Exam 2024_endterm.txt — openai/gpt-oss-120b
Exercise | a | b | c | d | e | f | g | Total |
---|---|---|---|---|---|---|---|---|
1: Quiz: Reguläre und kontextfreie Sprachen | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 3.0/3.0 | 3.0/3.0 | 16.0/16.0 |
2: Residualsprachen und Minimierung | 5.0/5.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 3.0/3.0 | 3.0/4.0 | 17.0/18.0 | |
3: NFA-Konstruktion | 3.0/3.0 | 7.0/7.0 | 3.0/3.0 | 13.0/13.0 | ||||
4: NFA zu regulärem Ausdruck | 9.0/9.0 | 0.0/3.0 | 9.0/12.0 | |||||
5: Kontextfreie Sprachen | 0.0/6.0 | 4.0/4.0 | 3.0/3.0 | 7.0/13.0 | ||||
6: Quiz: Berechenbarkeit und Komplexität | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 4.0/4.0 | 14.0/14.0 | |
7: Reduktion | 6.0/6.0 | 8.0/8.0 | 14.0/14.0 | |||||
8: Bonus | 0.0/2.0 | 0.0/1.0 | 2.0/2.0 | 2.0/5.0 | ||||
Exam total | 92.0/105.0 |
Exercise 1: Quiz: Reguläre und kontextfreie Sprachen
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
Jede Frage bringt 2P.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
Jede Frage bringt 2P.
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{a,b\}$.
## subproblem a (2.0 points)
Sei $L\subseteq\Sigma^*$ eine **endliche** Sprache mit $|L|=|L^*|$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist regulär</option>
<option id="2">$\varepsilon\in L$</option>
<option id="3">$|L|=|LL|$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need to analyze: L finite language over Σ, with cardinality condition |L| = |L^*|. L^* is Kleene star of L: set of all concatenations of zero or more strings from L. Since L is finite, L^* is infinite unless L = {ε} maybe. Let's think. Condition: |L| = |L^*| (cardinality equality). Since L finite, L^* must also be finite and same size. L^* is always infinite unless L = ∅ or L = {ε}. Let's examine. If L = ∅, then L^* = {ε} by definition (empty concatenation). So |L| = 0, |L^*| =1. Not equal. If L = {ε}, then L^* = {ε} (since concatenations of ε give ε). So |L| =1, |L^*| =1, equality holds. L is finite, ok. If L contains ε and possibly other strings? Suppose L contains ε and another string w ≠ ε. Then L^* includes arbitrarily many repetitions of w, so infinite. Since L is finite >1, L^* infinite, cardinalities not equal. If L does not contain ε, then L^* includes ε (empty concatenation) plus many strings, likely infinite. If L nonempty, then L^* infinite. So only case where |L|=|L^*| is L = {ε}. Thus statements: (1) L is regular? {ε} is regular, so true. (2) ε ∈ L? yes. (3) |L| = |LL|? Let's compute LL = concatenation of L with itself: If L={ε}, then LL = {εε} = {ε}. So |LL|=1 equals |L|=1, true. Thus all three statements true. Thus answer: each 1.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Sei eine endliche Sprache mit . Welche Aussagen sind wahr?
☒ ist regulär☒☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
Jede Frage bringt 2P.
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{a,b\}$.
## subproblem a (2.0 points)
Sei $L\subseteq\Sigma^*$ eine **endliche** Sprache mit $|L|=|L^*|$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist regulär</option>
<option id="2">$\varepsilon\in L$</option>
<option id="3">$|L|=|LL|$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L\subseteq\Sigma^*$ und $L':=\{w\in L : |w|^2\le 10|w|\}$. Welche Aussagen sind wahr?
<options>
<option id="1">$L'$ ist regulär</option>
<option id="2">$L'$ ist kontextfrei</option>
<option id="3">$L'$ ist deterministisch kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need to determine truth of each statement. We have L arbitrary subset of Σ* (any language). Define L' = { w in L : |w|^2 ≤ 10 |w| }. Condition simplifies: |w|^2 ≤ 10|w| → if |w|≥0 integer. For |w| = 0, inequality 0 ≤ 0 holds. For |w|>0, divide both sides by |w| → |w| ≤ 10. So condition equivalent to: |w|=0 or 1≤|w|≤10. So L' = L intersect { strings of length ≤10 } (including empty). So it's L intersect a finite set (finite language of all strings length ≤10). The set of strings of length ≤10 over Σ is finite, thus regular (indeed finite => regular). Intersection of arbitrary language L with a regular language yields a language that may not be regular in general because regular languages are closed under intersection with arbitrary languages? Regular ∩ arbitrary =? Not necessarily regular (since arbitrary can be non-regular). Intersection of any language with finite set yields a subset of that finite set, thus finite. Actually L' is subset of the finite set of strings length ≤10, so L' is finite (maybe empty) regardless of L. Therefore L' is finite, thus regular. Also finite => context-free, also deterministic context-free (since finite languages are deterministic CFL). So all three statements true: L' is regular, context-free, deterministic context-free. Thus output 1 for each.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Sei und . Welche Aussagen sind wahr?
☒ ist regulär☒ ist kontextfrei☒ ist deterministisch kontextfrei
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
Jede Frage bringt 2P.
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{a,b\}$.
## subproblem a (2.0 points)
Sei $L\subseteq\Sigma^*$ eine **endliche** Sprache mit $|L|=|L^*|$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist regulär</option>
<option id="2">$\varepsilon\in L$</option>
<option id="3">$|L|=|LL|$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L\subseteq\Sigma^*$ und $L':=\{w\in L : |w|^2\le 10|w|\}$. Welche Aussagen sind wahr?
<options>
<option id="1">$L'$ ist regulär</option>
<option id="2">$L'$ ist kontextfrei</option>
<option id="3">$L'$ ist deterministisch kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\Sigma^*$ regulär und $k>0$. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{w\in L: |w| \equiv 0\pmod k\}$</option>
<option id="2">$\{w_1...w_k: w_1,...,w_k\in L\}$</option>
<option id="3">$\{w^k: w\in L\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need to evaluate each statement. We have L regular over alphabet {a,b}. k>0 (positive integer). Determine if each language is regular. Option 1: { w in L : |w| ≡ 0 mod k }. Intersection of L with length congruence set. Length congruence language (all strings whose length ≡0 mod k) is regular (can be recognized by DFA counting modulo k). Intersection of two regular languages is regular. Hence regular. So option 1 true (1). Option 2: { w1...wk : w1,...,wk ∈ L }. This is concatenation of k strings each from L. That's just L^k (k-fold concatenation). Since regular languages are closed under concatenation, L^k is regular. So true (1). Option 3: { w^k : w ∈ L }. This is set of strings formed by taking any w in L and repeating it k times (i.e., w concatenated with itself k times). Is that regular for any regular L? Not necessarily. This is known as the "power" operation. For fixed k it's like taking the k-th power of each word. For regular L, the set { w^k | w in L } need not be regular? Let's think. If L is regular, we can construct a DFA for L. Then we need to accept strings that can be split into k equal blocks each belonging to L with equality of the blocks (i.e., same string). That's like the language of k repeated strings from L. For k=2, known as "square" language of L; not necessarily regular. For example L = { a^n b^n } is not regular but given L must be regular. Need an example of regular L where { w^2 | w ∈ L } is not regular. Known result: If L is regular, the set { ww | w ∈ L } may be nonregular. Example: Take L = a^* b a^* (i.e., strings with exactly one b). Then ww will have exactly two b's, but also the two parts must be identical, which imposes correlation that may be nonregular. Let's test: L = { a^n b a^m | n,m ≥0 }. ww = a^n b a^m a^n b a^m = a^n b a^{m+n} b a^m. The set of such strings may be regular? Not sure. Better known example: Let L = { a^n b^n | n ≥ 0 } is not regular, can't use. Need regular L where square leads to nonregular. I recall that the language { ww | w ∈ {a,b}* } is not regular. This is the classic nonregular language. L = Σ* is regular. Then { w^2 | w ∈ Σ* } = { ww } (all squares) which is not regular. Indeed, Σ* is regular, but the set of squares is not regular. Hence for k=2, option 3 false. For any k>0, L = Σ* gives { w^k } which is set of strings that are k-fold repeats of some string, known as k-th power language, which is not regular for k≥2 (but for k=1 it's just Σ* regular). Since problem says k>0 (could be 1). Need to determine if statement holds for all k>0 or there exists k such that it's regular? The phrasing: "Welche der folgenden Sprachen sind regulär?" Means which of these languages are regular (given L regular and k>0). For general k, the language may be non-regular (except trivial cases). So we need statement to be "always regular". Option 3 is not always regular. Therefore false (0). So answers: 1=1,2=1,3=0.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">0</option>
Sei regulär und . Welche der folgenden Sprachen sind regulär?
☒☒☐
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
Jede Frage bringt 2P.
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{a,b\}$.
## subproblem a (2.0 points)
Sei $L\subseteq\Sigma^*$ eine **endliche** Sprache mit $|L|=|L^*|$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist regulär</option>
<option id="2">$\varepsilon\in L$</option>
<option id="3">$|L|=|LL|$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L\subseteq\Sigma^*$ und $L':=\{w\in L : |w|^2\le 10|w|\}$. Welche Aussagen sind wahr?
<options>
<option id="1">$L'$ ist regulär</option>
<option id="2">$L'$ ist kontextfrei</option>
<option id="3">$L'$ ist deterministisch kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\Sigma^*$ regulär und $k>0$. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{w\in L: |w| \equiv 0\pmod k\}$</option>
<option id="2">$\{w_1...w_k: w_1,...,w_k\in L\}$</option>
<option id="3">$\{w^k: w\in L\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Sei $L\subseteq\Sigma^*$ kontextfrei. Welche der folgenden Sprachen sind kontextfrei?
*Hinweis:* $L^R:=\{x_k...x_1 : x_1...x_k\in L\wedge x_1,...,x_k\in\Sigma\wedge k\ge0\}$ ist die Spiegelung von $L$.
<options>
<option id="1">$\overline{L}$</option>
<option id="2">$L\cup L^R$</option>
<option id="3">$L\cap L^R$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need to evaluate each option. Given L is context-free. Which of these are necessarily context-free? 1) Complement of a CFL is not necessarily CFL. CFLs are not closed under complement. So not always context-free. So answer 0. 2) Union of a CFL with its reversal. CFLs are closed under union. L is CFL, L^R is also CFL because CFLs are closed under reversal. Union of two CFLs is CFL. So always CFL. So answer 1. 3) Intersection of CFL with its reversal. CFLs are not closed under intersection generally, but intersection of a CFL with a regular language is CFL. Here L^R is also CFL, not necessarily regular. Intersection of two CFLs may not be CFL. So not guaranteed. So answer 0. Thus: <option id="1">0</option> <option id="2">1</option> <option id="3">0</option> We should provide that.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option>
Sei kontextfrei. Welche der folgenden Sprachen sind kontextfrei? Hinweis: ist die Spiegelung von .
☐☒☐
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
Jede Frage bringt 2P.
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{a,b\}$.
## subproblem a (2.0 points)
Sei $L\subseteq\Sigma^*$ eine **endliche** Sprache mit $|L|=|L^*|$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist regulär</option>
<option id="2">$\varepsilon\in L$</option>
<option id="3">$|L|=|LL|$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L\subseteq\Sigma^*$ und $L':=\{w\in L : |w|^2\le 10|w|\}$. Welche Aussagen sind wahr?
<options>
<option id="1">$L'$ ist regulär</option>
<option id="2">$L'$ ist kontextfrei</option>
<option id="3">$L'$ ist deterministisch kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\Sigma^*$ regulär und $k>0$. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{w\in L: |w| \equiv 0\pmod k\}$</option>
<option id="2">$\{w_1...w_k: w_1,...,w_k\in L\}$</option>
<option id="3">$\{w^k: w\in L\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Sei $L\subseteq\Sigma^*$ kontextfrei. Welche der folgenden Sprachen sind kontextfrei?
*Hinweis:* $L^R:=\{x_k...x_1 : x_1...x_k\in L\wedge x_1,...,x_k\in\Sigma\wedge k\ge0\}$ ist die Spiegelung von $L$.
<options>
<option id="1">$\overline{L}$</option>
<option id="2">$L\cup L^R$</option>
<option id="3">$L\cap L^R$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem e (2.0 points)
Sei $G$ die Grammatik mit Produktionen $S\rightarrow aT$, $T\rightarrow Sb$. Welche Aussagen sind wahr?
<options>
<option id="1">$G$ ist rechtslinear</option>
<option id="2">$G$ ist kontextfrei</option>
<option id="3">$L(G)$ ist regulär</option>
<option id="4">$L(G)$ ist kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
We need to answer subproblem e: grammar G with productions S → aT, T → S b. So nonterminals: S, T. Productions: S → a T, T → S b. No other productions, no epsilon. Start symbol? Usually S. So language generated: strings that start with a, then some pattern? Let's analyze derivations. We have S -> a T T -> S b Thus we can substitute T by S b, giving S -> a S b. Now we have S -> a S b. That's a recursion with a leftmost a then S then b. No base production to terminate S. There is no rule to produce epsilon or terminal only. So derivations never terminate: infinite recursion. However maybe there is also possibility to stop after some steps? There's no production for S to become terminal string. So language is empty (no string can be derived). Wait but we could have infinite derivations, but not finite string. So L(G) = ∅. Check: In typical context-free grammars, if no derivation leads to string of terminals only, language is empty. So L(G)=∅. Now evaluate statements: 1. G is right-linear? Right-linear grammar means each production has at most one nonterminal and it appears at the right end of RHS, and RHS may have terminals possibly before that? Right-linear forms: A → w B or A → w where w is terminal string. Here S → a T: RHS: terminal a then nonterminal T at right end => right-linear. T → S b: RHS: nonterminal S followed by terminal b. Nonterminal S is not at right end; it's at left. That's left-linear, not right-linear. So grammar is not right-linear overall because one production violates form. So statement 1 is false. Alternatively some definitions require each production to be of form A→αB or A→α where α∈Σ*. Here T→S b is of form A→Bα (nonterminal leftmost). So not right-linear. So 0. 2. G is context-free? Yes: each production has a single nonterminal on LHS. That's context-free. So true => 1. 3. L(G) is regular? Language is empty. Empty language is regular (regular languages include ∅). So true. Wait need to consider that grammar may be not generating any string, but empty language is regular. So statement 3 true => 1. 4. L(G) is context-free? Empty language is also context-free. So true => 1. Thus answer: 0,1,1,1. Double-check: Some might argue that empty language is regular and context-free. Yes. Thus final.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">1</option> <option id="4">1</option>
Sei die Grammatik mit Produktionen , . Welche Aussagen sind wahr?
☐ ist rechtslinear☒ ist kontextfrei☒ ist regulär☒ ist kontextfrei
Subproblem f (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
Jede Frage bringt 2P.
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{a,b\}$.
## subproblem a (2.0 points)
Sei $L\subseteq\Sigma^*$ eine **endliche** Sprache mit $|L|=|L^*|$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist regulär</option>
<option id="2">$\varepsilon\in L$</option>
<option id="3">$|L|=|LL|$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L\subseteq\Sigma^*$ und $L':=\{w\in L : |w|^2\le 10|w|\}$. Welche Aussagen sind wahr?
<options>
<option id="1">$L'$ ist regulär</option>
<option id="2">$L'$ ist kontextfrei</option>
<option id="3">$L'$ ist deterministisch kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\Sigma^*$ regulär und $k>0$. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{w\in L: |w| \equiv 0\pmod k\}$</option>
<option id="2">$\{w_1...w_k: w_1,...,w_k\in L\}$</option>
<option id="3">$\{w^k: w\in L\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Sei $L\subseteq\Sigma^*$ kontextfrei. Welche der folgenden Sprachen sind kontextfrei?
*Hinweis:* $L^R:=\{x_k...x_1 : x_1...x_k\in L\wedge x_1,...,x_k\in\Sigma\wedge k\ge0\}$ ist die Spiegelung von $L$.
<options>
<option id="1">$\overline{L}$</option>
<option id="2">$L\cup L^R$</option>
<option id="3">$L\cap L^R$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem e (2.0 points)
Sei $G$ die Grammatik mit Produktionen $S\rightarrow aT$, $T\rightarrow Sb$. Welche Aussagen sind wahr?
<options>
<option id="1">$G$ ist rechtslinear</option>
<option id="2">$G$ ist kontextfrei</option>
<option id="3">$L(G)$ ist regulär</option>
<option id="4">$L(G)$ ist kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<option id="4">1</option>
user:
## subproblem f (3.0 points)
Seien $L_1,L_2,L_3\subseteq\{a,b\}^*$ Sprachen, sodass $L_1$ genau die Wörter gerader Länge enthält, $L_2$ genau die Wörter enthält, in denen auf jedes $a$ unmittelbar ein $b$ folgt, und $L_3:= L_1\cap L_2$. Es gilt etwa $\varepsilon,ab,babb\in L_3$ und $b,ba,aabb\notin L_3$. Geben Sie reguläre Ausdrücke $r_1,r_2,r_3$ an, sodass $L(r_i)=L_i$, für $i\in\{1,2,3\}$.
<answer-template id="1">
$r_1=?$
$r_2=?$
$r_3=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to provide regular expressions for L1, L2, L3 as described. Alphabet Σ = {a,b}. L1 = set of words of even length. Regular expression: (a|b)(a|b))*? Actually even length = any pair of symbols repeated any number. So (aa|ab|ba|bb)* or ( (a|b)(a|b) )* . Provide concise: ((a|b)(a|b))*. L2 = words where every a is immediately followed by b. So pattern: any number of b's and "ab" blocks, but cannot have a not followed by b. Also can end with b or ab. So regular expression: (b|ab)*. However need ensure that after a there is b, and cannot have overlapping: e.g., "abb" is allowed? Let's test: "abb": first a then b okay, then remaining b okay. Expression (b|ab)* yields sequences of either b or ab concatenated. "abb" can be "ab"+"b". Yes. "a" alone not allowed. "ba"? "b"+"a"? but a not allowed alone; expression cannot produce "ba". Indeed "ba" would be b then a -> a not allowed. That's correct because an a must be followed by b, so "ba" ends with a not followed by b, not allowed. So (b|ab)* works. Also epsilon is allowed (zero occurrences). So L2 = (b|ab)*. L3 = intersection of even length words and L2. So need regex for words of even length where every a is followed by b. Additionally overall length even. Equivalent to strings composed of blocks that ensure even total length. Since L2 strings are built of b and ab blocks; each block has length 1 (b) or 2 (ab). Need overall even length. So total length parity condition: sum of lengths of blocks must be even. So we can consider building regex that generates sequences where total parity is even. Approach: we can pair blocks. For example, we can have (bb|ab|ba|a b?)? Hmm. We need strings from (b|ab)* with even length. Let's compute: Represent each block as either b (length1) or ab (length2). Even total length if number of b blocks is even (since each adds 1) because ab blocks add 2 (even). So parity determined by count of b blocks mod 2. So we need sequences where there is an even number of solitary b blocks. We can construct regex grouping b's in pairs possibly separated by ab blocks. Patterns: (b b | b(ab)*b | (ab)*)? More systematic: ( (ab)* (bb) (ab)* )* ... Might be easier to define L3 = ((ab)* b b (ab)*)* (ab)* . Let's think: any sequence of ab blocks (any number) interspersed with b's. Even number of b's overall. So we can think of constructing pairs of b's possibly with any number of ab between them. So pattern: ( (ab)* b (ab)* b )* (ab)* . Because each pair of b's ensures even count. Also we could have zero b's -> just (ab)* which is even length (since each ab is length2). So final regex: ((ab)* b (ab)* b )* (ab)* . However need to ensure there are no stray b unmatched. This works: we take any number of pairs, each pair consists of some (maybe zero) ab's, then b, then some (maybe zero) ab's, then b. After finishing pairs, some trailing ab's may exist. This covers all strings where b's occur in even number; between the two b's we could have any number of ab's. Also we could have pairs back-to-back. Simplify: ((ab)*b(ab)*b)*(ab)* Thus answer: r1 = ((a|b)(a|b))* r2 = (b|ab)* r3 = ((ab)*b(ab)*b)*(ab)* Provide them exactly. Now produce answer in required format: <answer id="1"> with the three lines. Make sure to follow template: they gave answer-template id 1 with placeholders line "r_1=?". So we need fill with actual regex after =. Thus output: <answer id="1"> r_1=((a|b)(a|b))* r_2=(b|ab)* r_3=((ab)*b(ab)*b)*(ab)* </answer> Check formatting: No extra spaces? Should be fine.
Answer
<answer id="1"> r_1=((a|b)(a|b))* r_2=(b|ab)* r_3=((ab)*b(ab)*b)*(ab)* </answer>
Seien Sprachen, sodass genau die Wörter gerader Länge enthält, genau die Wörter enthält, in denen auf jedes unmittelbar ein folgt, und . Es gilt etwa und . Geben Sie reguläre Ausdrücke an, sodass , für .
r_1=((a|b)(a|b))* r_2=(b|ab)* r_3=((ab)*b(ab)*b)*(ab)*
Subproblem g (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
Jede Frage bringt 2P.
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{a,b\}$.
## subproblem a (2.0 points)
Sei $L\subseteq\Sigma^*$ eine **endliche** Sprache mit $|L|=|L^*|$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist regulär</option>
<option id="2">$\varepsilon\in L$</option>
<option id="3">$|L|=|LL|$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L\subseteq\Sigma^*$ und $L':=\{w\in L : |w|^2\le 10|w|\}$. Welche Aussagen sind wahr?
<options>
<option id="1">$L'$ ist regulär</option>
<option id="2">$L'$ ist kontextfrei</option>
<option id="3">$L'$ ist deterministisch kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\Sigma^*$ regulär und $k>0$. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{w\in L: |w| \equiv 0\pmod k\}$</option>
<option id="2">$\{w_1...w_k: w_1,...,w_k\in L\}$</option>
<option id="3">$\{w^k: w\in L\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Sei $L\subseteq\Sigma^*$ kontextfrei. Welche der folgenden Sprachen sind kontextfrei?
*Hinweis:* $L^R:=\{x_k...x_1 : x_1...x_k\in L\wedge x_1,...,x_k\in\Sigma\wedge k\ge0\}$ ist die Spiegelung von $L$.
<options>
<option id="1">$\overline{L}$</option>
<option id="2">$L\cup L^R$</option>
<option id="3">$L\cap L^R$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem e (2.0 points)
Sei $G$ die Grammatik mit Produktionen $S\rightarrow aT$, $T\rightarrow Sb$. Welche Aussagen sind wahr?
<options>
<option id="1">$G$ ist rechtslinear</option>
<option id="2">$G$ ist kontextfrei</option>
<option id="3">$L(G)$ ist regulär</option>
<option id="4">$L(G)$ ist kontextfrei</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<option id="4">1</option>
user:
## subproblem f (3.0 points)
Seien $L_1,L_2,L_3\subseteq\{a,b\}^*$ Sprachen, sodass $L_1$ genau die Wörter gerader Länge enthält, $L_2$ genau die Wörter enthält, in denen auf jedes $a$ unmittelbar ein $b$ folgt, und $L_3:= L_1\cap L_2$. Es gilt etwa $\varepsilon,ab,babb\in L_3$ und $b,ba,aabb\notin L_3$. Geben Sie reguläre Ausdrücke $r_1,r_2,r_3$ an, sodass $L(r_i)=L_i$, für $i\in\{1,2,3\}$.
<answer-template id="1">
$r_1=?$
$r_2=?$
$r_3=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
r_1=((a|b)(a|b))*
r_2=(b|ab)*
r_3=((ab)*b(ab)*b)*(ab)*
</answer>
user:
## subproblem g (3.0 points)
Sei $M$ der folgende DFA. Gibt es einen DFA $M'$, sodass $L(M)$ und $L(M')$ die gleichen Residualsprachen haben, aber nicht gleich sind; also $\{L(M)^w:w\in\Sigma^*\}=\{L(M')^w:w\in\Sigma^*\}$ und $L(M)\ne L(M')$?
Falls ja, geben Sie einen solchen DFA an; falls nein, begründen Sie Ihre Antwort kurz.
Zustände: 0, 1, 2
Startzustand: 0
Finalzustände: 2
Transitionen:
0, a -> 1
0, b -> 2
1, a -> 0
1, b -> 2
2, a -> 0
2, b -> 2
<options>
<option id="1">Wahr, DFA</option>
<option id="2">Falsch, Begründung</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need to answer subproblem g. It asks: Is there a DFA M' such that L(M) and L(M') have same set of residual languages (i.e., same Myhill-Nerode equivalence classes), but languages themselves are different? In other words, can two distinct languages have same set of residual languages? Usually residual languages are language quotients L^w = { x | wx ∈ L }. The set of residuals of a language uniquely determines the language: the language itself is the residual for w = ε. So if you have same set of residuals, then they contain ε's residual which is L itself. If the set of residuals is same, then the residual for ε must be same language, thus L(M)=L(M'). Wait careful: The set of residuals includes L itself (w=ε). If two languages have exactly same set of residuals, then the residual for empty word must be present in both sets; but could be that the residual for empty word is not uniquely identified? However among all residuals, there is one that is the language itself. If the sets are equal, then there exists some w' in the other language such that its residual equals L (the original). But does that guarantee L' = L? Let's analyze. For language L', its residual for empty word is L' itself, which must be in the set of residuals of L (since the sets are equal). So L' is some residual of L, say L^u. But L^u = { x | ux ∈ L }. Could L' equal L^u but L' ≠ L? Yes possible if L has a residual equal to a different language than itself. Example: languages where some quotient equals L again? That's idempotent property. If L has a non-trivial residual equal to L, then there exists u ≠ ε such that L^u = L. Then we can take L' = L (same) or maybe choose L' = L^u = L. That doesn't give different language. Need L' distinct but same set of residuals. Consider that the set of residuals of L is closed under left quotients: for any w, (L^w)^v = L^{wv}. So it's a monoid under concatenation of prefixes. If you pick a different starting residual, the set of residuals may be same (since you just rename the ε residual). Actually if you choose L' = L^u for some u, then its residuals set is { (L^u)^w | w } = { L^{uw} | w } = { L^v | v ∈ Σ* } = same set. So any left quotient of L yields a language with same residual set. Thus if L has a nontrivial left quotient not equal to L, we get a different language with same residuals. So we need to check if given DFA M has such property, i.e., there exists a reachable state (other than start) with same right language as start state. Right language of a state q is { w | from q reading w leads to accept }. That's exactly residual for the word leading to q. So we need a state q ≠ start where the right language equals start state's language (L). Then we can define M' with start state that state (instead of original start). Since DFA minimal? Not necessarily. Let's examine M. States: 0 (start), 1, 2 (accepting). Transition table: 0: a→1, b→2 1: a→0, b→2 2: a→0, b→2 Accepting: only state 2. Compute language L = set of strings that end in state 2. Let's compute right languages: - L0 (from start) = set of strings w: δ*(0,w) = 2. This is L itself. - L1: strings w: δ*(1,w) = 2. - L2: strings w: δ*(2,w) = 2, i.e., strings that keep you in 2 (since 2 is sink accepting for b, and a goes to 0 which may later go to 2). Actually from 2, a→0 (non-accept) then further. So need to compute. Let's compute languages: Define behavior: From any state, reading b goes to 2 (accept). From state 2, reading b stays at 2. From 0 or 1, reading a toggles between them (0↔1) and b jumps to 2. Thus to reach accept, you must have a suffix where the last read b leads to 2, unless you are already in 2. But after b you are in 2, and further b's remain accept; an a after being in 2 moves to 0 (non-accept) but then need another b later. Thus language L = set of strings that contain at least one b (anywhere) such that after the last symbol, you're in 2. Actually the condition for final state after whole string: the last symbol's effect determines final state. Let's compute reachable states after processing string: track parity of number of a's since last b? Because after b you go to 2, then a toggles between 0 and 2? Wait from 2, a→0, from 0, a→1, from 1, a→0. So after a b, you're in 2, then if you have an odd number of subsequent a's, you end in 0 (non-accept); even number leads to 2. Also any b later resets to 2. So overall acceptance condition: the string ends in state 2 iff either the string ends with b, or ends with a sequence of a's after the last b of even length (including zero). If there is no b at all, we start at 0 and stay in {0,1} depending on parity of a's, never reach 2, so not accepted. So L = { strings over {a,b} that contain at least one b, and after the last b, the number of trailing a's is even }. Now compute L1 for state 1: Starting from 1 (which is like after reading a from start). From 1, a toggles to 0, b→2. So similar structure but offset parity. Language from 1: strings that either contain a b (immediate) or after last b, trailing a's even? Let's analyze: from state 1, reading b leads to 2 immediately accept regardless of following. So condition: either the string contains a b (anywhere) OR the string has no b, then you need after processing being in 1 initial, need to end in 2? With only a's, starting 1, after first a you go to 0, second a to1, third to0... you never reach 2 without b. So with only a's never accept. So L1 = set of strings that contain at least one b (no condition on trailing a's? Actually after a b you go to 2, then further symbols behave as from 2. So acceptance depends same as for L after that b). So after first b, we are at 2, then need the remainder to satisfy same condition as L (i.e., after last b even a's). So L1 = strings where there is a b such that after the *last* b of the string, the number of trailing a's is even. That's same as L. Actually L condition includes that requirement; regardless of preceding prefix. So L1 = L as well? Let's test with a string "b": from start 0, b leads to2 accepted. From state1, b leads to2 accepted. So both accept. String "ab": from start 0, a→1, then b→2 accept. So "ab" ∈ L. From state1 (starting) reading "ab": 1→b→2 accept after "b", the preceding a leads 1→0, then b→2 accept. So accepted. So "ab" also in L. What about "a": not accepted by L (no b). From state1, "a": 1→0 not accept. So both not accept. So seems languages equal. Let's verify a case where last b trailing a odd after last b: "ba": from start: b→2, a→0 (non-accept) so "ba" not in L. From state1: b→2, a→0 not accept. So same. So L1 = L indeed. What about "aba"? start: a→1, b→2, a→0 → reject. L reject. Starting from state1: a→0, b→2, a→0 reject. So same. Thus state1's language equals L. Therefore there exists a different state with same right language. So we can construct M' by setting start state = 1 (instead of 0) while same transitions, same final state (2). Then L(M') = language accepted starting from state1, which equals L(M). Wait they are equal, not different. But we need L(M) ≠ L(M'). However starting at state1 gives same language, as we just reasoned, so not different. But maybe we can change the set of final states to produce a different language but same residuals? The condition is that M' must have same residual languages set as M, but languages themselves not equal. If we start at state0' which is state0, but change final states? Changing accept set would change which residuals are considered languages maybe produce same set? Need preserve set of residuals: the residuals are determined by right languages of states. Changing which state is start does not change set, only which one corresponds to ε. So to get different language but same set, need pick a start state q where the right language L_q is different from L_0, but set of all right languages includes L_0 as some other state. However we need start state's language to be different from original L, but still the collection of languages reachable from all states (i.e., set of residuals) must be same as original. That means original must have at least two distinct right languages among states. Then picking a different start gives different language but same overall set. So we need DFA where not all states have same language. Let's compute languages for states 0,1,2. Are they distinct? We already suspect L0 = L, L1 = L (maybe same). L2 language from state2: strings that when processed from 2 end in 2. As earlier, from 2, we need to end in 2. So what's condition? Starting in 2 (already accept). After reading any number of b's, we stay in 2. After reading a, we go to 0, then need even a's after last b to return to 2. So language L2 = { strings that either consist of any number of b's (including empty) possibly interleaved with a's such that after any a when we are not in 2, eventually need a b to return, etc. Equivalent: strings where the number of trailing a's after the last b is even (including zero). That is same as L but also includes ε? Let's test ε: from state2, ε leaves at 2 (accept) → ε ∈ L2. But ε not in L (since no b). Thus L2 ≠ L. Good. So distinct languages. Now residual set of M includes L0, L1 (same as L0), L2. So set = {L, L2}. (Two distinct languages). If we choose start state = 2, language becomes L2, which is different from L. The set of residual languages remains same (same two languages). Therefore M' with start=2 yields same residual set, but language differs. So answer: Yes, such DFA exists: keep same transition and final states, just change start from 0 to 2 (or to 1? but 1 same). So we need to output options: option 1 true? Options: "Wahr, DFA" vs "Falsch, Begründung". So we need to select correct. The statement: There exists such DFA M'? The answer is "Wahr, DFA". So option 1 = 1, option 2 = 0. And we need provide the DFA as answer id "3". Provide description: states same, start=2, final states same (2). That DFA's language is L2 (different). Provide brief explanation. Thus output: <option id="1">1</option> <option id="2">0</option> <answer id="3"> DFA M' = (Q={0,1,2}, Σ={a,b}, δ as given, start state = 2, final states = {2}). </answer> We might include explanation: residual languages same because set of right languages unchanged. Let's craft final.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> **DFA M′** - Zustände: 0, 1, 2 - Eingabealphabet: {a,b} - Startzustand: **2** - Endzustände: {2} - Übergangsfunktion (wie bei M) \[ \begin{array}{c|cc} & a & b \\ \hline 0 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 0 & 2 \end{array} \] Der Übergangsgraph ist identisch zu dem von M; nur der Startzustand ist 2 statt 0. Damit ist \[ L(M') = \{\,w \mid \text{nach }w \text{ befindet sich der Automat in Zustand }2\} \] die rechte Sprache von Zustand 2, also ein anderer regulärer Sprachteil als \(L(M)\) (z.\,B. \(\varepsilon \in L(M')\) aber \(\varepsilon \notin L(M)\)). Da die Menge der rechten Sprachen (Residualsprachen) aller Zustände unverändert bleibt, gilt \[ \{\,L(M)^w : w\in\Sigma^*\,\}= \{\,L(M')^w : w\in\Sigma^*\,\}, \] wobei gleichzeitig \(L(M)\neq L(M')\). Hence such a DFA exists. </answer>
Sei der folgende DFA. Gibt es einen DFA , sodass und die gleichen Residualsprachen haben, aber nicht gleich sind; also und ? Falls ja, geben Sie einen solchen DFA an; falls nein, begründen Sie Ihre Antwort kurz. Zustände: 0, 1, 2 Startzustand: 0 Finalzustände: 2 Transitionen: 0, a -> 1 0, b -> 2 1, a -> 0 1, b -> 2 2, a -> 0 2, b -> 2
☒Wahr, DFA☐Falsch, Begründung
DFA M′ - Zustände: 0, 1, 2 - Eingabealphabet: {a,b} - Startzustand: 2 - Endzustände: {2} - Übergangsfunktion (wie bei M) Der Übergangsgraph ist identisch zu dem von M; nur der Startzustand ist 2 statt 0. Damit ist die rechte Sprache von Zustand 2, also ein anderer regulärer Sprachteil als (z.\,B. aber ). Da die Menge der rechten Sprachen (Residualsprachen) aller Zustände unverändert bleibt, gilt wobei gleichzeitig . Hence such a DFA exists.
Exercise 2: Residualsprachen und Minimierung
Subproblem a (5.0/5.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Residualsprachen und Minimierung
## subproblem a (5.0 points)
Minimieren Sie den folgenden DFA $M$ unter Verwendung des erweiterten Minimierungsalgorithmus. Bestimmen Sie also für jedes Paar an Zuständen $(q,p)$, ob diese äquivalent sind. Wenn ja, tragen Sie ein Gleichheitszeichen „$=$" in die entsprechende Zelle ein, wenn nein, tragen Sie ein möglichst kurzes Wort ein, das dies beweist.
Zustände: 0, 1, 2, 3, 4, 5
Startzustand: 0
Finalzustände: 5
Transitionen:
0, a -> 3
0, b -> 2
1, a -> 4
1, b -> 2
2, a -> 5
2, b -> 4
3, a -> 1
3, b -> 4
4, a -> 1
4, b -> 4
5, a -> 5
5, b -> 4
<answer-template id="1">
Äquivalenztabelle:
(0,1): $?$
(0,2): $?$
(0,3): $?$
(0,4): $?$
(0,5): $?$
(1,2): $?$
(1,3): $?$
(1,4): $?$
(1,5): $?$
(2,3): $?$
(2,4): $?$
(2,5): $?$
(3,4): $?$
(3,5): $?$
(4,5): $?$
</answer-template>
<example>
(0,1): $a$
(0,2): $ba$
(0,3): $=$
(0,4): $\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to compute equivalence for each unordered pair. Use extended minimization algorithm: find distinguishing words. Compute language from each state. Let's compute reachable and acceptance: final state is 5 only. So any state that can reach 5 via some word is maybe accepting depending on word continuation. We need to check if two states are equivalent: for all strings, they either both lead to final or not. Compute language of each state. Let's construct transition table: States: 0: a ->3 b ->2 1: a ->4 b ->2 2: a ->5 (final) b ->4 3: a ->1 b ->4 4: a ->1 b ->4 (self-loop on b) 5: a ->5 b ->4 Final only 5. Now compute reachable sets of accepting strings from each state. Equivalent if same set. We can compute by considering the DFA minimized algorithm: distinguish states based on whether one is final and other not: initial partition: final {5}, non-final {0,1,2,3,4}. So any pair (5, any other) initially distinguishable with ε (empty word) because one final, other not. So for each pair involving 5, we put ε as witnessing word. Thus (0,5): ε ; (1,5): ε ; (2,5): ε ; (3,5): ε ; (4,5): ε. Now need to see if any among non-final are distinguishable. We can apply Hopcroft-like: check transitions. We need to compute distinguishability table. Start with all pairs among {0,1,2,3,4} unknown. Iteratively, for each pair (p,q), if there exists a symbol such that the pair of successors is already known distinguishable, then (p,q) is distinguishable and the distinguishing word is that symbol concatenated with witness for successors. We also need to consider maybe they are equivalent. Let's compute. We have set of pairs (unordered). We'll compute. First, note that state 4 has loop on b to itself, and on a goes to 1. State 2 on a goes to 5 (final), on b to 4. State 0 on a to3, on b to2. State 1 on a to4, on b to2. State 3 on a to1, on b to4. We know that (x,5) distinguishable with ε. Now compute for pairs among non-final. We can create a table of successors: Pair (p,q): Compute transitions: For each symbol a,b: - For (0,1): a: (3,4) b: (2,2) If any successor pair already distinguishable. (2,2) is same state => equivalent (not distinguishing). (3,4) unknown currently. - For (0,2): a: (3,5) -> (3,5) involves 5, which is distinguishable (since 5 final). Since (3,5) is known distinguishable (ε). So (0,2) is distinguishable by symbol a, with word a (since after a we have already distinguishing word ε). So witness word = a. - For (0,3): a: (3,1) b: (2,4) (3,1) is same as (1,3) unknown. (2,4) unknown. - For (0,4): a: (3,1) b: (2,4) same as above. - For (1,2): a: (4,5) -> (4,5) distinguishable (ε). So (1,2) distinguishable by a -> witness a. - For (1,3): a: (4,1) b: (2,4) (4,1) same as (1,4) unknown. (2,4) unknown. - For (1,4): a: (4,1) same as before. b: (2,4) same. - For (2,3): a: (5,1) -> (5,1) distinguishable (ε). So (2,3) distinguishable by a -> word a. - For (2,4): a: (5,1) -> distinguishable. So (2,4) distinguishable by a -> word a. - For (3,4): a: (1,1) same state => not distinguish. b: (4,4) same state. Both same => no distinction from one step. Thus (3,4) may be equivalent unless later. Now we have some distinguished pairs: (0,2)=a, (1,2)=a, (2,3)=a, (2,4)=a. Also any pair with 5 already. Now we can propagate: need to see if other pairs become distinguishable because their successors lead to a distinguished pair. Consider (0,1): we need successors (3,4) via a and (2,2) via b. (2,2) is same. (3,4) currently not distinguished. So not yet. (0,3): successors (3,1) via a, (2,4) via b. (2,4) now known distinguishable (a). Therefore (0,3) becomes distinguishable via b followed by ε (since (2,4) distinguished with ε). So word = b a? Wait: The distinguishing word for (2,4) is "a". Actually we earlier said (2,4) distinguished by a (since immediate a leads to final). So the distinguishing word for (2,4) is "a". Thus for (0,3), we have b then that word a, so "ba". So witness "ba". So (0,3): ba. (0,4): successors (3,1) via a, (2,4) via b. Same as (0,3) because (2,4) distinguishable via a. So (0,4) also distinguished with "ba". (Could also maybe "b a"). (1,3): successors (4,1) via a, (2,4) via b. (2,4) distinguishable, so (1,3) distinguished via b + "a" = "ba". So (1,3): ba. (1,4): successors (4,1) via a, (2,4) via b. Same, so "ba". So (1,4): ba. Now (3,4) still maybe equivalent. Let's check if any new info distinguishes it. For (3,4): a -> (1,1) same; b -> (4,4) same. Both are same states (identical), which are equivalent obviously. So (3,4) remains equivalent. Now (0,1) may become distinguishable via a leading to (3,4). Since (3,4) equivalent, not distinguishing. b leads to (2,2) same. So still possibly equivalent. Need further look: Are their languages the same? Let's compute reachable accepted strings from 0 and 1. We can attempt to see if there is any string that leads to final from one but not other. From 0: need to eventually go to 5. Let's explore. Paths: From 0, on b goes to 2, then a goes to 5. So word "ba" leads to accept. From 1, on b also goes to 2 then a => also accepts "ba". So both accept "ba". On a from 0 goes to 3 then? 3 on a ->1 then maybe ... Let's try "aa": 0 a ->3 a ->1 not final. Continue. From 1 need to reach 5: need to get to state 2 then a. From 1, maybe b a? 1 b ->2 a ->5, so "ba" again. From 0, maybe "ab a"? 0 a ->3 b ->4 a ->5? Let's see: 4 a ->1, not 5. Actually 4 a ->1, not final. Need to reach 5. To get to 5, must pass through state 2 then a. So need to reach 2. Which states can reach 2? Looking at transitions: from 0 via b, from 1 via b, from 3? 3 b ->4 not 2. 4 b ->4. 5 b ->4. So only 0 and 1 can directly go to 2 via b. Also perhaps from some other via sequence. From 3 a ->1 then b ->2 etc. So maybe both have same capability. We suspect 0 and 1 are equivalent. Since (3,4) are equivalent, that supports. Thus equivalence classes: {0,1}, {3,4}? Wait 3 and 4 are equivalent; also maybe 0 and 1 are equivalent. And 2 stands alone? 2 distinguished from 0 and 1 because can reach final in one step a. 2 is not equivalent to 0 or1. 5 is final. Thus minimal DFA will have states: [0,1] as one, [3,4] as another, 2,5. Need check if [0,1] and [3,4] may be merged? They are distinguished already by (0,3) etc. So separate. Now fill the table. List of pairs and witness: (0,1): = (equivalent) (0,2): a (distinguish via a leading to 5 vs non-final). Actually from 0 a goes to 3 non-final, from 2 a to 5 final. So distinguishing word a. (0,3): ba (as computed) (0,4): ba (0,5): ε (1,2): a (1,3): ba (1,4): ba (1,5): ε (2,3): a (2,4): a (2,5): ε (since 5 final; but 2 is not final, ε distinguishes) (3,4): = (3,5): ε (4,5): ε Check (2,5) indeed ε because 5 final, 2 not final. Now fill template.
Answer
<answer id="1"> Äquivalenztabelle: (0,1): $=$ (0,2): $a$ (0,3): $ba$ (0,4): $ba$ (0,5): $\varepsilon$ (1,2): $a$ (1,3): $ba$ (1,4): $ba$ (1,5): $\varepsilon$ (2,3): $a$ (2,4): $a$ (2,5): $\varepsilon$ (3,4): $=$ (3,5): $\varepsilon$ (4,5): $\varepsilon$ </answer>
Minimieren Sie den folgenden DFA unter Verwendung des erweiterten Minimierungsalgorithmus. Bestimmen Sie also für jedes Paar an Zuständen , ob diese äquivalent sind. Wenn ja, tragen Sie ein Gleichheitszeichen „" in die entsprechende Zelle ein, wenn nein, tragen Sie ein möglichst kurzes Wort ein, das dies beweist. Zustände: 0, 1, 2, 3, 4, 5 Startzustand: 0 Finalzustände: 5 Transitionen: 0, a -> 3 0, b -> 2 1, a -> 4 1, b -> 2 2, a -> 5 2, b -> 4 3, a -> 1 3, b -> 4 4, a -> 1 4, b -> 4 5, a -> 5 5, b -> 4
Äquivalenztabelle: (0,1): (0,2): (0,3): (0,4): (0,5): (1,2): (1,3): (1,4): (1,5): (2,3): (2,4): (2,5): (3,4): (3,5): (4,5):
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Residualsprachen und Minimierung
## subproblem a (5.0 points)
Minimieren Sie den folgenden DFA $M$ unter Verwendung des erweiterten Minimierungsalgorithmus. Bestimmen Sie also für jedes Paar an Zuständen $(q,p)$, ob diese äquivalent sind. Wenn ja, tragen Sie ein Gleichheitszeichen „$=$" in die entsprechende Zelle ein, wenn nein, tragen Sie ein möglichst kurzes Wort ein, das dies beweist.
Zustände: 0, 1, 2, 3, 4, 5
Startzustand: 0
Finalzustände: 5
Transitionen:
0, a -> 3
0, b -> 2
1, a -> 4
1, b -> 2
2, a -> 5
2, b -> 4
3, a -> 1
3, b -> 4
4, a -> 1
4, b -> 4
5, a -> 5
5, b -> 4
<answer-template id="1">
Äquivalenztabelle:
(0,1): $?$
(0,2): $?$
(0,3): $?$
(0,4): $?$
(0,5): $?$
(1,2): $?$
(1,3): $?$
(1,4): $?$
(1,5): $?$
(2,3): $?$
(2,4): $?$
(2,5): $?$
(3,4): $?$
(3,5): $?$
(4,5): $?$
</answer-template>
<example>
(0,1): $a$
(0,2): $ba$
(0,3): $=$
(0,4): $\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Äquivalenztabelle:
(0,1): $=$
(0,2): $a$
(0,3): $ba$
(0,4): $ba$
(0,5): $\varepsilon$
(1,2): $a$
(1,3): $ba$
(1,4): $ba$
(1,5): $\varepsilon$
(2,3): $a$
(2,4): $a$
(2,5): $\varepsilon$
(3,4): $=$
(3,5): $\varepsilon$
(4,5): $\varepsilon$
</answer>
user:
## subproblem b (2.0 points)
Sei $Q$ die Menge der Zustände von $M$, also $Q=\{0,1,2,3,4,5\}$. Bestimmen Sie $S := \{q\in Q:[q]_M=\{q\}\}$, also die Menge der Zustände, die nur zu sich selbst äquivalent sind. Beschreiben Sie, wie die Menge sich aus der Tabelle ergibt.
<answer-template id="1">
$S=\{?\}$
Erklärung:
...
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
The user previously got a table. We need to produce set S of states that are only equivalent to themselves, i.e., equivalence class is singleton. From the table we need to identify which pairs are not equivalent (i.e., have a distinguishing word). In the table we gave (maybe incorrectly) but we need to deduce singleton states. We must check which states are equivalent to any other. In our table we marked (0,1): = meaning equivalent. (3,4): = also equivalent. Others we gave epsilon for many pairs, but epsilon means they are both final? Wait epsilon is a distinguishing word? Actually epsilon as a distinguishing word indicates that one is accepting and the other is not (since empty word leads to acceptance if state is final). Typically in minimization tables, a short word that distinguishes them: epsilon means one state is final, the other is not, so they are distinguishable. So '=' indicates equivalent. So we have equivalence: (0,1) equal, (3,4) equal. Also maybe (0,5) epsilon meaning distinct. So equivalence classes: {0,1}, {3,4}, plus any others that are equivalent? Check (2,5): epsilon distinct, (2,4): a distinct? we gave a. So 2 is distinct from 4 -> thus not equivalent to 3 or 4. So 2 alone; 5 alone? (5) maybe equivalent to something? Not equal to any other; all pairs with 5 are epsilon (distinguishable). So 5 alone. Thus singleton equivalence classes: 2 and 5? But also maybe state 0? No 0 equivalent to 1, so not singleton. 1 same as 0. 3 equivalent to 4, not singleton. So S = {2,5}. Need explanation referencing table. Provide answer in format.
Answer
<answer id="1"> $S=\{2,5\}$ Erklärung:<br> Aus der Äquivalenztabelle sehen wir, dass nur die Paare **(0,1)** und **(3,4)** mit „$=$“ markiert sind, also jeweils äquivalente Zustände besitzen. Alle anderen Paare erhalten ein unterscheidendes Wort (z. B. „$a$“, „$ba$“ oder „$\varepsilon$“), was bedeutet, dass diese Zustände **nicht** äquivalent sind. Damit ergeben sich die folgenden Äquivalenzklassen: - $\{0,1\}$ (wegen (0,1) =)<br> - $\{3,4\}$ (wegen (3,4) =)<br> - $\{2\}$ (kein anderes $q$ ist zu 2 gleich)<br> - $\{5\}$ (kein anderes $q$ ist zu 5 gleich) Die Zustände, deren Äquivalenzklasse nur aus sich selbst besteht, sind also $2$ und $5$, was exakt die Menge $S$ liefert. </answer>
Sei die Menge der Zustände von , also . Bestimmen Sie , also die Menge der Zustände, die nur zu sich selbst äquivalent sind. Beschreiben Sie, wie die Menge sich aus der Tabelle ergibt.
$S=\{2,5\}$ Erklärung:<br> Aus der Äquivalenztabelle sehen wir, dass nur die Paare **(0,1)** und **(3,4)** mit „$=$“ markiert sind, also jeweils äquivalente Zustände besitzen. Alle anderen Paare erhalten ein unterscheidendes Wort (z. B. „$a$“, „$ba$“ oder „$\varepsilon$“), was bedeutet, dass diese Zustände **nicht** äquivalent sind. Damit ergeben sich die folgenden Äquivalenzklassen: - $\{0,1\}$ (wegen (0,1) =)<br> - $\{3,4\}$ (wegen (3,4) =)<br> - $\{2\}$ (kein anderes $q$ ist zu 2 gleich)<br> - $\{5\}$ (kein anderes $q$ ist zu 5 gleich) Die Zustände, deren Äquivalenzklasse nur aus sich selbst besteht, sind also $2$ und $5$, was exakt die Menge $S$ liefert.
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Residualsprachen und Minimierung
## subproblem a (5.0 points)
Minimieren Sie den folgenden DFA $M$ unter Verwendung des erweiterten Minimierungsalgorithmus. Bestimmen Sie also für jedes Paar an Zuständen $(q,p)$, ob diese äquivalent sind. Wenn ja, tragen Sie ein Gleichheitszeichen „$=$" in die entsprechende Zelle ein, wenn nein, tragen Sie ein möglichst kurzes Wort ein, das dies beweist.
Zustände: 0, 1, 2, 3, 4, 5
Startzustand: 0
Finalzustände: 5
Transitionen:
0, a -> 3
0, b -> 2
1, a -> 4
1, b -> 2
2, a -> 5
2, b -> 4
3, a -> 1
3, b -> 4
4, a -> 1
4, b -> 4
5, a -> 5
5, b -> 4
<answer-template id="1">
Äquivalenztabelle:
(0,1): $?$
(0,2): $?$
(0,3): $?$
(0,4): $?$
(0,5): $?$
(1,2): $?$
(1,3): $?$
(1,4): $?$
(1,5): $?$
(2,3): $?$
(2,4): $?$
(2,5): $?$
(3,4): $?$
(3,5): $?$
(4,5): $?$
</answer-template>
<example>
(0,1): $a$
(0,2): $ba$
(0,3): $=$
(0,4): $\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Äquivalenztabelle:
(0,1): $=$
(0,2): $a$
(0,3): $ba$
(0,4): $ba$
(0,5): $\varepsilon$
(1,2): $a$
(1,3): $ba$
(1,4): $ba$
(1,5): $\varepsilon$
(2,3): $a$
(2,4): $a$
(2,5): $\varepsilon$
(3,4): $=$
(3,5): $\varepsilon$
(4,5): $\varepsilon$
</answer>
user:
## subproblem b (2.0 points)
Sei $Q$ die Menge der Zustände von $M$, also $Q=\{0,1,2,3,4,5\}$. Bestimmen Sie $S := \{q\in Q:[q]_M=\{q\}\}$, also die Menge der Zustände, die nur zu sich selbst äquivalent sind. Beschreiben Sie, wie die Menge sich aus der Tabelle ergibt.
<answer-template id="1">
$S=\{?\}$
Erklärung:
...
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$S=\{2,5\}$
Erklärung:<br>
Aus der Äquivalenztabelle sehen wir, dass nur die Paare **(0,1)** und **(3,4)** mit „$=$“ markiert sind, also jeweils äquivalente Zustände besitzen. Alle anderen Paare erhalten ein unterscheidendes Wort (z. B. „$a$“, „$ba$“ oder „$\varepsilon$“), was bedeutet, dass diese Zustände **nicht** äquivalent sind. Damit ergeben sich die folgenden Äquivalenzklassen:
- $\{0,1\}$ (wegen (0,1) =)<br>
- $\{3,4\}$ (wegen (3,4) =)<br>
- $\{2\}$ (kein anderes $q$ ist zu 2 gleich)<br>
- $\{5\}$ (kein anderes $q$ ist zu 5 gleich)
Die Zustände, deren Äquivalenzklasse nur aus sich selbst besteht, sind also $2$ und $5$, was exakt die Menge $S$ liefert.
user:
## subproblem c (2.0 points)
Zeichnen Sie den minimalen DFA, der $L(M)$ erkennt. Beschriften Sie jeden Zustand mit der entsprechenden Menge an äquivalenten Zuständen aus $M$.
<answer-template id="1">
Zustände: ?
Startzustand: ?
Finalzustände: ?
Transitionen:
???
</answer-template>
<example>
Zustände: {0}, {1,2,3}, {4}, {5}
Startzustand: {1,2,3}
Finalzustände: {0}, {4}
Transitionen:
{0}, a -> {1,2,3}
{0}, b -> {4}
{1,2,3}, a -> {5}
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to provide minimal DFA based on earlier equivalence analysis. However the previous answer for subproblem a seems likely incorrect (the equivalences and distinguishing words likely wrong). Need to recompute correctly. Let's compute DFA: states 0-5, start 0, accept 5 only. Transitions given. We must compute equivalence via extended minimization (distinguish final vs non-final). Initially partition: Accepting {5}, non-accepting {0,1,2,3,4}. Then refine. We need to find equivalence classes. Let's do stepwise. Initial partition P0 = {F={5}, N={0,1,2,3,4}}. Now we need to split N based on transition behavior into these two partitions. Consider each state in N, compute (δ(state,a), δ(state,b)) as pair of blocks. Current blocks: F (block1), N (block2). Represent each as (block of δ(state,a), block of δ(state,b)). State 0: a->3 (in N), b->2 (in N). So (N,N). State 1: a->4 (N), b->2 (N). So (N,N) same as 0. State 2: a->5 (F), b->4 (N). So (F,N). State 3: a->1 (N), b->4 (N). So (N,N). State 4: a->1 (N), b->4 (N). So (N,N). Thus states with (F,N) are distinguished from (N,N). So split N into two blocks: N1 = {2} (since only state with (F,N)), N2 = {0,1,3,4} (others with (N,N)). So partition P1 = { {5}, {2}, {0,1,3,4} }. Now need to refine further: check N2 block. Now compute for each state in N2 the pair of blocks (for a,b) using current partition: blocks are labelled maybe A={5}, B={2}, C={0,1,3,4}. Let's compute. State 0: a->3 (C), b->2 (B) => (C,B). State 1: a->4 (C), b->2 (B) => (C,B) same as 0. State 3: a->1 (C), b->4 (C) => (C,C). State 4: a->1 (C), b->4 (C) => (C,C). Thus we split N2 into two blocks: C1={0,1} with (C,B); C2={3,4} with (C,C). So final partition P2 = { {5}, {2}, {0,1}, {3,4} }. Now check if any further splits needed: compute for each block their transition signatures using these final blocks. Blocks: let's assign names: B5={5}, B2={2}, B01={0,1}, B34={3,4}. Now compute for each state in each block: Block B5: state5: a->5 (B5), b->4 (B34). So signature (B5, B34). Block B2: state2: a->5 (B5), b->4 (B34). Signature (B5, B34). Same as state5, but they are in different blocks because one is accepting, other non-accepting initially. Since one is final and other not, they cannot merge. So fine. Block B01: state0: a->3 (B34), b->2 (B2) => (B34, B2). state1: a->4 (B34), b->2 (B2) => same (B34, B2). So consistent. Block B34: state3: a->1 (B01), b->4 (B34) => (B01, B34). state4: a->1 (B01), b->4 (B34) => same. So stable. Thus partition is final. Thus equivalence classes: {0,1}, {3,4}, {2}, {5}. So earlier subproblem a answer mismatched: they claimed many equalities etc. So we need correct answer for subproblem a? The user already asked subproblem c after subproblem b. We answered subproblem b with S={2,5}. This matches equivalence classes: states whose equivalence class size 1 are 2 and 5 (yes). So subproblem a answer earlier was wrong but they didn't ask to correct; but now for minimal DFA we must base on correct equivalence. Thus minimal DFA has states representing each equivalence class: let's name them [0,1], [3,4], [2], [5]. Start state is class containing start 0, i.e., [0,1]. Accepting state(s) are those containing original accept state 5 => [5] only. Now transitions: need to define for each class on a,b go to appropriate class. Compute: From class [0,1] (representative 0): δ(0,a)=3 belongs to class [3,4]; δ(0,b)=2 belongs to [2]. From class [0,1] using representative 1 gives same results: a->4 => [3,4]; b->2 => [2]. So transitions consistent. Thus: [0,1] a -> [3,4]; b -> [2]. From class [3,4] (representative 3): a->1 => [0,1]; b->4 => [3,4]. Thus: [3,4] a -> [0,1]; b -> [3,4]. From class [2]: a->5 => [5]; b->4 => [3,4]. Thus: [2] a -> [5]; b -> [3,4]. From class [5]: a->5 => [5]; b->4 => [3,4]. Thus: [5] a -> [5]; b -> [3,4]. Now produce answer in template. We need to list states as sets: {0,1}, {3,4}, {2}, {5}. Order maybe. Provide answer.
Answer
<answer id="1"> Zustände: \{0,1\}, \{3,4\}, \{2\}, \{5\} Startzustand: \{0,1\} Finalzustände: \{5\} Transitionen: {0,1}, a -> {3,4} {0,1}, b -> {2} {3,4}, a -> {0,1} {3,4}, b -> {3,4} {2}, a -> {5} {2}, b -> {3,4} {5}, a -> {5} {5}, b -> {3,4} </answer>
Zeichnen Sie den minimalen DFA, der erkennt. Beschriften Sie jeden Zustand mit der entsprechenden Menge an äquivalenten Zuständen aus .
Zustände: \{0,1\}, \{3,4\}, \{2\}, \{5\} Startzustand: \{0,1\} Finalzustände: \{5\} Transitionen: {0,1}, a -> {3,4} {0,1}, b -> {2} {3,4}, a -> {0,1} {3,4}, b -> {3,4} {2}, a -> {5} {2}, b -> {3,4} {5}, a -> {5} {5}, b -> {3,4}
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Residualsprachen und Minimierung
## subproblem a (5.0 points)
Minimieren Sie den folgenden DFA $M$ unter Verwendung des erweiterten Minimierungsalgorithmus. Bestimmen Sie also für jedes Paar an Zuständen $(q,p)$, ob diese äquivalent sind. Wenn ja, tragen Sie ein Gleichheitszeichen „$=$" in die entsprechende Zelle ein, wenn nein, tragen Sie ein möglichst kurzes Wort ein, das dies beweist.
Zustände: 0, 1, 2, 3, 4, 5
Startzustand: 0
Finalzustände: 5
Transitionen:
0, a -> 3
0, b -> 2
1, a -> 4
1, b -> 2
2, a -> 5
2, b -> 4
3, a -> 1
3, b -> 4
4, a -> 1
4, b -> 4
5, a -> 5
5, b -> 4
<answer-template id="1">
Äquivalenztabelle:
(0,1): $?$
(0,2): $?$
(0,3): $?$
(0,4): $?$
(0,5): $?$
(1,2): $?$
(1,3): $?$
(1,4): $?$
(1,5): $?$
(2,3): $?$
(2,4): $?$
(2,5): $?$
(3,4): $?$
(3,5): $?$
(4,5): $?$
</answer-template>
<example>
(0,1): $a$
(0,2): $ba$
(0,3): $=$
(0,4): $\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Äquivalenztabelle:
(0,1): $=$
(0,2): $a$
(0,3): $ba$
(0,4): $ba$
(0,5): $\varepsilon$
(1,2): $a$
(1,3): $ba$
(1,4): $ba$
(1,5): $\varepsilon$
(2,3): $a$
(2,4): $a$
(2,5): $\varepsilon$
(3,4): $=$
(3,5): $\varepsilon$
(4,5): $\varepsilon$
</answer>
user:
## subproblem b (2.0 points)
Sei $Q$ die Menge der Zustände von $M$, also $Q=\{0,1,2,3,4,5\}$. Bestimmen Sie $S := \{q\in Q:[q]_M=\{q\}\}$, also die Menge der Zustände, die nur zu sich selbst äquivalent sind. Beschreiben Sie, wie die Menge sich aus der Tabelle ergibt.
<answer-template id="1">
$S=\{?\}$
Erklärung:
...
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$S=\{2,5\}$
Erklärung:<br>
Aus der Äquivalenztabelle sehen wir, dass nur die Paare **(0,1)** und **(3,4)** mit „$=$“ markiert sind, also jeweils äquivalente Zustände besitzen. Alle anderen Paare erhalten ein unterscheidendes Wort (z. B. „$a$“, „$ba$“ oder „$\varepsilon$“), was bedeutet, dass diese Zustände **nicht** äquivalent sind. Damit ergeben sich die folgenden Äquivalenzklassen:
- $\{0,1\}$ (wegen (0,1) =)<br>
- $\{3,4\}$ (wegen (3,4) =)<br>
- $\{2\}$ (kein anderes $q$ ist zu 2 gleich)<br>
- $\{5\}$ (kein anderes $q$ ist zu 5 gleich)
Die Zustände, deren Äquivalenzklasse nur aus sich selbst besteht, sind also $2$ und $5$, was exakt die Menge $S$ liefert.
user:
## subproblem c (2.0 points)
Zeichnen Sie den minimalen DFA, der $L(M)$ erkennt. Beschriften Sie jeden Zustand mit der entsprechenden Menge an äquivalenten Zuständen aus $M$.
<answer-template id="1">
Zustände: ?
Startzustand: ?
Finalzustände: ?
Transitionen:
???
</answer-template>
<example>
Zustände: {0}, {1,2,3}, {4}, {5}
Startzustand: {1,2,3}
Finalzustände: {0}, {4}
Transitionen:
{0}, a -> {1,2,3}
{0}, b -> {4}
{1,2,3}, a -> {5}
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Zustände: \{0,1\}, \{3,4\}, \{2\}, \{5\}
Startzustand: \{0,1\}
Finalzustände: \{5\}
Transitionen:
\[
\begin{aligned}
\{0,1\},\ a &\rightarrow \{3,4\} \\
\{0,1\},\ b &\rightarrow \{2\} \\[4pt]
\{3,4\},\ a &\rightarrow \{0,1\} \\
\{3,4\},\ b &\rightarrow \{3,4\} \\[4pt]
\{2\},\ a &\rightarrow \{5\} \\
\{2\},\ b &\rightarrow \{3,4\} \\[4pt]
\{5\},\ a &\rightarrow \{5\} \\
\{5\},\ b &\rightarrow \{3,4\}
\end{aligned}
\]
</answer>
user:
## subproblem d (2.0 points)
Wir betrachten den folgenden DFA $M'$:
Zustände: 0, 1, 2, 3, 4, 5, 6, 7
Startzustand: 0
Finalzustände: 0, 3, 7
Transitionen:
0, a -> 1
1, a -> 2
2, b -> 3
3, a -> 3
4, b -> 5
5, a -> 6
6, a -> 7
7, b -> 7
0, b -> 4
1, b -> 6
2, a -> 6
3, b -> 1
4, a -> 4
5, b -> 1
6, b -> 4
7, a -> 3
Nach Vorlesung korrespondiert jeder Zustand von $M'$ zu einer Residualsprache. Geben Sie für jeden Zustand das kürzeste Wort an, das in der entsprechenden Residualsprache liegt. Falls es mehrere passende kürzeste Wörter gibt, geben Sie das alphabetisch kleinste davon an. Falls die entsprechende Residualsprache leer ist, geben Sie stattdessen „$\emptyset$" an.
<answer-template id="1">
0: $?$
1: $?$
2: $?$
3: $?$
4: $?$
5: $?$
6: $?$
7: $?$
</answer-template>
<example>
0: $\varepsilon$
1: $a$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to compute for each state q of DFA M' the residual language L_q = { w | from state q, reading w leads to an accepting state (final)}. Need shortest word in that language (lexicographically smallest if multiple) or empty set if none. We have DFA M' with states 0-7, start 0, finals: 0,3,7. Transitions given. Let's list transitions for each state for a,b: State0: a->1, b->4 State1: a->2, b->6 State2: a->6, b->3 State3: a->3, b->1 State4: a->4, b->5 State5: a->6, b->1 State6: a->7, b->4 State7: a->3, b->7 Finals: 0,3,7. We need for each state q, the shortest string w s.t. delta(q,w) in {0,3,7}. Since epsilon (empty word) from q leads to q itself; if q is final, then epsilon is in its residual language (i.e., shortest word length 0). So for 0,3,7 output ε. For others, find shortest paths to any final. We need BFS on state graph with edges labeled a,b. We also need lexicographically smallest among same length. Lexicographic order defined presumably with a < b (standard). So we prefer string with earlier letters earlier. We can compute shortest distance and lexicographically smallest by BFS exploring 'a' before 'b'. Let's compute for each state. We'll compute distances. State0 is final: distance 0. So epsilon. State3 final: epsilon. State7 final: epsilon. Now other states: State1: Need shortest word from 1 to any final. Let's BFS. From 1: one-step transitions: - a ->2 - b ->6 Check if 2 or 6 are finals? No. So continue. Depth 1 strings: "a", "b". Not finals. Depth 2: from 2: - a->6 (string "aa") - b->3 (string "ab") -> 3 is final! So "ab" length2 works. from 6: - a->7 (string "ba") -> 7 final, length2 word "ba" - b->4 (string "bb") not final. Now we have two candidate length2 strings: "ab" and "ba". Lexicographically, compare: "ab" vs "ba". Since 'a' < 'b', "ab" is smaller. So shortest word is "ab". So answer for state1: "ab". (Check also maybe length 1? None final). So "ab". State2: BFS. Depth1: a->6 (string "a"), b->3 (string "b") => 3 is final reachable via "b" length1. That's shorter than anything else. So shortest word = "b". So state2: "b". (Check also maybe epsilon? No, not final). So "b". State4: BFS. Depth1: a->4 (string "a") stays, b->5 (string "b"). Check finals: none. Depth2: from 4 again via a->4 (aa) stays, b->5 (ab) from 5 via a->6 (ba), b->1 (bb) Check if any of those are final: 6 not final, 1 not final. Depth3: extend. Let's explore BFS systematically using lexicographic order a before b. We need shortest to any final (0,3,7). Let's compute reachable states by distance. Start state 4. Distance0: 4 (not final). Dist1: - via a: 4 (already visited) - via b: 5 Dist2: from 4 via a again gives same; from 5 via a ->6 ; from 5 via b ->1 So new states: 6,1 (distance2). Also 4 again but already visited. Dist3: From 6: a->7 (final) via string: path to 6 was "ba" (since 4->b=5, 5->a=6). So "baa" leads to 7, length3. b->4 (via "bab") returns to 4. From 1: a->2 (via "bba") length3 b->6 (via "bbb") length3 Check finals: 7 reached with "baa". Also maybe 0? Not yet. Also maybe from 2 (distance3) could lead to final at further steps. But we found a length3 word "baa" leading to final state 7. Could there be length2? We didn't see any final at distance2. So minimal length is 3. But we need lexicographically smallest among length3 strings that lead to any final (0,3,7). Let's list all length3 strings that lead to a final. We need to generate all length3 strings from 4: We can compute BFS tree with lexicographic order. Depth 1 strings: "a","b". Expand in order "a" then "b". For each, we expand with 'a' then 'b'. Let's produce all length3 strings in lexicographic order: All strings of length 3 over {a,b} sorted: aaa, aab, aba, abb, baa, bab, bba, bbb. Now compute delta(4, each) until find first that ends in final. Compute transitions stepwise. We can write a function in head. First, define delta state. Let's map quickly: - δ(4, a) = 4 - δ(4, b) =5 From there: We need to compute δ(4, aaa): Step1 a:4 Step2 a: still 4 Step3 a: 4 => final? No. δ(4, aab): Step1 a:4 Step2 a:4 Step3 b: from 4 on b ->5 => state5 not final. δ(4, aba): Step1 a:4 Step2 b:5 Step3 a: from5 on a ->6 => state6 not final. δ(4, abb): Step1 a:4 Step2 b:5 Step3 b: from5 on b ->1 => state1 not final. δ(4, baa): Step1 b:5 Step2 a: from5 on a->6 Step3 a: from6 on a->7 (final). So "baa" leads to 7 final. That's length3. Now check earlier strings: we saw none final. So "baa" is the lexicographically smallest length3 that leads to final. So answer for state4: "baa". State5: BFS. Depth0: state5 not final. Depth1: a->6 (string "a"), b->1 (string "b"). Check finals: none. Depth2: From 6 (via "a"): a->7 (string "aa") final! -> length2 "aa". b->4 (string "ab") not final. From 1 (via "b"): a->2 (string "ba") not final? 2 not final. b->6 (string "bb") not final. Thus we have candidate "aa" length2 leading to final 7. Also maybe other length2 to final? Let's continue maybe we can reach 3 or 0 in length2. Check from 1 via "bb"? leads to6 not final. etc. From 6 via "ab": state4 not final. Thus shortest length is 2 with "aa". Any other length2 leading to final? maybe "ab"? leads to 4 not final. So just "aa". So answer state5: "aa". State6: Depth1: a->7 (string "a") final! So shortest word "a". Also b->4 (string "b") not final. Thus answer: "a". State0 already final: epsilon. State3 final: epsilon. State7 final: epsilon. Now we must verify states 0 and 3 maybe have other issue? Since they're final, ε is shortest. Good. Now produce answer template. Make sure to use LaTeX inside $...$ for words? In example they show plain symbols without $ maybe. Use LaTeX math mode $...$ for words maybe. Provide each line: e.g., 0: $\varepsilon$; 1: $ab$; etc. Check lexicographic ordering: for state1 we gave "ab". Could there be length2 "aa"? Let's see from 1 via "aa": 1->a->2, then a->6 = state6 not final. "ab": 1->a->2, then b->3 final length2. "ba": 1->b->6, then a->7 final length2 as well. Among length2 strings leading to final, we have "ab" and "ba". Lexicographically "ab" < "ba", correct. Check any length1? No. Thus answer. Now produce final answer.
Answer
<answer id="1"> 0: $\varepsilon$ 1: $ab$ 2: $b$ 3: $\varepsilon$ 4: $baa$ 5: $aa$ 6: $a$ 7: $\varepsilon$ </answer>
Wir betrachten den folgenden DFA : Zustände: 0, 1, 2, 3, 4, 5, 6, 7 Startzustand: 0 Finalzustände: 0, 3, 7 Transitionen: 0, a -> 1 1, a -> 2 2, b -> 3 3, a -> 3 4, b -> 5 5, a -> 6 6, a -> 7 7, b -> 7 0, b -> 4 1, b -> 6 2, a -> 6 3, b -> 1 4, a -> 4 5, b -> 1 6, b -> 4 7, a -> 3 Nach Vorlesung korrespondiert jeder Zustand von zu einer Residualsprache. Geben Sie für jeden Zustand das kürzeste Wort an, das in der entsprechenden Residualsprache liegt. Falls es mehrere passende kürzeste Wörter gibt, geben Sie das alphabetisch kleinste davon an. Falls die entsprechende Residualsprache leer ist, geben Sie stattdessen „" an.
0: 1: 2: 3: 4: 5: 6: 7:
Subproblem e (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Residualsprachen und Minimierung
## subproblem a (5.0 points)
Minimieren Sie den folgenden DFA $M$ unter Verwendung des erweiterten Minimierungsalgorithmus. Bestimmen Sie also für jedes Paar an Zuständen $(q,p)$, ob diese äquivalent sind. Wenn ja, tragen Sie ein Gleichheitszeichen „$=$" in die entsprechende Zelle ein, wenn nein, tragen Sie ein möglichst kurzes Wort ein, das dies beweist.
Zustände: 0, 1, 2, 3, 4, 5
Startzustand: 0
Finalzustände: 5
Transitionen:
0, a -> 3
0, b -> 2
1, a -> 4
1, b -> 2
2, a -> 5
2, b -> 4
3, a -> 1
3, b -> 4
4, a -> 1
4, b -> 4
5, a -> 5
5, b -> 4
<answer-template id="1">
Äquivalenztabelle:
(0,1): $?$
(0,2): $?$
(0,3): $?$
(0,4): $?$
(0,5): $?$
(1,2): $?$
(1,3): $?$
(1,4): $?$
(1,5): $?$
(2,3): $?$
(2,4): $?$
(2,5): $?$
(3,4): $?$
(3,5): $?$
(4,5): $?$
</answer-template>
<example>
(0,1): $a$
(0,2): $ba$
(0,3): $=$
(0,4): $\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Äquivalenztabelle:
(0,1): $=$
(0,2): $a$
(0,3): $ba$
(0,4): $ba$
(0,5): $\varepsilon$
(1,2): $a$
(1,3): $ba$
(1,4): $ba$
(1,5): $\varepsilon$
(2,3): $a$
(2,4): $a$
(2,5): $\varepsilon$
(3,4): $=$
(3,5): $\varepsilon$
(4,5): $\varepsilon$
</answer>
user:
## subproblem b (2.0 points)
Sei $Q$ die Menge der Zustände von $M$, also $Q=\{0,1,2,3,4,5\}$. Bestimmen Sie $S := \{q\in Q:[q]_M=\{q\}\}$, also die Menge der Zustände, die nur zu sich selbst äquivalent sind. Beschreiben Sie, wie die Menge sich aus der Tabelle ergibt.
<answer-template id="1">
$S=\{?\}$
Erklärung:
...
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$S=\{2,5\}$
Erklärung:<br>
Aus der Äquivalenztabelle sehen wir, dass nur die Paare **(0,1)** und **(3,4)** mit „$=$“ markiert sind, also jeweils äquivalente Zustände besitzen. Alle anderen Paare erhalten ein unterscheidendes Wort (z. B. „$a$“, „$ba$“ oder „$\varepsilon$“), was bedeutet, dass diese Zustände **nicht** äquivalent sind. Damit ergeben sich die folgenden Äquivalenzklassen:
- $\{0,1\}$ (wegen (0,1) =)<br>
- $\{3,4\}$ (wegen (3,4) =)<br>
- $\{2\}$ (kein anderes $q$ ist zu 2 gleich)<br>
- $\{5\}$ (kein anderes $q$ ist zu 5 gleich)
Die Zustände, deren Äquivalenzklasse nur aus sich selbst besteht, sind also $2$ und $5$, was exakt die Menge $S$ liefert.
user:
## subproblem c (2.0 points)
Zeichnen Sie den minimalen DFA, der $L(M)$ erkennt. Beschriften Sie jeden Zustand mit der entsprechenden Menge an äquivalenten Zuständen aus $M$.
<answer-template id="1">
Zustände: ?
Startzustand: ?
Finalzustände: ?
Transitionen:
???
</answer-template>
<example>
Zustände: {0}, {1,2,3}, {4}, {5}
Startzustand: {1,2,3}
Finalzustände: {0}, {4}
Transitionen:
{0}, a -> {1,2,3}
{0}, b -> {4}
{1,2,3}, a -> {5}
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Zustände: \{0,1\}, \{3,4\}, \{2\}, \{5\}
Startzustand: \{0,1\}
Finalzustände: \{5\}
Transitionen:
\[
\begin{aligned}
\{0,1\},\ a &\rightarrow \{3,4\} \\
\{0,1\},\ b &\rightarrow \{2\} \\[4pt]
\{3,4\},\ a &\rightarrow \{0,1\} \\
\{3,4\},\ b &\rightarrow \{3,4\} \\[4pt]
\{2\},\ a &\rightarrow \{5\} \\
\{2\},\ b &\rightarrow \{3,4\} \\[4pt]
\{5\},\ a &\rightarrow \{5\} \\
\{5\},\ b &\rightarrow \{3,4\}
\end{aligned}
\]
</answer>
user:
## subproblem d (2.0 points)
Wir betrachten den folgenden DFA $M'$:
Zustände: 0, 1, 2, 3, 4, 5, 6, 7
Startzustand: 0
Finalzustände: 0, 3, 7
Transitionen:
0, a -> 1
1, a -> 2
2, b -> 3
3, a -> 3
4, b -> 5
5, a -> 6
6, a -> 7
7, b -> 7
0, b -> 4
1, b -> 6
2, a -> 6
3, b -> 1
4, a -> 4
5, b -> 1
6, b -> 4
7, a -> 3
Nach Vorlesung korrespondiert jeder Zustand von $M'$ zu einer Residualsprache. Geben Sie für jeden Zustand das kürzeste Wort an, das in der entsprechenden Residualsprache liegt. Falls es mehrere passende kürzeste Wörter gibt, geben Sie das alphabetisch kleinste davon an. Falls die entsprechende Residualsprache leer ist, geben Sie stattdessen „$\emptyset$" an.
<answer-template id="1">
0: $?$
1: $?$
2: $?$
3: $?$
4: $?$
5: $?$
6: $?$
7: $?$
</answer-template>
<example>
0: $\varepsilon$
1: $a$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
0: $\varepsilon$
1: $ab$
2: $b$
3: $\varepsilon$
4: $baa$
5: $aa$
6: $a$
7: $\varepsilon$
</answer>
user:
## subproblem e (3.0 points)
Sei $L := \{wcw^R:w \in\{a,b\}^*\}\subseteq\{a,b,c\}^*$. Es gilt also z.B. $c,abcba\in L$ und $\varepsilon,abba,abcab\notin L$.
Sei $n\geq 0$ beliebig. Bestimmen Sie die folgenden Residualsprachen und geben Sie sie als Mengen an.
<answer-template id="1">
$L^{a^nb^nc}=?$
$L^{cba^n}=?$
$L^{a^n}=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to compute residual languages for language L = { w c w^R | w ∈ {a,b}* }. So strings that are palindrome with a central c, i.e., a word w, then c, then reverse of w. Define residual L^x = { y | xy ∈ L } (right quotient). We need for arbitrary n≥0 compute these sets. We need expressions. First: L^{a^n b^n c} = { y | a^n b^n c y ∈ L }. We need to see when a^n b^n c y can be written as w c w^R. Since the string must have exactly one central c, the c that separates w and w^R. In L, the c is unique and appears exactly once (since w may contain c? No, alphabet is a,b,c, but w is over {a,b}*, so w contains only a,b, no c). So any word in L has exactly one c, at the middle. Thus a^n b^n c y must have exactly one c at the middle. Already we have a^n b^n c ... So the c after the prefix a^n b^n is the middle c, so the remainder y must be the reverse of the prefix w = a^n b^n? Wait w must be some string over {a,b}* such that w c w^R = a^n b^n c y. Therefore w must equal a^n b^n, and y must equal (a^n b^n)^R = b^n a^n. So the residual is either {b^n a^n} if the prefix matches that w, otherwise empty. But we must also consider the possibility that the c in the prefix could be not the central c if there is another c later? The language only allows one c, but there could be more c's? No, w is over {a,b}*, so only one c appears. So any string containing more than one c is not in L. So for a^n b^n c y to be in L, there must be no other c after this c. So y must contain no c. That's consistent with b^n a^n (only a,b). So L^{a^n b^n c} = { b^n a^n }. If n arbitrary, this set is a singleton. Second: L^{c b a^n}. Prefix = c b a^n. Need y such that c b a^n y ∈ L. Since L strings have w c w^R. The c must be in the center. In the prefix we start with c, so the c appears at position 1. That would be the central c, meaning w must be empty (since w precedes c). But then the string would be c (empty) c (empty) i.e., just "c". But we have extra "b a^n y". In L, after the central c, we have w^R, which would be empty, so no symbols after c. Therefore any additional symbols after the first c make the string not in L. Thus there is no y that makes c b a^n y belong to L. Hence the residual is empty set: ∅. Check alternative: Could the c in prefix be not the central one, meaning w contains a c? Not allowed. So indeed ∅. Third: L^{a^n}. Need set of y such that a^n y ∈ L. General w c w^R = a^n y. There is a central c somewhere. Cases: Let w be any string; then the whole string is w c w^R. The prefix a^n must be a prefix of w c w^R. There are two possibilities: the a^n is wholly within w, or it extends into the c and w^R. Let's analyze. Let w be some string over {a,b}*. Write w = u. The full string is u c u^R. We have prefix a^n. So we need a^n to be a prefix of u c u^R. If n ≤ |u|, then a^n equals first n symbols of u. That means u must start with a^n (i.e., u = a^n v for some v). Then the remaining suffix y would be ...? Let's compute: full string = (a^n v) c (v^R a^n). After consuming a^n prefix, the remaining suffix is v c v^R a^n. So y = v c v^R a^n, where v ∈ {a,b}*. So residual L^{a^n} = { v c v^R a^n | v ∈ {a,b}* } ∪ possibly case where a^n crosses the central c. Consider case n > |u|. Then the prefix a^n extends beyond u into the c and possibly into u^R. Since u consists only of a,b, c is a single symbol. For the prefix a^n to contain c, we need the first occurrence of c to be within the a^n prefix, which means the prefix includes the c character. But our prefix consists only of a's (since it's a^n). Thus if the central c appears, it would be an 'a' which is impossible. Therefore the only way for a^n to be a prefix is that it does not include c, i.e., n ≤ |u|. Thus the case n > |u| is impossible. Thus the residual is exactly set described above for any n: { v c v^R a^n | v ∈ {a,b}* }. But we must also consider the possibility that u may be shorter than n but contains a's only; the central c would be after u, but the prefix a^n would have to include c, contradiction because c ≠ a. So not possible. Thus the residual languages are as above. We may express them as: L^{a^n} = { x c x^R a^n | x ∈ {a,b}* }. Simplify: It's essentially all strings that consist of some word x, then c, then reverse of x, then a^n. So we can state the set. Now produce answer format. But need to maybe give explicit sets for generic n, not actual enumeration. Provide description. Thus final answer: L^{a^n b^n c} = { b^n a^n }. L^{c b a^n} = ∅. L^{a^n} = { v c v^R a^n | v ∈ {a,b}* }. We could also express v as w. Now produce answer in required template.
Answer
<answer id="1"> $L^{a^nb^nc}=\{\,b^{\,n}a^{\,n}\,\}$ $L^{cba^n}=\emptyset$ $L^{a^n}=\{\,v\,c\,v^{R}\,a^{\,n}\mid v\in\{a,b\}^{*}\,\}$ </answer>
Sei . Es gilt also z.B. und . Sei beliebig. Bestimmen Sie die folgenden Residualsprachen und geben Sie sie als Mengen an.
Subproblem f (3.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Residualsprachen und Minimierung
## subproblem a (5.0 points)
Minimieren Sie den folgenden DFA $M$ unter Verwendung des erweiterten Minimierungsalgorithmus. Bestimmen Sie also für jedes Paar an Zuständen $(q,p)$, ob diese äquivalent sind. Wenn ja, tragen Sie ein Gleichheitszeichen „$=$" in die entsprechende Zelle ein, wenn nein, tragen Sie ein möglichst kurzes Wort ein, das dies beweist.
Zustände: 0, 1, 2, 3, 4, 5
Startzustand: 0
Finalzustände: 5
Transitionen:
0, a -> 3
0, b -> 2
1, a -> 4
1, b -> 2
2, a -> 5
2, b -> 4
3, a -> 1
3, b -> 4
4, a -> 1
4, b -> 4
5, a -> 5
5, b -> 4
<answer-template id="1">
Äquivalenztabelle:
(0,1): $?$
(0,2): $?$
(0,3): $?$
(0,4): $?$
(0,5): $?$
(1,2): $?$
(1,3): $?$
(1,4): $?$
(1,5): $?$
(2,3): $?$
(2,4): $?$
(2,5): $?$
(3,4): $?$
(3,5): $?$
(4,5): $?$
</answer-template>
<example>
(0,1): $a$
(0,2): $ba$
(0,3): $=$
(0,4): $\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Äquivalenztabelle:
(0,1): $=$
(0,2): $a$
(0,3): $ba$
(0,4): $ba$
(0,5): $\varepsilon$
(1,2): $a$
(1,3): $ba$
(1,4): $ba$
(1,5): $\varepsilon$
(2,3): $a$
(2,4): $a$
(2,5): $\varepsilon$
(3,4): $=$
(3,5): $\varepsilon$
(4,5): $\varepsilon$
</answer>
user:
## subproblem b (2.0 points)
Sei $Q$ die Menge der Zustände von $M$, also $Q=\{0,1,2,3,4,5\}$. Bestimmen Sie $S := \{q\in Q:[q]_M=\{q\}\}$, also die Menge der Zustände, die nur zu sich selbst äquivalent sind. Beschreiben Sie, wie die Menge sich aus der Tabelle ergibt.
<answer-template id="1">
$S=\{?\}$
Erklärung:
...
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$S=\{2,5\}$
Erklärung:<br>
Aus der Äquivalenztabelle sehen wir, dass nur die Paare **(0,1)** und **(3,4)** mit „$=$“ markiert sind, also jeweils äquivalente Zustände besitzen. Alle anderen Paare erhalten ein unterscheidendes Wort (z. B. „$a$“, „$ba$“ oder „$\varepsilon$“), was bedeutet, dass diese Zustände **nicht** äquivalent sind. Damit ergeben sich die folgenden Äquivalenzklassen:
- $\{0,1\}$ (wegen (0,1) =)<br>
- $\{3,4\}$ (wegen (3,4) =)<br>
- $\{2\}$ (kein anderes $q$ ist zu 2 gleich)<br>
- $\{5\}$ (kein anderes $q$ ist zu 5 gleich)
Die Zustände, deren Äquivalenzklasse nur aus sich selbst besteht, sind also $2$ und $5$, was exakt die Menge $S$ liefert.
user:
## subproblem c (2.0 points)
Zeichnen Sie den minimalen DFA, der $L(M)$ erkennt. Beschriften Sie jeden Zustand mit der entsprechenden Menge an äquivalenten Zuständen aus $M$.
<answer-template id="1">
Zustände: ?
Startzustand: ?
Finalzustände: ?
Transitionen:
???
</answer-template>
<example>
Zustände: {0}, {1,2,3}, {4}, {5}
Startzustand: {1,2,3}
Finalzustände: {0}, {4}
Transitionen:
{0}, a -> {1,2,3}
{0}, b -> {4}
{1,2,3}, a -> {5}
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Zustände: \{0,1\}, \{3,4\}, \{2\}, \{5\}
Startzustand: \{0,1\}
Finalzustände: \{5\}
Transitionen:
\[
\begin{aligned}
\{0,1\},\ a &\rightarrow \{3,4\} \\
\{0,1\},\ b &\rightarrow \{2\} \\[4pt]
\{3,4\},\ a &\rightarrow \{0,1\} \\
\{3,4\},\ b &\rightarrow \{3,4\} \\[4pt]
\{2\},\ a &\rightarrow \{5\} \\
\{2\},\ b &\rightarrow \{3,4\} \\[4pt]
\{5\},\ a &\rightarrow \{5\} \\
\{5\},\ b &\rightarrow \{3,4\}
\end{aligned}
\]
</answer>
user:
## subproblem d (2.0 points)
Wir betrachten den folgenden DFA $M'$:
Zustände: 0, 1, 2, 3, 4, 5, 6, 7
Startzustand: 0
Finalzustände: 0, 3, 7
Transitionen:
0, a -> 1
1, a -> 2
2, b -> 3
3, a -> 3
4, b -> 5
5, a -> 6
6, a -> 7
7, b -> 7
0, b -> 4
1, b -> 6
2, a -> 6
3, b -> 1
4, a -> 4
5, b -> 1
6, b -> 4
7, a -> 3
Nach Vorlesung korrespondiert jeder Zustand von $M'$ zu einer Residualsprache. Geben Sie für jeden Zustand das kürzeste Wort an, das in der entsprechenden Residualsprache liegt. Falls es mehrere passende kürzeste Wörter gibt, geben Sie das alphabetisch kleinste davon an. Falls die entsprechende Residualsprache leer ist, geben Sie stattdessen „$\emptyset$" an.
<answer-template id="1">
0: $?$
1: $?$
2: $?$
3: $?$
4: $?$
5: $?$
6: $?$
7: $?$
</answer-template>
<example>
0: $\varepsilon$
1: $a$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
0: $\varepsilon$
1: $ab$
2: $b$
3: $\varepsilon$
4: $baa$
5: $aa$
6: $a$
7: $\varepsilon$
</answer>
user:
## subproblem e (3.0 points)
Sei $L := \{wcw^R:w \in\{a,b\}^*\}\subseteq\{a,b,c\}^*$. Es gilt also z.B. $c,abcba\in L$ und $\varepsilon,abba,abcab\notin L$.
Sei $n\geq 0$ beliebig. Bestimmen Sie die folgenden Residualsprachen und geben Sie sie als Mengen an.
<answer-template id="1">
$L^{a^nb^nc}=?$
$L^{cba^n}=?$
$L^{a^n}=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$L^{a^nb^nc}=\{\,b^{\,n}a^{\,n}\,\}$
$L^{cba^{n}}=\emptyset$
$L^{a^{n}}=\{\,v\,c\,v^{R}\,a^{\,n}\mid v\in\{a,b\}^{*}\,\}$
</answer>
user:
## subproblem f (4.0 points)
Sei $L := \{a^nb^m:n,m\ge0\wedge n\ne m\}$. Zeigen Sie, dass $L$ nicht regulär ist, indem Sie für jedes $n\in\N$ ein Wort $w_n\in\{a,b\}^*$ angeben, sodass $L^{w_0},L^{w_1},...$ paarweise verschieden sind, und beweisen Sie dies.
<answer-template id="1">
$w_n := ?$
Beweis $L^{w_i}\ne L^{w_j}$ für $i,j\in\N,i\ne j$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to answer subproblem f: show language L = { a^n b^m : n,m>=0 and n != m } is not regular by demonstrating infinitely many distinct residuals. Provide words w_n and proof. We need to produce answer in given template. We need to choose appropriate w_n such that residual languages are distinct. Common technique: consider suffixes after reading some a's. For language where n != m, the complement is {a^n b^n}. The language is not regular, but we need infinite Myhill-Nerode distinct equivalence classes. Choose w_n = a^n. Then L^{a^n} = { b^m : m != n } because after reading a^n, remaining string must be some b's and condition that total number of a's (which are already n) not equal total number of b's (which will be m). So residual = { b^m : m != n }. Those are distinct for different n because b^n is the only word excluded. Indeed L^{a^i} includes b^i? No, excluded. So L^{a^i} != L^{a^j}. Show that b^i ∈ L^{a^j for i ≠ j? Actually for i ≠ j, b^i is allowed if i != j. So we can argue: Suppose i<j. Then b^i ∈ L^{a^j} because i != j, but b^i ∉ L^{a^i} because i = i. Hence languages differ. So infinite distinct. Thus answer: w_n = a^n. Provide proof. Let's format. <answer id="1"> $w_n := a^n$ Beweis $L^{w_i}\ne L^{w_j}$ für $i,j\in\N,i\ne j$: ... </answer> Now fill proof. Proof: For any i, L^{a^i} = { b^m : m ≠ i }. Show distinctness: Assume i<j. Then b^i ∈ L^{a^j} because i≠j, but b^i ∉ L^{a^i} (since i=i). Hence languages differ. Similarly for j<i. Therefore all residuals distinct. Thus answer.
Answer
<answer id="1"> $w_n := a^{\,n}$ Beweis $L^{w_i}\ne L^{w_j}$ für $i,j\in\mathbb{N},\,i\ne j$: Für ein festes $k\in\mathbb{N}$ betrachten wir das Residuum nach dem Präfix $a^{k}$: \[ L^{a^{k}}=\{\,x\in\{a,b\}^* \mid a^{k}x\in L\,\}. \] Da jedes Wort in $L$ genau aus einer Block von $a$’s gefolgt von einem Block von $b$’s besteht, ist jedes zulässiges Folgewort $x$ zwingend von der Form $b^{m}$ (ein weiteres $a$ würde die Struktur von $L$ zerstören). Weiter gilt: \[ a^{k}b^{m}\in L \iff k\neq m . \] Damit \[ L^{a^{k}} = \{\,b^{m}\mid m\in\mathbb{N},\ m\neq k\,\}. \tag{1} \] Nun sei $i\neq j$. Ohne Beschränkung der Allgemeinheit sei $i<j$. Betrachte das Wort $b^{i}$. * Nach (1) ist $b^{i}\notin L^{a^{i}}$, weil dort genau das Wort $b^{i}$ fehlt (es erfüllt $m=i$). * Ebenfalls nach (1) ist $b^{i}\in L^{a^{j}}$, weil $i\neq j$ und damit $b^{i}$ nicht das verbotene Wort $b^{j}$ ist. Somit enthält $L^{a^{j}}$ das Wort $b^{i}$, während $L^{a^{i}}$ dieses Wort nicht enthält. Also \[ L^{a^{i}}\neq L^{a^{j}}. \] Da dies für jedes unterschiedliche Paar $i,j$ gilt, gibt es unendlich viele paarweise verschiedene Residualsprachen von $L$. Nach dem Myhill‑Nerode‑Theorem ist $L$ deshalb **nicht regulär**. ∎ </answer>
Sei . Zeigen Sie, dass nicht regulär ist, indem Sie für jedes ein Wort angeben, sodass paarweise verschieden sind, und beweisen Sie dies.
Beweis für : Für ein festes betrachten wir das Residuum nach dem Präfix : Da jedes Wort in genau aus einer Block von ’s gefolgt von einem Block von ’s besteht, ist jedes zulässiges Folgewort zwingend von der Form (ein weiteres würde die Struktur von zerstören). Weiter gilt: Damit Nun sei . Ohne Beschränkung der Allgemeinheit sei . Betrachte das Wort . * Nach (1) ist , weil dort genau das Wort fehlt (es erfüllt ). * Ebenfalls nach (1) ist , weil und damit nicht das verbotene Wort ist. Somit enthält das Wort , während dieses Wort nicht enthält. Also Da dies für jedes unterschiedliche Paar gilt, gibt es unendlich viele paarweise verschiedene Residualsprachen von . Nach dem Myhill‑Nerode‑Theorem ist deshalb nicht regulär. ∎
Exercise 3: NFA-Konstruktion
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus jeweils genau zwei Nullen entfernt. Z.B. gilt und . Formal: Beachten Sie insbesondere, dass das Löschen nicht optional ist.
Subproblem a (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: NFA-Konstruktion
Sei $\Sigma:=\{0,1\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $L^{\downarrow 0}$ die Sprache, die man erhält, wenn man den Wörtern aus $L$ jeweils genau zwei Nullen entfernt. Z.B. gilt $\{0,010, 1\}^{\downarrow 0}=\{1\}$ und $\{1,101, 0\}^{\downarrow 0}=\emptyset$. Formal:
$$L^{\downarrow 0}:= \{uvw: u0v0w\in L \wedge u,v,w\in\Sigma^*\}$$
Beachten Sie insbesondere, dass das Löschen nicht optional ist.
## subproblem a (3.0 points)
Gegeben sind drei reguläre Ausdrücke $r_1,r_2,r_3$ über $\Sigma$. Geben Sie jeweils reguläre Ausdrücke $s_1,s_2,s_3$ an, sodass $L(s_i)=L(r_i)^{\downarrow 0}$ für $i\in\{1,2,3\}$.
<answer-template id="1">
$r_1:=(0\mid 1)(0\mid 1)$, $s_1=?$
$r_2:=(0\mid 1)^*$, $s_2=?$
$r_3:=(01)^*$, $s_3=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to produce regular expressions s1, s2, s3 such that the language is original language with exactly two zeros removed. For each given regex we must compute L(r_i) then apply operation. Given r1 = (0|1)(0|1): all length 2 strings over {0,1}. Need to take each word w of length 2, remove exactly two zeros from it (i.e., find u, v, w such that u0v0w is original). Since original length is 2, we need to have two zeros in the word; only then after removal we get possibly empty string (?) Let's think: Operation: L^{\downarrow 0} = { u v w : u0v0w ∈ L }. So we look at all strings that can be obtained by deleting two zeros from some string in L. Since removal is not optional, the original string must contain exactly two zeros somewhere (maybe more zeros? Actually you delete exactly two zeros, but the original may have more zeros; you just delete two of them, leaving others untouched). So we need to find strings s such that there exists decomposition of a string t∈L as u0v0w with concatenation of u v w = s. So basically s is t with two specific zeros removed, but other symbols remain. Thus to compute L(r1)^{\downarrow 0}, we need to consider all length-2 strings t in {00,01,10,11}. For each t we need to see if we can write t = u0v0w. Since t is length 2, and we need two zeros in t (the two zero characters we will delete). So t must have at least two zeros. The only string with two zeros is "00". So t = "00". We can choose u = ε, v = ε, w = ε, then u0v0w = 0 0 = "00". Deleting both zeros yields ε (empty string). So L(s1) = { ε }. So s1 is ε (empty string). Regular expression for epsilon is ε or lambda. Usually use ε. So s1 = ε. Check if there are any other possibilities: could t have more than two zeros? No, length 2 max. So only empty string result. Thus s1 = ε. Now r2 = (0|1)^* = all strings over {0,1}. L(r2)^{\downarrow 0}: all strings that can be obtained by deleting two zeros from any binary string. The original string can be arbitrary with any zeros; after deletion we get any string over {0,1} possibly with any number of zeros remaining (including zero). So what's the resulting language? It's all strings over {0,1} as well, because given any target string s, we can obtain it by inserting two zeros somewhere into s (e.g., prepend "00" then get t = "00" s, which is in Σ*). Since original language is Σ*, includes that t. Thus s can be any binary string. So L(s2) = Σ* (i.e., (0|1)^*). So s2 = (0|1)^*. Now r3 = (01)^* : strings consisting of zero or more repetitions of "01". So language = { (01)^k | k≥0 }. We need to delete two zeros from such strings. Note each repetition has one zero and one one. So each block "01" contributes a zero. To delete two zeros, we need at least two occurrences of "01". So k ≥ 2. Deleting two zeros from the string will remove two of the zeros. The resulting string will be: original (01)^k with two zeros removed; we have k ones originally (one per block); after deleting two zeros, we still have k ones, and we have (k-2) zeros left (since there are k zeros total, delete two). The order of symbols: original pattern is 0 1 0 1 0 1 ... . If we delete two zeros, their positions may be any two among the k zeros; the remaining zeros stay in their original order relative to ones. Thus the resulting strings are all strings of length 2k-2 composed of (k-2) zeros and k ones, where zeros and ones interleave except that there may be gaps where zeros removed. Let's characterize language: Starting from pattern of alternating 0 and 1, starting with 0. Delete two 0's yields a string that still alternates but may have consecutive ones where zeros removed? Example: k=2, original "0101". Delete both zeros => "11". That's allowed. k=3, "010101". Delete first and third zero => we delete zeros at positions 1 and 5 maybe, resulting string "1 0 1 1"? Let's compute: original indices: 1 0,2 1,3 0,4 1,5 0,6 1. Remove zeros at 1 and 5 => remaining: 1 (index2), 0 (3),1 (4),1 (6) => "1011". That's not strictly alternating. So language includes strings where zeros may be missing, leading to possible runs of ones length up to 3? Actually after deleting zeros, we can get at most two consecutive ones (if we delete zeros that were between them). Since original pattern never has two consecutive ones, deleting a zero merges two adjacent ones into a pair "11". Deleting two zeros could produce a run of up to three consecutive ones? Example: delete zeros at positions 1 and 3 (both before first two ones) from "010101": remaining indices 2 (1),4 (1),5 (0),6 (1) => "1101". That's "11" then "01". That's run of 2 ones. Could we get three ones? Need three ones originally adjacent after deletions: need to delete three zeros, but we only delete two, so max run of ones is 2. So resulting language is strings over {0,1} where number of zeros is equal to number of ones minus 2? Actually original had equal numbers of zeros and ones = k. After deletion: zeros = k-2, ones = k. So #ones = #zeros + 2. Also the string must not start with zero? Original starts with zero, but if we delete the first zero, the resulting string starts with 1. So can start with either 1 or 0 depending if first zero deleted. Additionally, pattern must respect that between any two zeros there is exactly one 1? Let's think: original alternation ensures that between any two zeros there is exactly one 1. Removing some zeros can cause zeros to be farther apart (with multiple 1s between). So constraint: No two zeros are adjacent (since original never had adjacent zeros, deletion doesn't create adjacent zeros). So zeros are separated by at least one 1. Also there can be at most two consecutive 1s because you need to have at most two adjacent ones formed by deleting up to two zeros. However if you delete non-consecutive zeros you could have pattern "1 1 1"? Example k=4 original "01010101". Delete zeros at positions 1 and 5 (the first and third zeros). Remaining: indices 2 1,3 0,4 1,6 1,7 0,8 1 => "1 0 1 1 0 1" gives "101101". That's "11" only two consecutive. If we delete zeros at positions 1 and 3 (first two zeros) we get: remaining 2 1,4 1,5 0,6 1,7 0,8 1 => "110101". That's "11" then 0. Not three. Thus language: all strings over {0,1} with no two zeros adjacent and with number of ones = number of zeros + 2, and length ≥2 (since need at least two zeros originally). Also could be when k=2, result "11" (zero zeros). So zero zeros allowed. So the condition "no two zeros adjacent" and #ones = #zeros + 2. This is a regular language; we can craft regex. We can think of constructing a regex: we start with maybe a leading 1 (if first zero deleted). Then we have a sequence of blocks that are either "01" (keeping a zero) or "1" (deleted a zero preceding a one). Actually each original "01" either kept as "01" (if its zero not deleted) or turned into "1" (if its zero deleted). We need to delete exactly two zeros among the blocks. So we have to choose exactly two of the "01" blocks to turn into "1". So language: take any number k≥0 of "01" blocks, then select exactly two of them to replace by "1". The order of which choose matters. Thus regex: (01)* with exactly two of the blocks changed to 1. Equivalent to: (01)*1(01)*1(01)* maybe with the possibility that the first and second changed blocks could be anywhere. But also note we could delete the first zero, which corresponds to replacing the first block with "1" at the beginning (so string may start with "1"). Thus language: strings that can be expressed as A 1 B 1 C where A, B, C are each (01)* (including empty). That seems to capture exactly two deletions. Because each (01)* corresponds to kept blocks. The two "1"s correspond to the blocks where zero removed. However need to ensure that the "1"s are not part of a longer "1" from adjacent deletions? Example when two deletions are adjacent blocks, we would have "1" from first, then "1" from second, resulting in "11". That's captured as A empty, then "1", then B empty (since no kept block between), then "1", then C rest. So "11" works (A,B,C empty). Good. Thus s3 = (01)*1(01)*1(01)* . But check if there are cases where the removed zero block is the last block? Could we delete zero from the last block (i.e., the zero preceding the final 1)? That results in trailing "1". Our pattern already handles that: last "1" is the second deletion, then C empty. Good. Thus final answer: s1 = ε, s2 = (0|1)*, s3 = (01)*1(01)*1(01)* . Need to use the same syntax as given: they used (0\mid 1) for alternation. For concatenation just juxtapose. So s3 expressed as (01)*1(01)*1(01)* . However (01) is concatenation of 0 then 1, not using alternation. That's fine. Thus produce answer.
Answer
<answer id="1"> $r_1:=(0\mid 1)(0\mid 1)$, $s_1=\varepsilon$ $r_2:=(0\mid 1)^*$, $s_2=(0\mid 1)^*$ $r_3:=(01)^*$, $s_3=(01)^*\,1\,(01)^*\,1\,(01)^*$ </answer>
Gegeben sind drei reguläre Ausdrücke über . Geben Sie jeweils reguläre Ausdrücke an, sodass für .
, , ,
Subproblem b (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: NFA-Konstruktion
Sei $\Sigma:=\{0,1\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $L^{\downarrow 0}$ die Sprache, die man erhält, wenn man den Wörtern aus $L$ jeweils genau zwei Nullen entfernt. Z.B. gilt $\{0,010, 1\}^{\downarrow 0}=\{1\}$ und $\{1,101, 0\}^{\downarrow 0}=\emptyset$. Formal:
$$L^{\downarrow 0}:= \{uvw: u0v0w\in L \wedge u,v,w\in\Sigma^*\}$$
Beachten Sie insbesondere, dass das Löschen nicht optional ist.
## subproblem a (3.0 points)
Gegeben sind drei reguläre Ausdrücke $r_1,r_2,r_3$ über $\Sigma$. Geben Sie jeweils reguläre Ausdrücke $s_1,s_2,s_3$ an, sodass $L(s_i)=L(r_i)^{\downarrow 0}$ für $i\in\{1,2,3\}$.
<answer-template id="1">
$r_1:=(0\mid 1)(0\mid 1)$, $s_1=?$
$r_2:=(0\mid 1)^*$, $s_2=?$
$r_3:=(01)^*$, $s_3=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$r_1:=(0\mid 1)(0\mid 1)$, $s_1=\varepsilon$
$r_2:=(0\mid 1)^*$, $s_2=(0\mid 1)^*$
$r_3:=(01)^*$, $s_3=(01)^*\,1\,(01)^*\,1\,(01)^*$
</answer>
user:
## subproblem b (7.0 points)
Sei $M=(Q,\Sigma,\delta,q_0,F)$ ein beliebiger NFA. Es gilt weiterhin $\Sigma=\{0,1\}$. Konstruieren Sie einen $\epsilon$-NFA $M'=(Q',\Sigma,\delta',q_0',F')$ mit $L(M')=L(M)^{\downarrow 0}$, indem Sie $Q'$, $q_0'$, $F'$, und $\delta'$ präzise angeben.
Sie können (müssen aber nicht) zusätzlich die Idee hinter Ihrer Konstruktion erläutern. Dies kann uns helfen, Ihre Definitionen zu verstehen.
Wenden Sie anschließend Ihre Konstruktion auf den nachfolgenden NFA $M_1$ an und zeichnen Sie das Ergebnis.
*Hinweis:* Sie können $\delta'$ in Form von Gleichungen „$\delta'(q',x):=\{...\}$" oder alternativ Mengen von Tripeln „$\{(q',x,p')\mid...\}$" mit $q',p'\in Q',x\in\Sigma\cup\{\epsilon\}$ angeben.
NFA $M_1$:
Zustände: q1, q2, q3
Startzustand: q1
Finalzustände: q3
Transitionen:
q1, 0 -> q2
q2, 1 -> q1
q2, 0 -> q3
q2, 1 -> q3
q3, 1 -> q2
<answer-template id="1">
$Q':=?$
$q_0':=?$
$F':=?$
$\delta'$:
???
Konstruktionsidee (optional):
???
Ihr Konstruktionsergebnis für $M_1$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to construct epsilon-NFA that removes exactly two zeros from any word in L. That means for each accepted word w in original NFA M, we need to accept all words where we delete exactly two occurrences of 0 (in that order, but not optional). Equivalent: we need to simulate reading input while optionally "deleting" two zeros, i.e., skip two 0 symbols without moving in the NFA. Actually removal of two zeros means we need to accept any string x such that there exist u,v,w with x = u v w where u0 v0 w ∈ L(M). So we need to simulate the original NFA while optionally skipping two zero symbols. In NFA, we can do this by adding "skip" transitions: we can have epsilon- or "special" transitions that consume a 0 but do not correspond to a transition in M; essentially we need to allow the automaton to consume two 0 symbols without moving states (i.e., a "skip" of 0) exactly twice. Approach: Build product with counter 0,1,2 indicating how many zeros have been removed so far. Q' = Q × {0,1,2}. Start at (q0,0). Accepting states: any (q,2) where q∈F (i.e., after processing entire input, we have removed exactly two zeros and be in accept state). Also we could accept states where we have not yet removed two zeros but we are at end? No must remove exactly two, so we need count =2. Transitions: For each original transition δ(q,a) = set P, we define for each count k: for each p∈δ(q,a) include ((q,k), a) -> (p,k) (i.e., normal consumption doesn't affect count). Additionally, for each state q and any outgoing transition on 0 in original? Wait skipping a 0 doesn't require that there is a transition on 0; we can just consume a 0 and increment count without moving. So we add epsilon? Actually we need to consume a 0 and not change state: a "skip" transition that consumes a 0 and increments counter. So we need for each state q, for k<2: add transition ((q,k),0) -> (q,k+1) (i.e., stay in same state but increase count). This allows deletion of 0. But must ensure that we don't also consume a 0 via regular transition while also skipping? That's fine: nondeterministic choice. Thus formal definition: Q' = Q × {0,1,2}. q0' = (q0,0). F' = { (q,2) | q ∈ F }. δ' defined as: For each (q,k) and a∈Σ: - For each p ∈ δ(q,a): add ((q,k),a) → (p,k). (normal) - If a = 0 and k<2: also add ((q,k),0) → (q,k+1). (skip) Also could include epsilon for nothing? Not needed. Now apply to M1. M1 states q1,q2,q3. So Q' = { q1_0, q1_1, q1_2, q2_0, q2_1, q2_2, q3_0, q3_1, q3_2 } (represent as q1_0 etc). Start (q1,0). F' = { q3_2 } (since final states original is q3; with count=2). (Also could include (q3,2) only.) Now define δ'. First list original transitions: - from q1 on 0 -> q2. - q2 on 1 -> q1. - q2 on 0 -> q3. - q2 on 1 -> q3. - q3 on 1 -> q2. Now define for each state and count: Normal transitions (no counter change): For each k in {0,1,2}: - ((q1,k),0) → (q2,k) - ((q2,k),1) → (q1,k) - ((q2,k),0) → (q3,k) - ((q2,k),1) → (q3,k) - ((q3,k),1) → (q2,k) Now skip transitions (consume 0 and increment counter): For each state q in {q1,q2,q3}, for k=0,1: - ((q,k),0) → (q,k+1) (skip a 0) Thus we have all. Now produce drawing: could describe states and transitions; but answer may be textual. Provide answer format accordingly. Let's craft answer template. We need fill Q', q0', F', and δ' (list). Also optional construction idea. Then result for M1. Provide in <answer id="1"> with sections. Let's format.
Answer
<answer id="1"> **Allgemeine Konstruktion** **Zustände** \(Q' = Q \times \{0,1,2\}\) (der zweite Faktor zählt, wie viele Nullen bereits gelöscht wurden) **Startzustand** \(q_0' = (q_0,0)\) **Endzustände** \(F' = \{ (q,2) \mid q\in F\}\) (der originale Endzustand *nach* exakt zwei gelöschten Nullen) **Übergangs‑Funktion** Für jedes \(k\in\{0,1,2\}\) und jedes \(a\in\Sigma\) definiere \[ \begin{aligned} &\text{(a) normale Übergänge:}& \delta'((q,k),a) &:= \{\, (p,k) \mid p\in\delta(q,a) \,\} \\[2mm] &\text{(b) „Überspring‑Übergänge“ (nur bei 0 und wenn noch nicht 2 Nullen gelöscht wurden):}\\ \delta'((q,k),0) &:= \{ (k+1) \text{-Zustand} \mid k<2\}\\ &\text{d.h. } \delta'((q,k),0) \supseteq \{\, (q,k+1) \,\}\;\text{für }k=0,1 \end{aligned} \] Kurz gesagt: * Alle ursprünglichen Übergänge bleiben unverändert (der Zähler ändert sich nicht). * Zusätzlich darf aus jedem Zustand bei Eingabe ‘0’ ein **Zusatz‑Übergang** gewählt werden, der das aktuelle Symbol **verbraucht**, aber den Zustand nicht ändert und den Zähler um 1 erhöht. --- ### Anwendung auf den NFA \(M_1\) **Ursprünglicher NFA \(M_1\)** Zustände: \(q_1,q_2,q_3\) Start: \(q_1\) Ende: \(q_3\) Übergänge \[ \begin{array}{c|c} \text{Quelle} & \text{Eingabe} \rightarrow \text{Ziel} \\ \hline q_1 & 0 \rightarrow q_2 \\[1mm] q_2 & 1 \rightarrow q_1 \\[1mm] q_2 & 0 \rightarrow q_3 \\[1mm] q_2 & 1 \rightarrow q_3 \\[1mm] q_3 & 1 \rightarrow q_2 \end{array} \] --- #### 1. Zustände von \(M_1'\) \[ Q' = \{\,q_i^k \mid i\in\{1,2,3\},\; k\in\{0,1,2\}\,\} \] z. B. \(q_1^0, q_1^1, q_1^2, q_2^0,\dots , q_3^2\). #### 2. Start- und Endzustände \[ q_0' = q_1^0,\qquad F' = \{\, q_3^2 \,\} \] #### 3. Übergangsfunktion \(\delta'\) *Normale Übergänge (Zähler bleibt unverändert)* \[ \begin{aligned} \delta'(q_1^k,0) &\ni q_2^k && (k=0,1,2)\\ \delta'(q_2^k,1) &\ni q_1^k && (k=0,1,2)\\ \delta'(q_2^k,0) &\ni q_3^k && (k=0,1,2)\\ \delta'(q_2^k,1) &\ni q_3^k && (k=0,1,2)\\ \delta'(q_3^k,1) &\ni q_2^k && (k=0,1,2) \end{aligned} \] *„Überspring‑Übergänge“ (Verbrauch eines ‘0’ und Zähler‑Erhöhung)* \[ \begin{aligned} \delta'(q_i^0,0) &\ni q_i^1 &&\text{für } i=1,2,3\\ \delta'(q_i^1,0) &\ni q_i^2 &&\text{für } i=1,2,3 \end{aligned} \] (Es gibt **keine** Überspring‑Übergänge mehr, wenn bereits zwei Nullen gelöscht wurden, d. h. für \(k=2\) gibt es keinen solchen Zusatz‑Übergang.) --- #### 4. Ergebnis‑Diagramm (textuelle Darstellung) ``` 0 0 0 q1^0 ──► q2^0 ◀─► q2^0 ──► q3^0 │ ▲ │ ▲ │ │ │ 0 1| 1│ (normal) │ │ │ │ │ │ ▼ ▼ │ (skip 0) (skip 0) │ │ │ ▼ ▼ ▼ q1^1 → q2^1 → q3^1 (analog für k=2) ``` In Worten: Aus jedem Zustand \(q_i^k\) gibt es einen **normale** Übergang wie im originalen NFA, der den Zähler nicht ändert, und zusätzlich einen **„skip“-Übergang** bei Eingabe ‘0’, der den Zähler von 0→1 bzw. 1→2 erhöht und den Zustand unverändert lässt. Sobald der Zähler den Wert 2 erreicht hat, dürfen nur noch die normalen Übergänge verwendet werden, und nur wenn der aktuelle Zustand zu den ursprünglichen Endzuständen gehört (hier \(q_3\)), wird das Wort akzeptiert. Damit ist ein $\epsilon$‑NFA \(M'\) konstruiert, das genau die Sprache \(L(M)^{\downarrow 0}\) akzeptiert, und das Ergebnis für den konkreten NFA \(M_1\) wurde vollständig angegeben. </answer>
Sei ein beliebiger NFA. Es gilt weiterhin . Konstruieren Sie einen -NFA mit , indem Sie , , , und präzise angeben. Sie können (müssen aber nicht) zusätzlich die Idee hinter Ihrer Konstruktion erläutern. Dies kann uns helfen, Ihre Definitionen zu verstehen. Wenden Sie anschließend Ihre Konstruktion auf den nachfolgenden NFA an und zeichnen Sie das Ergebnis. Hinweis: Sie können in Form von Gleichungen „" oder alternativ Mengen von Tripeln „" mit angeben. NFA : Zustände: q1, q2, q3 Startzustand: q1 Finalzustände: q3 Transitionen: q1, 0 -> q2 q2, 1 -> q1 q2, 0 -> q3 q2, 1 -> q3 q3, 1 -> q2
**Allgemeine Konstruktion** **Zustände** \(Q' = Q \times \{0,1,2\}\) (der zweite Faktor zählt, wie viele Nullen bereits gelöscht wurden) **Startzustand** \(q_0' = (q_0,0)\) **Endzustände** \(F' = \{ (q,2) \mid q\in F\}\) (der originale Endzustand *nach* exakt zwei gelöschten Nullen) **Übergangs‑Funktion** Für jedes \(k\in\{0,1,2\}\) und jedes \(a\in\Sigma\) definiere \[ \begin{aligned} &\text{(a) normale Übergänge:}& \delta'((q,k),a) &:= \{\, (p,k) \mid p\in\delta(q,a) \,\} \\[2mm] &\text{(b) „Überspring‑Übergänge“ (nur bei 0 und wenn noch nicht 2 Nullen gelöscht wurden):}\\ \delta'((q,k),0) &:= \{ (k+1) \text{-Zustand} \mid k<2\}\\ &\text{d.h. } \delta'((q,k),0) \supseteq \{\, (q,k+1) \,\}\;\text{für }k=0,1 \end{aligned} \] Kurz gesagt: * Alle ursprünglichen Übergänge bleiben unverändert (der Zähler ändert sich nicht). * Zusätzlich darf aus jedem Zustand bei Eingabe ‘0’ ein **Zusatz‑Übergang** gewählt werden, der das aktuelle Symbol **verbraucht**, aber den Zustand nicht ändert und den Zähler um 1 erhöht. --- ### Anwendung auf den NFA \(M_1\) **Ursprünglicher NFA \(M_1\)** Zustände: \(q_1,q_2,q_3\) Start: \(q_1\) Ende: \(q_3\) Übergänge \[ \begin{array}{c|c} \text{Quelle} & \text{Eingabe} \rightarrow \text{Ziel} \\ \hline q_1 & 0 \rightarrow q_2 \\[1mm] q_2 & 1 \rightarrow q_1 \\[1mm] q_2 & 0 \rightarrow q_3 \\[1mm] q_2 & 1 \rightarrow q_3 \\[1mm] q_3 & 1 \rightarrow q_2 \end{array} \] --- #### 1. Zustände von \(M_1'\) \[ Q' = \{\,q_i^k \mid i\in\{1,2,3\},\; k\in\{0,1,2\}\,\} \] z. B. \(q_1^0, q_1^1, q_1^2, q_2^0,\dots , q_3^2\). #### 2. Start- und Endzustände \[ q_0' = q_1^0,\qquad F' = \{\, q_3^2 \,\} \] #### 3. Übergangsfunktion \(\delta'\) *Normale Übergänge (Zähler bleibt unverändert)* \[ \begin{aligned} \delta'(q_1^k,0) &\ni q_2^k && (k=0,1,2)\\ \delta'(q_2^k,1) &\ni q_1^k && (k=0,1,2)\\ \delta'(q_2^k,0) &\ni q_3^k && (k=0,1,2)\\ \delta'(q_2^k,1) &\ni q_3^k && (k=0,1,2)\\ \delta'(q_3^k,1) &\ni q_2^k && (k=0,1,2) \end{aligned} \] *„Überspring‑Übergänge“ (Verbrauch eines ‘0’ und Zähler‑Erhöhung)* \[ \begin{aligned} \delta'(q_i^0,0) &\ni q_i^1 &&\text{für } i=1,2,3\\ \delta'(q_i^1,0) &\ni q_i^2 &&\text{für } i=1,2,3 \end{aligned} \] (Es gibt **keine** Überspring‑Übergänge mehr, wenn bereits zwei Nullen gelöscht wurden, d. h. für \(k=2\) gibt es keinen solchen Zusatz‑Übergang.) --- #### 4. Ergebnis‑Diagramm (textuelle Darstellung) ``` 0 0 0 q1^0 ──► q2^0 ◀─► q2^0 ──► q3^0 │ ▲ │ ▲ │ │ │ 0 1| 1│ (normal) │ │ │ │ │ │ ▼ ▼ │ (skip 0) (skip 0) │ │ │ ▼ ▼ ▼ q1^1 → q2^1 → q3^1 (analog für k=2) ``` In Worten: Aus jedem Zustand \(q_i^k\) gibt es einen **normale** Übergang wie im originalen NFA, der den Zähler nicht ändert, und zusätzlich einen **„skip“-Übergang** bei Eingabe ‘0’, der den Zähler von 0→1 bzw. 1→2 erhöht und den Zustand unverändert lässt. Sobald der Zähler den Wert 2 erreicht hat, dürfen nur noch die normalen Übergänge verwendet werden, und nur wenn der aktuelle Zustand zu den ursprünglichen Endzuständen gehört (hier \(q_3\)), wird das Wort akzeptiert. Damit ist ein $\epsilon$‑NFA \(M'\) konstruiert, das genau die Sprache \(L(M)^{\downarrow 0}\) akzeptiert, und das Ergebnis für den konkreten NFA \(M_1\) wurde vollständig angegeben.
Subproblem c (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: NFA-Konstruktion
Sei $\Sigma:=\{0,1\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $L^{\downarrow 0}$ die Sprache, die man erhält, wenn man den Wörtern aus $L$ jeweils genau zwei Nullen entfernt. Z.B. gilt $\{0,010, 1\}^{\downarrow 0}=\{1\}$ und $\{1,101, 0\}^{\downarrow 0}=\emptyset$. Formal:
$$L^{\downarrow 0}:= \{uvw: u0v0w\in L \wedge u,v,w\in\Sigma^*\}$$
Beachten Sie insbesondere, dass das Löschen nicht optional ist.
## subproblem a (3.0 points)
Gegeben sind drei reguläre Ausdrücke $r_1,r_2,r_3$ über $\Sigma$. Geben Sie jeweils reguläre Ausdrücke $s_1,s_2,s_3$ an, sodass $L(s_i)=L(r_i)^{\downarrow 0}$ für $i\in\{1,2,3\}$.
<answer-template id="1">
$r_1:=(0\mid 1)(0\mid 1)$, $s_1=?$
$r_2:=(0\mid 1)^*$, $s_2=?$
$r_3:=(01)^*$, $s_3=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
$r_1:=(0\mid 1)(0\mid 1)$, $s_1=\varepsilon$
$r_2:=(0\mid 1)^*$, $s_2=(0\mid 1)^*$
$r_3:=(01)^*$, $s_3=(01)^*\,1\,(01)^*\,1\,(01)^*$
</answer>
user:
## subproblem b (7.0 points)
Sei $M=(Q,\Sigma,\delta,q_0,F)$ ein beliebiger NFA. Es gilt weiterhin $\Sigma=\{0,1\}$. Konstruieren Sie einen $\epsilon$-NFA $M'=(Q',\Sigma,\delta',q_0',F')$ mit $L(M')=L(M)^{\downarrow 0}$, indem Sie $Q'$, $q_0'$, $F'$, und $\delta'$ präzise angeben.
Sie können (müssen aber nicht) zusätzlich die Idee hinter Ihrer Konstruktion erläutern. Dies kann uns helfen, Ihre Definitionen zu verstehen.
Wenden Sie anschließend Ihre Konstruktion auf den nachfolgenden NFA $M_1$ an und zeichnen Sie das Ergebnis.
*Hinweis:* Sie können $\delta'$ in Form von Gleichungen „$\delta'(q',x):=\{...\}$" oder alternativ Mengen von Tripeln „$\{(q',x,p')\mid...\}$" mit $q',p'\in Q',x\in\Sigma\cup\{\epsilon\}$ angeben.
NFA $M_1$:
Zustände: q1, q2, q3
Startzustand: q1
Finalzustände: q3
Transitionen:
q1, 0 -> q2
q2, 1 -> q1
q2, 0 -> q3
q2, 1 -> q3
q3, 1 -> q2
<answer-template id="1">
$Q':=?$
$q_0':=?$
$F':=?$
$\delta'$:
???
Konstruktionsidee (optional):
???
Ihr Konstruktionsergebnis für $M_1$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
**Allgemeine Konstruktion**
**Zustände**
\(Q' = Q \times \{0,1,2\}\) (der zweite Faktor zählt, wie viele Nullen bereits gelöscht wurden)
**Startzustand**
\(q_0' = (q_0,0)\)
**Endzustände**
\(F' = \{ (q,2) \mid q\in F\}\) (der originale Endzustand *nach* exakt zwei gelöschten Nullen)
**Übergangs‑Funktion**
Für jedes \(k\in\{0,1,2\}\) und jedes \(a\in\Sigma\) definiere
\[
\begin{aligned}
&\text{(a) normale Übergänge:}&
\delta'((q,k),a) &:= \{\, (p,k) \mid p\in\delta(q,a) \,\} \\[2mm]
&\text{(b) „Überspring‑Übergänge“ (nur bei 0 und wenn noch nicht 2 Nullen gelöscht wurden):}\\
\delta'((q,k),0) &:= \{ (k+1) \text{-Zustand} \mid k<2\}\\
&\text{d.h. } \delta'((q,k),0) \supseteq \{\, (q,k+1) \,\}\;\text{für }k=0,1
\end{aligned}
\]
Kurz gesagt:
* Alle ursprünglichen Übergänge bleiben unverändert (der Zähler ändert sich nicht).
* Zusätzlich darf aus jedem Zustand bei Eingabe ‘0’ ein **Zusatz‑Übergang** gewählt werden, der das aktuelle Symbol **verbraucht**, aber den Zustand nicht ändert und den Zähler um 1 erhöht.
---
### Anwendung auf den NFA \(M_1\)
**Ursprünglicher NFA \(M_1\)**
Zustände: \(q_1,q_2,q_3\)
Start: \(q_1\) Ende: \(q_3\)
Übergänge
\[
\begin{array}{c|c}
\text{Quelle} & \text{Eingabe} \rightarrow \text{Ziel} \\ \hline
q_1 & 0 \rightarrow q_2 \\[1mm]
q_2 & 1 \rightarrow q_1 \\[1mm]
q_2 & 0 \rightarrow q_3 \\[1mm]
q_2 & 1 \rightarrow q_3 \\[1mm]
q_3 & 1 \rightarrow q_2
\end{array}
\]
---
#### 1. Zustände von \(M_1'\)
\[
Q' = \{\,q_i^k \mid i\in\{1,2,3\},\; k\in\{0,1,2\}\,\}
\]
z. B. \(q_1^0, q_1^1, q_1^2, q_2^0,\dots , q_3^2\).
#### 2. Start- und Endzustände
\[
q_0' = q_1^0,\qquad
F' = \{\, q_3^2 \,\}
\]
#### 3. Übergangsfunktion \(\delta'\)
*Normale Übergänge (Zähler bleibt unverändert)*
\[
\begin{aligned}
\delta'(q_1^k,0) &\ni q_2^k && (k=0,1,2)\\
\delta'(q_2^k,1) &\ni q_1^k && (k=0,1,2)\\
\delta'(q_2^k,0) &\ni q_3^k && (k=0,1,2)\\
\delta'(q_2^k,1) &\ni q_3^k && (k=0,1,2)\\
\delta'(q_3^k,1) &\ni q_2^k && (k=0,1,2)
\end{aligned}
\]
*„Überspring‑Übergänge“ (Verbrauch eines ‘0’ und Zähler‑Erhöhung)*
\[
\begin{aligned}
\delta'(q_i^0,0) &\ni q_i^1 &&\text{für } i=1,2,3\\
\delta'(q_i^1,0) &\ni q_i^2 &&\text{für } i=1,2,3
\end{aligned}
\]
(Es gibt **keine** Überspring‑Übergänge mehr, wenn bereits zwei Nullen gelöscht wurden, d. h. für \(k=2\) gibt es keinen solchen Zusatz‑Übergang.)
---
#### 4. Ergebnis‑Diagramm (textuelle Darstellung)
```
0 0 0
q1^0 ──► q2^0 ◀─► q2^0 ──► q3^0
│ ▲ │ ▲ │
│ │ 0 1| 1│ (normal)
│ │ │ │
│ │ ▼ ▼
│ (skip 0) (skip 0)
│ │ │
▼ ▼ ▼
q1^1 → q2^1 → q3^1 (analog für k=2)
```
In Worten:
Aus jedem Zustand \(q_i^k\) gibt es einen **normale** Übergang wie im originalen NFA, der den Zähler nicht ändert, und zusätzlich einen **„skip“-Übergang** bei Eingabe ‘0’, der den Zähler von 0→1 bzw. 1→2 erhöht und den Zustand unverändert lässt. Sobald der Zähler den Wert 2 erreicht hat, dürfen nur noch die normalen Übergänge verwendet werden, und nur wenn der aktuelle Zustand zu den ursprünglichen Endzuständen gehört (hier \(q_3\)), wird das Wort akzeptiert.
Damit ist ein $\epsilon$‑NFA \(M'\) konstruiert, das genau die Sprache \(L(M)^{\downarrow 0}\) akzeptiert, und das Ergebnis für den konkreten NFA \(M_1\) wurde vollständig angegeben.
</answer>
user:
## subproblem c (3.0 points)
Es gilt weiterhin $\Sigma=\{0,1\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $L^{\uparrow 0}$ die Sprache, die man erhält, wenn man den Wörtern aus $L$ jeweils zwei Nullen hinzufügt. Formal gilt
$L^{\uparrow 0}:= \{u0v0w \mid uvw\in L \wedge u,v,w\in\Sigma^*\}$.
Zeigen oder widerlegen Sie: Für jede nichtleere Sprache $L\subseteq \Sigma^*$ gilt $L^{\uparrow 0}\neq L$.
Falls Sie die Aussage mit einem Gegenbeispiel widerlegen möchten, zeigen Sie auch die Korrektheit des Gegenbeispiels.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need to answer true/false. Statement: For every nonempty language L subset Σ*, L^{↑0} ≠ L. Is it always unequal? Adding two zeros somewhere in each word. Could some language be unchanged after insertion of two zeros somewhere? Need L such that for every word w in L there exists insertion of two zeros somewhere (maybe at different positions) that yields a word still in L, and also any word in L can be obtained by inserting two zeros into some word of L (since L ⊆ L^{↑0}? Actually definition: L^{↑0} = { u0v0w | uvw ∈ L }. So for each original word x = uvw in L, we produce new words by inserting two zeros between u and v and v and w. So L^{↑0} consists of words that have at least two zeros (maybe not, if u or v empty). For L to equal L^{↑0}, need that every word in L can be expressed as u0v0w where uvw is also in L, and that every word formed this way is also in L (i.e., L closed under insertion of two zeros). Could there be a language satisfying that? Consider L = Σ* (all words). Then L^{↑0}=Σ* as well, because any word can be represented as u0v0w where uvw is also any word (just choose u=prefix, v=middle, w= suffix after removing two zeros, but you need uvw ∈ Σ*; you can always pick u,v,w accordingly because you can delete two zeros from a word that may not have zeros; you need to find u,v,w such that the word is u0v0w and uvw ∈ Σ*. Given any word, you can set u empty, v empty, but then need word = 0 0 w, meaning the word must start with two zeros; not all words start with zeros. However you can choose u and v possibly containing zeros to account. Suppose given arbitrary word x, we need to split it as u0v0w. That imposes that x contains at least two zeros. If x does not contain two zeros, you cannot write it as u0v0w. Therefore L^{↑0} will be the set of words with at least two zeros (maybe more) because you need two zero symbols inserted. For Σ* you get language of strings with at least two zeros, not all strings. So Σ* not fixed. Need language where every word already contains at least two zeros and closed under removing any two zeros? Actually condition L = L^{↑0}. Let's test language L = { strings over Σ with at least two zeros }. Call L = Σ* containing at least two 0's. Take any word w with at least two zeros. Can we represent w as u0v0w' where u v w' ∈ L? We need uvw' also have at least two zeros. Removing the two inserted zeros yields uvw' which may have fewer zeros, maybe less than two. Need uvw' ∈ L (i.e., also at least two zeros). Therefore w must have at least four zeros? Not necessarily: we could choose the two zeros to be ones that are not the only zeros. For a word with exactly two zeros, we must delete them to get uvw' that has zero zeros, which is not in L. So such w would not be in L^{↑0}. Therefore L^{↑0} ≠ L. Maybe language L = ∅? But statement says nonempty. So not. What about language consisting of all strings that have exactly two zeros? Then L^{↑0} results in strings with at least four zeros? Not equal. Maybe language L = set of all strings that are of form x where number of zeros is congruent to 0 mod 2 (i.e., even number of zeros). Insert two zeros preserves parity (adds 2, still even). But does every even-zero word arise from insertion of two zeros into another even-zero word? If w has zero zeros (i.e., all 1s), cannot insert zeros to get it; but we need to produce w by insertion from some uvw ∈ L. For w with 0 zeros, you would need uvw before insertion to have -2 zeros (impossible). So w not in L^{↑0}. Thus L^{↑0} != L. Maybe language L = set of all strings over Σ that contain a substring "00". That is, at least one occurrence of two consecutive zeros. Inserting two zeros anywhere could create another "00". But to get equality, need each string that contains "00" also be obtainable by inserting two zeros into another string that also contains "00". Consider string "00". Can we get it via insertion? Need uvw such that uvw contains "00" and after inserting zeros we get "00". The only way is uvw = empty string and insert zeros as u=ε, v=ε, w=ε gives "00". However empty string not in L because it does not contain "00". So "00" ∉ L^{↑0}. Therefore not equal. Could there be a language L that is closed under insertion of two zeros and also every word in L can be obtained by such insertion? That suggests L is infinite and maybe contains only words that already have a distinguished pair of zeros such that you can delete them and remain in L. If you can delete any two zeros and stay in L, then L = L^{↑0}. So we need language where deleting any two zeros (maybe specific) yields still in L and adding zeros yields still in L. Example: language of all strings over Σ (any) where the number of zeros is at least 2 and no restriction on other symbols. But as seen earlier, deletion of zeros might produce a string with less than 2 zeros, not in L. So not closed. What about language L = Σ* (i.e., all strings) union with maybe empty? Already not. Consider L = set of all strings where zeros occur in pairs, i.e., zeros always appear as part of a pair "00" (maybe overlapping not allowed). Insertion of two zeros could be as separate pair. Deleting the inserted pair yields still such property. But a string consisting of a single "00" pair can be obtained by inserting pair into empty string, which does not satisfy property (empty string has zero zeros, zeros appear in pairs vacuously? It does, as there are zero zeros, which can be considered as pairs? Usually condition "zeros occur in pairs" means the total number of zeros is even, and they can be adjacent or not. But removing a pair leaves even count; okay. Suppose L = set of strings with an even number of zeros (including zero). Then deleting two zeros retains even number, but need to ensure the intermediate string is also in L (even). For any string w with even zeros, we can delete two zeros (if there are at least two) to get string with even zeros, still in L. But if w has zero zeros, cannot be obtained by insertion because need to start from a string also with even zeros, maybe also zero zeros, and insert two zeros to create two zeros (so not). But w with zero zeros (i.e., all 1s) is in L but not in L^{↑0}. So inequality. Thus maybe statement is true: For any nonempty L, L^{↑0} != L. We need to either prove. Proof idea: Take any nonempty L. Choose a shortest word w in L (by length). Since L is nonempty, minimal length exists? Not necessarily finite minimal; there could be infinite descending lengths? No, length is natural numbers; any nonempty set of natural numbers has a minimum. So there is a shortest word w. Consider w's length |w| = n. For any word w' in L^{↑0}, it has length at least n+2 (since you insert two zeros). So w cannot be in L^{↑0} because any word in L^{↑0} is at least two symbols longer than some word in L. Wait could w also be obtained by insertion from a shorter word? But w is minimal, so no shorter word exists in L. Thus w ∉ L^{↑0}. Therefore L^{↑0} cannot equal L. Hence statement true. Thus answer option 1 (Wahr) = true, so option 1 must be 1 and option 2 0. Provide explanation in answer section.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> **Beweis, dass für jede nichtleere Sprache \(L\subseteq\{0,1\}^*\) stets \(L^{\uparrow0}\neq L\) gilt** Sei \(L\neq\varnothing\). Betrachte die Menge der Längen aller Wörter von \(L\): \[ \ell(L)=\{\,|w|\mid w\in L\,\}\subseteq\mathbb N . \] Da \(\mathbb N\) wohlgeordnet ist, besitzt \(\ell(L)\) ein Minimum. Sei also \(w\in L\) ein Wort mit minimaler Länge \(n=|w|\). Für jedes Wort \(x\in L^{\uparrow0}\) gibt es laut Definition Wörter \(u,v\in\Sigma^*\) und ein Wort \(y\in L\) mit \[ x = u0v0w\quad\text{und}\quad y = uvw . \] Damit ist \(|x| = |y|+2\). Da \(y\in L\), gilt \(|y|\ge n\) (wegen der Minimalität von \(w\)). Folglich \(|x| \ge n+2\). Insbesondere hat jedes Wort aus \(L^{\uparrow0}\) eine Länge von mindestens \(n+2\). Das Wort \(w\) hat jedoch Länge \(n\) und kann deshalb nicht in \(L^{\uparrow0}\) liegen. Also ist \(w\in L\setminus L^{\uparrow0}\) und damit \(L\neq L^{\uparrow0}\). Damit ist die Aussage **wahr**: Für jede nichtleere Sprache \(L\subseteq\Sigma^*\) gilt \(L^{\uparrow0}\neq L\).\[ \blacksquare \] </answer>
Es gilt weiterhin . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus jeweils zwei Nullen hinzufügt. Formal gilt . Zeigen oder widerlegen Sie: Für jede nichtleere Sprache gilt . Falls Sie die Aussage mit einem Gegenbeispiel widerlegen möchten, zeigen Sie auch die Korrektheit des Gegenbeispiels.
☒Wahr☐Falsch
Beweis, dass für jede nichtleere Sprache stets gilt Sei . Betrachte die Menge der Längen aller Wörter von : Da wohlgeordnet ist, besitzt ein Minimum. Sei also ein Wort mit minimaler Länge . Für jedes Wort gibt es laut Definition Wörter und ein Wort mit Damit ist . Da , gilt (wegen der Minimalität von ). Folglich . Insbesondere hat jedes Wort aus eine Länge von mindestens . Das Wort hat jedoch Länge und kann deshalb nicht in liegen. Also ist und damit . Damit ist die Aussage wahr: Für jede nichtleere Sprache gilt .
Exercise 4: NFA zu regulärem Ausdruck
Subproblem a (9.0/9.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: NFA zu regulärem Ausdruck
## subproblem a (9.0 points)
Wir betrachten den rechts abgebildeten NFA $N$ über dem Alphabet $\{a,b\}$. Berechnen Sie mit dem graphischen Algorithmus aus der Vorlesung (nicht mit Ardens Lemma) einen regulären Ausdruck $r$, sodass $L(r) = L(N)$. Geben Sie dabei nach **jeder** Anwendung einer Transformationsregel den Automaten graphisch an und vereinfachen Sie die regulären Ausdrücke in den Zwischenschritten **nicht**. (Ausnahme: Sie dürfen die Vereinfachung $\varepsilon \alpha \equiv \alpha \varepsilon \equiv \alpha$ anwenden.) Entfernen Sie die Zustände **in aufsteigender Reihenfolge** (bezüglich ihrer Zustandsnummer).
NFA N:
Zustände: 1, 2, 3
Startzustand: 1
Finalzustände: 3
Transitionen:
1, a -> 2
1, b -> 3
2, a -> 1
3, a -> 3
3, b -> 2
<answer-template id="1">
Zwischenschritte:
???
Regulärer Ausdruck: $r = ?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to produce answer using the template. The problem: Compute regular expression via state elimination (graphical algorithm) removing states in order 1,2,3? Actually states are 1,2,3; start is 1, final is 3. Usually we cannot remove start or final until we add new start and final. Must add new start s' and new final f', with epsilon edges. Then we remove states in ascending order (excluding s' and f'?). Likely they want to remove state 1 first, then 2, then 3 (but 3 is final, but we will have new final). Let's reason. Standard algorithm: add new start i with ε to original start (1); add new final f with ε from each original final (3). Then remove states other than i and f in order 1,2,3 (but can't remove 3 because it's a final? They added new final f, so original 3 becomes intermediate). So removal order: 1,2,3. We need to produce each step graphically. Since we can't draw, we can describe edges with regular expressions. Must not simplify intermediate expressions (except εα). Provide sequence. We need final regular expression after all elimination. Let's compute. States: i (new start), 1,2,3, f (new final). Edges: i -> 1: ε 1 -> 2: a 1 -> 3: b 1 -> i? none. 2 -> 1: a 2 -> (others) none 3 -> 3: a (loop) 3 -> 2: b 3 -> f: ε (since original final) Also any other edges? maybe none. Now elimination step 1: remove state 1. We need to compute new edges between remaining states via formula: for each pair (p,q) where p->1 edge α, 1->1 loop β (if any), 1->q edge γ, add edge p->q with α β* γ. Since 1 has no loop. So for each incoming to 1 (i ->1 ε, 2->1 a) and each outgoing from 1 (1->2 a, 1->3 b) we add new edges. Compute: From i to 2: via i->1 ε and 1->2 a => ε a = a. So add edge i->2 labelled a. From i to 3: via ε and b => b. So add i->3 label b. From 2 to 2: via 2->1 a and 1->2 a => a a = aa. From 2 to 3: via 2->1 a and 1->3 b => a b = ab. Also need preserve existing edges not involving 1. Existing edges: i->1 removed after elimination, 1 removed; So i->2 now a (maybe also there already? No previous). i->3 now b (previous none). 2->1 removed, 1->2 removed, etc. Other edges unchanged: 3->3 a ; 3->2 b ; 3->f ε. Now we have states: i,2,3,f. Next elimination: remove state 2 (next number). Need incoming to 2: i->2 a, 3->2 b. Also maybe 2->2 loop? There is edge 2->2 aa (from previous step). So loop β = aa. Outgoing from 2: to 3 (ab). Also maybe to f? none. So we compute new edges: For each p (i,3) incoming and each q (3) outgoing (maybe also to f if existed) we add edge p->q with α β* γ. First compute β* = (aa)*. Now edges: i -> 3 via i->2 a then loop* then 2->3 ab: α = a, γ = ab, so expression: a (aa)* ab. Simplify? Not allowed to simplify aside from ε α. So keep as a (aa)* ab. Also i may have existing edge directly to 3 (b). So we need to combine (union) existing edge b with new edge a (aa)* ab. So new edge i->3 becomes b + a (aa)* ab (union). Represent as (b + a (aa)* ab). Use + for union. Similarly, from 3 -> 3 via 3->2 b then loop* then 2->3 ab: α = b, β* = (aa)*, γ = ab. So expression: b (aa)* ab. Also we have existing loop 3->3 a. So combine: a + b (aa)* ab. Also from 3 -> f via? 3->2 b then loop* then 2->f? none, so no new edge. Also from i -> f? none. Now we also may need edge from i to f via i->2 a then loop* then 2->f? none, so none. Now after eliminating 2, we have states i,3,f. Edge list: i -> 3: b + a (aa)* ab i -> f: none 3 -> 3: a + b (aa)* ab 3 -> f: ε i -> i: none (no loops) Now final elimination: remove state 3. Incoming to 3: i->3 (b + a (aa)* ab). Loop on 3: β = a + b (aa)* ab . Outgoing from 3: to f ε. Compute β* = (a + b (aa)* ab)* (not simplifying). Then new edge from i to f: α β* γ = (b + a (aa)* ab) (a + b (aa)* ab)* ε = (b + a (aa)* ab) (a + b (aa)* ab)* Thus regular expression r = (b + a (aa)* ab) (a + b (aa)* ab)* We might also consider that after elimination, there is also possibility of ε directly from i to f? Not present. Thus final expression. We can perhaps optionally simplify union of concatenations but the problem says not to simplify intermediate, but final expression maybe okay. They didn't forbid simplification at final? Could keep as derived. Thus answer template: Zwischenschritte: list each step with graph but we can list edges. We must output within template. Let's format: Zwischenschritte: 1. After removing state 1: ... edges ... 2. After removing state 2: ... 3. After removing state 3: ... Will use textual description. Now produce final answer.
Answer
<answer id="1"> Zwischenschritte: 1. **Zustände**: i, 1, 2, 3, f **Kanten**: - i → 1 : ε - 1 → 2 : a 1 → 3 : b - 2 → 1 : a - 3 → 3 : a 3 → 2 : b - 3 → f : ε **Entferne Zustand 1** (keine Schleife auf 1). Neue Kanten nach Regel \(p\!\to\!q = \alpha\beta^{*}\gamma\): - i → 2 : ε·a = **a** - i → 3 : ε·b = **b** - 2 → 2 : a·a = **aa** - 2 → 3 : a·b = **ab** Ergebnis‑Automat (Zustände i, 2, 3, f): - i → 2 : a - i → 3 : b - 2 → 2 : aa - 2 → 3 : ab - 3 → 3 : a 3 → 2 : b - 3 → f : ε 2. **Entferne Zustand 2** (Schleife β = aa). Für jeden Eingang \(p\!\to\!2 = \alpha\) und Ausgang \(2\!\to\!q = \gamma\) wird \(p\!\to\!q = \alpha\,\beta^{*}\,\gamma\) hinzugefügt. - i → 3 : a · (aa)^{*} · ab → **a (aa)^{*} ab** - 3 → 3 : b · (aa)^{*} · ab → **b (aa)^{*} ab** Diese werden zu den bereits vorhandenen Kanten vereinigt (Union “+”): - i → 3 : **b + a (aa)^{*} ab** - 3 → 3 : **a + b (aa)^{*} ab** Ergebnis‑Automat (Zustände i, 3, f): - i → 3 : b + a (aa)^{*} ab - 3 → 3 : a + b (aa)^{*} ab - 3 → f : ε 3. **Entferne Zustand 3** (Schleife β = a + b (aa)^{*} ab). - i → f : (b + a (aa)^{*} ab) · ( a + b (aa)^{*} ab )^{*} · ε → **(b + a (aa)^{*} ab)(a + b (aa)^{*} ab)^{*}** Nach Entfernung aller Zwischenzustände bleibt nur die Kante i → f. Regulärer Ausdruck: $r = (b + a (aa)^{*} ab)(a + b (aa)^{*} ab)^{*}$ </answer>
Wir betrachten den rechts abgebildeten NFA über dem Alphabet . Berechnen Sie mit dem graphischen Algorithmus aus der Vorlesung (nicht mit Ardens Lemma) einen regulären Ausdruck , sodass . Geben Sie dabei nach jeder Anwendung einer Transformationsregel den Automaten graphisch an und vereinfachen Sie die regulären Ausdrücke in den Zwischenschritten nicht. (Ausnahme: Sie dürfen die Vereinfachung anwenden.) Entfernen Sie die Zustände in aufsteigender Reihenfolge (bezüglich ihrer Zustandsnummer). NFA N: Zustände: 1, 2, 3 Startzustand: 1 Finalzustände: 3 Transitionen: 1, a -> 2 1, b -> 3 2, a -> 1 3, a -> 3 3, b -> 2
Zwischenschritte: 1. **Zustände**: i, 1, 2, 3, f **Kanten**: - i → 1 : ε - 1 → 2 : a 1 → 3 : b - 2 → 1 : a - 3 → 3 : a 3 → 2 : b - 3 → f : ε **Entferne Zustand 1** (keine Schleife auf 1). Neue Kanten nach Regel \(p\!\to\!q = \alpha\beta^{*}\gamma\): - i → 2 : ε·a = **a** - i → 3 : ε·b = **b** - 2 → 2 : a·a = **aa** - 2 → 3 : a·b = **ab** Ergebnis‑Automat (Zustände i, 2, 3, f): - i → 2 : a - i → 3 : b - 2 → 2 : aa - 2 → 3 : ab - 3 → 3 : a 3 → 2 : b - 3 → f : ε 2. **Entferne Zustand 2** (Schleife β = aa). Für jeden Eingang \(p\!\to\!2 = \alpha\) und Ausgang \(2\!\to\!q = \gamma\) wird \(p\!\to\!q = \alpha\,\beta^{*}\,\gamma\) hinzugefügt. - i → 3 : a · (aa)^{*} · ab → **a (aa)^{*} ab** - 3 → 3 : b · (aa)^{*} · ab → **b (aa)^{*} ab** Diese werden zu den bereits vorhandenen Kanten vereinigt (Union “+”): - i → 3 : **b + a (aa)^{*} ab** - 3 → 3 : **a + b (aa)^{*} ab** Ergebnis‑Automat (Zustände i, 3, f): - i → 3 : b + a (aa)^{*} ab - 3 → 3 : a + b (aa)^{*} ab - 3 → f : ε 3. **Entferne Zustand 3** (Schleife β = a + b (aa)^{*} ab). - i → f : (b + a (aa)^{*} ab) · ( a + b (aa)^{*} ab )^{*} · ε → **(b + a (aa)^{*} ab)(a + b (aa)^{*} ab)^{*}** Nach Entfernung aller Zwischenzustände bleibt nur die Kante i → f. Regulärer Ausdruck: $r = (b + a (aa)^{*} ab)(a + b (aa)^{*} ab)^{*}$
Subproblem b (0.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: NFA zu regulärem Ausdruck
## subproblem a (9.0 points)
Wir betrachten den rechts abgebildeten NFA $N$ über dem Alphabet $\{a,b\}$. Berechnen Sie mit dem graphischen Algorithmus aus der Vorlesung (nicht mit Ardens Lemma) einen regulären Ausdruck $r$, sodass $L(r) = L(N)$. Geben Sie dabei nach **jeder** Anwendung einer Transformationsregel den Automaten graphisch an und vereinfachen Sie die regulären Ausdrücke in den Zwischenschritten **nicht**. (Ausnahme: Sie dürfen die Vereinfachung $\varepsilon \alpha \equiv \alpha \varepsilon \equiv \alpha$ anwenden.) Entfernen Sie die Zustände **in aufsteigender Reihenfolge** (bezüglich ihrer Zustandsnummer).
NFA N:
Zustände: 1, 2, 3
Startzustand: 1
Finalzustände: 3
Transitionen:
1, a -> 2
1, b -> 3
2, a -> 1
3, a -> 3
3, b -> 2
<answer-template id="1">
Zwischenschritte:
???
Regulärer Ausdruck: $r = ?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
Zwischenschritte:
1. **Zustände**: i, 1, 2, 3, f
**Kanten**:
- i → 1 : ε
- 1 → 2 : a 1 → 3 : b
- 2 → 1 : a
- 3 → 3 : a 3 → 2 : b
- 3 → f : ε
**Entferne Zustand 1** (keine Schleife auf 1).
Neue Kanten nach Regel \(p\!\to\!q = \alpha\beta^{*}\gamma\):
- i → 2 : ε·a = **a**
- i → 3 : ε·b = **b**
- 2 → 2 : a·a = **aa**
- 2 → 3 : a·b = **ab**
Ergebnis‑Automat (Zustände i, 2, 3, f):
- i → 2 : a
- i → 3 : b
- 2 → 2 : aa
- 2 → 3 : ab
- 3 → 3 : a 3 → 2 : b
- 3 → f : ε
2. **Entferne Zustand 2** (Schleife β = aa).
Für jeden Eingang \(p\!\to\!2 = \alpha\) und Ausgang \(2\!\to\!q = \gamma\) wird
\(p\!\to\!q = \alpha\,\beta^{*}\,\gamma\) hinzugefügt.
- i → 3 : a · (aa)^{*} · ab → **a (aa)^{*} ab**
- 3 → 3 : b · (aa)^{*} · ab → **b (aa)^{*} ab**
Diese werden zu den bereits vorhandenen Kanten vereinigt (Union “+”):
- i → 3 : **b + a (aa)^{*} ab**
- 3 → 3 : **a + b (aa)^{*} ab**
Ergebnis‑Automat (Zustände i, 3, f):
- i → 3 : b + a (aa)^{*} ab
- 3 → 3 : a + b (aa)^{*} ab
- 3 → f : ε
3. **Entferne Zustand 3** (Schleife β = a + b (aa)^{*} ab).
- i → f : (b + a (aa)^{*} ab) · ( a + b (aa)^{*} ab )^{*} · ε
→ **(b + a (aa)^{*} ab)(a + b (aa)^{*} ab)^{*}**
Nach Entfernung aller Zwischenzustände bleibt nur die Kante i → f.
Regulärer Ausdruck: $r = (b + a (aa)^{*} ab)(a + b (aa)^{*} ab)^{*}$
</answer>
user:
## subproblem b (3.0 points)
Geben Sie eine rechtslineare Grammatik für $L(N)$ mit höchstens 3 Nichtterminalen an.
*Hinweis:* In rechtslinearen Grammatiken sind keine $\varepsilon$-Produktionen außer $S \to \varepsilon$ erlaubt.
<example>
S -> aS | SS
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
The user asks for subproblem b: Provide a right-linear grammar for L(N) with at most 3 nonterminals. NFA described earlier: states 1 (start), 2, 3 (final). Transitions: 1 --a-->2, 1 --b-->3, 2 --a-->1, 3 --a-->3, 3 --b-->2. Final state 3. We need grammar generating same language. We need to construct right-linear grammar from NFA: each state becomes a nonterminal, final state also generates epsilon. So nonterminals: A1 for state1, A2 for state2, A3 for state3 (accepting). At most 3 nonterminals: okay. Productions: For each transition p -> q labeled a, we have A_p -> a A_q. If final state, add A_f -> ε. Also start symbol is A1. Thus: A1 -> a A2 | b A3 A2 -> a A1 A3 -> a A3 | b A2 | ε That's 3 nonterminals, right-linear, only epsilon production from A3 (final). We can optionally rename to S, A, B etc. Thus answer. Make sure format: <answer id="1"> ... </answer> Let's output grammar lines.
Answer
<answer id="1"> Eine mögliche rechtslineare Grammatik mit höchstens drei Nichtterminalen ist \[ \begin{aligned} S &\;\to\; aA \mid bF \\[2mm] A &\;\to\; aS \\[2mm] F &\;\to\; aF \mid bA \mid \varepsilon \end{aligned} \] \begin{itemize} \item \(S\) steht für den Startzustand \(1\). \item \(A\) steht für den Zustand \(2\). \item \(F\) (final) steht für den akzeptierenden Zustand \(3\) und besitzt die \(\varepsilon\)-Produktion, da \(3\) ein Endzustand ist. \end{itemize} Diese Grammatik ist rechtslinear und generiert exakt die Sprache des gegebenen NFA \(N\).
Geben Sie eine rechtslineare Grammatik für mit höchstens 3 Nichtterminalen an. Hinweis: In rechtslinearen Grammatiken sind keine -Produktionen außer erlaubt.
<empty>
no answer given
Exercise 5: Kontextfreie Sprachen
Gegeben sind folgende drei Sprachen über dem Alphabet :
Subproblem a (0.0/6.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Kontextfreie Sprachen
Gegeben sind folgende drei Sprachen über dem Alphabet $\Sigma := \{a,b\}$:
$L_1 := \{a^ib^ja^k : (i = j\vee j = k)\wedge i,j,k\geq 0\}$
$L_2 := \{a^nw : w\in \Sigma^* \wedge |w|\geq n\wedge n>0\}$
$L_3 := \{a^ib^ja^k : j>i + k\wedge i,j,k\geq 0\}$
## subproblem a (6.0 points)
Geben Sie kontextfreie Grammatiken für $L_1,L_2,L_3$ mit jeweils höchstens 5 Nichtterminalen und 10 Produktionen an.
*Hinweis:* Sie dürfen $\varepsilon$-Produktionen verwenden.
<answer-template id="1">
Grammatik für $L_1$:
???
Grammatik für $L_2$:
???
Grammatik für $L_3$:
???
</answer-template>
<example>
Grammatik für $L_1$:
S -> SS | AT
T -> aTa | bTb
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
We need to provide CFGs for three languages with ≤5 nonterminals and ≤10 productions each, can use epsilon productions. We need to output according to template. Let's design. Language L1: strings a^i b^j a^k where i=j or j=k. So either equal number of a at start and b, or equal number of b and a at end. Need grammar generating union of two sublanguages. We can have start symbol S -> S1 | S2 where S1 generates i=j case (a^i b^i a^k arbitrary k>=0), S2 generates j=k case (a^i b^j a^j where i arbitrary). Need ≤5 nonterminals, maybe use A,B,C, etc. Let’s define: S -> X | Y X generates a^i b^i a^k : Use A for matching a,b pairs, then add trailing a's via C. A -> a A b | ε Then after A produce trailing a's: X -> A C C -> a C | ε Similarly Y for j=k: need a^i b^j a^j with any i. So we can generate arbitrary leading a's via D, then matched b,a via B. Let D -> a D | ε (any number leading a's) B -> b B a | ε (matched b and trailing a) Then Y -> D B Total nonterminals: S, A, C, D, B =5. Productions: define each. Count productions: S -> X | Y (2) ; X -> A C (1) ; A -> a A b | ε (2) ; C -> a C | ε (2) ; Y -> D B (1) ; D -> a D | ε (2) ; B -> b B a | ε (2). Total: 2+1+2+2+1+2+2 =12 exceeds 10. Need ≤10 productions total per grammar. Could reduce by merging some nonterminals or reusing. We can instead use a single nonterminal for arbitrary a's both sides. Observation: We can generate union using same structure: S -> A | B ; where A handles i=j else B handles j=k. Use same nonterminals for trailing a's etc perhaps share. Let's attempt to have 4 nonterminals: S, M, N, maybe. Define: S -> M | N M handles i=j: produce matched a...b... and then any extra a's. Use M -> a M b | T ; T -> a T | ε Thus productions: S->M | N (2) ; M-> a M b | T (2) ; T-> a T | ε (2). That's 6. Now N handles j=k: produce any leading a's then matched b...a. N -> U | a N ; but need matched b...a. We can define N -> a N | V ; V -> b V a | ε . However we need to ensure that there can be any number of leading a's before the matched part. Could combine: N -> a N | V (2). V -> b V a | ε (2). That's 4 more. Total 10 productions. Nonterminals: S, M, T, N, V =5 total. Good. Let's list all productions explicitly: S -> M | N M -> a M b | T T -> a T | ε N -> a N | V V -> b V a | ε Check languages: - For M case: each a M b adds matched a and b, with recursion inside; eventually go to T which generates any number of a's. So strings: a^i b^i a^k, where i≥0 (since M can go directly to T when i=0). Good. - For N case: N can generate any number of leading a's via N -> a N, then eventually V. V generates b^j a^j with same count. So overall: a^i b^j a^j, i≥0, j≥0. That's i arbitrary, j any, matches j=k condition. Thus union covers L1. Good. Now L2: L2 = { a^n w : w∈ Σ* ∧ |w| ≥ n ∧ n > 0 }. So strings start with n a's, then any string w of length at least n. n >0. So after at least one a, then there are at least as many symbols after the a's as the number of a's. Equivalent: there exists n ≥1 such that the first n symbols are a's, and the remaining suffix length ≥ n. No restriction on characters in suffix (a or b). Need CFG with ≤5 nonterminals and ≤10 productions. We can think of generating a^n followed by at least n symbols (any a/b). So we can pair each leading a with a "placeholder" symbol later, ensuring at least n symbols later. Use two-part nonterminal that pushes a marker and then later matches. Classic palindrome-like generation but not requiring matching symbols. Define start S -> a S X | a X where X generates any symbol (a|b) and we need at least as many X as leading a's. But careful. Simpler: we can generate n a's, and then generate at least n arbitrary symbols: we can generate a "stack" of n markers, then produce n symbols, then any extra symbols. We can use nonterminal A that generates a^n and also pushes n markers onto a stack via recursion, later we will emit at least n symbols using those markers. Define productions: S -> a S a | a S b | a T But this would generate exactly same number of trailing symbols as leading a's but each trailing symbol must be a or b (any). However we also need at least n symbols, could generate extra after T. Let T generate any additional symbols (a|b)*. Define: S -> a S a | a S b | a U U -> a U | b U | ε But need to guarantee that there are at least n symbols after the initial block of a's. The recursion a S a adds one leading a and one trailing symbol (either a or b) matched. The base case a U adds the final leading a (ensuring n≥1) and then any extra symbols through U (including possibly zero). However with this, the number of trailing symbols equals number of leading a's (since each recursion adds one trailing symbol) plus possibly extra via U after final leading a. That yields at least n trailing symbols because each leading a contributes one trailing symbol (including the final a). Does that hold? Suppose n=1: S -> a U. Then we have exactly 1 leading a, and trailing part generated by U which may be zero length -> then total trailing length may be 0, violating |w| ≥ n (need at least 1). So we need to ensure at least one trailing symbol for base case. Could modify base to produce a with at least one symbol after. Better: Use two stages: first generate a^n and push markers using recursion, then after finishing a's, generate at least n symbols by popping markers, each popping produces one symbol (a|b). After the markers are empty, we can generate extra symbols arbitrarily. Implement using nonterminals: S -> a S | a A (first stage) A -> a A | b A | ε (but need at least as many symbols as number of a's generated earlier). That does not guarantee. Alternative: use pair of nonterminals: S generates a^n and also an auxiliary nonterminal P with n copies of marker X, then P generates at least n symbols. We can simulate markers via recursion in the same nonterminal: S -> a S X | a X (where X generates a single symbol a|b). This ensures each a introduces a future X that will be produced later. But we need to enforce that the X's appear after all a's? If we define S -> a S X, then during derivation, X will appear to the right of the rest of string derived from S, meaning X's are generated after whatever S continues to produce. So final string will be a^n followed by X1 X2 ... Xn (each a|b) . Good. The base case a X ensures at least one a and one X. The recursion ensures each additional a adds another X after the rest. Thus we need nonterminals: S, X (maybe we can define X as generating a|b). X -> a | b. Now productions: S -> a S X | a X X -> a | b That's only 3 productions, 2 nonterminals besides S. Works and generates strings a^n w where w length = n (exactly n). Wait w length equals number of X's = n . But we also need w length ≥ n, not exactly n. To allow extra symbols after the n required ones, we can allow after the X's, we can append an arbitrary tail via another nonterminal T that generates any string. We can modify base case to a X T, and recursive case a S X T? However we need to make sure T appears after all X's. Simpler: after S finishes with a X, we can append any string via Y. So modify productions: S -> a S X | a X Y Y -> a Y | b Y | ε Now derive: For each a added (except the last) we have S -> a S X, leading to a's before recursion, each X will appear later after the rest (including later X's). Finally base case yields a X Y where Y can generate additional symbols (any length). So total trailing symbols = n X's + any extra from Y (≥0). So length of w = n + |Y| ≥ n. Good, n≥1 due to at least one a from base case. So grammar uses nonterminals S, X, Y (3 nonterminals). Productions: S-> a S X ; S-> a X Y ; X-> a ; X-> b ; Y-> a Y ; Y-> b Y ; Y-> ε . That's 7 productions, within limit. Now L3: L3 = { a^i b^j a^k : j > i + k ∧ i,j,k ≥0 }. So number of b's exceeds sum of number of a's before and after. Need CFG. Use generating i and k a's arbitrarily, but need more b's than total a's. We can think of generating a's (i) and a's (k) and at same time generate sufficient extra b's to satisfy condition. One approach: generate strings with a certain number of 'excess' b's using a nonterminal that ensures at least one more b than a's pair. We can generate i leading a's, then generate j b's where we ensure j > i + k after we later generate k trailing a's. Equivalent to there is at least one extra b beyond total number of a's. Could generate pattern: First generate some a's (i) and store count. Then generate b's with at least one extra per a in i and also extra for later k. However k not known yet when generating b's. Alternative: generate the string as: generate a^i b^{i+1} a^k with maybe extra b's (any number). Because condition requires j > i + k, i.e., at least (i+k)+1 b's. So we can produce a matching of each leading a with a b (i b's), each trailing a also matched with a b (k b's). Plus an additional b to ensure strict greater. So we can think of constructing: start with some a's with matching b’s, then one extra b, then maybe more b's (optional), then trailing a's each matched with a b that occurs before them? But order is a^i b^{something} a^k, so trailing a's come after all b's. So we cannot match trailing a's with later b's because b's are before them. However we can 'reserve' b's to be counted for trailing a's (i.e., we generate extra b's beyond the i+something needed). Since condition j > i + k, we can generate i leading a's, then generate at least i + k + 1 b's. But k yet to be chosen; we can first generate some a's (i), then generate a block of b's where we keep something like b^{i+1} then later we may generate additional b's as needed for k after we decide k. We need a CFG, can guess that we generate i leading a's; then produce a b (the extra) plus then generate a block that can produce pairs of (b a) maybe? Wait trailing a's appear after all b's, so we can't intermix. So we can generate k trailing a's after b's, and we need to have stored enough b's earlier. We can simply generate strings of the form: produce i a's, then generate at least i+1 b's (ensuring more than i). Then generate optional extra bs for later k, and then produce k a's, where we guarantee that the number of extra bs beyond i is > k. Let j = i + 1 + m where m ≥0. Need j > i + k => i+1+m > i + k => 1 + m > k => m ≥ k. Actually need m >= k? Let's solve: i+1+m > i + k => 1 + m > k => m ≥ k? Since integers, m ≥ k (if m = k-1 then 1+m = k, not >). So condition is m ≥ k. So we need to generate m b's that are at least as many as trailing a's k. So we can generate pairs of b and a: for each trailing a we also generate a b in the extra pool, ensuring m >= k. Thus we can design grammar: S -> A B Where A generates leading a's and matches them with one b each (a's count i). Then B generates extra b's and trailing a's with condition that extra b's count ≥ trailing a's. We can let A produce a sequence of a's, and at same time produce a b for each a (maybe before the extra part). Since bs must all appear before any trailing a's, we need to output all bs first then a's later. Construction: A -> a A b | ε . This will generate strings of form a^i b^i but note order would be a's then some recursion then b's interleaved? Let's see derivation: a A b where A eventually expands to a^i b^i, results in a a^i b^i b = a^{i+1} b^{i+1}. However the bs are placed after the a's produced later? Actually recursion yields a a ... a b ... b; overall pattern is a^{i+1} b^{i+1}. So produce i+1 a's then i+1 b's where a's before b's. That's okay: leading a's then some bs (still before trailing a's). However we need exactly i leading a's (not i+1). Could adjust with base epsilon. A -> a A b | ε yields i a's then i b's with all a's before bs (since each recursion adds a before the rest and b after). For i=0, epsilon. Good. Now after A we need an extra b (the +1) then some number m of extra b's that must be at least k trailing a's. So we can produce a block C that generates a sequence of (b a) pairs where each pair adds one extra b and later a (trailing). This ensures count of extra b's ≥ trailing a's because each a consumes a b from the extra pool. Plus we might have leftover extra b's beyond those matched to a's, which gives strict >. Define C -> b D (starting with the +1 extra b) then D generates zero or more of (b a) pairs, plus possibly extra b's. Simplify: After extra b, we can generate zero or more pairs of b a, and also possibly additional b's after all a's? Actually extra b's must appear before trailing a's, so any extra b not paired with a must come before the first trailing a. Since trailing a's are at end, extra unpaired b's still before them, fine. Thus we can produce a sequence of b's (some number) then a's (k) where number of b's >= k+1 (due to extra). This can be generated via nonterminal E where E -> b E | b F ; F -> a F | a ε . But we need condition. Alternative: generate pairs (b a) repeatedly, then optionally an extra b at the start ensures >. So define: B -> b G G -> b G | b H H -> a H | ε But need b's before a's; using b G where G generates any number of b's (including zero) followed by any number of a's (k) with condition that number of b's generated by G is ≥ k (to satisfy m ≥ k). This is like language { b^m a^k : m ≥ k }. That grammar can be: G -> b G | b A ; A -> a A | ε . But this would allow any m; but to ensure m≥k we need to pair each a with a preceding b. Equivalent to grammar for b^+ a* where each a consumes one b: G -> b G | b A ; A -> a A | ε . Not sufficient. Standard CFG for {b^m a^k | m ≥ k} can be: G -> b G | b H H -> a H | ε But this allows e.g., m=1, k=5? Let's see: derive G -> b H, H -> a H ... produce one b then many a's, which would break m≥k (since 1 < many a). So not good. Need to enforce that each a is matched with a distinct b, i.e., generate pairs "b a". Grammar: G -> b G a | b G | b . Let's think. We can generate using recursion that consumes one b per a, but may also produce extra b's that are not matched. Grammar: G -> b G a | b G | b (base b). Let's test: Derivation could produce b G a pairs: each step produce a b before recursion and a a after recursion, meaning a's appear after all b's? Actually order: b ( ... ) a . Recursion G further may produce more b's and a's, but the a's are placed after the inner derivation, so overall the b's come before a's (since each step adds a b at left, a at right). Let's test produce two pairs: G -> b G a ; inner G -> b G a ; innermost G -> b (base) . So string: b ( b ( b ) a ) a = b b b a a . That's b^3 a^2 with m=3, k=2, m ≥ k+1? Actually we have extra b's left unpaired (first b). Works. If we continue recursion with only b G (no a) we can generate extra unmatched b's. So this grammar yields any string b^m a^k with m ≥ k+1 (since each a matched with a b, plus at least one extra b from the base). That's exactly our requirement for the extra part after leading a's. Good. Thus overall S -> A B where A handles leading a's with matching b's, B handles extra b's satisfying > condition and trailing a's. Define nonterminals: S, A, B. Productions: S -> A B A -> a A b | ε B -> b B a | b B | b Let's verify language: A produces a^i b^i. So after A we have i a's then i b's? Actually order a's before b's fine. But we need string format a^i b^j a^k. After A we have a's then b's (i a's then i b's). Then B will generate additional b's and trailing a's. B's productions yield strings that start with b's (since each rule adds b at leftmost) and end with a's possibly, ensuring overall pattern a^{i} b^{i + something} a^{k}. For B -> b B a, we add a b then later an a (at right). Because B recursion continues, but the a appears after all inner B derivation, meaning a's are at the very end. So B derivation yields b^{m} a^{k} where m ≥ k+1 (due to base b). Good. So overall combined string: a^{i} b^{i} (from A) concatenated with b^{m} a^{k}. That's a^{i} b^{i+m} a^{k}. Since m ≥ k+1, we have j = i + m > i + k, condition satisfied. Also note i,j,k can be zero? i can be 0 because A can be ε. Then we need j > k. Since m≥k+1 ensures j = m > k. Works. k can be 0, B can produce just b (m=1,k=0) => j = i+1 > i+0 satisfied. Good. Count nonterminals: S, A, B =3 ≤5. Productions: S-> A B (1); A-> a A b | ε (2); B-> b B a | b B | b (3). Total 6 productions ≤10. All good. Now compile answer with given template. Need to provide grammars. Let's format. Grammatik für L1: list productions. Grammatik für L2: list productions. Grammatik für L3: list productions. We'll present as lines maybe each production per line. Now produce final answer.
Answer
<answer id="1"> **Grammatik für \(L_{1}\)** \(S\) ist der Startsymbol. \[ \begin{aligned} S &\to M \mid N\\ M &\to a\,M\,b \mid T\\ T &\to a\,T \mid \varepsilon\\ N &\to a\,N \mid V\\ V &\to b\,V\,a \mid \varepsilon \end{aligned} \] \(M\) erzeugt \(a^{i}b^{i}a^{k}\) (Fall \(i=j\)), \(N\) erzeugt \(a^{i}b^{j}a^{j}\) (Fall \(j=k\)). --- **Grammatik für \(L_{2}\)** \(S\) ist der Startsymbol. \[ \begin{aligned} S &\to a\,S\,X \mid a\,X\,Y\\ X &\to a \mid b\\ Y &\to a\,Y \mid b\,Y \mid \varepsilon \end{aligned} \] Jede Ableitung liefert \(a^{n}\) gefolgt von exakt \(n\) Symbolen aus \(\{a,b\}\) (durch die \(X\)’s) und danach beliebig viele weitere Symbole (durch \(Y\)). Damit gilt \(|w|\ge n\) und \(n>0\). --- **Grammatik für \(L_{3}\)** \(S\) ist der Startsymbol. \[ \begin{aligned} S &\to A\,B\\ A &\to a\,A\,b \mid \varepsilon\\ B &\to b\,B\,a \mid b\,B \mid b \end{aligned} \] \(A\) erzeugt \(a^{i}b^{i}\). \(B\) erzeugt ein Wort der Form \(b^{m}a^{k}\) mit \(m\ge k+1\). Damit hat jedes Wort die Form \(a^{i}b^{i+m}a^{k}\) und erfüllt \(j=i+m > i+k\). Alle Bedingungen von \(L_{3}\) sind erfüllt. </answer>
Geben Sie kontextfreie Grammatiken für mit jeweils höchstens 5 Nichtterminalen und 10 Produktionen an. Hinweis: Sie dürfen -Produktionen verwenden.
Grammatik für ist der Startsymbol. erzeugt (Fall ), erzeugt (Fall ). --- Grammatik für ist der Startsymbol. Jede Ableitung liefert gefolgt von exakt Symbolen aus (durch die ’s) und danach beliebig viele weitere Symbole (durch ). Damit gilt und . --- Grammatik für ist der Startsymbol. erzeugt . erzeugt ein Wort der Form mit . Damit hat jedes Wort die Form und erfüllt . Alle Bedingungen von sind erfüllt.
answer does not follow the template
Subproblem b (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Kontextfreie Sprachen
Gegeben sind folgende drei Sprachen über dem Alphabet $\Sigma := \{a,b\}$:
$L_1 := \{a^ib^ja^k : (i = j\vee j = k)\wedge i,j,k\geq 0\}$
$L_2 := \{a^nw : w\in \Sigma^* \wedge |w|\geq n\wedge n>0\}$
$L_3 := \{a^ib^ja^k : j>i + k\wedge i,j,k\geq 0\}$
## subproblem a (6.0 points)
Geben Sie kontextfreie Grammatiken für $L_1,L_2,L_3$ mit jeweils höchstens 5 Nichtterminalen und 10 Produktionen an.
*Hinweis:* Sie dürfen $\varepsilon$-Produktionen verwenden.
<answer-template id="1">
Grammatik für $L_1$:
???
Grammatik für $L_2$:
???
Grammatik für $L_3$:
???
</answer-template>
<example>
Grammatik für $L_1$:
S -> SS | AT
T -> aTa | bTb
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
**Grammatik für \(L_{1}\)**
\(S\) ist der Startsymbol.
\[
\begin{aligned}
S &\to M \mid N\\
M &\to a\,M\,b \mid T\\
T &\to a\,T \mid \varepsilon\\
N &\to a\,N \mid V\\
V &\to b\,V\,a \mid \varepsilon
\end{aligned}
\]
\(M\) erzeugt \(a^{i}b^{i}a^{k}\) (Fall \(i=j\)), \(N\) erzeugt \(a^{i}b^{j}a^{j}\) (Fall \(j=k\)).
---
**Grammatik für \(L_{2}\)**
\(S\) ist der Startsymbol.
\[
\begin{aligned}
S &\to a\,S\,X \mid a\,X\,Y\\
X &\to a \mid b\\
Y &\to a\,Y \mid b\,Y \mid \varepsilon
\end{aligned}
\]
Jede Ableitung liefert \(a^{n}\) gefolgt von exakt \(n\) Symbolen aus \(\{a,b\}\) (durch die \(X\)’s) und danach beliebig viele weitere Symbole (durch \(Y\)). Damit gilt \(|w|\ge n\) und \(n>0\).
---
**Grammatik für \(L_{3}\)**
\(S\) ist der Startsymbol.
\[
\begin{aligned}
S &\to A\,B\\
A &\to a\,A\,b \mid \varepsilon\\
B &\to b\,B\,a \mid b\,B \mid b
\end{aligned}
\]
\(A\) erzeugt \(a^{i}b^{i}\).
\(B\) erzeugt ein Wort der Form \(b^{m}a^{k}\) mit \(m\ge k+1\).
Damit hat jedes Wort die Form \(a^{i}b^{i+m}a^{k}\) und erfüllt
\(j=i+m > i+k\). Alle Bedingungen von \(L_{3}\) sind erfüllt.
</answer>
user:
## subproblem b (4.0 points)
Genau eine der drei Sprachen ist sogar regulär. Entscheiden Sie welche und geben Sie einen regulären Ausdruck an, der die gleiche Sprache beschreibt.
<options>
<option id="1">$L_1$</option>
<option id="2">$L_2$</option>
<option id="3">$L_3$</option>
</options>
<answer-template id="4">
Regulärer Ausdruck: $?$
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
We need to determine which of L1, L2, L3 is regular. Let's analyze. Alphabet {a,b}. L1 = { a^i b^j a^k : (i=j ∨ j=k) ∧ i,j,k≥0 }. So either i=j or j=k. This is union of two languages: L1a = {a^i b^i a^k} (i=j) and L1b = {a^i b^j a^j} (j=k). Each individually is context-free but not regular (a^n b^n a^* is not regular, neither is a^* b^n a^n). The union may still be non-regular. Likely not regular. L2 = { a^n w : w ∈ Σ* ∧ |w| ≥ n ∧ n >0 }. So strings start with at least one a, and after that there is any word w of length at least n, where n is the number of leading a's. So condition: total length after first n a's must be at least. Equivalent: strings where there are at least as many symbols after the initial block of a's as there were a's. That seems non-regular because you need to compare count of leading a's with total remaining length. Might be not regular. Consider L3 = { a^i b^j a^k : j > i + k }. So number of b's exceeds sum of a's before and after. This might regular? Consider language where number of b's > total number of a's (both sides). That's similar to {a^i b^j a^k | j > i + k}. Could be described by regular expression? Let's Since i,k can be arbitrary, condition is that there is at least one extra b beyond the a's count sum. Could be expressed as strings where there exists a decomposition such that number of b's exceeds total number of a's. Not obviously regular. But maybe L2 is regular? Let's examine L2 more thoroughly. Define n = number of leading a's (must be >0) and w any string of length >= n. So essentially strings where after some positive block of a's, the remaining suffix length is at least that block length. That's same as strings where total length >= 2n (since prefix length n). So length condition: |string| >= 2n, with first n symbols all a's. So strings where there exists n>=1 such that first n symbols are a, and total length >=2n. Equivalent to: strings where there is a position halfway through where first half (maybe not exactly half) all a's? For any string, you could choose n = number of leading a's up to first non-a? Actually n is defined as exactly the count of leading a's. So the string must start with a^n, and then the rest w can be any string of length ≥ n. So pattern: a^{n} (any string of length ≥ n). This is regular? Could be as a (a|b)* but with length constraint referencing n. Usually length constraints that depend on preceding count produce non-regular languages (like a^n b^n). However here the suffix can contain a's and b's, not just b's. But need at least n symbols after. That's similar to language { a^n x : |x| ≥ n }. That's known to be non-regular (it can be shown using pumping lemma). For example, intersect with a^* b^ maybe leads to a^n b^n. Indeed L2 intersect with a^* b^* (i.e., strings of form a^n b^m) where |b^m| ≥ n, gives { a^n b^m : m ≥ n, n>0 } which is regular? Actually a^n b^m with m≥ n is regular? This is like a^* b^* where number of b's >= number of preceding a's. That's not regular (similar to a^n b^{n+1}). Wait ">= n" not equality, still non-regular? Language { a^n b^m : m ≥ n } is regular because we can have regular expression a* b* (since m can be any ≥0). But the condition ties a's to b's but with inequality not equality. Let's test: a^2 b^0 is not allowed because m≥ n fails. So we need to restrict that there can't be fewer b's than a's. That's not regular (I think). Actually language { a^n b^m | m ≥ n } is context-free but not regular. Use pumping lemma: Suppose regular, pumping length p. Consider a^p b^p. That's in language. Pump the a's portion yields fewer a's, still okay; but pumping a's up would increase a's count, still need b's≥ a's; if you pump a's only, maybe violation. Might be non-regular. Thus L2 likely non-regular. L3: we can attempt to see if complement maybe regular? Let's try constructing automaton: we need to detect that there are more b's than total a's. This can be done by finite automaton? Since counts may be unbounded, but only need inequality >. Could use states representing difference modulo some bound? Not sufficient. Consider intersect L3 with a^* b^* a^*. The language becomes { a^i b^j a^ : j > i + k }. This seems similar to a^i b^{i+k+1} a^k. That's like a^i b^{i+1} a^0? Not simple. But maybe L3 is regular because condition "j > i + k" means there is at least one b that is not matched by an a before or after. We could think of scanning string, keep track of net surplus of b over a's, which needs to be >0 at end. However we must count a's before and after differently? Since a's are before and after b's; once we have passed b's, later a's can reduce the surplus. So need to ensure that total b's exceed total a's (both sides). That's equivalent to overall count of b greater than total count of a in the string (since a's are only before or after b's, no a's after b's also counted). So condition is total number of b > total number of a. Because total a = i + k. So language = { strings over a,b with exactly one block of a's, then block of b's, then block of a, where total b count > total a count }. That's a subset of regular language a* b* a*. But the inequality may still be regular: we can enforce at least one extra b compared to total a's. Since in a* b* a*, we can think of matching each a with a b, leaving at least one extra b. This can be expressed as: a* b a* b*? Let's try to construct regex: we need at least one b that cannot be matched with an a either before or after. Since order is a's before, then b's, then a's. Suppose we write a^i b^{i+1} a^k b^? No, b's only in middle block. We can think of: choose some split where we match each a before with a b after it (using one of the b's). Also each a after could be matched with a preceding b. But we need more b's than a's total. Equivalent to: there exists at least one b that is not matched to any a. This can be captured by regex: a* b a* b*? Actually a* b a* ensures at least one b between a blocks. But need guarantee that number of b's > a's before+after. Not ensured by just one b. Consider regex: a* b a* (b a* )*? Not. Maybe think of constructing automaton with counter up to 1? Need to differentiate when more a's than b's? Actually we only need to check >, which can be decided by looking at the middle block length relative to surrounding a's. This might be non-regular because need to compare two unbounded counts (i + k vs j). Usually languages of the form { a^i b^j a^k | j = i + k } is not regular (it's context-free but not regular). If j > i + k, maybe also non-regular. Typically condition of equality or inequality with linear relation is non-regular. So L3 likely non-regular. Thus none? But statement says exactly one is regular, so probably L2 is regular? Let's test again by constructing ε-NFA maybe. Define language L2: strings with at least one a at start, and after the initial block of a's, length remaining ≥ number of a's. Equivalent to: there exists a decomposition w = a^n x where n≥1 and |x|≥n. This is same as: there exists a position after the first block of a's such that the suffix length is at least the prefix length. Could be described by regular expression: a (a|b)*? Actually any string starting with an a and with total length at least 2? Not exactly, because consider string "ab". n=1 prefix a, suffix "b" length 1 ≥1, okay. "aa": n=2? Wait leading a's block is "aa", n=2, suffix empty length 0 <2, so not in L2. But "aaab" with prefix "aaa", suffix "b" length 1 <3 not allowed. So not simply any string with starting a and length≥2. So language seems not regular. Let's test L1 maybe regular? Consider L1 union of two languages; maybe each part is not regular but union could be regular? Let's test few strings: a b a (i=1 j=1 k=1) belongs both ways. a a b a? i=2 j=1 k=1? i=j false, j=k false. Not. The language includes all strings where either=j (balanced a before and b) or j=k (balanced b and trailing a). This might be regular because it's complement of something? Let's think. Set of strings where i≠j and j≠k. That's maybe non-regular. But maybe L1 is regular because it's union of two regular? Are a^i b^i a^* regular? No, a^i b^i a^* not regular (since a^i b^i not regular). So not. Thus perhaps L3 is regular? Let's attempt to construct regex. Given pattern a* b+ a*. Need j > i + k. Equivalently, total number of b's > total number of a's. Since a's are only before and after b's, we can think of moving a's to either side. Could we express as (ba* )*? Not. Let's try small automaton reasoning: If we scan left to right, we can keep track of difference d = (#b seen so far) - (#a seen so far). When we are in first a block, we count a's (negative diff). Then we encounter b block, diff rises. Then final a block reduces diff. Need final diff > 0. This is essentially a one-counter language (like Dyck). Not regular. Thus maybe my earlier assumption wrong and actually L2 is regular. Let's double-check with Myhill-Nerode: For L2, consider equivalence classes based on the length of the suffix needed. Suppose we have strings of form a^n, each leads to different residual requirement: after a^n, we need at least n more symbols (any). So each n yields distinct right contexts (since for any continuation of length m, acceptance depends on whether m≥n). So infinite number of equivalence classes -> not regular. So L2 is non-regular. Thus maybe L1 or L3 is regular. Let's test L1: There are infinite equivalence classes? Consider prefixes a^i. Whether string can be completed depends on needing equal number of b's to match either i (if we will match i=j) or later a's (if matching j=k). Might cause infinite classes. Consider prefix a^i b^j. The possibilities: we can satisfy i=j (if we continue with a^k with k arbitrary) requires j = i at that point, else we could aim for j=k, meaning we need to produce a^j later. The requirement depends on i and j. Might lead to infinite classes. Consider L3: prefix a^i. Need later b's count more than i + future trailing a's. The future trailing a's unknown; still seems infinite. Given the problem says exactly one is regular, maybe they intend L2 as regular, maybe we misanalysis of infinite equivalence? Let's attempt to construct regex for L2: Strings where there exists n≥1 such that first n symbols are a, and total length at least 2n. That is same as: there is a position after which at least n symbols remain, with first n all a. Equivalent to: there is a factor a^n where n <= remaining length. This can be expressed as: a (a|b) (a|b)*? Wait if n=1, we need at least 1 following symbol, that's any string of length at least 2 starting with a. For n=2, need first two symbols a a, and at least two more symbols after, so total length at least 4, starting with aa. So language = union over n≥1 of a^n Σ^{≥n}. Σ^{≥n} = Σ^n Σ*. So L2 = ∪_{n≥1} a^n Σ^n Σ* = ∪_{n≥1} a^n Σ^n Σ*. This equals ∪_{n≥1} (a Σ)^n Σ*. Wait a^n Σ^n = (a Σ)^n? Not exactly because a^n Σ^n = a a ... a (n times) followed by any n symbols (each could be a or b). That's same as (a Σ)^n? Since (a Σ) repeats n times: each repetition gives a then any symbol. So the string pattern is a x1 a x2 ... a xn where xi ∈ Σ. That's not same as a^n Σ^n because the Σ symbols are interleaved. But we need a block of a's then block of any symbols, not interleaved. So not. Thus union over n leads to non-regular. Since regular languages are closed under finite union but not infinite union. So likely not regular. Hence maybe L1 is regular? Could we express L1 as a* b* a* where either number of a's before equals number of b's, or number of b's equals number of trailing a's. Might be equal to all strings except those where both inequalities hold (i≠j and j≠k). That complement could be a* b* a* minus some-regular set, maybe regular? Let's test small strings: a^0 b^j a^0 where j>0 not allowed because i=j false (0=j? false unless j=0) and j=k false (j=0 false). So strings of form b^j with j>0 are not in L1. So L1 excludes pure b^+ strings. Also excludes strings where i and k are 0 but j>0. Does it include a^+ b^+? Example a b? i=1,j=1,k=0 => i=j true, so included. a b b? i=1,j=2,k=0; i=j false, j=k false => excluded. So language seems to be strings where at least one of the equalities holds. This might still be non-regular. Thus maybe L3 is regular? Let's test small automaton: Could we design regex: (a|b)* b (a|b)* where there are more b's than a's overall? That's not regular. So hmm. Maybe the statement is a trick: exactly one is regular, and that is L2 (most plausible). Provide regex for L2: maybe it's (aa|ab|ba|bb)+? Not. Could be that L2 is regular because condition simplifies: Since w can be any string of length >= n, we can always choose w to be something; thus language actually equals Σ+ (all non-empty strings). Wait need leading a^n, n>0. So first character must be a. So L2 = strings that start with a and have length at least 2? Let's test with "a". n=1, w length >=1? but total string would be a^1 w, w length >=1 → need at least one more symbol after the initial a. So "a" not in L2. "ab" works (n=, w="b", length1≥1). "aa" works (w="a"). "aba" works (w="ba", length2≥1). "aaab": n=3? If string "aaab": leading a's block is "aaa"? actually maximal leading a's: three a's, n=3, remainder "b" length 1 <3, so not in L2. However could we consider n=2? The definition says there exists n? It says language = { a^n w : w∈ Σ* ∧ |w|≥ n ∧ n>0 }. For a given string, you can choose any n such that it can be written as a^n w with condition. The decomposition is not necessarily unique because you could take fewer a's? For string "aaab", you could take n=2, then w="ab", length 2≥2, works. Since existence of some n>0 with decomposition. That's key! So any string that starts with at least one a? Check "a": can we write as a^1 w, w length>=1? w empty not allowed, so no. Could we take n=0? n>0 required, no. So "a" not in L2. For "aa": choose n=1, w="a" length1≥1 => works. So any string with at least one a at start and total length >=2? Wait "ab": n=1 w="b" length1≥1 works. "aba": n=1 w="ba" works. "baa": starts with b, cannot write as a^n w because leading a block zero, n>0 fails, so not in L2. So language is all strings over Σ that start with a and have length at least 2? Let's test "aaab": length 4, starts a, length≥2 true, so should be in L2 via n=1; decomposition a^1 w = a + "aab". w length 3≥1 ok. So yes included. So indeed any string starting with a and length≥2 is in L2. Also string "aab"? length3 start a, okay. So L2 = a Σ Σ*? Actually need at least one more symbol after the leading a, so regex: a (a|b)+ . That is a (a|b . That's regular Good catch. Thus L2 is regular. Great. Provide regex: a (a|b)+ . Or equivalently a Σ Σ*. Since Σ = {a,b}, Σ+ = (a|b)+. Thus answer: option 2 = 1, others 0. Provide regex: a (a|b)+ . Let's format.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <answer id="4"> Regulärer Ausdruck: a(a|b)+ </answer>
Genau eine der drei Sprachen ist sogar regulär. Entscheiden Sie welche und geben Sie einen regulären Ausdruck an, der die gleiche Sprache beschreibt.
☐☒☐
Regulärer Ausdruck: a(a|b)+
0: mismatch 0: could not parse value a(a|b)+ for type re
Subproblem c (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Kontextfreie Sprachen
Gegeben sind folgende drei Sprachen über dem Alphabet $\Sigma := \{a,b\}$:
$L_1 := \{a^ib^ja^k : (i = j\vee j = k)\wedge i,j,k\geq 0\}$
$L_2 := \{a^nw : w\in \Sigma^* \wedge |w|\geq n\wedge n>0\}$
$L_3 := \{a^ib^ja^k : j>i + k\wedge i,j,k\geq 0\}$
## subproblem a (6.0 points)
Geben Sie kontextfreie Grammatiken für $L_1,L_2,L_3$ mit jeweils höchstens 5 Nichtterminalen und 10 Produktionen an.
*Hinweis:* Sie dürfen $\varepsilon$-Produktionen verwenden.
<answer-template id="1">
Grammatik für $L_1$:
???
Grammatik für $L_2$:
???
Grammatik für $L_3$:
???
</answer-template>
<example>
Grammatik für $L_1$:
S -> SS | AT
T -> aTa | bTb
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:<answer id="1">
**Grammatik für \(L_{1}\)**
\(S\) ist der Startsymbol.
\[
\begin{aligned}
S &\to M \mid N\\
M &\to a\,M\,b \mid T\\
T &\to a\,T \mid \varepsilon\\
N &\to a\,N \mid V\\
V &\to b\,V\,a \mid \varepsilon
\end{aligned}
\]
\(M\) erzeugt \(a^{i}b^{i}a^{k}\) (Fall \(i=j\)), \(N\) erzeugt \(a^{i}b^{j}a^{j}\) (Fall \(j=k\)).
---
**Grammatik für \(L_{2}\)**
\(S\) ist der Startsymbol.
\[
\begin{aligned}
S &\to a\,S\,X \mid a\,X\,Y\\
X &\to a \mid b\\
Y &\to a\,Y \mid b\,Y \mid \varepsilon
\end{aligned}
\]
Jede Ableitung liefert \(a^{n}\) gefolgt von exakt \(n\) Symbolen aus \(\{a,b\}\) (durch die \(X\)’s) und danach beliebig viele weitere Symbole (durch \(Y\)). Damit gilt \(|w|\ge n\) und \(n>0\).
---
**Grammatik für \(L_{3}\)**
\(S\) ist der Startsymbol.
\[
\begin{aligned}
S &\to A\,B\\
A &\to a\,A\,b \mid \varepsilon\\
B &\to b\,B\,a \mid b\,B \mid b
\end{aligned}
\]
\(A\) erzeugt \(a^{i}b^{i}\).
\(B\) erzeugt ein Wort der Form \(b^{m}a^{k}\) mit \(m\ge k+1\).
Damit hat jedes Wort die Form \(a^{i}b^{i+m}a^{k}\) und erfüllt
\(j=i+m > i+k\). Alle Bedingungen von \(L_{3}\) sind erfüllt.
</answer>
user:
## subproblem b (4.0 points)
Genau eine der drei Sprachen ist sogar regulär. Entscheiden Sie welche und geben Sie einen regulären Ausdruck an, der die gleiche Sprache beschreibt.
<options>
<option id="1">$L_1$</option>
<option id="2">$L_2$</option>
<option id="3">$L_3$</option>
</options>
<answer-template id="4">
Regulärer Ausdruck: $?$
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
<answer id="4">
Regulärer Ausdruck: a(a|b)+
</answer>
user:
## subproblem c (3.0 points)
Untenstehend finden Sie einen PDA $M$, der mit leerem Keller akzeptiert und das initiale Kellerzeichen $Z$ verwendet. Bestimmen Sie für jede Sprache $L_i\in\{L_1,L_2,L_3\}$ jeweils, ob $L_\epsilon(M)=L_i$ gilt. Falls nein, geben Sie ein Wort $w$ mit Länge höchstens 2 an, sodass $w$ in genau einer der Sprachen $L_\epsilon(M)$ und $L_i$ ist.
*Hinweis:* Es gilt $L_\epsilon(M)=L_i$ für genau ein $i\in\{1,2,3\}$.
Die Transition „$q, a, X \rightarrow p, YZ$“ eines PDAs bedeutet, das der PDA in Zustand $q$ ist, Zeichen $a$ liest, und das oberste Stacksymbol $X$ hat. Anschließend geht der PDA in Zustand $p$, nimmt $X$ vom Stack, und legt $YZ$ auf den Stack ($Y$ ist oben). Eine Transition mit $a=\varepsilon$ ist erlaubt, in dem Fall wird kein Zeichen eingelesen.
PDA M:
Zustände: q0, q1, q2, q3
Startzustand: q0
Initialzeichen: Z
Transitionen:
q0, a, A -> q0, AA
q0, a, Z -> q0, AZ
q0, ε, A -> q1, A
q0, ε, Z -> q1, Z
q1, b, A -> q1, ε
q1, b, Z -> q2, B
q2, b, B -> q2, BB
q2, ε, B -> q3, ε
q3, a, B -> q3, ε
q3, ε, B -> q3, ε
<options>
<option id="1">$L_1=L_\epsilon(M)$</option>
<option id="2">$L_1\neq L_\epsilon(M)$</option>
<option id="3">$L_2=L_\epsilon(M)$</option>
<option id="4">$L_2\neq L_\epsilon(M)$</option>
<option id="5">$L_3=L_\epsilon(M)$</option>
<option id="6">$L_3\neq L_\epsilon(M)$</option>
</options>
<answer-template id="7">
Wort, falls $L_i\neq L_\epsilon(M)$, sonst „-“.
$L_1$: $?$
$L_2$: $?$
$L_3$: $?$
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
<option id="5">0 or 1</option>
<option id="6">0 or 1</option>
<answer id="7">
...
</answer>
Thoughts
We need to analyze PDA M and determine which language matches. The PDA uses empty stack acceptance (accept by empty stack) with initial stack symbol Z. Let's interpret transitions. States q0,q1,q2,q3. Goal: end in any state with empty stack? Accept by empty stack means when stack is empty (no symbols) after reading whole input. Usually also need to be in any state (or maybe specific). We'll assume accept when stack empty at any point after consuming input (with epsilon moves allowed). So language is set of strings that can be processed to empty stack. Let's analyze behavior. Transitions: 1. q0, a, A -> q0, AA : reading 'a', top A, replace with AA (push extra A). So A stays top then another A beneath? Actually YZ where Y is top after push; they push AA meaning top becomes A, below it A (so effectively duplicate A). Similarly: 2. q0, a, Z -> q0, AZ : reading 'a', top Z, replace with AZ (push A on top, keep Z). Thus in q0, reading a's, we can push As onto stack, preserving Z at bottom. 3. q0, ε, A -> q1, A : epsilon, top A, go to q1, leave A unchanged (pop? No, they take A and push A, i.e., no change). So can move to q1 when top is A. 4. q0, ε, Z -> q1, Z : same with Z. Thus nondeterministic epsilon move to q1 without altering stack. Now q1: 5. q1, b, A -> q1, ε : reading b, top A, pop A (replace with ε). So consume one A per b. 6. q1, b, Z -> q2, B : reading b with top Z, replace Z with B and move to q2. So when stack bottom Z encountered, reading a b, they replace Z with B and go to q2. Thus q1 reads b's that match As; after all As popped, the next b reads Z and transitions to q2 (changing Z to B). This suggests that the number of b's read in q1 equals number of As pushed from earlier a's (i). So after processing i a's, there are i As on stack above Z. Then can either stay in q0 reading more a's, push more As, etc. Eventually they may move to q1 (epsilon) and start matching b's. Now q2: 7. q2, b, B -> q2, BB : reading b, top B, replace with BB (push another B). So each b adds a B (like counting extra b's after first). 8. q2, ε, B -> q3, ε : epsilon, pop B, go to q3. Thus after reading some b's in q2 (at least one? The transition to q2 happened when reading a b that popped Z; that b consumed, and we are now in q2 with B on stack (since Z replaced by B). Then more b's can be read in q2 with rule 7 adding more B's. Eventually epsilon can pop a B and go to q3. Now q3: 9. q3, a, B -> q3, ε : reading a, top B, pop B. So a's can match remaining B's. 10. q3, ε, B -> q3, ε : epsilon pop B (without reading). Thus q3 can pop leftover B's via a's or epsilon. Goal empty stack: need to pop all symbols (including Z? Z was replaced with B when moving to q2). At end, after popping all B's, stack may be empty. Since there is no transition to pop Z directly (Z becomes B). So empty stack after processing all input. Now let's characterize strings accepted. Sequence of phases: - Phase 0: In q0, read some number of a's (maybe zero). Each a pushes an A (or after Z pushes A). So after reading i a's, stack = A^i Z (topmost A). i≥0. - At any point, via epsilon, go to q1 (keeping stack). Suppose we go after i a's. - Phase 1 (q1): Read some number of b's, each consuming an A (pop). So we can match up to i b's. As long as there is an A on top we can consume b and stay in q1. When we have consumed exactly i b's, stack top becomes Z (since all As popped). Next b (if any) will use rule 6: read b with Z top, replace Z with B and move to q2. So there must be at least one more b after the As are gone to transition to q2. If the input ends when top Z and no further b, then we cannot accept because stack not empty (Z remains). But could we epsilon pop Z? No such transition. So we must have at least one extra b to replace Z with B. Thus we must have number of b's >= i+1. Let's denote j = number of b's read in total. Then j = i + m where m ≥ 1. The first i b's consume As, the (i+1)th b replaces Z with B and goes to q2. After that, we are in q2 with stack B (and maybe more B's later). Also note we could have taken epsilon transition from q0 to q1 at any time, maybe before reading any a's (i=0). In that case stack top Z, no As. Then rule 6 will apply on first b: replace Z with B and go to q2. So i can be 0. Now Phase 2 (q2): we have already consumed the (i+1)th b that created first B. Additional b's (if any) are processed by rule 7, which pushes another B each time (so count of B's equals number of b's remaining after the first transition? Let's compute: after first b after As are gone, we have one B. Then for each subsequent b, we add another B (so total B count after processing all b's = number of b's after the (i+1)th). Let extra b count be t ≥ 0 (could be zero). Then total B's after finishing all b's = 1 + t = (j - i). Since j = i + m, with m ≥ 1, we have B count = m. Thus after finishing b's, we are still in q2 with stack B^m (topmost B), and we can epsilon move to q3 via rule 8, popping one B (since rule 8 pops one B and moves to q3). Note rule 8 pops a B and goes to q3; after that, remaining B's (m-1) are still on stack. Now Phase 3 (q3): we can read a's that pop B's (rule 9) or epsilon pop B's (rule 10). To empty stack, we need to pop all remaining B's. We may have some a's that correspond to popping each B via rule 9, but we may also just epsilon pop all B's without reading any a's. However note rule 9 consumes 'a' and pops B. So we can optionally have k a's that each pop a B. Also epsilon rule can pop B without reading. So any number of a's up to remaining B's can be consumed, rest popped epsilon. Therefore after finishing, stack empty regardless of extra a's, as long as we have at most m-1 a's? Actually we start Phase 3 with B count = m (after rule 8 popped one B? Wait rule 8 popped one B and moved to q3, so before rule 8 stack size = m B's, after rule 8 stack size = m-1 B's in q3. Let's recount: - After all b's processed, in q2 stack = B^m (m≥1). Then apply rule 8 once: pop one B, move to q3. Stack becomes B^{m-1}. In q3 we can pop remaining B's via epsilon or a's. Thus we need to pop m-1 B's in q3. We can do via a's (each consumes one) or epsilon. Therefore accepted strings can be of the form: a^i b^{i+m} (maybe a's after) a^{k} where k ≤ m-1 (since we can at most consume a per B). But we could also have k = 0 (no a's after). Also we could have extra a's beyond m-1? If we try to read more a's than B's left, rule 9 requires a B on top; if no B left, there is no transition for a with empty stack, so can't read extra a's. However there is also rule 10 epsilon pop B, after all B's popped we could have empty stack; but then no more input allowed because we would have no transition for remaining symbols. So total a's after b's ≤ m-1. Thus full language: strings of pattern a^i b^{i+m} a^{k} where i≥0, m≥1, 0 ≤ k ≤ m-1. Simplify: For some i≥0 and some m≥1, let j = i+m (so j>i). Then a^i b^j a^{k} where 0 ≤ k ≤ j-i-1 = m-1. Thus j > i (strict) and the number of trailing a's k satisfies k ≤ j-i-1. Is this equal to any of the given languages L1, L2, L3? Recall definitions: L1 = { a^i b^j a^k : (i=j ∨ j=k) ∧ i,j,k ≥0 }. L2 = { a^n w : w ∈ Σ* ∧ |w| ≥ n ∧ n>0 } . So strings start with at least one a, then any continuation, with total length of suffix at least n. Equivalent: prefix of n a's, then any string of length at least n (could be mixture). Not requiring pattern. L3 = { a^i b^j a^k : j > i + k ∧ i,j,k≥0 }. Our derived language condition: j > i (since m≥1) and k ≤ j-i-1, which is equivalent to j > i + k? Let's examine: j > i + k is stricter. If k ≤ j-i-1 then j ≥ i + k +1, i.e., j > i + k. Indeed because integer inequality: j ≥ i + k + 1 ⇒ j > i + k. Conversely, if j > i + k, then j ≥ i + k +1, meaning k ≤ j - i -1. So the two conditions are equivalent! Good. Thus our language matches L3 (since condition is exactly j > i + k). There's no extra restriction on i or k (non-negative). Also note we required i≥0, m≥1 which ensures j > i (since j = i+m, j>i). That's already covered in j > i + k (since k≥0). So language of PDA = L3. Now we must answer: which equality holds: L3 = Lε(M). So option 5 true (L3 = Lε(M)). Option 6 false. Option 1 and 2 false? Actually L1 ≠. Option 2 true (L1 !=). Option 4 true (L2 !=). So we need to mark each option with 0/1 accordingly. We also need to provide a word w for each language where they differ (if inequality). The answer format says: "Wort, falls Li ≠ Lε(M), sonst '-'." So for each i we give either "-" if equal, else a word w with length ≤2 that is in exactly one of Lε(M) and Li. We have Lε(M) = L3. So we need words distinguishing L1 vs L3 (difference). Provide a short word length ≤2 that is in one but not other. Let's enumerate short words over {a,b} length ≤2. Potential candidate: - empty string ε: Is ε in L3? i=j=k=0 gives condition j > i + k? 0 > 0? false. So ε not in L3. Also L3 requires j>i+k, so not. In L1? condition (i=j ∨ j=k): with i=j=k=0, true (both). So ε ∈ L1. So ε distinguishes. But length 0 (≤2). Allowed? Probably yes, word length at most 2, includes empty? Likely acceptable. But they may expect non-empty. Could use "a": Let's test. Word "a": representation a^1 b^0 a^0? That's a^i b^j a^k where i=1, j=0, k=0. Check L3: need j > i+k => 0 > 1? false. Not in L3. L1: i=j? 1=0 false; j=k? 0=0 true, so in L1. So "a" works (length 1). Good. Now L2 vs L3: L2 defined as strings a^n w with n>0 and |w|≥n. So any string starting with at least one a and total length at least 2n? Wait condition |w| ≥ n (suffix length at least n). So overall length ≥ 2n? Actually total length = n + |w|, with |w|≥n, thus total length ≥ 2n. Example n=1: strings start with a, and rest length at least 1 => total length ≥2, e.g., "aa", "ab". n=2: start with "aa", then at least 2 more symbols => length≥4. Now choose a short word length ≤2 that is in one but not other. "a" is length 1: Not in L2 because n>0 (n=1) but need suffix length≥1; suffix empty length 0, not allowed. So "a" ∉ L2. Is "a" in L3? No. So not distinguishing; need word that belongs to exactly one. Since L3 includes words where j > i + k. Let's find a word of length ≤2 in L3 but not in L2, or vice versa. Check length 1 words: - "a": i=1,j=0,k=0 → not in L3 (as we saw). Not in L2. Not distinguishing. - "b": representation a^0 b^1 a^0. i=0, j=1, k=0. Condition j > i + k => 1 > 0, true. So "b" ∈ L3. Is "b" in L2? L2 requires starts with at least one a (n>0). So "b" not in L2. Good! So "b" distinguishes: in L3 but not in L2. So we can give w = b for L2 inequality. Now for L1 vs L3: we already have "a" works (in L1, not in L3). Provide word length ≤2, choose "a". That's fine. Now we need to output options: option ids: 1: L1 = Lε(M) => false (0) 2: L1 != Lε(M) => true (1) 3: L2 = Lε(M) => false (0) 4: L2 != => true (1) 5: L3 = Lε(M) => true (1) 6: L3 != => false (0) Now answer template 7: Provide words for each L_i if unequal, else "-". So: L1: word "a" (or ε). Use "a". L2: word "b". L3: equality, so "-". Provide as lines as specified: $L_1$: a $L_2$: b $L_3$: - Now final answer.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">0</option> <option id="4">1</option> <option id="5">1</option> <option id="6">0</option> <answer id="7"> $L_1$: a $L_2$: b $L_3$: - </answer>
Untenstehend finden Sie einen PDA , der mit leerem Keller akzeptiert und das initiale Kellerzeichen verwendet. Bestimmen Sie für jede Sprache jeweils, ob gilt. Falls nein, geben Sie ein Wort mit Länge höchstens 2 an, sodass in genau einer der Sprachen und ist. Hinweis: Es gilt für genau ein . Die Transition „“ eines PDAs bedeutet, das der PDA in Zustand ist, Zeichen liest, und das oberste Stacksymbol hat. Anschließend geht der PDA in Zustand , nimmt vom Stack, und legt auf den Stack ( ist oben). Eine Transition mit ist erlaubt, in dem Fall wird kein Zeichen eingelesen. PDA M: Zustände: q0, q1, q2, q3 Startzustand: q0 Initialzeichen: Z Transitionen: q0, a, A -> q0, AA q0, a, Z -> q0, AZ q0, ε, A -> q1, A q0, ε, Z -> q1, Z q1, b, A -> q1, ε q1, b, Z -> q2, B q2, b, B -> q2, BB q2, ε, B -> q3, ε q3, a, B -> q3, ε q3, ε, B -> q3, ε
☐☒☐☒☒☐
: a : b : -
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We have to determine which languages are decidable (recursive). Using standard computability theory: Let φ_w denote the partial computable function computed by Turing machine encoded by w. Language 1: { w : φ_w is total } i.e., the totality problem. This is known to be undecidable (not recursive). So answer 0. Language 2: { w : φ_w(0) = 0 }. This is the set of programs that output 0 on input 0. This is semi-decidable? It is decidable? The problem of checking output equals a specific value is generally undecidable because you need to know whether the program halts with that output; halting problem reduces. Indeed, consider language L = { w | φ_w(0) halts with output 0 }. This is equivalent to halting problem with a particular output, which is still undecidable. So answer 0 (undecidable). Not decidable. Language 3: { w : φ_w is computable }. But every partial computable function is computable (by definition). Probably they mean "total computable"? But phrase "ist berechenbar" could mean "computable" maybe meaning "total computable" or "partial computable"? Usually "berechenbar" means total computable (i.e., recursive). If they ask language of indices of total computable functions. That is same as totality problem, undecidable. If they meant just "computable" (including partial), then all w correspond to some partial computable function, so language is Σ* which is decidable (trivially). However they likely intend the same as total, making it undecidable? Let's interpret: Given typical theory, "partial computable" is called "partial recursive", "computable" refers to total recursive functions. So language of indices whose φ_w is total recursive (i.e., total). That is same as #1, undecidable. But they maybe want to test understanding: #1 asks "φ_w is total" (i.e., total function, but not necessarily computable? Actually total implies computable since φ_w is a partial computable function; if it's total, then it's a total computable function). #3 says "φ_w is computable", which is always true because φ_w is by definition a computable (partial) function. So language = Σ*, decidable. Provide 1. Which interpretation is likely? In many textbooks, "computable" refers to total functions. They might ask difference between "total" and "computable". But a partial computable function may not be total; but still it's "computable" (partial). But they might mean "berechenbar" = "computable" = "partial computable". I'd lean that they intend total computable, but then it's same as #1, making a trick? maybe they want to see that #1 is about totality (undecidable) while #3 is trivial (everything is computable) thus decidable. I think that is the intention: they want to highlight that any index w defines a partial computable function, so language of "computable" is Σ* thus decidable. So answer 1 for #3. Thus final: option1 0, option2 0, option3 1.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden Sprachen sind entscheidbar?
☐☐☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need decide statements about any undecidable language L. 1. Complement of undecidable language is also undecidable? Not always; if L is undecidable, complement could be decidable? For recursively enumerable vs co-RE. Undecidable language could have decidable complement? Actually if L is undecidable, its complement cannot be decidable because if complement decidable then L would be decidable (since decidable languages are closed under complement). So complement of an undecidable language is also undecidable. Wait: If L is undecidable, maybe L is not decidable but complement could be decidable? Suppose L is not decidable, but complement is decidable; then we could decide L by complementing the decision, which would make L decidable. So impossible. Therefore complement is also undecidable. So statement 1 true. 2. Residual language L^a: defined as { w | aw ∈ L }. If L is undecidable, is L^a necessarily undecidable? Not necessarily; there could be a undecidable L such that after fixing a prefix, the residual becomes decidable. Example: Let L = {a} ∪ K where K is undecidable set of strings not starting with a. Then L^a = { ε } ∪ { w | aw ∈ K }. Since K strings never start with a, aw not in K, so L^a = { ε } which is decidable. But is L undecidable? Since we have K undecidable and L includes K plus maybe a. Membership in L for strings not starting with a is same as membership in K, so L undecidable. So residual could be decidable. Hence statement 2 not always true, so false. 3. "There exists no TM M with L(M)=L". For any language (possibly non-recursive), there exists a TM that recognizes it (i.e., semi-decidable) iff language is recursively enumerable. But undecidable language could be not RE (i.e., not semidecidable). However statement says there is no TM whose language equals L (i.e., recognizes exactly L). This is false because there are undecidable languages that are RE (e.g., Halting problem). So there exists TM for those. So statement false in general. So answer: 1 true, 2 false, 3 false. Thus output: <option id="1">1</option> <option id="2">0</option> <option id="3">0</option>.
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei eine beliebige unentscheidbare Sprache und . Welche der folgenden Aussagen sind wahr? Hinweis: ist die Residualsprache bezüglich von .
☒ ist unentscheidbar☐ ist unentscheidbar☐Es gibt keine TM mit
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need to answer subproblem c. Determine statements. Given M is a deterministic TM, and there exists an input w such that M runs infinitely many steps (i.e., does not halt) on w. We need evaluate truth: 1. "$w \notin L(M)$". L(M) is language accepted by M (presumably by halting in accept state). Since deterministic TM runs infinitely many steps on w, it never halts, thus cannot accept (accept requires halting in accepting state). So w is not in L(M). True. Unless definition of language includes infinite loops as rejection? Usually language of TM: set of inputs for which TM halts in accept. If it loops, it's not in the language. So statement 1 true. 2. "$L(M)$ is unentscheidbar". Does existence of at least one non-halting input imply language is undecidable? Not necessarily. Example: M could be a TM that accepts all strings (halts accept) except on one particular input where it loops. That language is Σ*, which is decidable. Indeed we can decide by just accept all inputs; but original M doesn't decide it (it may not halt on that one input). However the language L(M) is Σ* which is decidable. So statement 2 is false. 3. "$L(M)$ is semi-entscheidbar". Does any deterministic TM define a semi-decidable language? Yes, languages recognized by TMs (even partial) are recursively enumerable (semi-decidable). The definition of semi-decidable: there exists a TM that halts accept for strings in language, may loop otherwise. M itself is such a recognizer: for strings in L(M) it halts accept; for others maybe reject or loop; but that is exactly property of r.e. So L(M) is semi-decidable. However careful: If M may reject by halting reject on some inputs, that's fine. If it loops on others, still in r.e. So true. Thus answers: option1=1, option2=0, option3=1. Provide format: <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Answer
<option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine beliebige deterministische Turingmaschine, sodass es eine Eingabe gibt, auf der unendlich viele Schritte macht. Welche Aussagen sind wahr?
☒☐ ist unentscheidbar☒ ist semi-entscheidbar
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
We need to evaluate statements. 1: Every regular language is in NP. NP includes all languages decidable in nondeterministic polynomial time. Regular languages are decidable in linear time deterministic, thus also in NP. So true -> 1. 2: Every context-free language is in P. Not all CFL are in P? Actually CFL membership can be decided in O(n^3) via CYK, which is polynomial. Yes, CFL ∈ P. However some context-free languages are maybe not known to be in P? All CFL are decidable in O(n^3) deterministic, so yes they are in P. So true -> 1. 3: If L in P, then complement L in NP. Since P ⊆ NP, and complement of a language in P is also in P (since deterministic polynomial time can be complemented by flipping accept/reject). So complement is also in P, thus also in NP. So true -> 1. Thus all three true. Provide 1 for each. Check subtlety: statement 2 says "Every context-free language is in P." Formal: CFL ∈ P? It's known that CFL membership is in O(n^3) deterministic, so yes. So answer all ones.
Answer
<option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Welche Aussagen sind wahr?
☒Jede reguläre Sprache ist in .☒Jede kontextfreie Sprache ist in .☒Sei . Dann gilt .
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
We need to determine correct true statements. We have P != NP assumption. A is any language in NP, possibly not NP-complete. B is-complete. Which statements must be true? Options: 1. A ⊆ B: Not necessarily; A could be any NP language not subset of B. Not required. So false. 2. B ⊆ A: Not necessarily; B could be NP-complete, A could be a smaller NP language. So false. 3. A ≤_p B (polynomial-time many-one reduction): Since B is NP-complete, every language in reduces to B. So yes, for any A ∈ NP, there is a polynomial-time reduction A ≤_p B. So true. 4. B ≤_p A: Since B is NP-complete, B reduces to any NP-hard language? Actually NP-complete means it's NP-hard (all NP languages reduce to it) and B ∈ NP. For B ≤_p A to hold, A must be NP-hard as well (or B reduces to A). Not guaranteed. Unless A is NP-hard; but not given. So false in general. Thus answers: 0,0,1,0. Check if any nuance: Under P != NP, still NP-complete languages are not in P (assuming standard). But reduction direction doesn't depend on P!=NP. Thus final.
Answer
<option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <option id="4">0</option>
Angenommen, . Seien beliebige Sprachen, sodass und -vollständig ist. Welche Aussagen sind wahr?
☐☐☒☐
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma:=\{0,1\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$\{w\in\Sigma^* :\varphi_w \text{ ist total}\}$</option>
<option id="2">$\{w\in\Sigma^* :\varphi_w(0) = 0\}$</option>
<option id="3">$\{w \in \Sigma^* :\varphi_w \text{ ist berechenbar}\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L$ eine beliebige unentscheidbare Sprache und $a\in\Sigma$. Welche der folgenden Aussagen sind wahr?
*Hinweis:* $L^a$ ist die Residualsprache bezüglich $a$ von $L$.
<options>
<option id="1">$\overline L$ ist unentscheidbar</option>
<option id="2">$L^a$ ist unentscheidbar</option>
<option id="3">Es gibt keine TM $M$ mit $L(M) = L$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem c (2.0 points)
Sei $M$ eine beliebige deterministische Turingmaschine, sodass es eine Eingabe $w \in \Sigma^*$ gibt, auf der $M$ unendlich viele Schritte macht. Welche Aussagen sind wahr?
<options>
<option id="1">$w \notin L(M)$</option>
<option id="2">$L(M)$ ist unentscheidbar</option>
<option id="3">$L(M)$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem d (2.0 points)
Welche Aussagen sind wahr?
<options>
<option id="1">Jede reguläre Sprache ist in $\text{NP}$.</option>
<option id="2">Jede kontextfreie Sprache ist in $\text{P}$.</option>
<option id="3">Sei $L \in \text{P}$. Dann gilt $\overline L \in \text{NP}$.</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Angenommen, $\text{P} \neq \text{NP}$. Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A \in \text{NP}$ und $B$ $\text{NP}$-vollständig ist. Welche Aussagen sind wahr?
<options>
<option id="1">$A \subseteq B$</option>
<option id="2">$B \subseteq A$</option>
<option id="3">$A \leq_p B$</option>
<option id="4">$B \leq_p A$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">0</option>
user:
## subproblem f (4.0 points)
Seien $A,B\subseteq\Sigma^*$ beliebige Sprachen, sodass $A$ unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen $A \cup B$ und $A \cup \overline B$ ist unentscheidbar.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need decide if statement true or false, and provide proof or counterexample. Statement: For any languages A (undecidable) and B arbitrary, at least one of A∪B and A∪ complement B is undecidable. Is this always true? Consider A undecidable. Choose B = complement of A. Then A∪B = Σ* (decidable). Also A∪ complement B = A ∪ A = A (undecidable). So at least one is undecidable (true). Need a case where both become decidable? Let's attempt B such that both unions are decidable. Need A∪B decidable and A∪ complement B decidable. That would imply both Σ*? Actually if both unions are decidable, they could be decidable languages, maybe not Σ*. Could we have A∪B = Σ*? Not necessary. But think: Suppose we let B be a decidable language that together with A gives Σ*? For A∪ complement B to be decidable, we need complement B maybe complement of decidable => also decidable. Since complement of decidable is decidable. So both unions are unions of undecidable A with decidable languages; could become decidable? Example: Let A be an undecidable set, e.g., the halting problem K. Choose B = complement of A (which is undecidable). But B needs to be arbitrary, can be undecidable too. Then A∪B = Σ* (decidable). Complement B = A, so A∪ complement B = A (undecidable). So statement holds. But need counterexample where both unions are decidable. Is that possible? Suppose both unions equal Σ*. That would require B such that complement B also contains complement of A? Actually A∪B = Σ* and A∪ complement B = Σ* implies that for any string x, either x∈A or x∈B, and also either x∈A or x∈ complement B. For strings not in A, first condition forces x∈B, second forces x∈ complement B. Can't both be true unless those strings are both in B and complement B, impossible. So can't have both equal Σ*. Could both be decidable but not Σ*? Need to see if there can be B such that both unions are decidable but not necessarily Σ*. Could we make both unions equal some decidable language D that contains A? Since A is subset of both unions, D must contain A. But if D is decidable and contains A (undecidable), then D is undecidable because containing A doesn't make D undecidable; a superset of an undecidable set can be decidable (e.g., Σ*). So D could be Σ*. That fails as above. So maybe there is no B making both unions decidable. Consider B = Σ*. Then A∪B = Σ* (decidable). Complement B = ∅. Then A∪ complement B = A (undecidable). So still at least one undecidable. Thus seems statement is true. Provide proof: Suppose both A∪B and A∪¬B are decidable. Then their intersection? compute? Intersection (A∪B) ∩ (A∪¬B) = A ∪ (B ∩ ¬B) = A ∪ ∅ = A. Since class of decidable languages closed under intersection, A would be decidable, contradiction. Therefore at least one of the unions must be undecidable. So statement true. Thus answer: option 1 true, option 2 false. Provide explanation.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> **Beweis (Wahrheit der Aussage).** Seien \(A,B\subseteq\Sigma^{*}\) beliebig und sei \(A\) **unentscheidbar**. Wir zeigen, dass es **unmöglich** ist, dass beide Sprachen \[ A\cup B \qquad\text{und}\qquad A\cup\overline{B} \] entscheidbar sind. Angenommen, sowohl \(A\cup B\) als auch \(A\cup\overline{B}\) seien entscheidbar. Die Klasse der entscheidbaren Sprachen ist unter Schnitt (Intersection) abgeschlossen. Betrachte daher den Schnitt beider Mengen: \[ \begin{aligned} (A\cup B)\;\cap\;(A\cup\overline{B}) &= A\;\cup\;(B\cap\overline{B}) \\ &= A\;\cup\;\varnothing \\ &= A . \end{aligned} \] Da beide Ausgangssprachen nach Annahme entscheidbar sind, wäre ihr Schnitt ebenfalls entscheidbar. Damit wäre \(A\) entscheidbar – ein Widerspruch zur Voraussetzung, dass \(A\) unentscheidbar ist. Folglich kann **nicht** gleichzeitig gelten, dass \(A\cup B\) und \(A\cup\overline{B}\) entscheidbar sind. Damit ist garantiert, dass mindestens **eine** der beiden Sprachen unentscheidbar ist. \[ \boxed{\text{Die Aussage ist wahr.}} \] </answer> --- **Zusammenfassung:** - Option 1 („Wahr“) ist korrekt. - Option 2 („Falsch“) ist nicht korrekt.
Seien beliebige Sprachen, sodass unentscheidbar ist. Zeigen oder widerlegen Sie: Mindestens eine der Sprachen und ist unentscheidbar.
☒Wahr☐Falsch
Beweis (Wahrheit der Aussage). Seien beliebig und sei unentscheidbar. Wir zeigen, dass es unmöglich ist, dass beide Sprachen entscheidbar sind. Angenommen, sowohl als auch seien entscheidbar. Die Klasse der entscheidbaren Sprachen ist unter Schnitt (Intersection) abgeschlossen. Betrachte daher den Schnitt beider Mengen: Da beide Ausgangssprachen nach Annahme entscheidbar sind, wäre ihr Schnitt ebenfalls entscheidbar. Damit wäre entscheidbar – ein Widerspruch zur Voraussetzung, dass unentscheidbar ist. Folglich kann nicht gleichzeitig gelten, dass und entscheidbar sind. Damit ist garantiert, dass mindestens eine der beiden Sprachen unentscheidbar ist.
Exercise 7: Reduktion
Zeigen Sie für jedes der folgenden Probleme entweder, dass es in liegt, oder, dass es -hart ist. Geben Sie hierfür jeweils eine geeignete polynomielle Reduktion an und begründen Sie deren Korrektheit. Reduktionsfunktionen müssen präzise definiert sein und Sie müssen klar angeben, welche Probleme Sie reduzieren. Die Korrektheit der Reduktion müssen Sie aber nur skizzieren und nicht formal beweisen. Achtung: Auch um zu zeigen, dass das Problem in liegt, ist eine Reduktion anzugeben! Hinweis: Um zu zeigen, dass ein Problem in liegt, geben Sie eine Reduktion für ein an, reduzieren Sie also auf ein Problem , von dem wir wissen, dass es in liegt, z.B. oder . Um zu zeigen, dass ein Problem -hart ist, geben Sie eine Reduktion an, wobei ein bekanntes NP-hartes Problem ist, etwa , , oder .
Subproblem a (6.0/6.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Reduktion
Zeigen Sie für jedes der folgenden Probleme $A$ entweder, dass es in $\mathsf{P}$ liegt, oder, dass es $\mathsf{NP}$-hart ist.
Geben Sie hierfür jeweils eine geeignete polynomielle Reduktion an und begründen Sie deren Korrektheit.
Reduktionsfunktionen müssen präzise definiert sein und Sie müssen klar angeben, welche Probleme Sie reduzieren. Die Korrektheit der Reduktion müssen Sie aber nur skizzieren und nicht formal beweisen.
**Achtung:** Auch um zu zeigen, dass das Problem in $\mathsf{P}$ liegt, ist eine Reduktion anzugeben!
*Hinweis:* Um zu zeigen, dass ein Problem $A$ in $\mathsf{P}$ liegt, geben Sie eine Reduktion $A\le_p B$ für ein $B\in\mathsf{P}$ an, reduzieren Sie also $A$ auf ein Problem $B$, von dem wir wissen, dass es in $\mathsf{P}$ liegt, z.B. $\mathsf{2COL}$ oder $\mathsf{2KNF\text{-}SAT}$.
Um zu zeigen, dass ein Problem $A$ $\mathsf{NP}$-hart ist, geben Sie eine Reduktion $B\le_p A$ an, wobei $B$ ein bekanntes NP-hartes Problem ist, etwa $\mathsf{3COL}$, $\mathsf{SAT}$, oder $\mathsf{CLIQUE}$.
## subproblem a (6.0 points)
**Gegeben:** Drei KNF-Formeln $F_1, F_2, F_3$ mit Variablen aus $V$.
**Problem $A$:** Gibt es eine Belegung $\sigma:V\rightarrow\{0,1\}$, die **genau zwei** der drei Formeln erfüllt?
<options>
<option id="1">$A\in\mathsf{P}$</option>
<option id="2">$A$ ist $\mathsf{NP}$-hart</option>
</options>
<answer-template id="3">
Reduktion: $? \le_p ?$
Begründung:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need to decide if problem A is in P or NP-hard. Problem: Given three CNF formulas F1,F2,F3 over same variable set V, does there exist an assignment that satisfies exactly two of the three formulas? This is similar to "Exactly-2 SAT" variant. Known problem "Exactly-2 SAT" (given CNF formula, does there exist assignment satisfying exactly half of clauses) is NP-complete? Not sure. Here we have three formulas, need exactly two satisfied. Could be NP-complete: we could reduce from SAT: given a formula F, create F1=F, F2= tautology, F3 = unsatisfiable? Need exactly two satisfied: need satisfy F1 and F2, not F3. Since F2 always true, F3 always false, condition reduces to existence of assignment satisfying F1: that's SAT. But need exactly two satisfied: we need F1 true, F2 true, F3 false. Since F3 false always, it's satisfied? Wait false means not satisfied; unsatisfiable formula is never satisfied, okay. So exactly two satisfied would be true if and only if there exists assignment that satisfies F1 (since F2 always true, F3 never true). So that reduces SAT to the problem. Indeed we can define F2 to be a tautology (e.g., (x ∨ ¬x)), F3 to be contradiction (e.g., (x ∧ ¬x) which as CNF is (x) ∧ (¬x) maybe unsatisfiable). However CNF must be a conjunction of clauses; a contradiction can be a clause (x) ∧ (¬x). That's unsatisfiable. So the reduction is: given SAT instance F, set F1 = F, F2 = (x ∨ ¬x) (or any tautology clause), F3 = (x) ∧ (¬x). Then there exists assignment satisfying exactly two iff F is satisfiable. This reduction is polynomial. Therefore problem is NP-hard. Also problem is in NP: we can guess assignment and check. So NP-complete. But the question only asks either P or NP-hard. So answer: NP-hard = 1 for option 2. But they also require providing a reduction, and note that also to show P we need reduction to P. For NP-hard we need B ≤p A. So B = SAT. Provide reduction as described. Thus output: <option id="1">0</option> <option id="2">1</option> <answer id="3"> Reduktion: $\text{SAT}\le_p A$ Begründung: Gegeben eine CNF‑Formel $F$ (Instanz von SAT). Wir konstruieren drei Formeln $F_1,F_2,F_3$ über derselben Variablenmenge $V$: * $F_1 := F$. * $F_2 := (x \lor \lnot x)$ für eine beliebige Variable $x\in V$ (eine Tautologie, damit $F_2$ unter jeder Belegung erfüllt ist). * $F_3 := (x) \land (\lnot x)$ (ein Widerspruch, also niemals erfüllt). Die Konstruktion ist eindeutig in polynomialer Zeit möglich. Nun gilt: Es gibt eine Belegung $\sigma$ mit genau zwei erfüllten Formeln unter $\{F_1,F_2,F_3\}$ $\Longleftrightarrow$ $\sigma$ erfüllt $F_1$ (weil $F_2$ immer erfüllt, $F_3$ nie) $\Longleftrightarrow$ $F$ ist erfüllbar. Damit ist $F\in\text{SAT}$ genau dann, wenn die erzeugte Instanz $\langle F_1,F_2,F_3\rangle$ ein „Ja“-Antwort für $A$ hat. Die Reduktion ist also korrekt und polynomial. Da SAT NP‑schwer ist, ist auch $A$ NP‑hart (und offensichtlich in NP, also NP‑vollständig). </answer>
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Reduktion: $\text{SAT}\le_p A$ Begründung: Gegeben sei eine CNF‑Formel $F$ (Instanz von SAT) über Variablenmenge $V$. Wir konstruieren drei Formeln $F_1,F_2,F_3$ über derselben Variablenmenge: * $F_1 := F$. * $F_2 := (x \lor \lnot x)$ für ein beliebiges $x\in V$ (eine Tautologie, also unter jeder Belegung erfüllt). * $F_3 := (x) \land (\lnot x)$ (ein Widerspruch; niemals erfüllt). Die Konstruktion ist eindeutig in polynomialer Zeit möglich. Nun gilt: \[ \exists\;\sigma:V\to\{0,1\}\text{ mit genau zwei erfüllten Formeln among }F_1,F_2,F_3 \iff \sigma \text{ erfüllt }F_1 \] denn $F_2$ ist immer erfüllt und $F_3$ ist nie erfüllt. Somit gibt es eine solche Belegung genau dann, wenn $F$ erfüllbar ist, d.h. genau dann, wenn die SAT‑Instanz mit „Ja“ beantwortet wird. Damit ist die Abbildung $F \mapsto (F_1,F_2,F_3)$ eine polynomialzeit‑Reduktion von SAT auf das gegebene Problem $A$. Da SAT NP‑hart ist, ist $A$ ebenfalls NP‑hart (und liegt offensichtlich in NP, also ist $A$ NP‑vollständig). </answer>
Gegeben: Drei KNF-Formeln mit Variablen aus . Problem : Gibt es eine Belegung , die genau zwei der drei Formeln erfüllt?
☐☒ ist -hart
Reduktion: Begründung: Gegeben sei eine CNF‑Formel (Instanz von SAT) über Variablenmenge . Wir konstruieren drei Formeln über derselben Variablenmenge: * . * für ein beliebiges (eine Tautologie, also unter jeder Belegung erfüllt). * (ein Widerspruch; niemals erfüllt). Die Konstruktion ist eindeutig in polynomialer Zeit möglich. Nun gilt: denn ist immer erfüllt und ist nie erfüllt. Somit gibt es eine solche Belegung genau dann, wenn erfüllbar ist, d.h. genau dann, wenn die SAT‑Instanz mit „Ja“ beantwortet wird. Damit ist die Abbildung eine polynomialzeit‑Reduktion von SAT auf das gegebene Problem . Da SAT NP‑hart ist, ist ebenfalls NP‑hart (und liegt offensichtlich in NP, also ist NP‑vollständig).
Subproblem b (8.0/8.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Reduktion
Zeigen Sie für jedes der folgenden Probleme $A$ entweder, dass es in $\mathsf{P}$ liegt, oder, dass es $\mathsf{NP}$-hart ist.
Geben Sie hierfür jeweils eine geeignete polynomielle Reduktion an und begründen Sie deren Korrektheit.
Reduktionsfunktionen müssen präzise definiert sein und Sie müssen klar angeben, welche Probleme Sie reduzieren. Die Korrektheit der Reduktion müssen Sie aber nur skizzieren und nicht formal beweisen.
**Achtung:** Auch um zu zeigen, dass das Problem in $\mathsf{P}$ liegt, ist eine Reduktion anzugeben!
*Hinweis:* Um zu zeigen, dass ein Problem $A$ in $\mathsf{P}$ liegt, geben Sie eine Reduktion $A\le_p B$ für ein $B\in\mathsf{P}$ an, reduzieren Sie also $A$ auf ein Problem $B$, von dem wir wissen, dass es in $\mathsf{P}$ liegt, z.B. $\mathsf{2COL}$ oder $\mathsf{2KNF\text{-}SAT}$.
Um zu zeigen, dass ein Problem $A$ $\mathsf{NP}$-hart ist, geben Sie eine Reduktion $B\le_p A$ an, wobei $B$ ein bekanntes NP-hartes Problem ist, etwa $\mathsf{3COL}$, $\mathsf{SAT}$, oder $\mathsf{CLIQUE}$.
## subproblem a (6.0 points)
**Gegeben:** Drei KNF-Formeln $F_1, F_2, F_3$ mit Variablen aus $V$.
**Problem $A$:** Gibt es eine Belegung $\sigma:V\rightarrow\{0,1\}$, die **genau zwei** der drei Formeln erfüllt?
<options>
<option id="1">$A\in\mathsf{P}$</option>
<option id="2">$A$ ist $\mathsf{NP}$-hart</option>
</options>
<answer-template id="3">
Reduktion: $? \le_p ?$
Begründung:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Reduktion: $\text{SAT}\le_p A$
Begründung:
Gegeben sei eine CNF‑Formel $F$ (Instanz von SAT) über Variablenmenge $V$.
Wir konstruieren drei Formeln $F_1,F_2,F_3$ über derselben Variablenmenge:
* $F_1 := F$.
* $F_2 := (x \lor \lnot x)$ für ein beliebiges $x\in V$ (eine Tautologie, also unter jeder Belegung erfüllt).
* $F_3 := (x) \land (\lnot x)$ (ein Widerspruch; niemals erfüllt).
Die Konstruktion ist eindeutig in polynomialer Zeit möglich.
Nun gilt:
\[
\exists\;\sigma:V\to\{0,1\}\text{ mit genau zwei erfüllten Formeln among }F_1,F_2,F_3
\iff
\sigma \text{ erfüllt }F_1
\]
denn $F_2$ ist immer erfüllt und $F_3$ ist nie erfüllt.
Somit gibt es eine solche Belegung genau dann, wenn $F$ erfüllbar ist, d.h. genau dann, wenn die SAT‑Instanz mit „Ja“ beantwortet wird.
Damit ist die Abbildung $F \mapsto (F_1,F_2,F_3)$ eine polynomialzeit‑Reduktion von SAT auf das gegebene Problem $A$. Da SAT NP‑hart ist, ist $A$ ebenfalls NP‑hart (und liegt offensichtlich in NP, also ist $A$ NP‑vollständig).
user:
## subproblem b (8.0 points)
**Gegeben:** Eine 2KNF-Formel $F$ mit Variablenmenge $V=\{x_1, ..., x_n\}$, eine Menge $\{1, ..., l\}$ von Farben (mit $l>0$) und eine Funktion $g: V \to \{1 ,...,l\}$, die jeder Variable eine Farbe zuordnet.
**Problem $A$:** Gibt es eine erfüllende Belegung $\sigma$, sodass alle Variablen, die von $\sigma$ zu Wahr gesetzt werden, unterschiedliche Farben haben? Formal: gibt es eine erfüllende Belegung $\sigma:V\rightarrow\{0,1\}$ mit $g(x_i) \neq g(x_j)$ für alle $i<j \leq n$ mit $\sigma(x_i)=1= \sigma(x_j)$?
<options>
<option id="1">$A\in\mathsf{P}$</option>
<option id="2">$A$ ist $\mathsf{NP}$-hart</option>
</options>
<answer-template id="3">
Reduktion: $? \le_p ?$
Begründung:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need decide if problem is in P or NP-hard. Problem: 2CNF formula + color assignment to variables; need satisfying assignment where true variables have distinct colors (no two true variables share same color). Equivalent to find a satisfying assignment with at most one true per color class. This is like constraint that for each color, at most one variable of that color is set true. This is like 2SAT with additional "at most one" constraints per color, which are cardinality constraints. For each color c, the set of variables of that color must have at most one true, which can be expressed as a set of binary clauses: for any two variables x_i, x_j with same color, add clause (¬x_i ∨ ¬x_j). That's a 2CNF. So we can transform problem into a new 2CNF formula: original F plus all pairwise (¬x_i ∨ ¬x_j) for same color. This is still 2CNF, solvable in polynomial time (linear). So problem in P. Need reduction to known P problem, e.g., 2SAT. So A ≤_p 2SAT (or directly algorithm). Provide reduction. Provide option: A in P = 1, NP-hard =0. Now write answer with reduction: input (F,g) map to formula F' = F ∧ Π_{c} ∧_{i<j, g(x_i)=g(x_j)=c} (¬x_i ∨ ¬x_j). This is polynomial size because number of pairs per color at most n^2. This reduction is polynomial. Then satisfiability of F' corresponds to existence of required assignment. Hence A ≤_p 2SAT, and 2SAT∈P, so A∈P. Provide answer.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Reduktion: $A\le_p \mathsf{2SAT}$ Begründung: Gegeben sei eine Instanz des Problems $A$, also * eine 2‑KNF‑Formel $F$ über den Variablen $V=\{x_1,\dots ,x_n\}$, * eine Farbfunktion $g:V\to\{1,\dots ,l\}$. Wir konstruieren in polynomialer Zeit eine neue 2‑KNF‑Formel $F'$ wie folgt \[ F' \;:=\; F\;\land\;\bigwedge_{\substack{i<j\\ g(x_i)=g(x_j)}}(\lnot x_i \,\lor\, \lnot x_j). \] Der zweite Teil besteht aus allen Paar‑Klauseln, die für jedes Farb‑Kollektiv $c$ genau die Aussage „es können nicht beide Variablen derselben Farbe wahr sein“ ausdrücken. Da jede dieser Klauseln nur zwei Literale besitzt, ist $F'$ wieder eine 2‑KNF‑Formel. Die Anzahl der hinzugefügten Klauseln ist höchstens $\binom{n}{2}$, also polynomial in $n$; die Konstruktion ist daher polynomialzeitmachbar. Nun gilt: *Wenn* es eine Belegung $\sigma$ gibt, die $F$ erfüllt und bei der alle wahr gesetzten Variablen unterschiedliche Farben besitzen, dann erfüllt $\sigma$ per Definition jede der Klauseln $(\lnot x_i\lor\lnot x_j)$ für Variablen mit gleicher Farbe – weil höchstens eine von ihnen wahr ist. Also erfüllt $\sigma$ auch $F'$. *Umgekehrt*: Erfüllt eine Belegung $\sigma$ die Formel $F'$, dann erfüllt sie zunächst $F$ (da $F$ ein Teil von $F'$ ist) und sie verletzt keine der Klauseln $(\lnot x_i\lor\lnot x_j)$. Letztere Klauseln verhindern genau, dass zwei Variablen derselben Farbe gleichzeitig wahr sind. Deshalb besitzt $\sigma$ die geforderte Eigenschaft, dass alle wahren Variablen unterschiedliche Farben haben. Damit ist \[ \exists\;\sigma\text{ mit den Bedingungen von }A\quad\Longleftrightarrow\quad F' \text{ ist erfüllbar}. \] Die Abbildung $(F,g)\mapsto F'$ ist eine polynomialzeit‑Reduktion von $A$ auf das klassische \(\mathsf{2SAT}\)-Entscheidungsproblem. Da \(\mathsf{2SAT}\in\mathsf{P}\) ist, folgt, dass $A\in\mathsf{P}$ (und naturgemäß liegt $A$ in NP). \[ \boxed{A\in\mathsf{P}} \] </answer>
Gegeben: Eine 2KNF-Formel mit Variablenmenge , eine Menge von Farben (mit ) und eine Funktion , die jeder Variable eine Farbe zuordnet. Problem : Gibt es eine erfüllende Belegung , sodass alle Variablen, die von zu Wahr gesetzt werden, unterschiedliche Farben haben? Formal: gibt es eine erfüllende Belegung mit für alle mit ?
☒☐ ist -hart
Reduktion: Begründung: Gegeben sei eine Instanz des Problems , also * eine 2‑KNF‑Formel über den Variablen , * eine Farbfunktion . Wir konstruieren in polynomialer Zeit eine neue 2‑KNF‑Formel wie folgt Der zweite Teil besteht aus allen Paar‑Klauseln, die für jedes Farb‑Kollektiv genau die Aussage „es können nicht beide Variablen derselben Farbe wahr sein“ ausdrücken. Da jede dieser Klauseln nur zwei Literale besitzt, ist wieder eine 2‑KNF‑Formel. Die Anzahl der hinzugefügten Klauseln ist höchstens , also polynomial in ; die Konstruktion ist daher polynomialzeitmachbar. Nun gilt: Wenn es eine Belegung gibt, die erfüllt und bei der alle wahr gesetzten Variablen unterschiedliche Farben besitzen, dann erfüllt per Definition jede der Klauseln für Variablen mit gleicher Farbe – weil höchstens eine von ihnen wahr ist. Also erfüllt auch . Umgekehrt: Erfüllt eine Belegung die Formel , dann erfüllt sie zunächst (da ein Teil von ist) und sie verletzt keine der Klauseln . Letztere Klauseln verhindern genau, dass zwei Variablen derselben Farbe gleichzeitig wahr sind. Deshalb besitzt die geforderte Eigenschaft, dass alle wahren Variablen unterschiedliche Farben haben. Damit ist Die Abbildung ist eine polynomialzeit‑Reduktion von auf das klassische -Entscheidungsproblem. Da ist, folgt, dass (und naturgemäß liegt in NP).
Exercise 8: Bonus
Die Punkte dieser Aufgabe sind Bonuspunkte, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen. Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
We need to answer which languages L_i have (L_i)^* not regular. Provide options 0/1 for each. Then provide answer with template id 4: "Begründung für $i=?$:" then multi-line explanation. We need to determine. L1 = {(ab)^n : n∈N}. This is language of strings "ab" repeated n times. That's regular. Its star is also regular (since L1 is already a regular language, star of a regular language is regular). Actually (L1)^* = strings of concatenations of (ab)^n blocks. That's essentially strings of a's and b's where each block is a^? Wait each block is (ab)^n, which itself is a^n b^n? No (ab)^n = "ab" repeated n times => a b a b ... length 2n, alternating. The star of that includes concatenations of such blocks, which yields strings of alternating a and b but possibly with runs of "ab" patterns. This is regular. So (L1)^* is regular. So option 1 is 0. L2 = {a^n b^n : n∈N}. This is classic non-regular language. Its star? (L2)^* = concatenations of strings a^{n1} b^{n1} a^{n2} b^{n2} ... . This yields strings where each a-block is followed by equal number of b's, but concatenated. This language is known to be non-regular as well? Let's think: (L2)^* includes strings where the number of a's before each b block may not match overall. For example, a^2 b^2 a^3 b^3 is in (L2)^*. This language is not regular because you can use pumping lemma? Actually (L2)^* = { a^{n1} b^{n1} a^{n2} b^{n2} ... a^{nk} b^{nk} : k≥0, each ni≥0 }. This is equivalent to the set of strings where the total number of a's equals total number of b's, and the string is of the form a^* b^* a^* b^* ... alternating blocks, but each a-block length equals the following b-block length. This is known to be non-regular (it is the "copy language" with concatenation). I think it's not regular. So option 2 is 1. L3 = {a^n b^m : n,m∈N and n≠m}. This language includes all strings a^n b^m where n and m differ. Its complement is {a^n b^n} which is non-regular. But L3 itself is regular? Let's see: L3 = (a^* b^*) \ {a^n b^n}. The set a^* b^* is regular. Removing a non-regular subset may produce non-regular? Actually complement of L3 within a^*b^* is {a^n b^n} which is non-regular, so L3 is not regular? Wait regular languages are closed under complement, so if L3 were regular, then its complement within a^*b^* (which is also regular) would be regular as intersection of complement with a^*b^*. But complement of L3 (within Σ*) is strings not of form a^n b^m with n≠m, i.e., either not of the form a^*b^* or n=m. That's more complex. However we can consider L3 = a^* b^* - {a^n b^n}. Since a^*b^* is regular, if we subtract a non-regular language, result may be non-regular. Indeed L3 is not regular because if it were, then intersect with a^*b^* would be regular, but that intersection is L3 itself (since L3 subset of a^*b^*). Then complement within a^*b^* would be {a^n b^n} which would be regular (since regular languages are closed under complement within a regular superset). But {a^n b^n} is known non-regular, contradiction. Therefore L3 is not regular. But the question asks about (L_i)^* not regular. For L3, (L3)^*? Since L3 already includes many strings, its star likely equals a^*b^*? Let's see: L3 contains strings a^n b^m where n≠m. By concatenating such strings, you can get any string of a's and b's? For example, to get a^k b^k (equal), you could concatenate a^{k}b^{k+1} then a^{0}b^{?} Not sure. Actually you cannot produce a^n b^n because each block has n≠m, but concatenation could produce overall equal numbers? Example: block1 a^2 b^3 (n=2,m=3) block2 a^3 b^2 (n=3,m=2) concatenation yields a^2 b^3 a^3 b^2 = a^{2} b^{3} a^{3} b^{2}. That's not of the form a^*b^*. So (L3)^* includes strings with interleaved a's and b's beyond a^*b^*. So likely (L3)^* is not regular as well. But we need to decide which (L_i)^* is not regular. L2 definitely. L3 maybe also not regular. Let's test: Could (L3)^* be regular? Since L3 is not regular, its star could be regular (e.g., L = {a^n b^n | n≥0} is non-regular, but L^* = (a^n b^n)^* = a^* b^*? Actually concatenating equal blocks yields strings of the form a^{n1} b^{n1} a^{n2} b^{n2} ... which is not a^*b^*. So not regular. So likely (L3)^* is not regular as well. But we need to pick at least one i. The question: "Für welche der folgenden Sprachen L_i, wobei i∈{1,2,3}, gilt, dass (L_i)^* nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches i und begründen Sie kurz, dass (L_i)^* nicht regulär ist." So we need to mark all that satisfy, and then choose one to justify. So we should set option 1 =0, option2=1, option3=1. Then provide justification for one i, say i=2. Provide explanation: using pumping lemma or closure properties. Let's craft answer.
Answer
<option id="1">0</option> <option id="2">1</option> <option id="3">1</option> <answer id="4"> Begründung für $i=2$: \[ L_2 = \{a^n b^n \mid n\in\mathbb N\} \] ist die klassische Kopiersprache, die nicht regulär ist (Pumping‑Lemma). Für jedes Wort \(w = a^n b^n\in L_2\) gilt, dass jede Zerlegung \(w = xyz\) mit \(|xy|\le p\) und \(|y|>0\) nach dem Pumpen von \(y\) zu \(xy^kz\) (für \(k\neq1\)) zu einer Ungleichheit zwischen der Anzahl der \(a\)’s und \(b\)’s führt, also zu einem Wort, das nicht mehr in \(L_2\) liegt – ein Widerspruch zur Annahme, dass \(L_2\) regulär ist. Da \(L_2\) selbst nicht regulär ist, kann ihr Kleene‑Stern \((L_2)^*\) ebenfalls nicht regulär sein: \[ (L_2)^* = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}\dots a^{n_k}b^{n_k} \mid k\ge 0,\; n_i\ge 0\} \] Enthält bereits die Teilmenge \(\{a^n b^n\mid n\ge 0\}\) (für \(k=1\)), die nicht regulär ist. Wäre \((L_2)^*\) regulär, wäre auch diese Teilmenge regulär (Regulärsprachen sind unter Schnitt mit regulären Sprachen abgeschlossen), was zum bekannten Ergebnis \(\{a^n b^n\}\) \(\notin\) REG führt – ein Widerspruch. Somit ist \((L_2)^*\) nicht regulär. </answer>
Sei . Für welche der folgenden Sprachen , wobei , gilt, dass nicht regulär ist? (Es können mehrere sein.) Wählen Sie ein solches und begründen Sie kurz, dass nicht regulär ist.
☐☒☒
wrong answer for choice (2)
Begründung für : ist die klassische Kopiersprache, die nicht regulär ist (Pumping‑Lemma). Für jedes Wort gilt, dass jede Zerlegung mit und nach dem Pumpen von zu (für ) zu einer Ungleichheit zwischen der Anzahl der ’s und ’s führt, also zu einem Wort, das nicht mehr in liegt – ein Widerspruch zur Annahme, dass regulär ist. Da selbst nicht regulär ist, kann ihr Kleene‑Stern ebenfalls nicht regulär sein: Enthält bereits die Teilmenge (für ), die nicht regulär ist. Wäre regulär, wäre auch diese Teilmenge regulär (Regulärsprachen sind unter Schnitt mit regulären Sprachen abgeschlossen), was zum bekannten Ergebnis REG führt – ein Widerspruch. Somit ist nicht regulär.
Subproblem b (0.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<answer id="4">
Begründung für $i=2$:
\[
L_2 = \{a^n b^n \mid n\in\mathbb N\}
\]
ist die klassische Kopiersprache, die nicht regulär ist (Pumping‑Lemma).
Für jedes Wort \(w = a^n b^n\in L_2\) gilt, dass jede Zerlegung \(w = xyz\) mit \(|xy|\le p\) und \(|y|>0\) nach dem Pumpen von \(y\) zu \(xy^kz\) (für \(k\neq1\)) zu einer Ungleichheit zwischen der Anzahl der \(a\)’s und \(b\)’s führt, also zu einem Wort, das nicht mehr in \(L_2\) liegt – ein Widerspruch zur Annahme, dass \(L_2\) regulär ist.
Da \(L_2\) selbst nicht regulär ist, kann ihr Kleene‑Stern \((L_2)^*\) ebenfalls nicht regulär sein:
\[
(L_2)^* = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}\dots a^{n_k}b^{n_k} \mid k\ge 0,\; n_i\ge 0\}
\]
Enthält bereits die Teilmenge \(\{a^n b^n\mid n\ge 0\}\) (für \(k=1\)), die nicht regulär ist.
Wäre \((L_2)^*\) regulär, wäre auch diese Teilmenge regulär (Regulärsprachen sind unter Schnitt mit regulären Sprachen abgeschlossen), was zum bekannten Ergebnis \(\{a^n b^n\}\) \(\notin\) REG führt – ein Widerspruch.
Somit ist \((L_2)^*\) nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need to answer subproblem b: existence of CFG in CNF with at most 6 productions generating exactly {a^{12}, a^9}. Need to decide. In CNF, productions are either A -> BC or A -> a or S -> epsilon (if allowed). Grammar must generate exactly two strings: a^12 and a^9. Need to see if possible with ≤6 productions. We need to produce grammar with CNF that generates exactly two specific lengths. Since CNF only generates strings of length >=1 (except epsilon). Each derivation tree for a string of length n has exactly 2n-1? Actually in CNF, each terminal appears via a rule A -> a (terminal). Each internal node is a binary production. For a string of length k, the parse tree has k leaves (terminals) and internal nodes count k-1 (binary nodes). So total productions used = 2k -1 (including start). But that's number of rule applications in a derivation, not number of productions in grammar. We can have a grammar that generates only those two strings. Since language finite, regular, hence also CF. But CNF with at most 6 productions? Let's try design. We need to generate a^9 and a^12. Since lengths differ, we need some way to produce either 9 or 12 a's. In CNF, each rule either A -> BC or A -> a. No epsilon (except maybe start). We cannot have terminal directly after nonterminal unless it's a leaf. We need to produce exactly a^9 and a^12. Could we have start S -> A9 | A12 where A9 generates a^9 and A12 generates a^12. But we cannot have unit productions (A -> B) in CNF. However we can use binary productions to encode. One approach: Use a binary tree that expands to a number of leaves. To get specific lengths, we need to control the shape. For a fixed length, we can have a grammar that generates exactly one string of that length by building a binary tree that yields that many leaves. For each length we can have a distinct start production? But we can't have S -> something that leads to two different lengths unless we have branching choices. So we need S to derive either a structure for 9 or for 12. We need a rule S -> X | Y, but that's not allowed in CNF because unit productions not allowed, but we can have S -> AB where A generates 9 and B generates epsilon? Not allowed. Could use S -> AB where A generates a^9 and B -> epsilon? But epsilon not allowed except S->epsilon and only if language includes empty string; not here. We need to encode choice via a binary rule where one side produces the desired string and the other produces epsilon? Not allowed. But we can use two different nonterminals, S and maybe T, with start S. We need S to produce either some nonterminal that leads to a^9 or a^12. In CNF, we can have S -> XY where X leads to a^9 and Y leads to ε? Not allowed. So we need to encode choice via a production S -> AB where A leads to a^9 and B leads to a^12? That would concatenate the strings, giving longer strings. Thus we cannot directly have choice in CNF. However, we could encode choice via using two different start symbols? Not possible. Thus likely impossible to have CNF grammar with at most 6 productions to generate exactly two strings of different length, because CNF can't have unit productions; to produce two different lengths we need branching that would produce concatenation of substrings; but you could have S -> A | B via unit productions but CNF doesn't allow that. But we could still encode by having S -> AB and then have A generate a^9 and B-> epsilon (but not allowed). Could we use S -> AB, A generates a^9, B -> a^3? Then total length would be 12 for one branch and 9 for other? Not. Thus likely impossible. But maybe we can use S->AB where A generates a^9, B generates a^3 (to get 12) and also have another derivation that yields a^9 by having B derive epsilon? Not allowed. Thus answer: No, because CNF forbids unit productions, and any derivation in CNF corresponds to a binary tree whose leaves are terminals, so any string generated must have length equal to number of leaves; a grammar that generates two strings of lengths 9 and 12 would need at least a choice point, which in CNF would cause concatenation, causing additional strings like a^21 etc. So not possible. Provide brief reasoning. Thus select option 2 = 1 (yes) or 2 = 0? The options: 1: Yes, Grammar. 2: No, Begründung. We choose No. So option 1 =0, option 2 =1. Provide answer.
Answer
<option id="1">0</option> <option id="2">1</option> <answer id="3"> Eine kontextfreie Grammatik in Chomsky‑Normalform kann nur Produktionen der Form \(A \to BC\) oder \(A \to a\) (plus eventuell \(S\to\varepsilon\) ) enthalten. Um die beiden Wörter \(a^{9}\) und \(a^{12}\) zu erzeugen, muss die Grammatik einen Wahlpunkt besitzen, an dem entweder ein Ableitungsbaum mit \(9\) Blatt‑Terminals oder ein Ableitungsbaum mit \(12\) Blatt‑Terminals entsteht. In Chomsky‑Normalform ist jede Ableitung durch einen binären Ableitungsbaum gegeben, dessen Blätter exakt die erzeugten Terminale sind. Ein Wahlpunkt in einer CNF‑Grammatik ist immer eine Regel der Form \(A\to BC\). Der resultierende Ableitungsbaum enthält dann **beide** Teilbäume, also wird die Zeichenkette die Konkatenation der beiden Teilbäume. Damit entstehen stets die Gesamtlängen \[ \text{(Länge des linken Teilbaums)} + \text{(Länge des rechten Teilbaums)} . \] Damit kann keine CNF‑Grammatik nur **zwei** verschiedene Längen erzeugen, ohne weitere Kombinationen zu erlauben. Um ausschließlich die beiden Wörter \(a^{9}\) bzw. \(a^{12}\) zu generieren, wäre ein Produktionsregel der Form \(S \to A \mid B\) (eine Wahl zwischen zwei Nicht‑Terminals) erforderlich; solche **Einheitsproduktionen** sind in Chomsky‑Normalform jedoch nicht zulässig. Daher gibt es keine CNF‑Grammatik mit höchstens sechs Produktionen, die exakt die Sprache \(\{a^{12},a^{9}\}\) erzeugt. **Folgerung:** Keine solche Grammatik existiert. </answer>
Gibt es eine kontextfreie Grammatik in Chomsky-Normalform mit höchstens Produktionen und ? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
☐Ja, Grammatik:☒Nein, Begründung:
wrong answer for choice (0)
Eine kontextfreie Grammatik in Chomsky‑Normalform kann nur Produktionen der Form oder (plus eventuell ) enthalten. Um die beiden Wörter und zu erzeugen, muss die Grammatik einen Wahlpunkt besitzen, an dem entweder ein Ableitungsbaum mit Blatt‑Terminals oder ein Ableitungsbaum mit Blatt‑Terminals entsteht. In Chomsky‑Normalform ist jede Ableitung durch einen binären Ableitungsbaum gegeben, dessen Blätter exakt die erzeugten Terminale sind. Ein Wahlpunkt in einer CNF‑Grammatik ist immer eine Regel der Form . Der resultierende Ableitungsbaum enthält dann beide Teilbäume, also wird die Zeichenkette die Konkatenation der beiden Teilbäume. Damit entstehen stets die Gesamtlängen Damit kann keine CNF‑Grammatik nur zwei verschiedene Längen erzeugen, ohne weitere Kombinationen zu erlauben. Um ausschließlich die beiden Wörter bzw. zu generieren, wäre ein Produktionsregel der Form (eine Wahl zwischen zwei Nicht‑Terminals) erforderlich; solche Einheitsproduktionen sind in Chomsky‑Normalform jedoch nicht zulässig. Daher gibt es keine CNF‑Grammatik mit höchstens sechs Produktionen, die exakt die Sprache erzeugt. Folgerung: Keine solche Grammatik existiert.
0: could not parse value Eine kontextfreie Grammatik in Chomsky‑Normalform kann nur Produktionen der Form \(A \to BC\) oder \(A \to a\) (plus eventuell \(S\to\varepsilon\) ) enthalten. Um die beiden Wörter \(a^{9}\) und \(a^{12}\) zu erzeugen, muss die Grammatik einen Wahlpunkt besitzen, an dem entweder ein Ableitungsbaum mit \(9\) Blatt‑Terminals oder ein Ableitungsbaum mit \(12\) Blatt‑Terminals entsteht. In Chomsky‑Normalform ist jede Ableitung durch einen binären Ableitungsbaum gegeben, dessen Blätter exakt die erzeugten Terminale sind. Ein Wahlpunkt in einer CNF‑Grammatik ist immer eine Regel der Form \(A\to BC\). Der resultierende Ableitungsbaum enthält dann **beide** Teilbäume, also wird die Zeichenkette die Konkatenation der beiden Teilbäume. Damit entstehen stets die Gesamtlängen \[ \text{(Länge des linken Teilbaums)} + \text{(Länge des rechten Teilbaums)} . \] Damit kann keine CNF‑Grammatik nur **zwei** verschiedene Längen erzeugen, ohne weitere Kombinationen zu erlauben. Um ausschließlich die beiden Wörter \(a^{9}\) bzw. \(a^{12}\) zu generieren, wäre ein Produktionsregel der Form \(S \to A \mid B\) (eine Wahl zwischen zwei Nicht‑Terminals) erforderlich; solche **Einheitsproduktionen** sind in Chomsky‑Normalform jedoch nicht zulässig. Daher gibt es keine CNF‑Grammatik mit höchstens sechs Produktionen, die exakt die Sprache \(\{a^{12},a^{9}\}\) erzeugt. **Folgerung:** Keine solche Grammatik existiert. for type cfg
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Die Punkte dieser Aufgabe sind **Bonuspunkte**, d.h. sie zählen wie normale Punkte, werden bei der Berechnung des Notenschemas jedoch außer Acht gelassen.
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L_i$, wobei $i\in\{1,2,3\}$, gilt, dass $(L_i)^*$ **nicht** regulär ist? (Es können mehrere sein.) Wählen Sie ein solches $i$ und begründen Sie kurz, dass $(L_i)^*$ nicht regulär ist.
<options>
<option id="1">$L_1 := \{(ab)^n:n\in\mathbb{N}\}$</option>
<option id="2">$L_2 := \{a^nb^n:n\in\mathbb{N}\}$</option>
<option id="3">$L_3 := \{a^nb^m:n,m\in\mathbb{N}\wedge n\ne m\}$</option>
</options>
<answer-template id="4">
Begründung für $i=?$:
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
<answer id="4">
Begründung für $i=2$:
\[
L_2 = \{a^n b^n \mid n\in\mathbb N\}
\]
ist die klassische Kopiersprache, die nicht regulär ist (Pumping‑Lemma).
Für jedes Wort \(w = a^n b^n\in L_2\) gilt, dass jede Zerlegung \(w = xyz\) mit \(|xy|\le p\) und \(|y|>0\) nach dem Pumpen von \(y\) zu \(xy^kz\) (für \(k\neq1\)) zu einer Ungleichheit zwischen der Anzahl der \(a\)’s und \(b\)’s führt, also zu einem Wort, das nicht mehr in \(L_2\) liegt – ein Widerspruch zur Annahme, dass \(L_2\) regulär ist.
Da \(L_2\) selbst nicht regulär ist, kann ihr Kleene‑Stern \((L_2)^*\) ebenfalls nicht regulär sein:
\[
(L_2)^* = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}\dots a^{n_k}b^{n_k} \mid k\ge 0,\; n_i\ge 0\}
\]
Enthält bereits die Teilmenge \(\{a^n b^n\mid n\ge 0\}\) (für \(k=1\)), die nicht regulär ist.
Wäre \((L_2)^*\) regulär, wäre auch diese Teilmenge regulär (Regulärsprachen sind unter Schnitt mit regulären Sprachen abgeschlossen), was zum bekannten Ergebnis \(\{a^n b^n\}\) \(\notin\) REG führt – ein Widerspruch.
Somit ist \((L_2)^*\) nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Gibt es eine kontextfreie Grammatik $G$ in Chomsky-Normalform mit höchstens $6$ Produktionen und $L(G)=\{a^{12},a^9\}$? Falls ja, geben Sie eine solche Grammatik an, falls nein, begründen Sie dies kurz.
<options>
<option id="1">Ja, Grammatik:</option>
<option id="2">Nein, Begründung:</option>
</options>
<answer-template id="3">
???
</answer-template>
<example>
S -> aS | SS
...
(oder Begründung als Text)
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
Eine kontextfreie Grammatik in Chomsky‑Normalform kann nur Produktionen der Form
\(A \to BC\) oder \(A \to a\) (plus eventuell \(S\to\varepsilon\) ) enthalten.
Um die beiden Wörter \(a^{9}\) und \(a^{12}\) zu erzeugen, muss die Grammatik
einen Wahlpunkt besitzen, an dem entweder ein Ableitungsbaum mit
\(9\) Blatt‑Terminals oder ein Ableitungsbaum mit \(12\) Blatt‑Terminals
entsteht.
In Chomsky‑Normalform ist jede Ableitung durch einen binären
Ableitungsbaum gegeben, dessen Blätter exakt die erzeugten
Terminale sind. Ein Wahlpunkt in einer CNF‑Grammatik ist immer eine
Regel der Form \(A\to BC\). Der resultierende Ableitungsbaum
enthält dann **beide** Teilbäume, also wird die Zeichenkette
die Konkatenation der beiden Teilbäume. Damit entstehen stets
die Gesamtlängen
\[
\text{(Länge des linken Teilbaums)} + \text{(Länge des rechten Teilbaums)} .
\]
Damit kann keine CNF‑Grammatik nur **zwei** verschiedene Längen
erzeugen, ohne weitere Kombinationen zu erlauben.
Um ausschließlich die beiden Wörter \(a^{9}\) bzw. \(a^{12}\) zu
generieren, wäre ein Produktionsregel der Form
\(S \to A \mid B\) (eine Wahl zwischen zwei Nicht‑Terminals)
erforderlich; solche **Einheitsproduktionen** sind in
Chomsky‑Normalform jedoch nicht zulässig.
Daher gibt es keine CNF‑Grammatik mit höchstens sechs
Produktionen, die exakt die Sprache \(\{a^{12},a^{9}\}\) erzeugt.
**Folgerung:**
Keine solche Grammatik existiert.
</answer>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0,1\}^*$ eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
<options>
<option id="1">Es gibt eine unentscheidbare Sprache $L'\subseteq L$.</option>
<option id="2">Jede Sprache $L'\subseteq L$ ist entscheidbar.</option>
</options>
<answer-template id="3">
Begründung für Aussage $?$ (1 oder 2):
???
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
We need pick true statements regarding L is any context-free, non-regular language. Options: 1) There exists an undecidable language L' subset of L. 2) Every language L' subset of L is decidable. We know that any CFL is decidable (membership). But subsets of L may be arbitrary languages, not necessarily CF. Since L is infinite? Not necessarily, but non-regular CF could be infinite. Could we have an undecidable subset of a decidable language? Yes, any decidable infinite language contains an undecidable subset (by diagonalization). For example, take L = {0^n 1^n}. Subset of strings where n encodes a TM that halts, etc. Since L is infinite, we can encode any language inside using mapping from naturals to strings in L. Thus there exists undecidable L' subset of L. Therefore statement 1 true, 2 false. Thus answer: option 1 =1, option2=0. Provide brief justification.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Begründung für Aussage 1 (1 oder 2): Da \(L\) kontextfrei und damit entscheidbar ist, besitzt sie mindestens unendlich viele Wörter (jede nicht‑reguläre CFL ist unendlich). Aus einer unendlichen, entscheidbaren Menge lässt sich durch eine geeignete kodierende Abbildung eine beliebige Teilmenge der natürlichen Zahlen realisieren. Wählt man z. B. eine effektive, injektive Abbildung \(\pi:\mathbb N \rightarrow L\) (möglich, weil \(L\) unendlich ist), so kann jede Sprache \(K\subseteq\mathbb N\) in die Form \(L' = \{\pi(n) \mid n\in K\}\subseteq L\) überführt werden. Da es unentscheidbare Teilmengen von \(\mathbb N\) gibt (z. B. die Halte‑Sprache), liefert die entsprechende Menge \(L'\) eine unentscheidbare Sprache, die vollständig in \(L\) liegt. Damit existiert für jede nicht‑reguläre kontextfreie Sprache \(L\) mindestens ein unentscheidbares \(L'\subseteq L\). Die zweite Aussage ist falsche, weil bereits das obige Gegenbeispiel zeigt, dass nicht *jede* Teilmenge entscheidbar ist. </answer>
Sei eine beliebige kontextfreie und nicht reguläre Sprache. Welche der folgenden Aussagen sind wahr? (Es können mehrere sein.) Wählen Sie eine solche Aussage und begründen Sie kurz, wieso diese Aussage wahr ist.
☒Es gibt eine unentscheidbare Sprache .☐Jede Sprache ist entscheidbar.
Begründung für Aussage 1 (1 oder 2): Da kontextfrei und damit entscheidbar ist, besitzt sie mindestens unendlich viele Wörter (jede nicht‑reguläre CFL ist unendlich). Aus einer unendlichen, entscheidbaren Menge lässt sich durch eine geeignete kodierende Abbildung eine beliebige Teilmenge der natürlichen Zahlen realisieren. Wählt man z. B. eine effektive, injektive Abbildung (möglich, weil unendlich ist), so kann jede Sprache in die Form überführt werden. Da es unentscheidbare Teilmengen von gibt (z. B. die Halte‑Sprache), liefert die entsprechende Menge eine unentscheidbare Sprache, die vollständig in liegt. Damit existiert für jede nicht‑reguläre kontextfreie Sprache mindestens ein unentscheidbares . Die zweite Aussage ist falsche, weil bereits das obige Gegenbeispiel zeigt, dass nicht jede Teilmenge entscheidbar ist.