obtained by removing exactly one occurrence of "ab" from any string in L. So for each string in L that contains "ab", we remove one "ab" from any position, resulting in all possible vw where vabw is in L. DelTwo(L) is defined as all strings uvw where uabvabw is in L. So this is removing two "ab"s, one after the other, but in the original string, there must be two "ab" substrings such that when you split the string into u, ab, v, ab, w, then uvw is in DelTwo(L). Now, Del(Del(L)) would be first applying Del to L, getting all strings with one "ab" removed, then applying Del again to those results. So we're taking each string in Del(L), which has had one "ab" removed from L, and removing another "ab" from those. Wait, but Del(L) might contain strings that don't have "ab" anymore. For example, if we have a string in L that was "ab", then Del(L) would include the empty string (since removing "ab" from "ab" gives ε). Then applying Del again to ε would do nothing, since there's no "ab" to remove. The claim is that for any finite L, Del(Del(L)) equals DelTwo(L). We need to check if these two sets are equal for all finite L. To disprove it, we need a single counterexample. Let's think of a simple finite language. Let's take L that has a string with two "ab"s. For example, let L = {abab}. First, compute Del(L). The string "abab" can have "ab" removed from two positions: - Remove the first "ab": position 0-1, so the string becomes "ab" (since "abab" becomes "" + "ab" after removing the first "ab"). - Remove the second "ab": the string "abab" becomes "ab" as well (since "abab" is "ab" + "ab", so removing the second gives "ab" + (empty) → "ab"? Wait, no. Wait, the definition is vw where vabw is in L. So for "abab", we need to find all v, w such that vabw = abab. Then vw is the result. So possible splits: - v = ε, abw = abab → w = ab → vw = ε * ab = ab - v = a, then abw would need to be bab, but abw starts with ab, so bab starts with b, which doesn't match. Wait, maybe better to find all possible positions where "ab" occurs in "abab". The string "abab" has "ab" starting at index 0 and index 2. At index 0: v = ε, abw = abab → w = ab → so vw = ε * ab = ab. At index 2: v = "ab", then abw = "ab", so w = ε. Thus vw = ab * ε = ab. So Del(L) for L={abab} is {ab}. Wait, so Del(L) = {ab}. Now, compute Del(Del(L)) = Del({ab}). For the string "ab", removing "ab" once gives ε. So Del({ab}) = {ε}. Now, DelTwo(L) where L={abab}. DelTwo(L) is all uvw where u ab v ab w ∈ L. Since L = {abab}, the string abab must equal u ab v ab w. Looking at "abab", how can it be split into u, ab, v, ab, w? The string "abab" is of length 4. Let's look for two occurrences of "ab". The first "ab" is at 0-1, the second at 2-3. So u = ε, the first ab, then v = ε, then ab, then w = ε. So uvw = ε * ε * ε = ε. Therefore DelTwo(L) = {ε}. In this case, Del(Del(L)) = {ε} and DelTwo(L) = {ε}, so they are equal. Hmm, this example doesn't serve as a counterexample. Let's think of another example. Maybe a string where after removing one "ab", the resulting string has another "ab" that can be removed, but in the original string there are two separate "ab"s. Wait, let's take L = {aabab}. First, let's compute Del(L). Original strings in L: {aabab}. Find all places where "ab" occurs in "aabab". The string is a a b a b. Looking for "ab" substrings: Indices 1-2: "a b"? Let's write the string as indices 0:a, 1:a, 2:b, 3:a, 4:b. Check all possible overlapping: Positions 0-1: aa → not ab. 1-2: ab → yes! So "aabab" has "ab" starting at index 1 (a followed by b at positions 1 and 2). Another occurrence: positions 3-4: ab. So in "aabab", there are two "ab" substrings: positions 1-2 and 3-4. So Del(L) for "aabab" would be: For the first occurrence (indices 1-2): v = a (the part before "ab"), abw is "aabab", so v = a, then ab → w = the rest after ab. After removing "ab" at 1-2, the string becomes a (from indices 0) followed by the part after index 2, which is 'bab'? Wait, no. Wait, in the definition: vw where vabw ∈ L. So the original string is vabw. So when we remove "ab", we get vw. So for "aabab", which is 'a a b a b', to find all v, w where vabw = 'a a b a b'. So possible splits: Case 1: v = 'a', abw = 'aabab' → no, abw should start with 'ab', but 'aabab' starts with 'aa'. Wait, no: vabw is the original string. So the substring 'ab' must be somewhere inside. Let's parse the string. The string is 'a' 'a' 'b' 'a' 'b'. Looking for 'ab' as a substring. First occurrence: starting at index 1: 'a' (index1) and 'b' (index2) → so 'ab' is at positions 1-2. So v is the prefix up to index1 (exclusive), which is 'a' (index0), then 'ab' is at index1-2, then w is the suffix from index3 onward: 'ab'. So v = 'a', w = 'ab' → vw = 'a' + 'ab' = 'aab'. Second occurrence: 'ab' starting at index3: 'a' (index3) and 'b' (index4). So v is the prefix up to index3, which is 'aab' (indices0-2), then 'ab' is at 3-4, w is empty. So vw = 'aab' + '' = 'aab'. Wait, but wait, the string is 'a' 'a' 'b' 'a' 'b' → length 5. Wait, indices 0-4. So for the 'ab' at positions 3-4: v is 0..2 (three characters?), so 'aab', then ab (positions3-4), then w is empty. So vw is 'aab' + empty = 'aab'. Wait, but the original string is 'a a b a b' which is 'aabab'. Removing the first 'ab' (positions1-2) would give 'a' + 'ab' (the part after the removed 'ab') → 'a' followed by 'bab'? Wait, no. Wait, v is before 'ab', w is after. So original string is v + 'ab' + w. So removing 'ab' gives v + w. So for 'aabab' = v + 'ab' + w. Possible splits: 1. v = ε, then 'ab' + w = 'aabab' → 'abw' must start with 'ab', but 'aabab' starts with 'aa', so this doesn't work. Wait, no. Wait, the entire string is vabw. So v is a prefix, then 'ab', then w. So for 'aabab' = v + 'ab' + w. Looking for 'ab' as a substring. The first 'ab' is at positions 1-2. So v = 'a' (the part before 'ab'), then 'ab' (positions1-2), then w = 'ab' (positions3-4). So v = a, w = ab → vw = a + ab = aab. Another occurrence of 'ab' in 'aabab' is positions 3-4. So v = 'aab' (positions0-2: 'aab'), then 'ab' (positions3-4), w = empty. So v = 'aab', w = empty → vw = 'aab'. Wait, so Del(L) for L={aabab} is {aab}? Wait, but wait, 'aabab' could also have 'ab' overlapping? Let's check another occurrence. Wait, in 'aabab', the letters are a, a, b, a, b. Is there a substring 'ab' starting at position 2? Position 2 is 'b', followed by 'a' (position3), so 'b a' → no. So only two occurrences: positions1-2 and 3-4. Thus, Del(L) for this string is {aab, aab}? Wait, both give 'aab', so Del(L) = {aab}. Wait, so Del(L) = {aab}. Now, compute Del(Del(L)) = Del({aab}). Check if 'aab' contains 'ab'. Yes. In 'aab', the substring 'ab' occurs at positions1-2 (a followed by b). So removing 'ab' from 'aab' gives 'a' (v = 'a') followed by w = empty (since the string is 'a' + 'ab' → v = 'a', ab, w = empty). So vw = 'a' * empty → 'a'. Wait, 'aab' = 'a' + 'ab' → so removing 'ab' gives 'a' + empty = 'a'. Is there another occurrence of 'ab' in 'aab'? Let's see: 'aab' is a a b. So the substrings: positions0-1: aa → no positions1-2: ab → yes. So only one occurrence. Therefore Del({aab}) = {a}. Now, DelTwo(L) where L={aabab}. DelTwo(L) is uvw where u ab v ab w ∈ L. Original string is 'aabab'. We need to see if there are two 'ab's that can be split. Looking at 'aabab' = a a b a b. First 'ab' at positions1-2 (a, b), then is there a second 'ab' after that? After positions1-2, the remaining string is a b (positions3-4), which is 'ab'. So splitting into u = 'a' (before first ab), first ab, then v = empty, second ab, then w = empty. Wait: u ab v ab w = 'a' + 'ab' + empty + 'ab' + empty = 'a' 'ab' 'ab' = 'aabab'? No, 'a' followed by 'ab' followed by 'ab' is 'aabab', which is the original string. Wait: Wait, 'a' (u) + 'ab' (first) + v (empty) + 'ab' (second) + w (empty) = 'a' + 'ab' + 'ab' = 'aabab'? 'a' + 'ab' is 'aab', then + 'ab' is 'aabab'. Yes. So uvw = u + v + w = 'a' + empty + empty = 'a'. Another possibility: are there overlapping splits? For example, maybe u is empty, first ab at positions0-1? But the original string starts with 'aa', so the first 'ab' is at positions1-2, as before. Wait, the string is 'aabab' = 'a a b a b'. To have u ab v ab w = 'a a b a b', we need to find two 'ab's. First 'ab' is at positions1-2: 'a b'. Then, after that, the string from position2 onwards is 'b a b'. Wait, but after removing the first 'ab', we have 'a' (u) and then the rest. Wait, no: u is the part before the first ab, then ab, then v is between the two ab's, then ab, then w. So the two ab's must be such that they don't overlap. Let's see: In 'aabab', the first ab is at 1-2 (a after the first a), and the second ab is at 3-4. So splitting: u = 'a' (before first ab), first ab, v = '' (between first and second ab), second ab, w = ''. So uvw = 'a' + '' + '' = 'a'. Is there another way to split into two ab's? For example, if there's another occurrence. Let's see: could the first ab be at positions3-4? No, because then the string before that would be 'aab', but then looking for another ab before that. Wait, no. DelTwo requires that the original string has two ab's in sequence as uabvabw. Wait, the structure is: the entire string is u followed by ab, followed by v, followed by ab, followed by w. So u, v, w are arbitrary strings (possibly empty), and putting them together with the two ab's gives the original string. In the case of 'aabab', let's check: Original string: a a b a b. We need u ab v ab w = a a b a b. Let’s see: If first ab is at positions1-2 (so u = a), then after the first ab, we have the string from position2 onward: b a b. Now, within b a b, we need to find another ab. But 'b a b' starts with b, so the next ab would have to start at position 1 (from the remaining string), which is 'a b' → yes. So the second ab is at positions3-4 of the original string. Thus, v is the part between the two ab's. After first ab (positions1-2), the remaining string is 'bab' (positions2-4). Wait, no: u is 'a', first ab is positions1-2 (a a b a b → indices 1-2 are a and b), so after u ab, we have 'bab'? Wait: Wait original string is u (length k) followed by ab, so u = 'a' (k=1), then ab (positions1-2), so the string after ab is positions3-4: 'ab' → which is 'ab'. Wait, perhaps I'm getting confused. Wait let's index the string 'aabab' as: 0:a, 1:a, 2:b, 3:a, 4:b. We need to find two non-overlapping 'ab's. First possible 'ab' at 1-2 (a at 1, b at 2). Then, after position2 (which is 'b'), the remaining string is positions3-4: 'a b', which is 'ab'. So yes, there's a second 'ab' at 3-4. Thus, the entire string is: u = 'a' (position0), ab (positions1-2), v = 'b' (position2? No, v is between the two ab's. Wait, no: after the first ab (positions1-2), the next part is from position3 onward. Wait, u is the prefix before first ab. So 'aabab' = u + ab + v + ab + w. So: u = 'a' (positions0), ab = positions1-2, then v is the substring between first ab and second ab. Between positions2 (end of first ab) and position3 (start of second ab), there's position2 which is 'b', but the next ab starts at 3-4. Wait, the first ab ends at position2, the second ab starts at position3. So the part between is position2 to 3, which is 'b' followed by 'a'? No, wait, first ab ends at position2 (index2), so next character is position3. So the string after first ab is positions2 to 4: 'b a b'. Wait, perhaps a better way: Original string S = 'aabab'. S = u + 'ab' + v + 'ab' + w. We need 'ab' to appear twice, with possible characters in between. So trying to fit: Let's split S into u, ab, v, ab, w. For example: u = 'a', then 'ab' (positions1-2), but 'ab' here is 'a' (position1) and 'b' (position2). Then the remaining string after this 'ab' is positions3-4: 'ab'. So after 'ab' (positions1-2), the string is 'ab' (positions3-4). So v is the part between the two 'ab's, which in this case is empty. Because after the first 'ab' (positions1-2), the next part starts at position3. So 'ab' (first) ends at 2, and the second 'ab' starts at 3. So there's no characters between them; hence v is empty. Thus, u = 'a', v = empty, w = empty. Therefore, uvw = 'a' + empty + empty = 'a'. Is there any other way to split into two 'ab's? What if the two 'ab's overlap? But 'ab' is two characters. The only way to have overlapping is if there's 'aba', like 'abab' → 'ab' at 0-1 and 1-2, but 'aba' doesn't contain 'ab' twice with overlap. Wait, in 'abab', no, actually in 'abab' the 'ab's are at 0-1 and 2-3. Wait, back to 'aabab'. Another possibility: Could there be another pair of 'ab's? The string is a a b a b. Is there a way to have the first 'ab' somewhere else? If the first 'ab is positions0-1: 'a a' is 'aa', not 'ab', so no. First possible 'ab' is positions1-2. Second possible 'ab' is positions3-4. So only one way to split into two 'ab's. Thus, DelTwo(L) = {a}. On the other hand, Del(Del(L)) was Del({aab}) = {a}. So again, Del(Del(L)) equals DelTwo(L). Hmm. Let's try a different example where Del(L) contains a string that has 'ab' in two different places, which when you apply Del again, you get more elements. Wait, perhaps take L = {abab, abbaab}. Wait, maybe a better approach: think if Del(Del(L)) could have strings that correspond to removing two 'ab's but in some cases where the removals are not independent. Wait, suppose we have an L where a string has three 'ab's. But since L is finite, but maybe for a specific case. Wait, let's take L = {abxab}, where x is some string. Wait, maybe take L = {ababab}. Wait, but maybe a simpler example. Wait, let's consider L = {aba}. Wait, L = {aba}. Check if aba has any 'ab' substrings. Yes: positions0-1 (a followed by b). So Del(L) for aba is v + w where vabw = aba. v = empty, abw = aba → w = a (since abw = aba → w = a). So vw = empty + a = a. Is there another occurrence? Let's see: In aba, 'ab' is at 0-1, and looking for next: after position2, it's a solitary a. So only one 'ab' occurrence. Thus Del(L) = {a}. Del(Del(L)) = Del({a}) → but 'a' has no 'ab', so Del({a}) = empty. DelTwo(L) for L={aba}: do we have u ab v ab w = aba? aba has length 3. To have two 'ab's, each ab is length 2, so total length would be |u| + 2 + |v| + 2 + |w| = |u| + |v| + |w| +4 ≥4. But aba is length 3, which is too short. So DelTwo(L) is empty. Thus Del(Del(L)) = empty and DelTwo(L) = empty → equal. Not a counterexample. Hmm. Let's think of a case where Del(Del(L)) contains a string that is not in DelTwo(L), or vice versa. Suppose L = {abbaab}. Let's compute Del(L). First, find all occurrences of 'ab' in 'abbaab'. Breaking down 'abbaab' (length 6): Indices 0:a, 1:b, 2:b, 3:a, 4:a, 5:b. Wait, wait: 'a b b a a b'. Looking for 'ab' substrings. At 0-1: 'a b' → yes, ab. At 3-4: 'a a' → no. At 4-5: 'a b' → yes. Wait, 'abbaab' → is the third character a 'b' followed by 'a' (position2-3: 'b a'), which is not ab. So the 'ab' occurrences are at 0-1 and 4-5. Wait, 0-1 is 'ab', and 4-5 is 'ab'. Wait, 'abbaab' → 'a b b a a b'. So positions 0-1: ab. positions 4-5: ab. Are there others? position3-4 is 'a a', no. position1-2: 'b b', no. position2-3: 'b a', no. position3-4: 'a a', position4-5: 'a b'. So two 'ab's. Thus, Del(L) for 'abbaab' is: First removal: remove ab at 0-1. v = empty, abw = 'abbaab' → w = 'baab'. So vw = empty * 'baab' = 'baab'. Second removal: remove ab at 4-5. v = 'abba', abw = 'ab' → w = empty. vw = 'abba' * empty = 'abba'. Thus Del(L) = {baab, abba}. Now, compute Del(Del(L)). First, take baab. Check occurrences of 'ab' in 'baab' (b a a b). Indices 0:b,1:a,2:a,3:b. 'ab' occurs at 1-2: 'a a' → no. Wait: Looking for 'ab' in 'baab': - positions0-1: b a → no. - positions1-2: a a → no. - positions2-3: a b → yes! So 'aab' → wait 'baab' is 'b a a b'. Positions2-3: a followed by b → 'ab'. So yes, 'ab' at positions2-3. So removing 'ab' from 'baab' gives v + w where vabw = 'baab'. v = 'ba' (prefix before 'ab'), abw = 'ab' → w = empty. So vw = 'ba' + empty = 'ba'. Is there any other occurrence? In 'baab', positions1-2: 'a a' → no. positions0-1: 'b a' → no. So only one 'ab' occurrence. Thus Del(baab) = {'ba'}. Next string in Del(L) is 'abba'. Check 'abba' for 'ab' occurrences. 'abba': a b b a. ab occurs at 0-1. Are there others? positions2-3: b a → no. So Del(abba) is: Removing 'ab' at 0-1 → v = empty, w = 'ba' → vw = 'ba'. Thus Del(abba) = {'ba'}. So Del(Del(L)) = {'ba'}. Now compute DelTwo(L). DelTwo(L) is uvw where u ab v ab w ∈ L. L is {abbaab}. Original string 'abbaab' = u ab v ab w. Looking for two 'ab's. Original string: a b b a a b. First 'ab' occurrences are at 0-1 and 4-5. We need to split the string into u, ab, v, ab, w. Let's take the first ab at 0-1 and the second ab at 4-5. So: u = empty (before first ab), first ab = positions0-1, v = 'bba' (the part between first ab and second ab: positions2-4? Wait, first ab ends at position1. Second ab starts at position4. So between positions2 to 3: 'b a a' (no, original string is a b b a a b, positions0-5). Wait after first ab (positions0-1), the remaining string is positions2-5: 'b a a b'. Now, in this remaining string 'b a a b', looking for the next 'ab'. We see 'a b' at positions3-4 (since in the remaining string, index0 is 'b', 1:a, 2:a, 3:b. Wait: The remaining string after first ab is 'b a a b' (original indices2-5). In this string, 'ab' can be found at indices1-2 (a followed by a? No), indices2-3: a followed by b. Yes. So 'ab' at original indices 4-5. So the second 'ab' is after the v part. Thus: u = empty (first part), ab is first occurrence (0-1), v = 'b a a' → wait, between first ab and second ab: the first ab ends at position1. The second ab starts at position4. So characters from position2-3 are 'b a' (position2: 'b', position3: 'a'), followed by 'a' at position4? Wait original string: 0:a,1:b, → first ab. Then positions2:b, 3:a,4:a,5:b. Second ab is positions4-5: a followed by b? No, position4 is a, 5 is b → 'ab'. So v is the string from position2 to the start of the second ab (position4), which is positions2-3 → 'b a'. So u = empty, ab (0-1), v = 'ba' (positions2-3), ab (4-5), w = empty. Thus, uvw = empty + 'ba' + empty = 'ba'. This is one string in DelTwo(L). Is there another way to split into two 'ab's? Suppose the first ab is at 0-1 and another possible ab? No, only two ab's in total. Another possibility: take the first ab at 0-1 and another ab overlapping? But no. Or first ab at 4-5 and then an ab before it? Let's see: If we take the second ab first, but u, v, w have to be such that u comes before first ab, etc. No, the splitting is u followed by first ab, then v, then second ab, then w. So the two ab's must be in order. Thus, only one split. Hence DelTwo(L) = {'ba'}. Which matches Del(Del(L)) = {'ba'}. Still the same. Hmm, maybe the equality holds. But the question says "show or disprove with a counterexample". Maybe it's actually true? Wait but the question states "for every finite language L", so if we can find even one finite L where Del(Del(L)) ≠ DelTwo(L), then the statement is false. Wait let's think differently. Suppose L contains a string which contains 'ab' only once. Then Del(L) would be the set of strings formed by removing that 'ab', so each string in Del(L) would have no 'ab's (if removing the only 'ab' in the string). Then Del(Del(L)) would be empty. DelTwo(L) would also be empty, since you need two 'ab's to remove for DelTwo(L). So they match. Another case where L has strings with multiple 'ab's. Wait, maybe a string like 'abab', but with folding. Wait, let's consider L = {abab, ab}. Wait, L = {abab, ab}. Compute Del(L): For 'abab', Del gives {ab, ab} (as before) → {ab}. For 'ab', Del gives {ε}. So Del(L) = {ab, ε}. Now compute Del(Del(L)): Del(ab) = {ε}, Del(ε) has no 'ab', so Del(ε) = empty. Thus Del(Del(L)) = {ε}. DelTwo(L): For DelTwo(L), we need to look at all strings in L that contain at least two 'ab's. Only 'abab' in L has two 'ab's. DelTwo for 'abab' is {ε} as computed before. The string 'ab' in L has only one 'ab', so cannot contribute to DelTwo(L). Thus DelTwo(L) = {ε}. So Del(Del(L)) = {ε} and DelTwo(L) = {ε}, equal. Another example: Let's take L = {abc..., but wait Sigma is {a,b}. Let's take L = {aabbaab}. Wait, perhaps a string where removing one 'ab' gives another string that contains 'ab's in different places than the original. Wait, here's an idea. Let's consider a string where there's an 'ab' which, when removed, causes two other characters to form an 'ab' that wasn't there before. Wait, example: Let's take L = {aaab}. Wait, aaab has 'ab' at positions2-3 (a a a b → no, positions are 0:a, 1:a, 2:a, 3:b. 'ab' needs a followed by b. So 'aab' would have 'ab' at 1-2. But 'aaab' → 'aaa b' → 'ab' occurs where? In 'aaab' (a a a b), 'ab' is at position 2-3: a followed by b. So Del(L) for 'aaab' would be: v = aa, w = empty → vw = aa. So Del(L) = {aa}. Del(Del(L)) = Del({aa}) = empty. DelTwo(L): does 'aaab' contain two 'ab's? No, only one. So DelTwo(L) = empty. So equal. Not helpful. Wait, think of a string where removing 'ab' creates a new 'ab' in the resulting string. For example, consider L = {aab}. Wait, aab contains 'ab' at positions1-2. Del(L) = {a}. Del(Del(L)) = empty. DelTwo(L) = empty. Same. Wait, another example: Let L = {abba}. abba has 'ab' at 0-1 and no other 'ab' (since after 'ab', it's 'b a'). So Del(L) = {'ba'}. Del(Del(L)) = Del({'ba'}) → 'ba' has no 'ab' → empty. DelTwo(L) = empty → same. Not helpful. Wait, this is tricky. Maybe the equality does hold? Wait the question is whether Del(Del(L)) equals DelTwo(L) for every finite L. But let's consider the definitions formally. Del(Del(L)) is the set of all strings obtained by removing one 'ab' from a string that was obtained by removing one 'ab' from L. DelTwo(L) is the set of all strings obtained by removing two 'ab's from a single string in L. Wait, but the order of removal might matter. For example, if a string in L has two overlapping 'ab's, but wait 'ab' is length 2, so overlapping occurrences would require something like 'aba', but 'abab' has two non-overlapping 'ab's. Wait, but in standard strings, 'ab' occurrences are non-overlapping since they are length 2. Wait, suppose a string has three 'ab's. Say L = {ababab}. Then Del(L) would be all strings obtained by removing any one 'ab' → which would be {abab, abab, abab} (assuming all positions), so Del(L) = {abab}. Then Del(Del(L)) = Del({abab}) = {ab}. DelTwo(L) would be removing two 'ab's from ababab. Which can be done in multiple ways, but all result in ab. So DelTwo(L) = {ab}, same as Del(Del(L)). Hmm. Wait, perhaps the equality holds. But the problem says "show or disprove". The question is in the exam, so likely it's false. Maybe I'm missing a case. Wait, wait: Del(L) can have strings that were formed from different original strings, and when you apply Del again, you might get strings that don't correspond to two 'ab' removals from a single original string. Wait, consider L = {abab, baab}. Let's compute. First, Del(L): For 'abab': Del gives {ab} as before. For 'baab': 'baab' has 'ab' at positions2-3. So v = 'ba', w = empty → vw = 'ba'. Thus Del(L) = {ab, ba}. Now Del(Del(L)): Del(ab) = {ε} Del(ba) has no 'ab' → empty. So Del(Del(L)) = {ε}. DelTwo(L): Check for each string in L whether it has two 'ab's. 'abab' has two 'ab's. DelTwo for 'abab' is {ε} as before. 'baab' has only one 'ab', so cannot contribute to DelTwo(L). Thus DelTwo(L) = {ε}. Equal again. Another idea: take L such that Del(L) contains a string with 'ab' which can be removed in two different ways, but in reality, the original string didn't have two separate 'ab's. Wait, for example, suppose the remaining string after first removal has an 'ab' that was formed by joining parts of the original string. Wait, example: Let L = {aab}. Wait, aab's 'ab' is at 1-2. Del(L) = {a}. Not useful. Another example: L = {abcb...} but we only have a and b. Ah! Here's a case: Let L = {baab}. Del(L) = {bab}? Wait no: Wait 'baab' is b a a b. Occurrence of 'ab' is at index 2-3: a followed by b. So v = b a (the part before 'ab'), w = empty. So vw = 'ba'. Wait vabw = baab → v = 'ba', ab = 'ab', w = empty. So ba + ab = baab. Yes. Thus Del(L) = {ba}. Now, Del(Del(L)) = Del({ba}) = empty. DelTwo(L): 'baab' only has one 'ab', so DelTwo(L) = empty. Equal. Hmm. Wait consider L = {abab, acb...} no, Sigma is {a,b}. Wait, let's think of a string where removing 'ab' from two different places in L leads to a string that now has an 'ab' which wasn't in the original string's context. Wait, here's an idea: Take L = {abxbab}, but with Sigma {a,b} and carefully craft xb to form an ab on removal. Wait, think of L = {abaab}. String 'abaab' → a b a a b. Let's find 'ab' occurrences. Positions0-1: 'ab' yes. Positions2-3: 'a a' no. Positions3-4: 'a b' yes. Also, after position0-1 'ab', the remaining string is 'aab' → which has another 'ab' at positions1-2 (original indices 2-3? No: Wait 'abaab': Indices: 0:a, 1:b, 2:a, 3:a, 4:b. 'abaab' has 'ab' at 0-1 and 'ab' at 3-4. So Del(L) for this string: Removing first 'ab' (0-1): v = empty, w = 'aab' → vw = 'aab'. Removing second 'ab' (3-4): v = 'aba', w = empty → vw = 'aba'. So Del(L) = {aab, aba}. Now compute Del(Del(L)): First, 'aab': Occurrences of 'ab' in 'aab' are at 1-2 (a followed by b). So Del('aab') = {a}. Next, 'aba': 'aba' has 'ab' at 0-1 and 'ba' in other places. Del('aba') = {a} (removing first 'ab') and 'ba' → wait: Wait 'aba' = vabw. First 'ab' at 0-1 → v = empty, w = 'a' → vw = 'a'. Second 'ab'? In 'aba', after 'ab' is 'a', so v = 'a', but abw would need to be 'ba', which does not start with 'ab'. No, only one 'ab' occurrence. Thus Del('aba') = {a}. So Del(Del(L)) = {a}. Now DelTwo(L): Looking at original string 'abaab', how many ways to remove two 'ab's. The string is 'a b a a b'. First 'ab' at 0-1. Then, looking for a second 'ab' after that. After removing first 'ab' (positions0-1), the string is 'aab' = positions2-4: 'a a b'. But to have two 'ab's in the original string: The original has 'ab' at 0-1 and 3-4. So splitting into u ab v ab w. u = empty (before first ab), first ab (0-1), v = 'a' (positions2-2: between first ab (which ends at 1) and second ab which starts at3, so positions2 → 'a'), ab (3-4), w = empty. Thus uvw = empty + 'a' + empty = 'a'. Are there other ways? No, so DelTwo(L) = {'a'}. Again, equal. This is frustrating. Maybe the statement is actually true? Wait, let's formalize: Del(Del(L)) consists of all strings obtained by removing one 'ab' from a string that is already missing one 'ab' from L. That is, x ∈ Del(Del(L)) iff there exists y ∈ Del(L) such that x is y with one 'ab' removed. Which means y = p ab q for some p, q, and x = p q. But y ∈ Del(L), so y = r ab s where r ab s ab q ∈ L? No: Wait y ∈ Del(L) means there exists z ∈ L such that z can be written as v ab w, and y = v w. Then x ∈ Del(Del(L)) means there exists y ∈ Del(L) such that y can be written as p ab q, and x = p q. So combining, x = p q where p ab q = v w, and v ab w ∈ L. But how does this relate to having two 'ab's removed from z ∈ L. Suppose z ∈ L has two 'ab's; then removing both gives x. But if the two 'ab's are non-overlapping, then this should match. However, what if removing one 'ab' from z creates a new 'ab' that wasn't there before, which is then removed in the second step. In other words, the two removals are not from the original string but the second removal is from a string that has a new 'ab' formed after the first removal. In that case, Del(Del(L)) could contain strings that are not in DelTwo(L), because DelTwo(L) requires two 'ab's present simultaneously in the original string. Ah! This seems promising. So the key is whether the second removal is from a new 'ab' created by the first removal. Example: Let’s construct L with a string where removing one 'ab' causes another 'ab' to form. Consider the string 'acb' but Sigma is {a,b}. Let's use 'aabb'. Wait, 'aabb'. Check 'aabb' for 'ab' occurrences. Indices: 0:a,1:a,2:b,3:b. No 'ab' substrings. Because 'a a', 'a b' (at positions1-2), 'b b'. Wait positions1-2: 'a b', which is 'ab'. Yes! 'a' at1, 'b' at2 → 'ab'. So 'aabb' contains one 'ab'. Del(L) for L={aabb} gives v + w where vabw = 'aabb'. v = 'a' (before ab at 1-2), w = 'b'. So vw = 'a' + 'b' = 'ab'. Thus Del(L) = {'ab'}. Del(Del(L)) = Del({'ab'}) = {ε}. DelTwo(L) = empty, since 'aabb' has only one 'ab'. But Del(Del(L)) = {ε}, DelTwo(L) = empty. So they are not equal! Wait, this is a counterexample. Wait let's verify: L = {aabb}. Del(L): The string 'aabb' has 'ab' at positions1-2. So y = v + w where vabw = 'aabb'. v = 'a', 'ab' is at 1-2, w = 'b'. Thus y = 'a' + 'b' = 'ab'. So Del(L) = {'ab'}. Del(Del(L)) = Del({'ab'}) = {ε}, because removing 'ab' from 'ab' gives ε. DelTwo(L): To compute DelTwo(L), we need strings in L that have two 'ab's. But 'aabb' contains only one 'ab' (at positions1-2), so there's no way to write 'aabb' as u ab v ab w. Because it doesn't have two 'ab's. Thus DelTwo(L) = empty set. But Del(Del(L)) = {ε} ≠ empty set. Therefore, this L serves as a counterexample. So the statement is false. Yes! This is the counterexample I was looking for. Let's double-check. String 'a a b b': Positions 0:a, 1:a, 2:b, 3:b. Substrings of length 2: 0-1: aa, 1-2: ab, 2-3: bb. Exactly one 'ab' occurrence. Thus Del(L) has 'ab' → vw = 'a' + 'b' = 'ab'. Del(Del(L)) is Del({ab}) = {ε}. DelTwo(L) requires two 'ab's in a string of L, but there's only one, so DelTwo(L) is empty. Hence Del(Del(L)) = {ε} ≠ DelTwo(L) = ∅. Therefore, for this finite L, the equality does not hold. Thus the statement is false.
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Betrachte die endliche Sprache $L = \{aabb\}$. - $\Del(L)$ enthält alle Wörter, die durch einmaliges Entfernen von $ab$ aus $aabb$ entstehen. In $aabb$ kommt $ab$ genau an einer Position vor (zwischen den Zeichen an Position 1 und 2). Entfernt man $ab$, bleibt $a \cdot b = ab$. Also: $\Del(L) = \{ab\}$. - $\Del(\Del(L)) = \Del(\{ab\})$. Entfernt man $ab$ aus $ab$, erhält man $\varepsilon$. Also: $\Del(\Del(L)) = \{\varepsilon\}$. - $\DelTwo(L)$ enthält alle Wörter $uvw$, für die $uabvabw \in L$ gilt. Aber $aabb$ enthält nur ein Vorkommen von $ab$, sodass keine zwei $ab$-Teilwörter entfernt werden können. Daher: $\DelTwo(L) = \emptyset$. Da $\{\varepsilon\} \neq \emptyset$, gilt $\Del(\Del(L)) \neq \DelTwo(L)$. Dies widerlegt die Aussage für die endliche Sprache $L = \{aabb\}$. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Betrachte die endliche Sprache . - enthält alle Wörter, die durch einmaliges Entfernen von aus entstehen. In kommt genau an einer Position vor (zwischen den Zeichen an Position 1 und 2). Entfernt man , bleibt . Also: . - . Entfernt man aus , erhält man . Also: . - enthält alle Wörter , für die gilt. Aber enthält nur ein Vorkommen von , sodass keine zwei -Teilwörter entfernt werden können. Daher: . Da , gilt . Dies widerlegt die Aussage für die endliche Sprache .
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Betrachte die endliche Sprache $L = \{aabb\}$.
- $\Del(L)$ enthält alle Wörter, die durch einmaliges Entfernen von $ab$ aus $aabb$ entstehen.
In $aabb$ kommt $ab$ genau an einer Position vor (zwischen den Zeichen an Position 1 und 2).
Entfernt man $ab$, bleibt $a \cdot b = ab$. Also: $\Del(L) = \{ab\}$.
- $\Del(\Del(L)) = \Del(\{ab\})$.
Entfernt man $ab$ aus $ab$, erhält man $\varepsilon$. Also: $\Del(\Del(L)) = \{\varepsilon\}$.
- $\DelTwo(L)$ enthält alle Wörter $uvw$, für die $uabvabw \in L$ gilt.
Aber $aabb$ enthält nur ein Vorkommen von $ab$, sodass keine zwei $ab$-Teilwörter entfernt werden können.
Daher: $\DelTwo(L) = \emptyset$.
Da $\{\varepsilon\} \neq \emptyset$, gilt $\Del(\Del(L)) \neq \DelTwo(L)$. Dies widerlegt die Aussage für die endliche Sprache $L = \{aabb\}$.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Okay, let's try to tackle subproblem c. So, the task is to construct a context-free grammar G' that generates Del(L(G)), where Del(L) is the language obtained by removing exactly one occurrence of "ab" from each word in L. And G is given in Chomsky Normal Form (CNF), which means all productions are either A → BC or A → a, with no ε-productions. First, we need to define G' such that L(G') = Del(L(G)). The problem gives a specific structure for V', which includes the original variables V plus new variables X_ab, X_a, X_b for each X in V. The requirements are that for each X in V: 1. L_G'(X) = L_G(X) — so the original variables still generate the same language as in G. 2. L_G'(X_ab) = Del(L_G(X)) — X_ab generates words obtained by removing one "ab" from words in L_G(X). 3. L_G'(X_a) = {w | wa ∈ L_G(X)} — X_a generates words that when followed by 'a' are in L_G(X). 4. L_G'(X_b) = {w | bw ∈ L_G(X)} — similar, but with 'b' at the end. We need to define P' and S'. Starting with S'. Since Del(L(G)) is the language of words from L(G) with one "ab" removed, the start symbol of G' should generate Del(L(G)). The problem says S' is to be defined. Looking at the requirement for X_ab: L_G'(X_ab) = Del(L_G(X)), so for the start symbol S in G, S_ab would generate Del(L_G(S)) = Del(L(G)). But wait, the problem says that for each X in V, X_ab is defined such that its language is Del(L_G(X)). Therefore, S' should be S_ab. Wait, but in the V' definition, X_ab is added for each X in V, so S_ab is part of V'. Therefore, S' = S_ab. Let me check the problem statement again. It says V' is V union {X_ab | X ∈ V} etc. So yes, S_ab is in V', and since we want L(G') = Del(L(G)) = Del(L_G(S)), so S' should be S_ab. So S' = S_ab. Now, for the productions P'. Need to define productions based on the original productions of G, which is in CNF. The original G has productions of two types: 1. A → BC (for A,B,C nonterminals) 2. A → a (for A nonterminal, a terminal) We need to adjust these productions for G' such that the new nonterminals (X, X_ab, X_a, X_b) generate the required languages. Let's handle each requirement step by step. First, requirement 1: L_G'(X) = L_G(X). So for the original nonterminals X in V, their productions should still generate the same language as in G. Therefore, all productions from P that involve only symbols in V should be included in P'. So, if A → α is a production in P, then it's also in P' for the case where α is over V ∪ Σ. Wait, but G is in CNF, so α is either two nonterminals or a terminal. So, yes, to satisfy L_G'(X) = L_G(X), we can include all original productions in P'. Now, for the new nonterminals: X_ab, X_a, X_b. We need to define productions that capture their intended language. Let's recall what each of these nonterminals should generate. - X_ab: All words obtained by removing one "ab" from a word in L_G(X). So, if a word x is in L_G(X), then any word that is x with one "ab" removed is in X_ab's language. - X_a: Words w where wa ∈ L_G(X). So, if X can derive wa, then X_a derives w. Similarly, X_b derives words where bw is in L_G(X). We need to define productions for X_ab, X_a, X_b based on the productions of X in G. Since G is in CNF, the productions for X are either: Case 1: X → YZ (Y, Z ∈ V) Case 2: X → a (a ∈ Σ) Let's start with X_a. X_a should generate all w such that wa ∈ L_G(X). Let's think recursively. If X → a is a production (Case 2), then wa = a → w = ε. So X_a should generate ε in this case. Wait, but in G, if X → a, then L_G(X) = {a}, so {w | wa ∈ L_G(X)} = {w | wa = a} → w = ε. So X_a would generate ε here. How to capture that? If X → YZ (Case 1), then words in L_G(X) are yz where y ∈ L_G(Y), z ∈ L_G(Z). So wa = yz. So either: - The 'a' is in z: so z = w' a, hence wa = y w' a → w = y w', so w is y followed by w', where Y generates y and Z generates w' a. Or: - The 'a' is in y: but y is a word from Y, which can only contribute its own a, but since CNF has Y → BC or Y → a, the only way y ends with a is if Y can generate a word ending with a. However, since G is in CNF, Y can generate single characters if it has productions like Y → a, but also longer words. Wait, but the equation wa = yz can be split as w = y z' where z = z' a. Wait, more precisely: wa ∈ L_G(X) = { y z | y ∈ L_G(Y), z ∈ L_G(Z) }. Therefore, wa = y z for some y ∈ L_G(Y), z ∈ L_G(Z). This can happen in two ways: 1. z = z' a, so y z' a = wa → w = y z'. Therefore, y ∈ L_G(Y), z' a ∈ L_G(Z) → z' ∈ { w' | w' a ∈ L_G(Z) } = L_{G'}(Z_a). So X_a can generate Y Z_a in this case. 2. y = w a z'' ??? Wait, no. Let me think again. Wait, suppose wa = y z. Then either: - The split between y and z occurs before the final 'a' of wa. That is, y is some part, and z ends with 'a', so z = z' a. Then w = y z'. Or, - The split occurs such that y ends with some characters, followed by z, and the 'a' is entirely in y. Wait, but 'a' is a single character. So wa = y z, where y is from Y and z is from Z. If 'a' is in y: then y = w' a, and z = w'', so wa = w' a w''. Which would mean that w' a w'' = wa → but w is the concatenation of w' and w'' (since wa = w' a w''). Wait, no: Wait, wa is the concatenation of y and z. So wa = y z. So y is a prefix, z is a suffix. If the 'a' is part of y, then y must end with 'a'. But y is a string generated by Y, so Y must generate some string ending with 'a'. But given that G is in CNF, which does not have ε productions, and all productions are binary or terminal. Hmm, perhaps for X_a, when X is derived via YZ, then X_a can be generated by Y_a Z (if the 'a' is in the Z part?) Wait, maybe a better approach is to think about the possible ways that wa is in L_G(X). Since X → YZ, then wa = y z where y ∈ L_G(Y), z ∈ L_G(Z). So: Case 1: z ends with a. Then z = z' a, so y z' a = wa → w = y z'. Therefore, X_a can generate Y Z_a (since Z_a generates z'). Case 2: y ends with some symbol such that the last 'a' is in y. Wait, but wa is y z. If y = y' a, then z = w', so y z = y' a w' = wa. Therefore, wa = y' a w' → w = y' a w'. But how does that help? Wait, the 'a' here is part of y. But Y must generate y' a, which would mean that Y generates a string ending in a. However, in CNF, Y can generate such strings through its own productions. But how to model X_a? X_a is supposed to generate w where wa ∈ L_G(X). So, for X → YZ: wa = y z So, there are two possibilities for where the 'a' comes from: Either: - z = a, and w = y, but z is a single terminal. Wait, but z is generated by Z. If Z → a is a production (i.e., Z can generate 'a'), then z = a, so wa = y a → w = y. Therefore, X_a would generate Y (since w = y) and Z generates 'a'. Therefore, a production X_a → Y Z_a? Wait, no. Let's take a concrete example. Suppose X → YZ, and there's a way that wa = y z. Let's say z is 'a', so Z → a is a production. Then wa = y a, so w = y. Therefore, to get w, we need Y to generate y, which is exactly L_G(Y). So in this case, X_a can generate Y, because w = Y. But Z must generate 'a', which is via Z → a. But how to encode that in productions for X_a. Alternatively, perhaps the correct way is that for X → YZ, X_a can be derived in two ways: 1. Y → BC, and then X_a can be B C_a (if the 'a' is in the C part) Wait, this seems getting too vague. Maybe there's a standard technique here. Since the problem says that the new variables capture the notion of "up to an 'a' or 'b'". For instance, X_a generates all strings w such that wa is in X's language. This is similar to the concept of "quotient" in formal languages. The left quotient of a language L by a string s is s^{-1}L. So X_a is the right quotient of L_G(X) by 'a', i.e., L_G(X) / a = {w | wa ∈ L_G(X)}. Similarly for X_b. For a CFG in CNF, how can we construct the grammar for the right quotient by a symbol? Let's recall that for the right quotient L/a, if L is context-free, then so is L/a, and we can construct a CFG for it. In our case, for each nonterminal X in G, we want X_a to generate {w | wa ∈ L_G(X)}. Let's consider the productions in G: Case 1: X → a. Then L_G(X) = {a}, so {w | wa ∈ L_G(X)} = {w | wa = a} ⇒ w = ε. So X_a needs to generate ε. But since G' doesn't need to be in CNF, we could have X_a → ε. Case 2: X → YZ. Then L_G(X) = L_G(Y)L_G(Z). Therefore, {w | wa ∈ L_G(X)} = {w | wa ∈ L_G(Y)L_G(Z)}. This can be rewritten as: Either: - There exists some z ∈ L_G(Z) such that wa is in L_G(Y) followed by z. But z is a string from Z. Since wa is a concatenation of a string from Y and a string from Z. Wait, more precisely, wa = y z where y ∈ L_G(Y), z ∈ L_G(Z). So the string z can be any string in L_G(Z), so the 'a' could be part of z or part of y. Wait, but 'a' is a single terminal symbol. So for wa = y z, the 'a' is the last character, so the last character of z must be 'a', or somehow the 'a' is the last character of y followed by z. Wait, since wa ends with 'a', then the concatenation y z must end with 'a', so either z ends with 'a' or z is empty and y ends with 'a'. But since G has no ε productions (CNF), z cannot be empty. So z must end with 'a'. Wait, but L_G(Z) cannot generate ε, because G is in CNF. So z is non-empty. Therefore, z must end with 'a'. Therefore, z = z' 'a' for some z' (possibly empty, but since G has no ε productions, z' can't be empty? Wait, no: for example, Z could generate 'ba', then z' is 'b', and z = 'ba' = z' 'a'. Wait, no: 'ba' ends with 'a' only if the last character is 'a', which it's 'a' here. Wait, 'ba' ends with 'a' only if it's b followed by a. Wait, 'ba' ends with 'a', yes. So in general, for z to end with 'a', z must have 'a' as its last character. Therefore, for wa = y z, with y ∈ L_G(Y), z ∈ L_G(Z), and wa ending with 'a', we must have that z ends with 'a', so z = z' a. Hence, wa = y z' a ⇒ w = y z'. So, 'w' is y concatenated with z', where y ∈ L_G(Y) and z' ∈ {u | u a ∈ L_G(Z)} = L_{G'}(Z_a). Therefore, w can be generated by Y Z_a. Additionally, there's another case: what if Y generates a string y that ends with some character, followed by Z generating a string that starts with the rest. Wait, but no: since wa = y z, and the 'a' is the last character of the entire string, so the last character comes from z. Therefore, z must end with 'a'. Therefore, for X → YZ, X_a should generate Y Z_a. Wait, but what if Y itself has a production that ends with 'a', but G is in CNF. For example, Y can generate a string like 'ba' if Y → B A, B → b, A → a. Then L_G(Y) = {ba}, so 'ba' ends with 'a'. But even so, when considering {w | wa ∈ L_G(X)}, X's language is L_G(Y)L_G(Z), so wa = y z with y ∈ Y, z ∈ Z. Since wa is y z, and the 'a' is the last character, z must end with 'a'. Therefore, regardless of how y is structured, the key point is that z must end with 'a'. Hence, the only way to get wa = y z is z = z' a, so y z' a = wa ⇒ w = y z'. Therefore, X_a should generate Y Z_a, where Z_a generates z'. Similarly, if Z could generate a string starting with some characters and ending with 'a', then Z_a would generate the part before the 'a'. Additionally, there's another possibility: maybe Y generates a string ending with some character, and Z generates 'a', but no: if Z generates 'a', then z is 'a', so z' is ε. But G is in CNF, so Z can generate 'a' via Z → a. However, Z_a is supposed to generate z' where z' a = a ⇒ z' = ε. Therefore, Z_a should generate ε in this case. But can we have productions that produce ε? The problem states that G' doesn't have to be in CNF, so ε-productions are allowed. So for X → YZ, X_a → Y Z_a. But also, if Z can generate 'a' directly (Z → a), then Z_a would generate ε. So, if Z → a, then adding X_a → Y Z_a would give X_a → Y ε = Y. So X_a could generate Y in this case. Similarly, are there other cases? Let's consider: Another possibility is if we have multiple splits. For example, if X → YZ, and Y has some productions that generate strings where the trailing part combines with Z's strings to end with 'a'. Wait, maybe that's covered by the same rule. So in general, for every production X → YZ in G, we add to P' the production X_a → Y Z_a. Additionally, if there's a production Z → a in G, then Z_a needs to generate ε, so we need Z_a → ε. Wait, but according to requirement 3: L_{G'}(X_a) = {w | wa ∈ L_G(X)}. So if X is a nonterminal with X → a, then L_G(X) = {a}, so {w | wa ∈ {a}} = {ε}, so X_a → ε. Therefore, for each original production X → a in G, we add X_a → ε. But also, for productions X → YZ, we add X_a → Y Z_a. Wait, but there's another case: what if Y generates a string that ends with 'a', and Z generates a string, so that y z ends with 'a'? But as discussed earlier, since wa = y z, and the 'a' is the last character, z must end with 'a'. So the only way is z ends with 'a'. Wait, but suppose Y generates 'ba' and Z generates 'b'. Then y z = 'bab', which doesn't end with 'a', so it wouldn't contribute to X_a. But if Z generated 'ba', then y z = 'baba' which ends with 'a' if 'ba' ends with 'a' (which it does if the second character is 'a'). Wait, 'ba' ends with 'a' only if the last character is 'a', which it's 'a' here. Wait, 'ba' ends with 'a' if it's 'b' followed by 'a', yes. Wait, so z can end with 'a' even if Z generates 'ba', so z = 'ba', then z' would be 'b', and Z_a would generate 'b'. Therefore, the approach where X_a → Y Z_a for X → YZ, and X_a → ε for X → a, seems correct. Similarly for X_b: L_{G'}(X_b) = {w | bw ∈ L_G(X)}. Following similar logic, if X → a (producing 'a'), then bw = a ⇒ w = 'a' without the 'b'... Wait, no: bw ∈ L_G(X). If X → a, then L_G(X) = {a}, so bw must be 'a' ⇒ b must be 'a', but in our alphabet Σ = {a, b}, 'b' is different from 'a', so there's no w such that bw = a. Wait, this is a problem. Wait, suppose X has a production X → a. Then L_G(X) = {a}. So {w | bw ∈ L_G(X)} is the set of w where bw = a. But since b ≠ a (assuming Σ = {a, b} as given in the first part of the problem), this set is empty. Therefore, X_b should generate no strings. How to capture that? So for X → a, X_b would have no productions. But wait, maybe if X → b, then {w | bw ∈ L_G(X)} = {ε}, since bw = b → w = ε. So: - If X → a, then X_b's language is empty. - If X → b, then X_b's language is {ε}. Therefore, for X_b: - For productions X → a, add nothing. - For productions X → b add X_b → ε. - For productions X → YZ, add X_b → Y_b Z. Because: If X → YZ, then L_G(X) = L_G(Y)L_G(Z). We need {w | bw ∈ L_G(Y)L_G(Z)}. So bw = y z. This can happen in two ways: 1. b is part of y: y = b y', so bw = b y' z → w = y' z. Therefore, y' ∈ {u | bu ∈ L_G(Y)} = L_{G'}(Y_b), and z ∈ L_G(Z). So w can be generated by Y_b Z. 2. b is the first character of z: but z is generated by Z, which can generate strings starting with a character. But since z is non-empty (no ε productions), y is generated by Y. So if z starts with b, then bw = y z implies that y must be empty (but Y can't generate ε), so this is impossible. Wait, no: Wait, bw = y z, y ∈ Y, z ∈ Z. Either: - y = ε: but impossible, since Y is a nonterminal in CNF, so it can't generate ε. - y starts with some characters, and z starts with others. But since y is non-empty and z is non-empty (since CNF productions generate two or one terminal), the first character of y is the first character of the combined string. Wait, bw's first character is b, so y's first character must be b. Therefore, y must start with b, so y = b y', hence bw = b y' z → w = y' z. So y ∈ L_G(Y) and y = b y', so y' ∈ {u | bu ∈ L_G(Y)} = L_{G'}(Y_b). And z ∈ L_G(Z). Therefore, w = y' z, so X_b → Y_b Z. Additionally, if Z generates a string that starts with b, but since y is non-empty and starts with b, the Z's starting character doesn't contribute to the leading b of bw. Wait, for example, if Y → a Y1 (but in CNF, Y must generate two nonterminals or a terminal), so let's take an example. Suppose X → YZ, Y → BC. If B → b, and C → a, then Y → BC can generate 'ba'. So y = 'ba', then bw = 'ba' z. But 'bw' starts with 'b', so yes. Wait, but 'ba' starts with 'b' followed by 'a'. But our requirement is that bw ∈ L_G(X) = YZ. So in this case, y = 'ba', z = something. Wait, perhaps the correct way is that for X_b, given X → YZ, then X_b can generate Y_b Z. Because if Y can generate a string starting with b (i.e., y = b y'), then X_b can generate y' z where z ∈ Z. Therefore, the production X_b → Y_b Z would account for cases where the leading 'b' comes from Y. Similarly, could the leading 'b' come from Z? For that, Y would have to generate an empty string (which it can't), so no. So the leading 'b' must come from Y. Therefore, for productions X → YZ, X_b → Y_b Z. For productions X → b, then {w | bw ∈ L_G(X)} = {w | bw = b} ⇒ w = ε. So X_b → ε. If X → a, then no w satisfies bw = a, so X_b has no productions. Okay, that makes sense. Now, moving on to X_ab, which is supposed to generate Del(L_G(X)) = {vw | vabw ∈ L_G(X)}. We need to think about how removing one "ab" from a string in L_G(X) works. Since G is in CNF, every string in L_G(X) has a parse tree where each nonterminal node has two children. So, any string derived from X has even length if it's derived solely via binary productions, but actually, CNF allows for terminal productions, so length depends on the structure. But how can we model removing "ab" exactly once? Let's think of the possible positions where "ab" can occur in a string. When we remove one occurrence of "ab", we're left with the string before and after that "ab". So, for any string x ∈ L_G(X), any occurrence of "ab" in x corresponds to splitting x into v, ab, w, so x = v a b w, and Del(L) includes v w. To capture this in the grammar, we need to consider all possible places where an "ab" could be removed. In the parse tree of x, the "ab" could be generated by two separate productions (e.g., a comes from one subtree, b from another), or via consecutive productions. Wait, but in CNF, each production generates either a single terminal or two nonterminals. So, the string "ab" can be generated in the following ways: 1. Through two separate terminal productions: e.g., if there's a production A → BC, where B → a and C → b. So A would generate "ab". 2. Or, via a longer chain where "a" and "b" are adjacent in the string but generated from deeper in the parse tree. But the problem is that the "ab" could span across different nonterminals. For example, suppose a production X → YZ, and Y generates a string ending with 'a', and Z generates a string starting with 'b'. Then the concatenation YZ would have "ab" at the boundary, which when removed would result in the concatenation of Y's string (without the trailing 'a') and Z's string (without the leading 'b'). Therefore, to capture all possible places where "ab" can occur, we need to consider two cases in the grammar for X_ab: - The "ab" is entirely within a subtree (i.e., generated by a single nonterminal). - The "ab" spans the boundary between two subtrees (i.e., 'a' is the last character of the left subtree and 'b' is the first character of the right subtree). Let's formalize this. For a production X → YZ in G: - Case 1: The "ab" is within Y. Then we can generate Y_ab Z. Because Y_ab produces strings from Y with one "ab" removed, then concatenating with Z. - Case 2: The "ab" is within Z. Similarly, generate Y Z_ab. - Case 3: The "ab" spans Y and Z, i.e., Y generates a string ending with 'a', and Z generates a string starting with 'b'. In this case, removing "ab" would combine the part of Y without the trailing 'a' and the part of Z without the leading 'b'. Therefore, this would correspond to Y_a Z_b. Additionally, for productions X → a or X → b (but since X can only produce 'a' or 'b' via terminal productions), but wait, in CNF, X → a is allowed. However, the string 'a' cannot contain "ab", so X_ab would have no contributions from such productions. Similarly, X → b also cannot contribute. Wait, but if X's production is X → A B, and A → a, B → b, then X generates "ab". Then Del(X) would be the string obtained by removing "ab", which is ε. So X_ab should generate ε. So let's consider all possibilities for X_ab. When X → YZ is a production in G: - X_ab can generate Y_ab Z (removing "ab" from Y's part) - X_ab can generate Y Z_ab (removing "ab" from Z's part) - X_ab can generate Y_a Z_b (removing the "ab" that spans Y and Z; i.e., Y generates ...a and Z generates b..., so combining Y without the trailing 'a' and Z without the leading 'b' gives ... ...) Additionally, for X → a or X → b, X_ab cannot generate anything, since "a" or "b" don't contain "ab". But what if X → C D, and C generates "a" and D generates "b", so X generates "ab". Then X_ab should generate ε. How do we capture this? In this case, Y is C, Z is D. Then Y_a would be C_a, which generates {w | wa ∈ L_G(C)}. Since C → a, L_G(C) = {a}, so {w | wa = a} → w = ε. So C_a → ε. Similarly, D_b would generate {w | bw ∈ L_G(D)}. If D → b, then L_G(D) = {b}, so {w | bw = b} → w = ε (if we consider b as the only string). Wait, no: bw ∈ {b} → bw = b ⇒ w = ε (since b*ε = b). Therefore, D_b → ε. Thus, Y_a Z_b would be C_a D_b, which generates ε ε = ε. So X_ab → C_a D_b would include ε. Therefore, the three production types mentioned earlier would cover the case where X generates "ab", because X_ab → Y_a Z_b (with Y_a and Z_b generating ε, leading to X_ab generating ε). Now, what about productions X → A B in G where A generates a longer string ending with 'a' and B generates a string starting with 'b'. For example, A → AC, C → a, so A generates strings like 'aa' (if A → A C, A → ...), then B → B D, D → b. Then a string from X could be 'aab...' with a split in A/B. When removing the 'ab' that is between the A part and B part, we'd take A_a and B_b. Thus, the production X_ab → A_a B_b would allow generating this case. Now, compiling all this into productions for X_ab. For every production X → YZ in G, P' should include: - X_ab → Y_ab Z - X_ab → Y Z_ab - X_ab → Y_a Z_b For terminal productions, X → a or X → b, X_ab has no productions (since you can't remove 'ab' from a single character). Additionally, we need to consider the base cases where a nonterminal produces 'ab' directly. Wait, but as we saw earlier, if X → YZ where Y → a and Z → b, then X_ab → Y_a Z_b (which is ε ε = ε) as per the third production. Therefore, this case is covered. Now, putting this all together. Let's recap the requirements for G': - L_G'(X) = L_G(X): So include all original productions from G. - L_G'(X_ab) = Del(L_G(X)): Need productions that remove one "ab" anywhere. - L_G'(X_a) = {w | wa ∈ L_G(X)}: Productions for X_a as discussed. - L_G'(X_b) = {w | bw ∈ L_G(X)}: Similarly. So, constructing P': First, include all original productions: For every A → α in P, add A → α to P'. Then, add productions for X_a, X_b, X_ab. For X_a: For every production X → a in G, add X_a → ε. For every production X → YZ in G, add X_a → Y Z_a. For X_b: For every production X → b in G, add X_b → ε. For every production X → YZ in G, add X_b → Y_b Z. For X_ab: For every production X → YZ in G, add: X_ab → Y_ab Z X_ab → Y Z_ab X_ab → Y_a Z_b Additionally, any other productions? What about productions where X is a terminal itself? Wait, in CNF, the terminals are only on the right-hand side of productions with a single terminal. So X → a is a production where X is a nonterminal and a is a terminal. The nonterminals in G are V, and the terminals are Σ = {a, b}. We need to make sure that these new nonterminals (X_a, etc.) have the correct productions. Let's verify with examples. Example 1: Let's say G has a production S → A B, A → a, B → b. So L_G(S) = {ab}. Then Del(L_G(S)) = {ε}. Now, for S_ab, we need it to generate ε. Following the rules: For X_ab (here X is S): Original production S → A B. Add to P': S_ab → A_ab B S_ab → A B_ab S_ab → A_a B_b Now, A → a, so A_a → ε (by X_a rule). B → b, so B_b → ε (by X_b rule). Thus, S_ab → A_a B_b → ε ε = ε. Also, A_ab: since A → a (a terminal), there are no productions for A_ab. Similarly, B_ab is empty (B → b, which can't contain "ab"). Therefore, the only production that contributes is S_ab → A_a B_b, leading to ε. So S_ab generates ε, which is correct. Another example: G has S → A A, A → a. L_G(S) = {aa}. Del(L_G(S)) = {} since there's no "ab" in "aa". So X_ab for X=S should generate nothing. For S_ab: Production S → A A. Adding S_ab → A_ab A, S_ab → A A_ab, S_ab → A_a A_b. A → a, so A_ab is empty. A_a → ε (since A → a). A_b: {w | bw ∈ {a}} which is empty, so A_b has no productions. Therefore, S_ab → A_a A_b would generate ε * empty = empty. Thus, S_ab has no valid derivations, which is correct since there's no "ab" to remove. Another example: G has S → A B, A → a a (but wait, CNF requires that terminals are single, so A can't directly generate "aa". In CNF, A would generate BC where B → a and C → a.) So let's say G has S → A, A → B C, B → a, C → B. Wait, no: Wait, to get "aaa" in CNF, S → A B, A → B B, B → a. Wait, let's define L_G(X) with X → Y Z, Y → a, Z → Y. Wait, let's get a string containing "ab". Let's say we have a grammar where S generates "abba". Grammar: S → A B A → a B → C D C → b D → E F E → b F → a So L_G(S) = {abba}. Now, Del(L_G(S)) is {bba} (remove the first "ab") and {aba} (remove the second "ab"? Wait, "abba" is a b b a. The substrings "ab" occur at position 0-1 and position 2-3? No: Wait, the string is a b b a. Possible "ab" substrings: only the first two characters: a followed by b. So removing it gives "ba". Wait, so Del(L_G(S)) = {"ba"}. Wait, no: "abba" → remove "ab" starting at index 0: the remaining string is "ba". Is there another "ab"? The next characters are b, b, a. The "b" followed by another "b" is not "ab", then b followed by a is "ba", which is not "ab". So only one occurrence. So Del(L_G(S)) = {"ba"}. Let's see how G' would generate it. For S_ab, we need to track the removal. The original grammar: S → A B A → a B → C D C → b D → E F E → b F → a So A = a, C = b, E = b, F = a. To compute Del(abba) = ba. How would this be generated. In the parse tree, let's see where "ab" is. The string is a (A) b (C) b (E) a (F). The "ab" is between A and C. So removing these two gives the concatenation of A's remainder (after removing trailing a) and C's remainder (after removing leading b). But A's string is "a", so removing its trailing a gives ε (since A_a → ε). C's string is "b", so removing leading b gives ε (C_b → ε). Wait, but no: the "ab" is A (a) and then C (b), so removing ab leaves us with the rest of the string. Wait, the string is A B = "a" + "bba" = "abba". B is C D = "b" + "ba". D is E F = "b" + "a". So to remove the "ab" between A and C, we need to take A's part without the trailing a (but A's string is just a, so nothing left), and C's part without the leading b (C's string is "b" + "ba" = "bba" → removing leading b gives "ba"). Wait, this suggests that Y_a Z_b where Y is A and Z is B? Wait, S → A B. The "ab" is at the boundary between A and B, since A → a, B → C D, C → b. So the first two characters are a (from A) and b (from C in B). Thus, removing "ab" would leave us with the concatenation of A_a (Y_a) and B_b (Z_b). A_a: since A → a, A_a → ε. B_b: Need to find for B, {w | bw ∈ L_G(B)}. L_G(B) = {bba}, since B generates C D = b E F = b b a. So bw ∈ {bba} → w = "ba". So B_b should generate "ba". How? B → C D. So B_b → C_b D. C → b, so C_b → ε. D is E F. D_b: {w | bd ∈ L_G(D)}. L_G(D) = {ba}, so bd = ba → d = a → w = ε. Wait, no: Wait, B_b is {w | bw ∈ L_G(B)}. L_G(B) = {bba}, so bw = bba → w = "ba". So B_b must generate "ba". Given B → C D: B_b → C_b D. C_b: since C → b, C_b → ε. Thus, B_b → ε D's language? No: B_b → C_b D means C_b generates some w', D generates some w'', and B_b generates w' w''. Since C_b is ε, B_b → D. Wait, no: The production B_b → C_b D adds that B_b can derive anything that C_b derives followed by D. Since C_b generates ε, then B_b can generate D. But D's language is "ba". So B_b → D would generate "ba". Wait, let's see. The productions for B_b: For B → C D (production in G), add B_b → C_b D. C_b → ε (since C → b). Thus, B_b can derive ε followed by D → which is D. So D is E F → E → b and F → a, so D generates "ba". Therefore, B_b → D, so B_b generates "ba". Thus, returning to S_ab → A_a B_b. A_a → ε, B_b → "ba", so S_ab generates "ba", which is correct. Additionally, are there other ways S_ab could generate the same string? Let's consider other possibilities. What if the "ab" is elsewhere in the string? In "abba", the 'ab' is only at the start. So Del(L) is {"ba"}. According to the grammar: S_ab can be generated via S_ab → A_ab B, but A is a terminal production (A → a), so A_ab has no productions. S_ab → A B_ab: B generates "bba". B_ab would generate Del("bba") = Del({bba}) = {ba} (if we remove the non-existent "ab"). Wait, "bba" does not contain "ab", so B_ab should generate nothing. Thus, this production doesn't contribute. So only the third production S_ab → A_a B_b contributes, leading to "ba". So this seems correct. Okay, this gives me more confidence in the approach. Now, formalizing all this into the answer. V' is defined as V ∪ {X_ab, X_a, X_b | X ∈ V}. S' should be S_ab. P' includes all original productions, plus the productions for X_a, X_b, X_ab as discussed. So, the answer template says: Startsymbol S' = ? Produktionsmenge P': ??? So: Startsymbol S' = S_ab. Productions P' should include: 1. All original productions from G: For every X → α in P, X → α is in P'. 2. For every X ∈ V: a. For X_a: - If X → a ∈ P, then X_a → ε. - If there exists a production X → YZ ∈ P, then X_a → Y Z_a. b. For X_b: - If X → b ∈ P, then X_b → ε. - If there exists a production X → YZ ∈ P, then X_b → Y_b Z. c. For X_ab: - For every production X → YZ ∈ P: - X_ab → Y_ab Z - X_ab → Y Z_ab - X_ab → Y_a Z_b Now, translating this into precise production definitions without prose. The problem says: "Geben Sie die Produktionen P' präzise an; vermeiden Sie unstrukturierten Fließtext." So we need to describe P' as a set of rules, probably using quantifiers. In the answer template, inside ???, we need to provide productions. So structured like this: - For each production X → YZ in P, add: X → YZ X_a → Y Z_a X_b → Y_b Z X_ab → Y_ab Z | Y Z_ab | Y_a Z_b Wait, no. The original productions are included. For each X → α in P, add X → α. But specifically: P' = P ∪ { X_a → ε | X → a ∈ P } ∪ { X_b → ε | X → b ∈ P } ∪ { X_a → Y Z_a | X → YZ ∈ P } ∪ { X_b → Y_b Z | X → YZ ∈ P } ∪ { X_ab → Y_ab Z | X → YZ ∈ P } ∪ { X_ab → Y Z_ab | X → YZ ∈ P } ∪ { X_ab → Y_a Z_b | X → YZ ∈ P } But in the problem statement, P is the original set of productions (in CNF), so P contains only productions of the form X → YZ or X → a. Therefore, the description of P' would be all productions in P, plus the additional productions defined by cases based on P. So, putting it all together: Startsymbol S' = S_ab. Produktionsmenge P' umfasst: - Alle Produktionen aus P (also für jede Produktion X → α ∈ P, ist X → α in P') - Für jede Produktion X → a ∈ P: X_a → ε - Für jede Produktion X → b ∈ P: X_b → ε - Für jede Produktion X → YZ ∈ P: - X_a → Y Z_a - X_b → Y_b Z - X_ab → Y_ab Z - X_ab → Y Z_ab - X_ab → Y_a Z_b Now, we need to write this precisely. The problem says: vermeiden Sie unstrukturierten Fließtext. So it's acceptable to use set-builder notation. But as per instructions, "präzise an", so something like: P' = P ∪ {X_a → ε | X → a ∈ P} ∪ {X_b → ε | X → b ∈ P} ∪ {X_a → Y Z_a | X → YZ ∈ P} ∪ {X_b → Y_b Z | X → YZ ∈ P} ∪ {X_ab → Y_ab Z | X → YZ ∈ P} ∪ {X_ab → Y Z_ab | X → YZ ∈ P} ∪ {X_ab → Y_a Z_b | X → YZ ∈ P} Yes, this seems precise. So the answer would be: Startsymbol S' = S_ab Produktionen P' = P ∪ { ... as above ... } Now, verifying the requirements: For L_{G'}(X) = L_G(X): Because all original productions are included. For L_{G'}(X_a): As per the productions added (X_a → ε when X→a, and X_a → Y Z_a when X→YZ). Similarly for others. Thus, this should satisfy all the requirements. Let me check for X_a: Take X → YZ ∈ G. L_{G'}(X_a) should be {w | wa ∈ L_G(X)} = {w | wa ∈ L_G(Y)L_G(Z)} = {yz' | y ∈ L_G(Y), z' ∈ L_{G'}(Z_a)} (as discussed), which corresponds to the productions X_a → Y Z_a. Including X_a → ε when X → a. Yes, this seems correct. Same logic applies to X_b and X_ab. Thus, the construction seems valid. Now, formatting as per the answer template. The answer template says: Startsymbol $S'=?$ Produktionen $P'$: ??? So: Startsymbol S' = S_{ab} Produktionen P' is the union of several sets. Thus, the answer should be: Startsymbol $S'=S_{ab}$ Produktionen $P'$: - $P$ itself - For all $X \in V$, if $X \to a \in P$, then $X_a \to \varepsilon$ - For all $X \in V$, if $X \to b \in P$, then $X_b \to \varepsilon$ - For all $X \to YZ \in P$, the productions: - $X_a \to Y Z_a$ - $X_b \to Y_b Z$ - $X_{ab} \to Y_{ab} Z$ - $X_{ab} \to Y Z_{ab}$ - $X_{ab} \to Y_a Z_b$ But to write it as per the requirement of avoiding free text, likely using set-builder notation. So: Produktionen $P'$: $$ P' = P \cup \{ X_a \to \varepsilon \mid X \to a \in P \} \cup \{ X_b \to \varepsilon \mid X \to b \in P \} \cup \{ X_a \to Y Z_a \mid X \to YZ \in P \} \cup \{ X_b \to Y_b Z \mid X \to YZ \in P \} \cup \{ X_{ab} \to Y_{ab} Z, X_{ab} \to Y Z_{ab}, X_{ab} \to Y_a Z_b \mid X \to YZ \in P \} $$ Yes, this expresses all additional productions. But note that in the last set, for each X → YZ in P, three productions are added for X_ab. Thus, the multi-line answer would list all these cases concisely.
Answer
<answer id="1"> Startsymbol $S'=S_{ab}$ Produktionen $P'$: $$ P' = P \cup \{ X_a \to \varepsilon \mid X \to a \in P \} \cup \{ X_b \to \varepsilon \mid X \to b \in P \} \cup \{ X_a \to Y Z_a \mid X \to YZ \in P \} \cup \{ X_b \to Y_b Z \mid X \to YZ \in P \} \cup \{ X_{ab} \to Y_{ab} Z, X_{ab} \to Y Z_{ab}, X_{ab} \to Y_a Z_b \mid X \to YZ \in P \} $$ </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen :
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Betrachte die endliche Sprache $L = \{aabb\}$.
- $\Del(L)$ enthält alle Wörter, die durch einmaliges Entfernen von $ab$ aus $aabb$ entstehen.
In $aabb$ kommt $ab$ genau an einer Position vor (zwischen den Zeichen an Position 1 und 2).
Entfernt man $ab$, bleibt $a \cdot b = ab$. Also: $\Del(L) = \{ab\}$.
- $\Del(\Del(L)) = \Del(\{ab\})$.
Entfernt man $ab$ aus $ab$, erhält man $\varepsilon$. Also: $\Del(\Del(L)) = \{\varepsilon\}$.
- $\DelTwo(L)$ enthält alle Wörter $uvw$, für die $uabvabw \in L$ gilt.
Aber $aabb$ enthält nur ein Vorkommen von $ab$, sodass keine zwei $ab$-Teilwörter entfernt werden können.
Daher: $\DelTwo(L) = \emptyset$.
Da $\{\varepsilon\} \neq \emptyset$, gilt $\Del(\Del(L)) \neq \DelTwo(L)$. Dies widerlegt die Aussage für die endliche Sprache $L = \{aabb\}$.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Startsymbol $S'=S_{ab}$
Produktionen $P'$:
$$
P' = P \cup \{ X_a \to \varepsilon \mid X \to a \in P \} \cup \{ X_b \to \varepsilon \mid X \to b \in P \} \cup \{ X_a \to Y Z_a \mid X \to YZ \in P \} \cup \{ X_b \to Y_b Z \mid X \to YZ \in P \} \cup \{ X_{ab} \to Y_{ab} Z, X_{ab} \to Y Z_{ab}, X_{ab} \to Y_a Z_b \mid X \to YZ \in P \}
$$
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me carefully go through this subproblem d. We need to apply the construction from subproblem c to the given grammar: $ G = (\{S, A\}, \{a, b\}, P, S) $ with productions: $ S \rightarrow SA \mid a $ $ A \rightarrow a \mid b $ First, recall the construction from part c: We have $V' = V \cup \{X_{ab} \mid X \in V\} \cup \{X_a \mid X \in V\} \cup \{X_b \mid X \in V\}$ For our example, $V = \{S, A\}$, so: $V' = \{S, A, S_{ab}, A_{ab}, S_a, A_a, S_b, A_b\}$ According to part c: $S' = S_{ab}$ Let's compute the productions in $P'$ based on our construction: 1. For all $X \rightarrow a \in P$, we need $X_a \rightarrow \varepsilon$ - $S \rightarrow a$, so $S_a \rightarrow \varepsilon$ - $A \rightarrow a$, so $A_a \rightarrow \varepsilon$ 2. For all $X \rightarrow b \in P$, we need $X_b \rightarrow \varepsilon$ - $A \rightarrow b$, so $A_b \rightarrow \varepsilon$ 3. For all $X \rightarrow YZ \in P$, we need: - $X_a \rightarrow YZ_a$ - $X_b \rightarrow Y_bZ$ - $X_{ab} \rightarrow Y_{ab}Z, X_{ab} \rightarrow YZ_{ab}, X_{ab} \rightarrow Y_aZ_b$ Let's go through the specific non-terminals: $S$: - Original productions: $S \rightarrow SA | a$ - $S_a \rightarrow \varepsilon$ (from $S \rightarrow a$) - For $S \rightarrow SA$: $S_a \rightarrow SA_a$, $S_b \rightarrow S_bA$, $S_{ab} \rightarrow S_{ab}A$, $S_{ab} \rightarrow SA_{ab}$, $S_{ab} \rightarrow S_aA_b$ $A$: - Original productions: $A \rightarrow a | b$ - $A_a \rightarrow \varepsilon$ (from $A \rightarrow a$) - $A_b \rightarrow \varepsilon$ (from $A \rightarrow b$) Let's double-check: - $L_{G'}(X)=L_G(X)$ means the normal non-terminals should still generate the same language as before. So we should keep the original productions. - $L_{G'}(X_{ab})=\Del(L_G(X))$ means that $X_{ab}$ generates all strings obtained by removing $ab$ from strings generated by $X$. - $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$ means $X_a$ generates all strings that, when appended with $a$, give a string generated by $X$. - $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$ means $X_b$ generates all strings that, when prepended with $b$, give a string generated by $X$. Now let's list all productions: $S$: - $S \rightarrow SA | a$ (original productions) $S_{ab}$: - $S_{ab} \rightarrow S_{ab}A | SA_{ab} | S_aA_b$ (from $S \rightarrow SA$) - $S_{ab} \rightarrow \varepsilon$? Wait, this isn't explicitly stated. From our construction in part c, $S_{ab}$ would absorb $ab$ from either side. But $S$ doesn't generate a string containing $ab$ directly, so we don't get a production like $S_{ab} \rightarrow \varepsilon$. $S_a$: - $S_a \rightarrow SA_a | \varepsilon$ (from $S \rightarrow SA$ and $S \rightarrow a$) $S_b$: - $S_b \rightarrow S_bA$ (from $S \rightarrow SA$) $A$: - $A \rightarrow a | b$ (original productions) $A_{ab}$: - $A_{ab} \rightarrow \varepsilon$? Wait, no. $A$ generates $a$ or $b$, which don't contain "ab", so $A_{ab}$ should generate the empty set. So no productions for $A_{ab}$. - Actually, from our construction in part c, for $A \rightarrow a$, we would get $A_a \rightarrow \varepsilon$, but no direct productions for $A_{ab}$. $A_a$: - $A_a \rightarrow \varepsilon$ (from $A \rightarrow a$) $A_b$: - $A_b \rightarrow \varepsilon$ (from $A \rightarrow b$) Let's double-check this. For $S_a$: - $S \rightarrow a$, so $S_a \rightarrow \varepsilon$ - $S \rightarrow SA$, so $S_a \rightarrow SA_a$ For $S_b$: - $S \rightarrow SA$, so $S_b \rightarrow S_bA$ For $S_{ab}$: - $S \rightarrow SA$, so $S_{ab} \rightarrow S_{ab}A | SA_{ab} | S_aA_b$ For $A_a$: - $A \rightarrow a$, so $A_a \rightarrow \varepsilon$ For $A_b$: - $A \rightarrow b$, so $A_b \rightarrow \varepsilon$ For $A_{ab}$: - There are no productions where $A$ generates something containing "ab", so $A_{ab}$ should have no productions. (Technically, $A$ only generates single characters.) Let me complete the full listing: $S$: $S \rightarrow SA | a$ $S_{ab}$: $S_{ab} \rightarrow S_{ab}A | SA_{ab} | S_aA_b$ $S_a$: $S_a \rightarrow SA_a | \varepsilon$ $S_b$: $S_b \rightarrow S_bA$ $A$: $A \rightarrow a | b$ $A_{ab}$: No productions (because $A$ only generates single characters $a$ or $b$, which don't contain "ab") $A_a$: $A_a \rightarrow \varepsilon$ $A_b$: $A_b \rightarrow \varepsilon$ Let's check if this makes sense. $L_G(S) = \{a, aa, aaa, ..., a^n, a^nA \mid n > 0\}$ where $A$ itself generates $\{a, b\}$. $L_G(A) = \{a, b\}$. $L_{G'}(S_{ab}) = \Del(L_G(S))$. $L_G(S)$ doesn't contain "ab" as a substring (since it's all $a$s and then possibly an $A$ which is either $a$ or $b$), so $\Del(L_G(S)) = \emptyset$. But $L_{G'}(S_{ab})$ should be empty as well... Let's see what strings $S_{ab}$ can generate. Starting from $S_{ab}$: - $S_{ab} \rightarrow S_{ab}A$ eventually leads to an infinite loop or nowhere. - $S_{ab} \rightarrow SA_{ab}$. But $A_{ab}$ has no productions, so this doesn't generat anything. - $S_{ab} \rightarrow S_aA_b \rightarrow \varepsilon \varepsilon = \varepsilon$. Wait, is $\varepsilon \in \Del(L_G(S))$? No, because $\Del(L)$ contains strings obtained by removing "ab" from strings in $L$, and $L_G(S)$ doesn't contain any string with "ab", so $\Del(L_G(S)) = \emptyset$. So there's a problem with my analysis. Let's revisit the construction from part c. In part c, it seems we had this rule: $X_{ab} \rightarrow Y_aZ_b \mid X \to YZ \in P$ Why is this there? Let me think. Suppose $X \to YZ$ in $G$, and let $v \in L_G(Y)$ and $w \in L_G(Z)$. Then $vw \in L_G(X)$. If $v = v'a$ and $w = bw'$, then we can remove "ab" from $vw$ to get $v'w'$, which should be derivable from $X_{ab}$. Ah, I see. So $X_{ab} \to Y_a Z_b$ handles the case where the "ab" to be removed straddles $Y$ and $Z$ (the last character of some string from $L_G(Y)$ is "a" and the first character of some string from $L_G(Z)$ is "b"). Similarly: - $X_{ab} \to Y_{ab}Z$ handles the case where the "ab" to be removed is entirely within some string from $L_G(Y)$ - $X_{ab} \to YZ_{ab}$ handles the case where the "ab" to be removed is entirely within some string from $L_G(Z)$ Let's check our analysis again. $L_G(S) = \{a, aA\} = \{a, aa, ab\}$ $L_G(A) = \{a, b\}$ Now, $\Del(L_G(S))$ is the set of strings obtained by removing "ab" from strings in $L_G(S)$. - "a" doesn't contain "ab", so can't contribute to $\Del(L_G(S))$ - "aa" doesn't contain "ab", so can't contribute to $\Del(L_G(S))$ - "ab" contains "ab" as a substring, so removing it gives $\varepsilon$. So $\Del(L_G(S)) = \{\varepsilon\}$. Let's see what strings $S_{ab}$ can derive: - $S_{ab} \rightarrow S_{ab}A$: If $S_{ab}$ can derive $\varepsilon$, then $S_{ab}A$ could derive $\varepsilon A \rightarrow A \rightarrow a \text{ or } b$, but $S_{ab}$ can't derive $\varepsilon$ directly by this rule. - $S_{ab} \rightarrow SA_{ab}$: $A_{ab}$ has no derivations, so this doesn't produce anything. - $S_{ab} \rightarrow S_aA_b$: - $S_a$ can derive $\varepsilon$ (through $S_a \rightarrow \varepsilon$) or $SA_a$ which leads to $S$ then $a$ or $SA$... - $A_b$ can derive $\varepsilon$ So $S_{ab} \rightarrow S_aA_b \rightarrow \varepsilon \varepsilon = \varepsilon$. So $S_{ab}$ can derive $\varepsilon$, which matches $\Del(L_G(S)) = \{\varepsilon\}$. Great! Now let's calculate $L_{G'}(X_a) = \{w \mid wa \in L_G(X)\}$ for each $X$. For $S$: - $L_G(S) = \{a, aa, ab\}$ - $wa \in L_G(S)$ means $w \in \{\varepsilon, a\}$ (because $\varepsilon a = a \in L_G(S)$ and $aa \in L_G(S)$) - So $L_{G'}(S_a) = \{\varepsilon, a\}$ Let's see what strings $S_a$ can derive: - $S_a \rightarrow SA_a$ - $S$ can derive $a$ or $SA$ - $A_a \rightarrow \varepsilon$ - So $SA_a$ can derive $a\varepsilon = a$ or $SA\varepsilon = SA = aA, aa, ab$ - $S_a \rightarrow \varepsilon$ So $S_a$ can derive $\varepsilon$, $a$, $aA$, $aa$, and $ab$. Wait, this doesn't quite match. Let's think about the intended meaning of $S_a$. It should derive all strings $w$ such that $wa \in L_G(S)$. $L_G(S) = \{a, aa, ab\}$: - $wa = a$ means $w = \varepsilon$ - $wa = aa$ means $w = a$ - $wa = ab$ means $w = b$, but $b \notin L_G(S)$ (wait, $b \notin L_G(S)$ directly, but does it satisfy $b \in L_{G'}(S_a)$?) Actually, $L_G(S) = \{a, aa, ab\}$ where $A$ contributes $\{a, b\}$. So: - $wa = a$ means $w = \varepsilon$ - $wa = aa$ means $w = a$ - $wa = ab$ means $w = b$, but $b \notin L_G(S)$, no. $b$ is not in $L_G(S)$ as a standalone string, but it is as the second character in "ab". Wait, let's be precise: - $S \to a$ directly gives "a" - $S \to SA$, then $A \to a$ gives "aa" - $S \to SA$, then $A \to b$ gives "ab" So $L_G(S) = \{a, aa, ab\}$. Now $L_{G'}(S_a) = \{w \mid wa \in L_G(S)\}$ means: - $a \in L_G(S)$: if $w = \varepsilon$ then $\varepsilon a = a \in L_G(S)$, so $\varepsilon \in L_{G'}(S_a)$ - $aa \in L_G(S)$: if $w = a$ then $a a = aa \in L_G(S)$, so $a \in L_{G'}(S_a)$ - $ab \in L_G(S)$: if $w = b$ then $b a = ba$, and $ba \notin L_G(S)$ So $L_{G'}(S_a) = \{\varepsilon, a\}$. Now what strings can $S_a$ derive? - $S_a \rightarrow SA_a$ - $S$ can derive $a$ or $SA$ - $A_a$ can derive $\varepsilon$ - So $SA_a$ can derive $a\varepsilon = a$ or $(SA)\varepsilon = SA = aA = aa, ab$ - $S_a \rightarrow \varepsilon$ So $S_a$ can derive $\varepsilon$, $a$, $aa$, and $ab$. Wait, this means $L_{G'}(S_a) = \{\varepsilon, a, aa, ab\}$. But we wanted $L_{G'}(S_a) = \{w \mid wa \in L_G(S)\} = \{\varepsilon, a\}$. There's a disconnect. Let me reconsider the construction from part c, which had this rule: $\{ X_a \to Y Z_a \mid X \to YZ \in P \}$ I think I might have misunderstood the intended meaning. $L_{G'}(X_a) = \{w \mid wa \in L_G(X)\}$ doesn't quite match what I calculated. Wait, let's think about $X_a$ more carefully. If $X$ derives a string $wa$ (i.e., some string that ends with $a$), then $X_a$ should derive $w$. So if $X \to YZ$ and $YZ$ can derive a string $w_1w_2$ where $w_2$ ends with $a$, then either: - $Z$ derives $w_2$ which ends with $a$, so $Z_a$ derives $w_2'$ where $w_2 = w_2'a$, and thus $X$ derives $w_1w_2 = w_1w_2'a$, so $X_a$ should derive $w_1w_2'$ Ah, I see. $X_a \to Y Z_a$ handles the case where the string derived from $Z$ ends with $a$ and the trailing $a$ is the one we're accounting for in the definition $L_{G'}(X_a) = \{w \mid wa \in L_G(X)\}$. Let's revisit with this understanding. For $S_a$: - $S_a \rightarrow SA_a$ because $S \to SA$, and if the string from $A$ ends with $a$, then $A_a$ gives the string before the trailing $a$ - $S_a \rightarrow \varepsilon$ because $S \to a$, and removing the trailing $a$ leaves $\varepsilon$ And indeed, if $A$ derives $a$, then $A_a$ derives $\varepsilon$ (which is $a$ with the trailing $a$ removed). So if $S \to SA$ and $A \to a$, then $S \to Sa \to aa$, so $S_a$ should derive $a$ (which is $aa$ with the trailing $a$ removed). And indeed, $S_a \to SA_a \to a A_a \to a \varepsilon = a$. If $S \to a$, then $S_a$ should derive $\varepsilon$ (which is $a$ with the trailing $a$ removed). And indeed, $S_a \to \varepsilon$. So $L_{G'}(S_a) = \{\varepsilon, a\}$, which matches $\{w \mid wa \in L_G(S)\}$. Let's verify the other conditions: $L_{G'}(X) = L_G(X)$ is straightforward - we keep the original productions for $X$. $L_{G'}(X_{ab}) = \Del(L_G(X))$: - For $S_{ab}$, we want strings obtained by removing $ab$ from strings in $L_G(S) = \{a, aa, ab\}$ - "a" doesn't contain "ab" - "aa" doesn't contain "ab" - "ab" contains "ab", so removing it gives $\varepsilon$ - So $\Del(L_G(S)) = \{\varepsilon\}$ Now, what strings can $S_{ab}$ derive? - $S_{ab} \rightarrow S_{ab}A$: If $S_{ab}$ derived $\varepsilon$, this would derive $A$, which can derive $a$ or $b$, but $S_{ab}$ doesn't derive $\varepsilon$ directly from this rule. - $S_{ab} \rightarrow SA_{ab}$: $A_{ab}$ has no derivations (because $A$ only derives $a$ and $b$, neither containing "ab"), so this rule doesn't produce anything. - $S_{ab} \rightarrow S_aA_b$: - $S_a$ can derive $\varepsilon$ or $a$ - $A_b$ can derive $\varepsilon$ (since $A \to b$, so $A_b \to \varepsilon$) - So $S_aA_b$ can derive $\varepsilon \varepsilon = \varepsilon$ or $a \varepsilon = a$ Wait a minute! So $S_{ab}$ can derive $\varepsilon$ and $a$? But $\Del(L_G(S)) = \{\varepsilon\}$. Let's examine this more carefully. The production $S_{ab} \to S_aA_b$ is intended to handle the case where we remove "ab" where the "a" is at the end of a string from $L_G(S)$ and the "b" is at the beginning of a string from $L_G(A)$. In other words, if $S$ derives a string $w_1 = w_1'a$ and $A$ derives a string $w_2 = bw_2'$, then $SA$ derives $w_1'a \cdot bw_2' = w_1'abw_2'$, and by removing $ab$, we get $w_1'w_2'$ which is derived from $S_aA_b$. Let's check what strings $S$ and $A$ can derive: - $S \to a$, which is just $a$ and doesn't end with $a$ (wait, actually it does end with $a$) - $S \to SA$, which can derive $aa$ (ends with $a$) or $ab$ (ends with $b$) - $A \to a$, which starts with $a$ - $A \to b$, which starts with $b$ So we have the case where $S \to SA$, $S$ derives $a$, and $A$ derives $b$: $Sa = ab$. Here $S$ (actually the first $S$ here) derives $a$ which ends with $a$, and $A$ derives $b$ which starts with $b$. So by removing $ab$, we'd get $\varepsilon$, which is $S_aA_b \to \varepsilon \varepsilon = \varepsilon$. But what about $S \to SA$, $S$ derives $a$ (which ends with $a$), and $A$ derives $a$ (which starts with $a$, not $b$)? This gives $aa$, which doesn't contain "ab", so there's nothing to remove. And $S \to SA$, $S$ derives $ab$ (which ends with $b$, not $a$), and $A$ derives $b$ (which starts with $b$, not $a$)? No, this production doesn't handle that scenario. Wait, but our production includes $S_{ab} \to S_aA_b$. Let's look at what $S_a$ and $A_b$ can derive: - $S_a \to \varepsilon$: This means $S$ (the original $S$) derives $a$, so $S_a$ represents what's left when you remove the ending $a$, which is $\varepsilon$. - $S_a \to SA_a \to aA_a \to a\varepsilon = a$: This means $S$ derives $aa$ ($S \to SA$, $S \to a$, $A \to a$), so $S_a$ represents what's left when you remove the ending $a$, which is $a$. - $A_b \to \varepsilon$: This means $A$ (the original $A$) derives $b$, so $A_b$ represents what's left when you remove the beginning $b$, which is $\varepsilon$. So $S_aA_b$ can derive: - $\varepsilon\varepsilon = \varepsilon$ (corresponding to $S$ derives $a$ and $A$ derives $b$, i.e., $S \to Sa \to ab$, and removing $ab$ gives $\varepsilon$) - $a\varepsilon = a$ (corresponding to $S$ derives $aa$ and $A$ derives $b$, i.e., $S \to SA \to SaA \to aaA \to aab$, and removing $ab$ would give... wait no, $aab$ doesn't contain "ab" as a substring.) Actually, let's be precise about what string $S$ and $A$ jointly produce: - $S$ can derive "a" - $S$ can derive "aa" ($S \to SA \to aA \to aa$) - $S$ can derive "ab" ($S \to SA \to aA \to ab$) So $L_G(S) = \{a, aa, ab\}$. Now, let's reconsider $\Del(L_G(S))$: - For "a", there's no "ab" to remove. - For "aa", there's no "ab" to remove. - For "ab", we can remove "ab" to get $\varepsilon$. So $\Del(L_G(S)) = \{\varepsilon\}$. This means $S_{ab}$ should derive $\varepsilon$ and nothing else. But earlier analysis showed $S_aA_b$ can derive $a$ as well. Let's see if $a$ is incorrectly included. $S_a$ can derive $a$, which corresponds to $S \to a$ followed by $A \to a$, giving $aa$. $A_b$ can derive $\varepsilon$, which corresponds to $A \to b$. So $S_aA_b$ deriving $a$ would correspond to a string where we've somehow removed "ab" from the grammar to get "a", but which original string would that be? It would have to be "aab", but "aab" is not in $L_G(S)$ (remember $L_G(S) = \{a, aa, ab\}$). So it seems like our grammar is incorrectly deriving some strings. Let's double-check. Actually, I think the issue is that I'm over-determining what $w$ is in $L_{G'}(X_a) = \{w \mid wa \in L_G(X)\}$. Let's be precise about what production might give rise to $S_a \to a$: - $S_a \to SA_a$ - $S \to a$ gives "a" - $A_a \to \varepsilon$ gives "" - So this produces "a" for $S_a$, meaning $S_a$ can derive "a" But $S$ can derive "aa" (by $S \to SA \to aA \to aa$), so "a" is indeed a string where "a" followed by "a" is in $L_G(S)$, and $L_{G'}(S_a) = \{w \mid wa \in L_G(S)\} = \{\varepsilon, a\}$. Similarly, $S_a$ can derive $\varepsilon$ because $S$ can derive "a" (by $S \to a$), and $\varepsilon$ followed by "a" is in $L_G(S)$. So far, this looks good. Now, $S_{ab} \to S_aA_b$: - $S_a$ can derive $\varepsilon$ (corresponding to $S \to a$, where removing the trailing $a$ gives $\varepsilon$) - $S_a$ can derive "a" (corresponding to $S \to SA \to aa$, where removing the trailing $a$ gives "a") - $A_b$ can derive $\varepsilon$ (corresponding to $A \to b$, where removing the leading $b$ gives $\varepsilon$) So $S_aA_b$ can derive: - $\varepsilon\varepsilon = \varepsilon$ (corresponding to $S \to a$ and $A \to b$, giving $ab$, where removing $ab$ gives $\varepsilon$) - $a\varepsilon = a$ (corresponding to $S \to SA \to aa$ and $A \to b$, giving $aab$, where removing $ab$ would give... but wait, "aab" is not in $L_G(S)$) Wait, this is where the issue lies: we shouldn't be able to derive "a" from $S_{ab}$ because "aab" is not in $L_G(S)$. But "aab" actually IS in $L_G(S)$! Let me check my production rules again: - $S \to SA$: So if $S$ derives "aa" and $A$ derives "b", then $S$ derives "aab". Actually, let's construct $L_G(S)$ properly: 1. $S \to a$ directly gives "a" 2. $S \to SA \to aA$ gives: - $aA \to aa$ (using $A \to a$) - $aA \to ab$ (using $A \to b$) 3. $S \to SA \to SAA$ gives: - $SAA \to aAA$ gives: - $aAA \to aaa$ - $aAA \to aab$ - $aAA \to aba$ - $aAA \to abb$ - and so on... Wait, but we have a non-recursive rule for $S$, but $S \to SA$ is recursive. Given that $S$ can derive both $a$ and $SA$, let's characterize $L_G(S)$ more precisely. Let's define $S$ more carefully: - $S \to a$ gives "a" - $S \to SA$ where $A$ can be $a$ or $b$, so: - $S \to SA \to aA \to aa$ or $ab$ - $S \to SA \to (SA)A \to aAA \to aaa, aab, aba, abb$ - $S \to SA \to ((SA)A)A \to aAAA \to aaaa, ...$ So $L_G(S) = \{a(a+b)^n \mid n \geq 0\}$ where $+$ represents choice. Now, $\Del(L_G(S))$ contains all strings obtained by removing "ab" from strings in $L_G(S)$. Let's check: - Removing "ab" from $a(a+b)^n$: - If $n = 0$, string is "a" - no "ab" to remove - If $n = 1$, string is "aa" or "ab" - "aa" has no "ab", "ab" gives $\varepsilon$ after removal - If $n = 2$, string is "aaa", "aab", "aba", "abb" - "aaa" - no "ab" - "aab" - removing "ab" gives "a" - "aba" - removing "ab" gives "a" - "abb" - no "ab" - If $n = 3$, string is "aaaa", "aaab", "aaba", "aabb", "abaa", "abab", "abba", "abbb" - "aaab" - removing "ab" gives "aa" - "aaba" - removing "ab" gives "aa" - "aabb" - removing first "ab" gives "ab", removing second "ab" gives "ab" (wait, not sure if the problem specifies how many times to remove "ab", but according to the definition for $\Del$, it's exactly once) - "abaa" - removing "ab" gives "aa" - "abab" - removing first "ab" gives "ab", removing second "ab" gives "aa" So $\Del(L_G(S)) = \{\varepsilon, a, aa, ...\} = \{a(a+b)^n \mid n \geq -1\} = \{a(a+b)^n \mid n \geq 0\} \cup \{\varepsilon\} = \{a(a+b)^n \mid n \geq -1\}$. Now let's see what $S_{ab}$ can derive: - $S_{ab} \to S_{ab}A$ - If $S_{ab}$ derives $\varepsilon$, this can derive $A \to a$ or $b$ - If $S_{ab}$ derives $a$, this can derive $aA \to aa$ or $ab$ - and so on... - $S_{ab} \to SA_{ab}$ - $A_{ab}$ has no derivations (because $A \to a$ or $b$, neither containing "ab"), so this rule doesn't produce anything - $S_{ab} \to S_aA_b$ - $S_a$ can derive: - $\varepsilon$ (corresponding to strings "a" from $S$) - $a$ (corresponding to strings "aa" from $S$) - $aa$ (corresponding to strings "aaa" from $S$) - etc. - $A_b$ can derive $\varepsilon$ (corresponding to string "b" from $A$) - So $S_aA_b$ can derive $\varepsilon, a, aa, ...$ Indeed, $S_{ab}$ can derive $\{\varepsilon, a, aa, ...\}$, which matches $\Del(L_G(S))$. Phew! I think I got it right now. Let's summarize: $S \rightarrow SA | a$ (original) $S_{ab} \rightarrow S_{ab}A | SA_{ab} | S_aA_b$ $S_a \rightarrow SA_a | \varepsilon$ $S_b \rightarrow S_bA$ $A \rightarrow a | b$ (original) $A_{ab} \rightarrow \emptyset$ (no productions) $A_a \rightarrow \varepsilon$ $A_b \rightarrow \varepsilon$ Let me just write out the final answer: Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab}A\mid SA_{ab}\mid S_aA_b$ $S_a\rightarrow SA_a\mid\varepsilon$ $S_b\rightarrow S_bA$ $A\rightarrow a\mid b$ $A_{ab}\rightarrow \text{leer}$ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ Actually, looking back at our construction from part c, I'm realizing something: $A_{ab}$ might actually have productions. Let's revisit the problem statement: > Definieren Sie nun $P'$ und $S'$, sodass > 1. $L_{G'}(X)=L_G(X)$ > 2. $L_{G'}(X_{ab})=\Del(L_G(X))$ > 3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$ > 4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$ > für alle $X\in V$ gilt. So $A_{ab}$ should derive $\Del(L_G(A))$. And $\Del(L_G(A)) = \Del(\{a, b\})$, which contains all strings obtained by removing "ab" from "a" or "b", which is the empty set (because neither "a" nor "b" contains "ab"). So $A_{ab}$ should have no productions. Okay, everything seems to check out. Let's find the final form:
Answer
<answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab}A\mid SA_{ab}\mid S_aA_b$ $S_a\rightarrow SA_a\mid \varepsilon$ $S_b\rightarrow S_bA$ $A\rightarrow a\mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
0 mistakes
x-ai/grok-4
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Answer
<answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Betrachten Sie die endliche Sprache $L = \{aabb\}$. Zuerst berechnen wir $\Del(L)$. Das Wort $aabb$ enthält genau ein $ab$, nämlich die Buchstaben an Positionen 2 und 3 ($a b$). Also ist $v = a$, $w = b$ und $\Del(L) = \{ab\}$. Dann ist $\Del(\Del(L)) = \Del(\{ab\})$. Für $ab$ ist $v = \varepsilon$, $w = \varepsilon$, also $\Del(\{ab\}) = \{\varepsilon\}$. Somit gilt $\Del(\Del(L)) = \{\varepsilon\}$. Nun berechnen wir $\DelTwo(L)$. Wir suchen $u, v, w$ mit $u\, ab\, v\, ab\, w = aabb$. Da $|aabb| = 4$ und $|u\, ab\, v\, ab\, w| = |u| + |v| + |w| + 4$, muss $|u| + |v| + |w| = 0$ gelten, also $u = v = w = \varepsilon$. Aber $ab\, ab = abab \neq aabb$. Es gibt keine anderen Möglichkeiten, da der Extralänge 0 ist. Also ist $\DelTwo(L) = \emptyset$. Da $\{\varepsilon\} \neq \emptyset$, gilt $\Del(\Del(L)) \neq \DelTwo(L)$. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Betrachten Sie die endliche Sprache . Zuerst berechnen wir . Das Wort enthält genau ein , nämlich die Buchstaben an Positionen 2 und 3 (). Also ist , und . Dann ist . Für ist , , also . Somit gilt . Nun berechnen wir . Wir suchen mit . Da und , muss gelten, also . Aber . Es gibt keine anderen Möglichkeiten, da der Extralänge 0 ist. Also ist . Da , gilt .
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Betrachten Sie die endliche Sprache $L = \{aabb\}$.
Zuerst berechnen wir $\Del(L)$. Das Wort $aabb$ enthält genau ein $ab$, nämlich die Buchstaben an Positionen 2 und 3 ($a b$). Also ist $v = a$, $w = b$ und $\Del(L) = \{ab\}$.
Dann ist $\Del(\Del(L)) = \Del(\{ab\})$. Für $ab$ ist $v = \varepsilon$, $w = \varepsilon$, also $\Del(\{ab\}) = \{\varepsilon\}$. Somit gilt $\Del(\Del(L)) = \{\varepsilon\}$.
Nun berechnen wir $\DelTwo(L)$. Wir suchen $u, v, w$ mit $u\, ab\, v\, ab\, w = aabb$. Da $|aabb| = 4$ und $|u\, ab\, v\, ab\, w| = |u| + |v| + |w| + 4$, muss $|u| + |v| + |w| = 0$ gelten, also $u = v = w = \varepsilon$. Aber $ab\, ab = abab \neq aabb$. Es gibt keine anderen Möglichkeiten, da der Extralänge 0 ist. Also ist $\DelTwo(L) = \emptyset$.
Da $\{\varepsilon\} \neq \emptyset$, gilt $\Del(\Del(L)) \neq \DelTwo(L)$.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Answer
<answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: - Alle Produktionen aus $P$ - Für jede Produktion $X\to YZ\in P$: \begin{align*} &X_{ab}\to Y_{ab}Z\\ &X_{ab}\to YZ_{ab}\\ &X_{ab}\to Y_a Z_b\\ &X_a \to Y Z_a\\ &X_b \to Y_b Z \end{align*} - Für jede Produktion $X\to a\in P$: $X_a \to \varepsilon$ - Für jede Produktion $X\to b\in P$: $X_b \to \varepsilon$ </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol $S':=S_{ab}$ Produktionen $P'$: - Alle Produktionen aus $P$ - Für jede Produktion $X\to YZ\in P$: \begin{align*} &X_{ab}\to Y_{ab}Z\\ &X_{ab}\to YZ_{ab}\\ &X_{ab}\to Y_a Z_b\\ &X_a \to Y Z_a\\ &X_b \to Y_b Z \end{align*} - Für jede Produktion $X\to a\in P$: $X_a \to \varepsilon$ - Für jede Produktion $X\to b\in P$: $X_b \to \varepsilon$
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Betrachten Sie die endliche Sprache $L = \{aabb\}$.
Zuerst berechnen wir $\Del(L)$. Das Wort $aabb$ enthält genau ein $ab$, nämlich die Buchstaben an Positionen 2 und 3 ($a b$). Also ist $v = a$, $w = b$ und $\Del(L) = \{ab\}$.
Dann ist $\Del(\Del(L)) = \Del(\{ab\})$. Für $ab$ ist $v = \varepsilon$, $w = \varepsilon$, also $\Del(\{ab\}) = \{\varepsilon\}$. Somit gilt $\Del(\Del(L)) = \{\varepsilon\}$.
Nun berechnen wir $\DelTwo(L)$. Wir suchen $u, v, w$ mit $u\, ab\, v\, ab\, w = aabb$. Da $|aabb| = 4$ und $|u\, ab\, v\, ab\, w| = |u| + |v| + |w| + 4$, muss $|u| + |v| + |w| = 0$ gelten, also $u = v = w = \varepsilon$. Aber $ab\, ab = abab \neq aabb$. Es gibt keine anderen Möglichkeiten, da der Extralänge 0 ist. Also ist $\DelTwo(L) = \emptyset$.
Da $\{\varepsilon\} \neq \emptyset$, gilt $\Del(\Del(L)) \neq \DelTwo(L)$.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Startsymbol $S':=S_{ab}$
Produktionen $P'$:
- Alle Produktionen aus $P$
- Für jede Produktion $X\to YZ\in P$:
\begin{align*}
&X_{ab}\to Y_{ab}Z\\
&X_{ab}\to YZ_{ab}\\
&X_{ab}\to Y_a Z_b\\
&X_a \to Y Z_a\\
&X_b \to Y_b Z
\end{align*}
- Für jede Produktion $X\to a\in P$: $X_a \to \varepsilon$
- Für jede Produktion $X\to b\in P$: $X_b \to \varepsilon$
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Answer
<answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA \mid a$ $S_{ab}\rightarrow S_{ab}A \mid SA_{ab} \mid S_a A_b$ $S_a\rightarrow SA_a \mid \varepsilon$ $S_b\rightarrow S_b A$ $A\rightarrow a \mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
0 mistakes