Exam 2024_retake.txt — anthropic/claude-opus-4.1
Exercise | a | b | c | d | e | f | g | Total |
---|---|---|---|---|---|---|---|---|
1: Quiz: Reguläre und kontextfreie Sprachen | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/3.0 | 3.0/3.0 | 15.0/16.0 |
2: DFA-Algorithmen | 6.0/6.0 | 1.0/1.0 | 4.0/4.0 | 2.0/2.0 | 5.0/5.0 | 18.0/18.0 | ||
3: Rekursive Funktionen | 1.0/1.0 | 6.0/6.0 | 6.0/6.0 | 13.0/13.0 | ||||
4: CFG-Algorithmen | 2.0/2.0 | 2.0/2.0 | 3.0/3.0 | 3.0/3.0 | 2.0/3.0 | 12.0/13.0 | ||
5: Verlorene Buchsten | 1.0/1.0 | 2.0/2.0 | 7.0/7.0 | 2.0/2.0 | 12.0/12.0 | |||
6: Quiz: Berechenbarkeit und Komplexität | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 2.0/2.0 | 4.0/4.0 | 14.0/14.0 | |
7: Reduktion | 4.0/4.0 | 3.0/3.0 | 7.0/7.0 | 14.0/14.0 | ||||
8: Bonus | 0.0/2.0 | 1.0/1.0 | 2.0/2.0 | 3.0/5.0 | ||||
Exam total | 101.0/105.0 |
Exercise 1: Quiz: Reguläre und kontextfreie Sprachen
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{a, b\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind Residualsprachen von $L((bba)^*b)$?
<options>
<option id="1">$\{b\}$</option>
<option id="2">$L(ba(bba)^*b | \varepsilon)$</option>
<option id="3">$\emptyset$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me think about residual languages. The residual language of a language $L$ with respect to a word $w$, denoted $w^{-1}L$, is defined as: $$w^{-1}L = \{v \mid wv \in L\}$$ We have $L = L((bba)^*b)$. Let me understand this language first: - $(bba)^*$ generates $\{\varepsilon, bba, bbabba, bbabbabba, ...\}$ - So $(bba)^*b$ generates $\{b, bbab, bbabbab, ...\}$ These are words that start with $b$ and have the form $b$ or $bba \cdot (bba)^* \cdot b$. Let me check each option to see if it's a residual language of $L$. **Option 1: $\{b\}$** This would be a residual language if there exists some $w$ such that $w^{-1}L = \{b\}$. This means $wv \in L$ if and only if $v = b$. Let's try $w = bba$. Then: $bba^{-1}L = \{v \mid bbav \in L\}$ For $bbav$ to be in $L$, we need $bbav \in L((bba)^*b)$. - If $bbav = b$, that's impossible since $|bbav| \geq 3$. - If $bbav = bbab$, then $v = b$. This works! - If $bbav = (bba)^kb$ for $k \geq 2$, then $bbav = bba(bba)^{k-1}b$, so $v = (bba)^{k-1}b$. I discover the residual language is actually the entire original language, not just $\{b\}$. I'll investigate another potential word to find the residual language. Examining $w = bb$ reveals some interesting constraints on potential residual language elements. The key observation is that finding a word that produces a residual language of exactly $\{b\}$ seems challenging. Each candidate word leads to a broader language subset, not the precise singleton set I'm seeking. I need to systematically explore different word candidates and their impact on the language structure. The language's pattern of $(bba)^kb$ suggests complex constraints that prevent simple residual language reduction. Investigating potential words $w$ reveals nuanced conditions: - $wb$ must generate a specific form matching language membership - Strict requirements exist for $w$ to create a single-element residual language Exploring $w = bba$ shows partial success in generating $b$, but complete verification requires deeper analysis of language constraints. The investigation suggests complex interactions between word construction and language membership, hinting at intricate structural requirements. I see a pattern emerging where word transformations depend on specific repetitive sequences. By examining prefix structures and language constraints, the analysis reveals nuanced membership conditions that extend beyond simple concatenation rules. The key observation centers on how different word forms relate to language inclusion, particularly when exploring residual language properties through systematic decomposition. If $w = (bba)^jb$, then $w^{-1}L$ requires $v$ to complete a specific pattern. The only way this works is if $v = \varepsilon$ and $j$ matches the pattern, or if $v$ allows forming a valid language element. For $b$ as a base case, we can append $\varepsilon$ or $bab$ to create valid language members. The key is matching the $(bba)^*b$ structure precisely. Examining $b^{-1}L$ reveals elements formed by prepending $v$ to $b$ that maintain the language's pattern of $(bba)^kb$ for $k \geq 0$. I see the pattern of generating strings with $ba(bba)^*b$, confirming the language matches $b^{-1}L$. The recursive structure allows creating increasingly longer valid strings by expanding $(bba)^*$. The key observation is the consistent generation of strings starting with $bab$ and following a specific recursive pattern. Each iteration adds another $bba$ segment, creating a predictable sequence of valid language members. Checking the generated strings confirms the language's structure, matching the expected residual language after left multiplication by $b$. I see that $\{b\}$ could potentially be a residual language under specific conditions. The key is finding a word $w$ such that $wb \in L$, but no other word $wv$ is in $L$ except when $v = b$. The language $L$ consists of words of the form $(bba)^kb$, and for $\{b\}$ to be a residual language, $w$ must be of the form $(bba)^m$. When $v$ is $(bba)^{k-m}b$, the resulting word remains in $L$. This requires precise matching of word structures to ensure only $b$ can extend $w$ while remaining in the language. I see the pattern of exploring inverse images for different prefixes of the language. The key observation is systematically checking how different word prefixes interact with the language $L = L((bba)^*b)$. For $bb$, the inverse image reveals a sequence of words formed by inserting $a$ and $(bba)$ sequences before the final $b$. This suggests a recursive structure in the language's membership conditions. The investigation continues with $bbabba$, seeking to understand how different prefix lengths constrain potential language members through inverse image transformations. The next step involves constructing a minimal deterministic finite automaton to more rigorously analyze the language's structural properties. I'm carefully defining states that capture the modular pattern of $(bba)^*b$, tracking partial matches and potential acceptance conditions. The state machine will help me understand the precise language behavior, revealing nuanced transitions and acceptance criteria. The key insight involves tracking how each state represents a specific point in the potential $(bba)^*b$ pattern, with strategic transitions that capture the language's recursive structure. My state design allows flexible matching, enabling paths that represent zero or multiple $(bba)$ repetitions before the final $b$, creating a precise mechanism for language recognition. The state transitions systematically track pattern progression, with each state representing a specific stage in matching the complex $(bba)^*b$ structure. Careful routing ensures precise tracking of accepted sequences. Critically, the design enables accepting valid strings while immediately rejecting invalid input through strategically placed dead states. The residual language analysis reveals how different prefix lengths modify the acceptance criteria, mapping each state's potential continuations. From $q_1$, the language includes $\varepsilon$ and complex paths through multiple states, like $bab$ and $babbab$, demonstrating intricate state transitions that ultimately reach an accepting configuration. From $q_2$, the language expands to include strings like $ab$ and $abbab$, which navigate through $q_3$ and $q_1$ while maintaining acceptance. From $q_3$, the language continues with paths like $b$ and $bbab$, revealing further state transition possibilities that reach accepting states. The investigation explores residual languages, carefully examining state transitions and accepted strings, noting the complexity of precise language characterization. Scrutinizing $q_3$'s accepted strings reveals nuanced acceptance patterns, challenging initial assumptions about language membership. The analysis systematically checks potential residual languages, identifying subtle distinctions in string acceptance across different automaton states. From $q_3$, the language pattern involves repeated $bba$ sequences ending with $b$. Critically, no state directly generates $\{b\}$, ruling out that specific language. The second case reveals a precise language definition involving $ba$ prefixes with optional $(bba)$ repetitions. The final case confirms the empty language's acceptance from the dead state.
Answer
Looking at this problem, I need to find which languages are residual languages of $L((bba)^*b)$. A residual language $w^{-1}L$ is defined as $\{v \mid wv \in L\}$ for some word $w$. Let me first understand $L((bba)^*b)$. This language consists of: - $b$ (when $(bba)^* = \varepsilon$) - $bbab$ (when $(bba)^* = bba$) - $bbabbab$ (when $(bba)^* = bbabba$) - And so on... These are all words of the form $(bba)^kb$ for $k \geq 0$. To systematically find all residual languages, I'll consider what happens after reading different prefixes: **For option 1: $\{b\}$** If this were a residual language, we'd need some $w$ where $w^{-1}L = \{b\}$. This means $wb \in L$ and no other word $wv$ with $v \neq b$ is in $L$. Testing various prefixes: - If $w = bba$, then $bba^{-1}L$ includes $b$ (since $bbab \in L$) but also $bbab$ (since $bbabbab \in L$) - For any prefix $w$, if $wb \in L$ and $wb = (bba)^mb$, then typically $w(bba)^nb$ will also be in $L$ for various $n$ I cannot find a prefix that gives exactly $\{b\}$. **For option 2: $L(ba(bba)^*b | \varepsilon)$** This is $\{\varepsilon, bab, babbab, babbabbab, ...\}$. Let me check $b^{-1}L$: - $b \cdot \varepsilon = b \in L$ ✓ (so $\varepsilon \in b^{-1}L$) - $b \cdot bab = bbab \in L$ ✓ (so $bab \in b^{-1}L$) - $b \cdot babbab = bbabbab \in L$ ✓ (so $babbab \in b^{-1}L$) So $b^{-1}L = \{\varepsilon, bab, babbab, ...\} = L(ba(bba)^*b | \varepsilon)$ ✓ **For option 3: $\emptyset$** This would be a residual language if there's a prefix $w$ such that no word starting with $w$ is in $L$. Since all words in $L$ start with $b$: - $a^{-1}L = \emptyset$ (no word in $L$ starts with $a$) ✓ <option id="1">0</option> <option id="2">1</option> <option id="3">1</option>
Welche der folgenden Sprachen sind Residualsprachen von ?
☐☒☒
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{a, b\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind Residualsprachen von $L((bba)^*b)$?
<options>
<option id="1">$\{b\}$</option>
<option id="2">$L(ba(bba)^*b | \varepsilon)$</option>
<option id="3">$\emptyset$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to find which languages are residual languages of $L((bba)^*b)$.
A residual language $w^{-1}L$ is defined as $\{v \mid wv \in L\}$ for some word $w$.
Let me first understand $L((bba)^*b)$. This language consists of:
- $b$ (when $(bba)^* = \varepsilon$)
- $bbab$ (when $(bba)^* = bba$)
- $bbabbab$ (when $(bba)^* = bbabba$)
- And so on...
These are all words of the form $(bba)^kb$ for $k \geq 0$.
To systematically find all residual languages, I'll consider what happens after reading different prefixes:
**For option 1: $\{b\}$**
If this were a residual language, we'd need some $w$ where $w^{-1}L = \{b\}$. This means $wb \in L$ and no other word $wv$ with $v \neq b$ is in $L$.
Testing various prefixes:
- If $w = bba$, then $bba^{-1}L$ includes $b$ (since $bbab \in L$) but also $bbab$ (since $bbabbab \in L$)
- For any prefix $w$, if $wb \in L$ and $wb = (bba)^mb$, then typically $w(bba)^nb$ will also be in $L$ for various $n$
I cannot find a prefix that gives exactly $\{b\}$.
**For option 2: $L(ba(bba)^*b | \varepsilon)$**
This is $\{\varepsilon, bab, babbab, babbabbab, ...\}$.
Let me check $b^{-1}L$:
- $b \cdot \varepsilon = b \in L$ ✓ (so $\varepsilon \in b^{-1}L$)
- $b \cdot bab = bbab \in L$ ✓ (so $bab \in b^{-1}L$)
- $b \cdot babbab = bbabbab \in L$ ✓ (so $babbab \in b^{-1}L$)
So $b^{-1}L = \{\varepsilon, bab, babbab, ...\} = L(ba(bba)^*b | \varepsilon)$ ✓
**For option 3: $\emptyset$**
This would be a residual language if there's a prefix $w$ such that no word starting with $w$ is in $L$.
Since all words in $L$ start with $b$:
- $a^{-1}L = \emptyset$ (no word in $L$ starts with $a$) ✓
<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L \subseteq \Sigma^*$ eine Sprache mit $LL = \Sigma^*$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist unendlich</option>
<option id="2">$\varepsilon \in L$</option>
<option id="3">$LLL = \Sigma^*$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze this problem. We have $L \subseteq \Sigma^*$ with $LL = \Sigma^*$ where $\Sigma = \{a, b\}$. Let me check each option: **Option 1: $L$ is infinite** If $LL = \Sigma^*$, then we can form every word in $\Sigma^*$ by concatenating two words from $L$. Could $L$ be finite? Let's think about this. If $L$ is finite, then $LL$ is also finite because it's the concatenation of two finite sets. But $\Sigma^* = \{a, b\}^*$ is infinite, so we have a contradiction. Therefore, $L$ must be infinite. ✓ **Option 2: $\varepsilon \in L$** Since $LL = \Sigma^*$ and $\varepsilon \in \Sigma^*$, we need $\varepsilon$ to be in $LL$. For $\varepsilon$ to be in $LL$, we need $\varepsilon = uv$ for some $u, v \in L$. The only way to have $uv = \varepsilon$ is if both $u = \varepsilon$ and $v = \varepsilon$. Therefore, $\varepsilon \in L$. ✓ **Option 3: $LLL = \Sigma^*$** We have $LL = \Sigma^*$. $LLL = L(LL) = L\Sigma^*$ Since $\varepsilon \in L$ (as we proved above), we have: $L\Sigma^* \supseteq \{\varepsilon\}\Sigma^* = \Sigma^*$ Also, since $L \subseteq \Sigma^*$: $L\Sigma^* \subseteq \Sigma^*\Sigma^* = \Sigma^*$ This means $LLL = L\Sigma^* = \Sigma^*$. ✓ I realize the length constraint for $u$ and $v$ requires careful consideration. The concatenation of two words must result in the empty string, which seems impossible for non-empty alphabets. If $uv = \varepsilon$, then $|u| + |v| = 0$, implying $u = v = \varepsilon$. This confirms $\varepsilon$ must be in $L$. For option 3, $\Sigma^* L$ contains all possible words since $\varepsilon \in L$. Any word $w$ can be written as $w \cdot \varepsilon$, proving $\Sigma^* \subseteq \Sigma^* L$. The inclusion $\Sigma^* L \subseteq \Sigma^*$ follows directly, establishing $\Sigma^* L = \Sigma^*$ and thus $LLL = \Sigma^*$.
Answer
Looking at this problem, I need to analyze what properties $L$ must have given that $LL = \Sigma^*$. **Option 1: $L$ is infinite** If $L$ were finite, then $LL$ would also be finite (the concatenation of two finite sets is finite). But $\Sigma^* = \{a,b\}^*$ is infinite, which contains all strings over $\{a,b\}$ including arbitrarily long ones. This is a contradiction. Therefore, $L$ must be infinite. ✓ **Option 2: $\varepsilon \in L$** Since $LL = \Sigma^*$ and $\varepsilon \in \Sigma^*$, we need $\varepsilon \in LL$. For $\varepsilon$ to be in $LL$, there must exist $u, v \in L$ such that $uv = \varepsilon$. Since the length of concatenation is additive: $|uv| = |u| + |v| = 0$ This implies $|u| = 0$ and $|v| = 0$, so $u = \varepsilon$ and $v = \varepsilon$. Therefore, $\varepsilon \in L$. ✓ **Option 3: $LLL = \Sigma^*$** We have $LLL = (LL)L = \Sigma^* L$. Since we proved $\varepsilon \in L$: - $\Sigma^* \subseteq \Sigma^* L$ (any word $w \in \Sigma^*$ can be written as $w \cdot \varepsilon$ with $\varepsilon \in L$) - $\Sigma^* L \subseteq \Sigma^* \Sigma^* = \Sigma^*$ (since $L \subseteq \Sigma^*$) Therefore, $\Sigma^* L = \Sigma^*$, which means $LLL = \Sigma^*$. ✓ <option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Sei eine Sprache mit . Welche Aussagen sind wahr?
☒ ist unendlich☒☒
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{a, b\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind Residualsprachen von $L((bba)^*b)$?
<options>
<option id="1">$\{b\}$</option>
<option id="2">$L(ba(bba)^*b | \varepsilon)$</option>
<option id="3">$\emptyset$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to find which languages are residual languages of $L((bba)^*b)$.
A residual language $w^{-1}L$ is defined as $\{v \mid wv \in L\}$ for some word $w$.
Let me first understand $L((bba)^*b)$. This language consists of:
- $b$ (when $(bba)^* = \varepsilon$)
- $bbab$ (when $(bba)^* = bba$)
- $bbabbab$ (when $(bba)^* = bbabba$)
- And so on...
These are all words of the form $(bba)^kb$ for $k \geq 0$.
To systematically find all residual languages, I'll consider what happens after reading different prefixes:
**For option 1: $\{b\}$**
If this were a residual language, we'd need some $w$ where $w^{-1}L = \{b\}$. This means $wb \in L$ and no other word $wv$ with $v \neq b$ is in $L$.
Testing various prefixes:
- If $w = bba$, then $bba^{-1}L$ includes $b$ (since $bbab \in L$) but also $bbab$ (since $bbabbab \in L$)
- For any prefix $w$, if $wb \in L$ and $wb = (bba)^mb$, then typically $w(bba)^nb$ will also be in $L$ for various $n$
I cannot find a prefix that gives exactly $\{b\}$.
**For option 2: $L(ba(bba)^*b | \varepsilon)$**
This is $\{\varepsilon, bab, babbab, babbabbab, ...\}$.
Let me check $b^{-1}L$:
- $b \cdot \varepsilon = b \in L$ ✓ (so $\varepsilon \in b^{-1}L$)
- $b \cdot bab = bbab \in L$ ✓ (so $bab \in b^{-1}L$)
- $b \cdot babbab = bbabbab \in L$ ✓ (so $babbab \in b^{-1}L$)
So $b^{-1}L = \{\varepsilon, bab, babbab, ...\} = L(ba(bba)^*b | \varepsilon)$ ✓
**For option 3: $\emptyset$**
This would be a residual language if there's a prefix $w$ such that no word starting with $w$ is in $L$.
Since all words in $L$ start with $b$:
- $a^{-1}L = \emptyset$ (no word in $L$ starts with $a$) ✓
<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L \subseteq \Sigma^*$ eine Sprache mit $LL = \Sigma^*$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist unendlich</option>
<option id="2">$\varepsilon \in L$</option>
<option id="3">$LLL = \Sigma^*$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to analyze what properties $L$ must have given that $LL = \Sigma^*$.
**Option 1: $L$ is infinite**
If $L$ were finite, then $LL$ would also be finite (the concatenation of two finite sets is finite). But $\Sigma^* = \{a,b\}^*$ is infinite, which contains all strings over $\{a,b\}$ including arbitrarily long ones. This is a contradiction.
Therefore, $L$ must be infinite. ✓
**Option 2: $\varepsilon \in L$**
Since $LL = \Sigma^*$ and $\varepsilon \in \Sigma^*$, we need $\varepsilon \in LL$.
For $\varepsilon$ to be in $LL$, there must exist $u, v \in L$ such that $uv = \varepsilon$.
Since the length of concatenation is additive: $|uv| = |u| + |v| = 0$
This implies $|u| = 0$ and $|v| = 0$, so $u = \varepsilon$ and $v = \varepsilon$.
Therefore, $\varepsilon \in L$. ✓
**Option 3: $LLL = \Sigma^*$**
We have $LLL = (LL)L = \Sigma^* L$.
Since we proved $\varepsilon \in L$:
- $\Sigma^* \subseteq \Sigma^* L$ (any word $w \in \Sigma^*$ can be written as $w \cdot \varepsilon$ with $\varepsilon \in L$)
- $\Sigma^* L \subseteq \Sigma^* \Sigma^* = \Sigma^*$ (since $L \subseteq \Sigma^*$)
Therefore, $\Sigma^* L = \Sigma^*$, which means $LLL = \Sigma^*$. ✓
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L \subseteq \Sigma^*$ regulär. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{u^R v \mid u, v \in L\}$</option>
<option id="2">$\{u^R u \mid u \in L\}$</option>
<option id="3">$\{uv \mid u, v \in L \land |u| = |v|\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each option carefully. **Option 1: $\{u^R v \mid u, v \in L\}$** This is the concatenation of $L^R$ (the reversal of $L$) with $L$. Since regular languages are closed under reversal and concatenation: - $L$ is regular - $L^R$ is regular (closure under reversal) - $L^R L$ is regular (closure under concatenation) So option 1 gives a regular language. **Option 2: $\{u^R u \mid u \in L\}$** This is more subtle. Let me think of a counterexample. Consider $L = \{a^n b^n \mid n \geq 0\}$. Wait, that's not regular. Let me use a regular language. Consider $L = a^*b^*$. Then what is $\{u^R u \mid u \in L\}$? - If $u = a^i b^j$, then $u^R = b^j a^i$ - So $u^R u = b^j a^i a^i b^j = b^j a^{2i} b^j$ So $\{u^R u \mid u \in L\} = \{b^j a^{2i} b^j \mid i,j \geq 0\}$ Hmm, is this regular? Let me apply the pumping lemma. Consider the string $b^n a^{2n} b^n$ for large $n$. If this language were regular with pumping length $p$, take $n = p$. Then $w = b^p a^{2p} b^p$ is in the language. By the pumping lemma, we can write $w = xyz$ with $|xy| \leq p$, $|y| > 0$, and $xy^i z$ in the language for all $i \geq 0$. The pumping lemma reveals a contradiction. When we break down the string, the specific structure of $b^k$ at the beginning prevents maintaining the language's pattern. This suggests the language is not regular, as we cannot pump the string while preserving its essential characteristics. Exploring the next option, I examine concatenations of equal-length words from $a^*b^*$. The key constraint requires matching total lengths of $a$ and $b$ segments across two words. For $L = a^*$, the resulting language becomes $\{a^{2n} \mid n \geq 0\}$, which is regular. When considering $\{a,b\}^*$, the language becomes all even-length strings, also regular. I'm now systematically investigating whether this construction generally preserves regularity for regular languages. An NFA approach seems challenging because guessing and tracking length requires counting, which standard NFAs cannot do reliably. The complexity emerges when trying to construct a machine that can simultaneously validate word membership and length equality. Analyzing $L = a^* \cup b^*$, the resulting language includes interesting patterns: $a^n b^n$ and $b^n a^n$ sequences. These symmetric constructions reveal that even with a simple regular language $L$, the derived language can become non-regular, specifically containing context-sensitive patterns that exceed regular language capabilities. The key insight is that option 3's language construction can transform a regular language into a non-regular one, demonstrating how seemingly simple transformations can dramatically alter language properties. Examining option 1, the closure properties of regular languages under reversal and concatenation suggest its correctness, providing a stable framework for language manipulations. Focusing on $L = a^*b^*$, I explore the structure of $u^R u$. By constructing $b^j a^{2i} b^j$, I discover a pattern that violates regularity through the pumping lemma's constraints. My final assessment confirms the initial reasoning: Option 1 is regular, while Options 2 and 3 lack guaranteed regularity.
Answer
Looking at each option, I need to determine whether these constructions preserve regularity when $L$ is regular. **Option 1: $\{u^R v \mid u, v \in L\}$** This can be rewritten as $L^R \cdot L$ (the concatenation of the reversal of $L$ with $L$). Since regular languages are closed under: - Reversal: $L^R$ is regular when $L$ is regular - Concatenation: $L^R \cdot L$ is regular when both $L^R$ and $L$ are regular Therefore, this language is always regular when $L$ is regular. ✓ **Option 2: $\{u^R u \mid u \in L\}$** Let me test with a specific regular language. Consider $L = a^*b^*$. For any $u = a^i b^j \in L$: - $u^R = b^j a^i$ - $u^R u = b^j a^{2i} b^j$ So $\{u^R u \mid u \in L\} = \{b^j a^{2i} b^j \mid i,j \geq 0\}$. Using the pumping lemma: For the string $w = b^p a^{2p} b^p$ (where $p$ is the pumping length), we must have $w = xyz$ with $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, we have $y = b^k$ for some $k > 0$. But then $xy^0z = b^{p-k} a^{2p} b^p$ would need to match the pattern $b^j a^{2i} b^j$, requiring $p-k = p$, which is impossible since $k > 0$. This language is not regular, so option 2 doesn't preserve regularity. ✗ **Option 3: $\{uv \mid u, v \in L \land |u| = |v|\}$** Consider $L = a^* \cup b^*$ (regular). The resulting language includes: - $a^n a^n = a^{2n}$ (when both $u,v \in a^*$) - $b^n b^n = b^{2n}$ (when both $u,v \in b^*$) - $a^n b^n$ (when $u \in a^*$, $v \in b^*$) - $b^n a^n$ (when $u \in b^*$, $v \in a^*$) Since this includes $\{a^n b^n \mid n \geq 0\}$, which is the classic non-regular language, option 3 doesn't preserve regularity. ✗ <option id="1">1</option> <option id="2">0</option> <option id="3">0</option>
Sei regulär. Welche der folgenden Sprachen sind regulär?
☒☐☐
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{a, b\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind Residualsprachen von $L((bba)^*b)$?
<options>
<option id="1">$\{b\}$</option>
<option id="2">$L(ba(bba)^*b | \varepsilon)$</option>
<option id="3">$\emptyset$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to find which languages are residual languages of $L((bba)^*b)$.
A residual language $w^{-1}L$ is defined as $\{v \mid wv \in L\}$ for some word $w$.
Let me first understand $L((bba)^*b)$. This language consists of:
- $b$ (when $(bba)^* = \varepsilon$)
- $bbab$ (when $(bba)^* = bba$)
- $bbabbab$ (when $(bba)^* = bbabba$)
- And so on...
These are all words of the form $(bba)^kb$ for $k \geq 0$.
To systematically find all residual languages, I'll consider what happens after reading different prefixes:
**For option 1: $\{b\}$**
If this were a residual language, we'd need some $w$ where $w^{-1}L = \{b\}$. This means $wb \in L$ and no other word $wv$ with $v \neq b$ is in $L$.
Testing various prefixes:
- If $w = bba$, then $bba^{-1}L$ includes $b$ (since $bbab \in L$) but also $bbab$ (since $bbabbab \in L$)
- For any prefix $w$, if $wb \in L$ and $wb = (bba)^mb$, then typically $w(bba)^nb$ will also be in $L$ for various $n$
I cannot find a prefix that gives exactly $\{b\}$.
**For option 2: $L(ba(bba)^*b | \varepsilon)$**
This is $\{\varepsilon, bab, babbab, babbabbab, ...\}$.
Let me check $b^{-1}L$:
- $b \cdot \varepsilon = b \in L$ ✓ (so $\varepsilon \in b^{-1}L$)
- $b \cdot bab = bbab \in L$ ✓ (so $bab \in b^{-1}L$)
- $b \cdot babbab = bbabbab \in L$ ✓ (so $babbab \in b^{-1}L$)
So $b^{-1}L = \{\varepsilon, bab, babbab, ...\} = L(ba(bba)^*b | \varepsilon)$ ✓
**For option 3: $\emptyset$**
This would be a residual language if there's a prefix $w$ such that no word starting with $w$ is in $L$.
Since all words in $L$ start with $b$:
- $a^{-1}L = \emptyset$ (no word in $L$ starts with $a$) ✓
<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L \subseteq \Sigma^*$ eine Sprache mit $LL = \Sigma^*$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist unendlich</option>
<option id="2">$\varepsilon \in L$</option>
<option id="3">$LLL = \Sigma^*$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to analyze what properties $L$ must have given that $LL = \Sigma^*$.
**Option 1: $L$ is infinite**
If $L$ were finite, then $LL$ would also be finite (the concatenation of two finite sets is finite). But $\Sigma^* = \{a,b\}^*$ is infinite, which contains all strings over $\{a,b\}$ including arbitrarily long ones. This is a contradiction.
Therefore, $L$ must be infinite. ✓
**Option 2: $\varepsilon \in L$**
Since $LL = \Sigma^*$ and $\varepsilon \in \Sigma^*$, we need $\varepsilon \in LL$.
For $\varepsilon$ to be in $LL$, there must exist $u, v \in L$ such that $uv = \varepsilon$.
Since the length of concatenation is additive: $|uv| = |u| + |v| = 0$
This implies $|u| = 0$ and $|v| = 0$, so $u = \varepsilon$ and $v = \varepsilon$.
Therefore, $\varepsilon \in L$. ✓
**Option 3: $LLL = \Sigma^*$**
We have $LLL = (LL)L = \Sigma^* L$.
Since we proved $\varepsilon \in L$:
- $\Sigma^* \subseteq \Sigma^* L$ (any word $w \in \Sigma^*$ can be written as $w \cdot \varepsilon$ with $\varepsilon \in L$)
- $\Sigma^* L \subseteq \Sigma^* \Sigma^* = \Sigma^*$ (since $L \subseteq \Sigma^*$)
Therefore, $\Sigma^* L = \Sigma^*$, which means $LLL = \Sigma^*$. ✓
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L \subseteq \Sigma^*$ regulär. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{u^R v \mid u, v \in L\}$</option>
<option id="2">$\{u^R u \mid u \in L\}$</option>
<option id="3">$\{uv \mid u, v \in L \land |u| = |v|\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine whether these constructions preserve regularity when $L$ is regular.
**Option 1: $\{u^R v \mid u, v \in L\}$**
This can be rewritten as $L^R \cdot L$ (the concatenation of the reversal of $L$ with $L$).
Since regular languages are closed under:
- Reversal: $L^R$ is regular when $L$ is regular
- Concatenation: $L^R \cdot L$ is regular when both $L^R$ and $L$ are regular
Therefore, this language is always regular when $L$ is regular. ✓
**Option 2: $\{u^R u \mid u \in L\}$**
Let me test with a specific regular language. Consider $L = a^*b^*$.
For any $u = a^i b^j \in L$:
- $u^R = b^j a^i$
- $u^R u = b^j a^{2i} b^j$
So $\{u^R u \mid u \in L\} = \{b^j a^{2i} b^j \mid i,j \geq 0\}$.
Using the pumping lemma: For the string $w = b^p a^{2p} b^p$ (where $p$ is the pumping length), we must have $w = xyz$ with $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, we have $y = b^k$ for some $k > 0$. But then $xy^0z = b^{p-k} a^{2p} b^p$ would need to match the pattern $b^j a^{2i} b^j$, requiring $p-k = p$, which is impossible since $k > 0$.
This language is not regular, so option 2 doesn't preserve regularity. ✗
**Option 3: $\{uv \mid u, v \in L \land |u| = |v|\}$**
Consider $L = a^* \cup b^*$ (regular).
The resulting language includes:
- $a^n a^n = a^{2n}$ (when both $u,v \in a^*$)
- $b^n b^n = b^{2n}$ (when both $u,v \in b^*$)
- $a^n b^n$ (when $u \in a^*$, $v \in b^*$)
- $b^n a^n$ (when $u \in b^*$, $v \in a^*$)
Since this includes $\{a^n b^n \mid n \geq 0\}$, which is the classic non-regular language, option 3 doesn't preserve regularity. ✗
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Welche der folgenden kontextfreien Grammatiken sind mehrdeutig?
<options>
<option id="1">$S \rightarrow SS \mid a$</option>
<option id="2">$S \rightarrow Sa \mid Sb \mid \varepsilon$</option>
<option id="3">$S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each grammar for ambiguity. A grammar is ambiguous if there exists at least one string that can be derived in two different ways (has two different parse trees). **Option 1: $S \rightarrow SS \mid a$** Let me try to derive the string $aaa$: - First derivation: $S \Rightarrow SS \Rightarrow aS \Rightarrow aSS \Rightarrow aaS \Rightarrow aaa$ - Second derivation: $S \Rightarrow SS \Rightarrow SSS \Rightarrow aSS \Rightarrow aaS \Rightarrow aaa$ Actually, let me be more careful with parse trees rather than just derivations. For the string $aaa$: - Parse tree 1: $S \rightarrow SS$ where left $S \rightarrow a$ and right $S \rightarrow SS$ with left $S \rightarrow a$ and right $S \rightarrow a$ - Parse tree 2: $S \rightarrow SS$ where left $S \rightarrow SS$ with both $S \rightarrow a$, and right $S \rightarrow a$ These are different parse trees, so this grammar is ambiguous. **Option 2: $S \rightarrow Sa \mid Sb \mid \varepsilon$** This is a left-recursive grammar that generates strings like $\varepsilon, a, b, aa, ab, ba, bb, aaa, ...$ Let me check if any string has multiple parse trees. Consider the string $ab$: - We must start with $S \rightarrow Sb$ (to get the $b$ at the end) - Then we need $S \rightarrow Sa$ (to get the $a$) - Finally $S \rightarrow \varepsilon$ So the derivation is unique: $S \Rightarrow Sb \Rightarrow Sab \Rightarrow ab$ Processing the string from right to left uniquely determines the parse tree. The derivation follows a specific pattern that prevents multiple interpretations. **Option 3: $S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$** $T$ generates all non-empty strings over $\{a,b\}$. So $S$ generates all strings that can be split into two non-empty parts. By systematically applying the rules from right to left, we ensure a unique parse tree for each input string. However, the $aaa$ example reveals a critical flaw. Multiple parse trees emerge, showing the grammar's inherent ambiguity. The string can be split differently, creating distinct derivations. The conclusion is clear: this grammar is fundamentally ambiguous.
Answer
Looking at each grammar, I need to check if any string can be derived in multiple ways (has multiple parse trees). **Option 1: $S \rightarrow SS \mid a$** Consider the string $aaa$: - Parse tree 1: $S \rightarrow SS$ where left $S \rightarrow a$ and right $S \rightarrow SS$ (which gives $aa$) - Parse tree 2: $S \rightarrow SS$ where left $S \rightarrow SS$ (which gives $aa$) and right $S \rightarrow a$ These represent different ways to associate the concatenation: $(a)(aa)$ vs $(aa)(a)$. This grammar is ambiguous. ✓ **Option 2: $S \rightarrow Sa \mid Sb \mid \varepsilon$** This left-recursive grammar generates $\{a,b\}^*$. For any string, we must build it from right to left: - Start with $S \rightarrow \varepsilon$ - For each character from right to left, apply the corresponding rule For example, for $ab$: $S \Rightarrow Sb \Rightarrow Sab \Rightarrow ab$ There's only one way to derive any string because we must process characters in a specific order (right to left) with no choices. This grammar is unambiguous. ✗ **Option 3: $S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$** $T$ generates all non-empty strings over $\{a,b\}$, so $S$ generates concatenations of two non-empty strings. Consider the string $aaa$: - Parse tree 1: Left $T$ derives $a$, right $T$ derives $aa$ - Parse tree 2: Left $T$ derives $aa$, right $T$ derives $a$ The string can be split as $a \cdot aa$ or $aa \cdot a$, giving different parse trees. This grammar is ambiguous. ✓ <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Welche der folgenden kontextfreien Grammatiken sind mehrdeutig?
☒☐☒
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{a, b\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind Residualsprachen von $L((bba)^*b)$?
<options>
<option id="1">$\{b\}$</option>
<option id="2">$L(ba(bba)^*b | \varepsilon)$</option>
<option id="3">$\emptyset$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to find which languages are residual languages of $L((bba)^*b)$.
A residual language $w^{-1}L$ is defined as $\{v \mid wv \in L\}$ for some word $w$.
Let me first understand $L((bba)^*b)$. This language consists of:
- $b$ (when $(bba)^* = \varepsilon$)
- $bbab$ (when $(bba)^* = bba$)
- $bbabbab$ (when $(bba)^* = bbabba$)
- And so on...
These are all words of the form $(bba)^kb$ for $k \geq 0$.
To systematically find all residual languages, I'll consider what happens after reading different prefixes:
**For option 1: $\{b\}$**
If this were a residual language, we'd need some $w$ where $w^{-1}L = \{b\}$. This means $wb \in L$ and no other word $wv$ with $v \neq b$ is in $L$.
Testing various prefixes:
- If $w = bba$, then $bba^{-1}L$ includes $b$ (since $bbab \in L$) but also $bbab$ (since $bbabbab \in L$)
- For any prefix $w$, if $wb \in L$ and $wb = (bba)^mb$, then typically $w(bba)^nb$ will also be in $L$ for various $n$
I cannot find a prefix that gives exactly $\{b\}$.
**For option 2: $L(ba(bba)^*b | \varepsilon)$**
This is $\{\varepsilon, bab, babbab, babbabbab, ...\}$.
Let me check $b^{-1}L$:
- $b \cdot \varepsilon = b \in L$ ✓ (so $\varepsilon \in b^{-1}L$)
- $b \cdot bab = bbab \in L$ ✓ (so $bab \in b^{-1}L$)
- $b \cdot babbab = bbabbab \in L$ ✓ (so $babbab \in b^{-1}L$)
So $b^{-1}L = \{\varepsilon, bab, babbab, ...\} = L(ba(bba)^*b | \varepsilon)$ ✓
**For option 3: $\emptyset$**
This would be a residual language if there's a prefix $w$ such that no word starting with $w$ is in $L$.
Since all words in $L$ start with $b$:
- $a^{-1}L = \emptyset$ (no word in $L$ starts with $a$) ✓
<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L \subseteq \Sigma^*$ eine Sprache mit $LL = \Sigma^*$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist unendlich</option>
<option id="2">$\varepsilon \in L$</option>
<option id="3">$LLL = \Sigma^*$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to analyze what properties $L$ must have given that $LL = \Sigma^*$.
**Option 1: $L$ is infinite**
If $L$ were finite, then $LL$ would also be finite (the concatenation of two finite sets is finite). But $\Sigma^* = \{a,b\}^*$ is infinite, which contains all strings over $\{a,b\}$ including arbitrarily long ones. This is a contradiction.
Therefore, $L$ must be infinite. ✓
**Option 2: $\varepsilon \in L$**
Since $LL = \Sigma^*$ and $\varepsilon \in \Sigma^*$, we need $\varepsilon \in LL$.
For $\varepsilon$ to be in $LL$, there must exist $u, v \in L$ such that $uv = \varepsilon$.
Since the length of concatenation is additive: $|uv| = |u| + |v| = 0$
This implies $|u| = 0$ and $|v| = 0$, so $u = \varepsilon$ and $v = \varepsilon$.
Therefore, $\varepsilon \in L$. ✓
**Option 3: $LLL = \Sigma^*$**
We have $LLL = (LL)L = \Sigma^* L$.
Since we proved $\varepsilon \in L$:
- $\Sigma^* \subseteq \Sigma^* L$ (any word $w \in \Sigma^*$ can be written as $w \cdot \varepsilon$ with $\varepsilon \in L$)
- $\Sigma^* L \subseteq \Sigma^* \Sigma^* = \Sigma^*$ (since $L \subseteq \Sigma^*$)
Therefore, $\Sigma^* L = \Sigma^*$, which means $LLL = \Sigma^*$. ✓
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L \subseteq \Sigma^*$ regulär. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{u^R v \mid u, v \in L\}$</option>
<option id="2">$\{u^R u \mid u \in L\}$</option>
<option id="3">$\{uv \mid u, v \in L \land |u| = |v|\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine whether these constructions preserve regularity when $L$ is regular.
**Option 1: $\{u^R v \mid u, v \in L\}$**
This can be rewritten as $L^R \cdot L$ (the concatenation of the reversal of $L$ with $L$).
Since regular languages are closed under:
- Reversal: $L^R$ is regular when $L$ is regular
- Concatenation: $L^R \cdot L$ is regular when both $L^R$ and $L$ are regular
Therefore, this language is always regular when $L$ is regular. ✓
**Option 2: $\{u^R u \mid u \in L\}$**
Let me test with a specific regular language. Consider $L = a^*b^*$.
For any $u = a^i b^j \in L$:
- $u^R = b^j a^i$
- $u^R u = b^j a^{2i} b^j$
So $\{u^R u \mid u \in L\} = \{b^j a^{2i} b^j \mid i,j \geq 0\}$.
Using the pumping lemma: For the string $w = b^p a^{2p} b^p$ (where $p$ is the pumping length), we must have $w = xyz$ with $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, we have $y = b^k$ for some $k > 0$. But then $xy^0z = b^{p-k} a^{2p} b^p$ would need to match the pattern $b^j a^{2i} b^j$, requiring $p-k = p$, which is impossible since $k > 0$.
This language is not regular, so option 2 doesn't preserve regularity. ✗
**Option 3: $\{uv \mid u, v \in L \land |u| = |v|\}$**
Consider $L = a^* \cup b^*$ (regular).
The resulting language includes:
- $a^n a^n = a^{2n}$ (when both $u,v \in a^*$)
- $b^n b^n = b^{2n}$ (when both $u,v \in b^*$)
- $a^n b^n$ (when $u \in a^*$, $v \in b^*$)
- $b^n a^n$ (when $u \in b^*$, $v \in a^*$)
Since this includes $\{a^n b^n \mid n \geq 0\}$, which is the classic non-regular language, option 3 doesn't preserve regularity. ✗
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Welche der folgenden kontextfreien Grammatiken sind mehrdeutig?
<options>
<option id="1">$S \rightarrow SS \mid a$</option>
<option id="2">$S \rightarrow Sa \mid Sb \mid \varepsilon$</option>
<option id="3">$S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each grammar, I need to check if any string can be derived in multiple ways (has multiple parse trees).
**Option 1: $S \rightarrow SS \mid a$**
Consider the string $aaa$:
- Parse tree 1: $S \rightarrow SS$ where left $S \rightarrow a$ and right $S \rightarrow SS$ (which gives $aa$)
- Parse tree 2: $S \rightarrow SS$ where left $S \rightarrow SS$ (which gives $aa$) and right $S \rightarrow a$
These represent different ways to associate the concatenation: $(a)(aa)$ vs $(aa)(a)$.
This grammar is ambiguous. ✓
**Option 2: $S \rightarrow Sa \mid Sb \mid \varepsilon$**
This left-recursive grammar generates $\{a,b\}^*$.
For any string, we must build it from right to left:
- Start with $S \rightarrow \varepsilon$
- For each character from right to left, apply the corresponding rule
For example, for $ab$: $S \Rightarrow Sb \Rightarrow Sab \Rightarrow ab$
There's only one way to derive any string because we must process characters in a specific order (right to left) with no choices.
This grammar is unambiguous. ✗
**Option 3: $S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$**
$T$ generates all non-empty strings over $\{a,b\}$, so $S$ generates concatenations of two non-empty strings.
Consider the string $aaa$:
- Parse tree 1: Left $T$ derives $a$, right $T$ derives $aa$
- Parse tree 2: Left $T$ derives $aa$, right $T$ derives $a$
The string can be split as $a \cdot aa$ or $aa \cdot a$, giving different parse trees.
This grammar is ambiguous. ✓
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Sei $A \subseteq \Sigma^*$ regulär und $B \subseteq \Sigma^*$ kontextfrei. Welche der folgenden Sprachen sind kontextfrei?
<options>
<option id="1">$A \cup \overline{B}$</option>
<option id="2">$\overline{A} \cup B$</option>
<option id="3">$AB$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me analyze each option carefully. We have: - $A \subseteq \Sigma^*$ is regular - $B \subseteq \Sigma^*$ is context-free **Option 1: $A \cup \overline{B}$** $\overline{B}$ is the complement of a context-free language. Context-free languages are NOT closed under complement in general. So $\overline{B}$ might not be context-free. Even if we have $A$ regular (which is also context-free), the union $A \cup \overline{B}$ might not be context-free if $\overline{B}$ is not context-free. Let me think of a counterexample. Consider: - $A = \emptyset$ (regular) - $B = \{a^n b^n c^n \mid n \geq 0\}$ (not context-free, wait this is not context-free) Actually, let me be more careful. $B$ is context-free by assumption. Let's say $B = \{a^n b^n \mid n \geq 0\}$ (context-free). Then $\overline{B}$ consists of all strings that are not of the form $a^n b^n$. Is $\overline{B}$ context-free? Actually, for this specific example, I believe $\overline{B}$ is context-free because we can describe it as the union of: - Strings containing both $a$ and $b$ but not in the pattern $a^* b^*$ - Strings with more $a$'s than $b$'s when in pattern $a^* b^*$ - Strings with more $b$'s than $a$'s when in pattern $a^* b^*$ But wait, the complement of a context-free language is not necessarily context-free in general. I realize the key insight is that context-free languages are NOT closed under complement. $\overline{B}$ might not be context-free, which means $A \cup \overline{B}$ could fail to be context-free. **Option 2: $\overline{A} \cup B$** Since $A$ is regular, $\overline{A}$ is also regular. Regular languages are always context-free, so $\overline{A}$ is context-free. $B$ is context-free by assumption, and context-free languages are closed under union. **Option 3: $AB$** $A$ is regular and thus context-free. $B$ is context-free. Context-free languages are closed under concatenation, making $AB$ context-free. The solution shows Option 1 fails, while Options 2 and 3 are always context-free.
Answer
Looking at each option, I need to determine which constructions always produce context-free languages when $A$ is regular and $B$ is context-free. **Option 1: $A \cup \overline{B}$** The key issue here is $\overline{B}$, the complement of $B$. Context-free languages are NOT closed under complement. Since $B$ is context-free, $\overline{B}$ might not be context-free. Even though $A$ is regular (and thus context-free), the union $A \cup \overline{B}$ might not be context-free if $\overline{B}$ isn't context-free. This is not always context-free. ✗ **Option 2: $\overline{A} \cup B$** Let me analyze each component: - $A$ is regular - Regular languages ARE closed under complement, so $\overline{A}$ is regular - Every regular language is context-free, so $\overline{A}$ is context-free - $B$ is context-free by assumption - Context-free languages ARE closed under union Therefore, $\overline{A} \cup B$ is the union of two context-free languages, which is always context-free. ✓ **Option 3: $AB$** Analyzing the concatenation: - $A$ is regular, which means it's also context-free - $B$ is context-free by assumption - Context-free languages ARE closed under concatenation Therefore, $AB$ is the concatenation of two context-free languages, which is always context-free. ✓ <option id="1">0</option> <option id="2">1</option> <option id="3">1</option>
Sei regulär und kontextfrei. Welche der folgenden Sprachen sind kontextfrei?
☐☒☒
Subproblem f (2.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{a, b\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind Residualsprachen von $L((bba)^*b)$?
<options>
<option id="1">$\{b\}$</option>
<option id="2">$L(ba(bba)^*b | \varepsilon)$</option>
<option id="3">$\emptyset$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to find which languages are residual languages of $L((bba)^*b)$.
A residual language $w^{-1}L$ is defined as $\{v \mid wv \in L\}$ for some word $w$.
Let me first understand $L((bba)^*b)$. This language consists of:
- $b$ (when $(bba)^* = \varepsilon$)
- $bbab$ (when $(bba)^* = bba$)
- $bbabbab$ (when $(bba)^* = bbabba$)
- And so on...
These are all words of the form $(bba)^kb$ for $k \geq 0$.
To systematically find all residual languages, I'll consider what happens after reading different prefixes:
**For option 1: $\{b\}$**
If this were a residual language, we'd need some $w$ where $w^{-1}L = \{b\}$. This means $wb \in L$ and no other word $wv$ with $v \neq b$ is in $L$.
Testing various prefixes:
- If $w = bba$, then $bba^{-1}L$ includes $b$ (since $bbab \in L$) but also $bbab$ (since $bbabbab \in L$)
- For any prefix $w$, if $wb \in L$ and $wb = (bba)^mb$, then typically $w(bba)^nb$ will also be in $L$ for various $n$
I cannot find a prefix that gives exactly $\{b\}$.
**For option 2: $L(ba(bba)^*b | \varepsilon)$**
This is $\{\varepsilon, bab, babbab, babbabbab, ...\}$.
Let me check $b^{-1}L$:
- $b \cdot \varepsilon = b \in L$ ✓ (so $\varepsilon \in b^{-1}L$)
- $b \cdot bab = bbab \in L$ ✓ (so $bab \in b^{-1}L$)
- $b \cdot babbab = bbabbab \in L$ ✓ (so $babbab \in b^{-1}L$)
So $b^{-1}L = \{\varepsilon, bab, babbab, ...\} = L(ba(bba)^*b | \varepsilon)$ ✓
**For option 3: $\emptyset$**
This would be a residual language if there's a prefix $w$ such that no word starting with $w$ is in $L$.
Since all words in $L$ start with $b$:
- $a^{-1}L = \emptyset$ (no word in $L$ starts with $a$) ✓
<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L \subseteq \Sigma^*$ eine Sprache mit $LL = \Sigma^*$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist unendlich</option>
<option id="2">$\varepsilon \in L$</option>
<option id="3">$LLL = \Sigma^*$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to analyze what properties $L$ must have given that $LL = \Sigma^*$.
**Option 1: $L$ is infinite**
If $L$ were finite, then $LL$ would also be finite (the concatenation of two finite sets is finite). But $\Sigma^* = \{a,b\}^*$ is infinite, which contains all strings over $\{a,b\}$ including arbitrarily long ones. This is a contradiction.
Therefore, $L$ must be infinite. ✓
**Option 2: $\varepsilon \in L$**
Since $LL = \Sigma^*$ and $\varepsilon \in \Sigma^*$, we need $\varepsilon \in LL$.
For $\varepsilon$ to be in $LL$, there must exist $u, v \in L$ such that $uv = \varepsilon$.
Since the length of concatenation is additive: $|uv| = |u| + |v| = 0$
This implies $|u| = 0$ and $|v| = 0$, so $u = \varepsilon$ and $v = \varepsilon$.
Therefore, $\varepsilon \in L$. ✓
**Option 3: $LLL = \Sigma^*$**
We have $LLL = (LL)L = \Sigma^* L$.
Since we proved $\varepsilon \in L$:
- $\Sigma^* \subseteq \Sigma^* L$ (any word $w \in \Sigma^*$ can be written as $w \cdot \varepsilon$ with $\varepsilon \in L$)
- $\Sigma^* L \subseteq \Sigma^* \Sigma^* = \Sigma^*$ (since $L \subseteq \Sigma^*$)
Therefore, $\Sigma^* L = \Sigma^*$, which means $LLL = \Sigma^*$. ✓
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L \subseteq \Sigma^*$ regulär. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{u^R v \mid u, v \in L\}$</option>
<option id="2">$\{u^R u \mid u \in L\}$</option>
<option id="3">$\{uv \mid u, v \in L \land |u| = |v|\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine whether these constructions preserve regularity when $L$ is regular.
**Option 1: $\{u^R v \mid u, v \in L\}$**
This can be rewritten as $L^R \cdot L$ (the concatenation of the reversal of $L$ with $L$).
Since regular languages are closed under:
- Reversal: $L^R$ is regular when $L$ is regular
- Concatenation: $L^R \cdot L$ is regular when both $L^R$ and $L$ are regular
Therefore, this language is always regular when $L$ is regular. ✓
**Option 2: $\{u^R u \mid u \in L\}$**
Let me test with a specific regular language. Consider $L = a^*b^*$.
For any $u = a^i b^j \in L$:
- $u^R = b^j a^i$
- $u^R u = b^j a^{2i} b^j$
So $\{u^R u \mid u \in L\} = \{b^j a^{2i} b^j \mid i,j \geq 0\}$.
Using the pumping lemma: For the string $w = b^p a^{2p} b^p$ (where $p$ is the pumping length), we must have $w = xyz$ with $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, we have $y = b^k$ for some $k > 0$. But then $xy^0z = b^{p-k} a^{2p} b^p$ would need to match the pattern $b^j a^{2i} b^j$, requiring $p-k = p$, which is impossible since $k > 0$.
This language is not regular, so option 2 doesn't preserve regularity. ✗
**Option 3: $\{uv \mid u, v \in L \land |u| = |v|\}$**
Consider $L = a^* \cup b^*$ (regular).
The resulting language includes:
- $a^n a^n = a^{2n}$ (when both $u,v \in a^*$)
- $b^n b^n = b^{2n}$ (when both $u,v \in b^*$)
- $a^n b^n$ (when $u \in a^*$, $v \in b^*$)
- $b^n a^n$ (when $u \in b^*$, $v \in a^*$)
Since this includes $\{a^n b^n \mid n \geq 0\}$, which is the classic non-regular language, option 3 doesn't preserve regularity. ✗
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Welche der folgenden kontextfreien Grammatiken sind mehrdeutig?
<options>
<option id="1">$S \rightarrow SS \mid a$</option>
<option id="2">$S \rightarrow Sa \mid Sb \mid \varepsilon$</option>
<option id="3">$S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each grammar, I need to check if any string can be derived in multiple ways (has multiple parse trees).
**Option 1: $S \rightarrow SS \mid a$**
Consider the string $aaa$:
- Parse tree 1: $S \rightarrow SS$ where left $S \rightarrow a$ and right $S \rightarrow SS$ (which gives $aa$)
- Parse tree 2: $S \rightarrow SS$ where left $S \rightarrow SS$ (which gives $aa$) and right $S \rightarrow a$
These represent different ways to associate the concatenation: $(a)(aa)$ vs $(aa)(a)$.
This grammar is ambiguous. ✓
**Option 2: $S \rightarrow Sa \mid Sb \mid \varepsilon$**
This left-recursive grammar generates $\{a,b\}^*$.
For any string, we must build it from right to left:
- Start with $S \rightarrow \varepsilon$
- For each character from right to left, apply the corresponding rule
For example, for $ab$: $S \Rightarrow Sb \Rightarrow Sab \Rightarrow ab$
There's only one way to derive any string because we must process characters in a specific order (right to left) with no choices.
This grammar is unambiguous. ✗
**Option 3: $S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$**
$T$ generates all non-empty strings over $\{a,b\}$, so $S$ generates concatenations of two non-empty strings.
Consider the string $aaa$:
- Parse tree 1: Left $T$ derives $a$, right $T$ derives $aa$
- Parse tree 2: Left $T$ derives $aa$, right $T$ derives $a$
The string can be split as $a \cdot aa$ or $aa \cdot a$, giving different parse trees.
This grammar is ambiguous. ✓
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Sei $A \subseteq \Sigma^*$ regulär und $B \subseteq \Sigma^*$ kontextfrei. Welche der folgenden Sprachen sind kontextfrei?
<options>
<option id="1">$A \cup \overline{B}$</option>
<option id="2">$\overline{A} \cup B$</option>
<option id="3">$AB$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine which constructions always produce context-free languages when $A$ is regular and $B$ is context-free.
**Option 1: $A \cup \overline{B}$**
The key issue here is $\overline{B}$, the complement of $B$.
Context-free languages are NOT closed under complement. Since $B$ is context-free, $\overline{B}$ might not be context-free. Even though $A$ is regular (and thus context-free), the union $A \cup \overline{B}$ might not be context-free if $\overline{B}$ isn't context-free.
This is not always context-free. ✗
**Option 2: $\overline{A} \cup B$**
Let me analyze each component:
- $A$ is regular
- Regular languages ARE closed under complement, so $\overline{A}$ is regular
- Every regular language is context-free, so $\overline{A}$ is context-free
- $B$ is context-free by assumption
- Context-free languages ARE closed under union
Therefore, $\overline{A} \cup B$ is the union of two context-free languages, which is always context-free. ✓
**Option 3: $AB$**
Analyzing the concatenation:
- $A$ is regular, which means it's also context-free
- $B$ is context-free by assumption
- Context-free languages ARE closed under concatenation
Therefore, $AB$ is the concatenation of two context-free languages, which is always context-free. ✓
<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem f (3.0 points)
Geben Sie reguläre Ausdrücke $X$, $Y$, $Z$ über $\Sigma$ an, sodass die folgenden Gleichungen erfüllt sind.
$X \equiv a^*b^*aX \mid ab$
$Y \equiv (b\mid a)a^*Y \mid bbY \mid \epsilon$
$Z \equiv a^*(a \mid b)Z$
<answer-template id="1">
$X=?$
$Y=?$
$Z=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me solve each equation using Arden's lemma and algebraic manipulation. **For X:** $X \equiv a^*b^*aX \mid ab$ This is of the form $X = RX | S$ where $R = a^*b^*a$ and $S = ab$. By Arden's lemma, if $\varepsilon \notin R$, then $X = SR^*$. Since $R = a^*b^*a$ requires at least one 'a' at the end, $\varepsilon \notin R$. Therefore: $X = ab(a^*b^*a)^*$ **For Y:** $Y \equiv (b\mid a)a^*Y \mid bbY \mid \epsilon$ This can be rewritten as: $Y = ((b|a)a^* | bb)Y | \varepsilon$ Let $R = (b|a)a^* | bb$. Since $\varepsilon \notin R$ (both $(b|a)a^*$ and $bb$ require at least one character), we can apply Arden's lemma: $Y = \varepsilon \cdot R^* = R^* = ((b|a)a^* | bb)^*$ Actually, let me reconsider. $(b|a)a^*$ generates strings starting with either $b$ or $a$ followed by zero or more $a$'s. So it generates $\{b, ba, baa, ..., a, aa, aaa, ...\}$. And $bb$ is just the string $bb$. So $R = (b|a)a^* | bb$ generates all strings from $(b|a)a^*$ plus the string $bb$. Therefore $Y = ((b|a)a^* | bb)^*$. Let me simplify this further. $(b|a)a^* = ba^* | aa^* = ba^* | a^+$. $Y = (ba^* | a^+ | bb)^*$ **For Z:** $Z \equiv a^*(a \mid b)Z$ This represents strings that can be formed by repeatedly prepending sequences from $a^*(a|b)$. The pattern allows prepending $a$ or $b$ to existing strings, always starting with zero or more $a$'s. This means $Z$ includes all strings where each character can be either $a$ or $b$, but always preceded by $a^*$. Essentially, $Z$ generates strings with an optional initial sequence of $a$'s, followed by any combination of $a$'s and $b$'s. The recursive equation $Z \equiv a^*(a|b)Z$ leads to a critical insight about string generation. Infinite recursive expansion reveals no valid finite strings can satisfy this constraint. Consequently, the only possible solution is the empty set $Z = \emptyset$, representing no possible strings matching the recursive definition.
Answer
Looking at each equation, I'll solve them using Arden's lemma and algebraic manipulation. **For X:** $X \equiv a^*b^*aX \mid ab$ This has the form $X = RX | S$ where $R = a^*b^*a$ and $S = ab$. Since $R = a^*b^*a$ requires at least one 'a' at the end, $\varepsilon \notin R$. By Arden's lemma: $X = SR^* = ab(a^*b^*a)^*$ **For Y:** $Y \equiv (b\mid a)a^*Y \mid bbY \mid \epsilon$ Rewriting: $Y = ((b|a)a^* | bb)Y | \varepsilon$ Let $R = (b|a)a^* | bb$. Since $\varepsilon \notin R$, by Arden's lemma: $Y = \varepsilon \cdot R^* = ((b|a)a^* | bb)^*$ **For Z:** $Z \equiv a^*(a \mid b)Z$ This equation has the form $Z = RZ$ with $R = a^*(a|b)$ and no base case. Since $R$ always produces at least one character and there's no non-recursive alternative, any string in $Z$ would require infinite prepending, which is impossible in $\Sigma^*$. Therefore, $Z = \emptyset$. <answer id="1"> $X=ab(a^*b^*a)^*$ $Y=((b|a)a^* | bb)^*$ $Z=\emptyset$ </answer>
Geben Sie reguläre Ausdrücke , , über an, sodass die folgenden Gleichungen erfüllt sind.
0: wrong language: contains aba
Subproblem g (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Reguläre und kontextfreie Sprachen
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{a, b\}$.
## subproblem a (2.0 points)
Welche der folgenden Sprachen sind Residualsprachen von $L((bba)^*b)$?
<options>
<option id="1">$\{b\}$</option>
<option id="2">$L(ba(bba)^*b | \varepsilon)$</option>
<option id="3">$\emptyset$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to find which languages are residual languages of $L((bba)^*b)$.
A residual language $w^{-1}L$ is defined as $\{v \mid wv \in L\}$ for some word $w$.
Let me first understand $L((bba)^*b)$. This language consists of:
- $b$ (when $(bba)^* = \varepsilon$)
- $bbab$ (when $(bba)^* = bba$)
- $bbabbab$ (when $(bba)^* = bbabba$)
- And so on...
These are all words of the form $(bba)^kb$ for $k \geq 0$.
To systematically find all residual languages, I'll consider what happens after reading different prefixes:
**For option 1: $\{b\}$**
If this were a residual language, we'd need some $w$ where $w^{-1}L = \{b\}$. This means $wb \in L$ and no other word $wv$ with $v \neq b$ is in $L$.
Testing various prefixes:
- If $w = bba$, then $bba^{-1}L$ includes $b$ (since $bbab \in L$) but also $bbab$ (since $bbabbab \in L$)
- For any prefix $w$, if $wb \in L$ and $wb = (bba)^mb$, then typically $w(bba)^nb$ will also be in $L$ for various $n$
I cannot find a prefix that gives exactly $\{b\}$.
**For option 2: $L(ba(bba)^*b | \varepsilon)$**
This is $\{\varepsilon, bab, babbab, babbabbab, ...\}$.
Let me check $b^{-1}L$:
- $b \cdot \varepsilon = b \in L$ ✓ (so $\varepsilon \in b^{-1}L$)
- $b \cdot bab = bbab \in L$ ✓ (so $bab \in b^{-1}L$)
- $b \cdot babbab = bbabbab \in L$ ✓ (so $babbab \in b^{-1}L$)
So $b^{-1}L = \{\varepsilon, bab, babbab, ...\} = L(ba(bba)^*b | \varepsilon)$ ✓
**For option 3: $\emptyset$**
This would be a residual language if there's a prefix $w$ such that no word starting with $w$ is in $L$.
Since all words in $L$ start with $b$:
- $a^{-1}L = \emptyset$ (no word in $L$ starts with $a$) ✓
<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Sei $L \subseteq \Sigma^*$ eine Sprache mit $LL = \Sigma^*$. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist unendlich</option>
<option id="2">$\varepsilon \in L$</option>
<option id="3">$LLL = \Sigma^*$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at this problem, I need to analyze what properties $L$ must have given that $LL = \Sigma^*$.
**Option 1: $L$ is infinite**
If $L$ were finite, then $LL$ would also be finite (the concatenation of two finite sets is finite). But $\Sigma^* = \{a,b\}^*$ is infinite, which contains all strings over $\{a,b\}$ including arbitrarily long ones. This is a contradiction.
Therefore, $L$ must be infinite. ✓
**Option 2: $\varepsilon \in L$**
Since $LL = \Sigma^*$ and $\varepsilon \in \Sigma^*$, we need $\varepsilon \in LL$.
For $\varepsilon$ to be in $LL$, there must exist $u, v \in L$ such that $uv = \varepsilon$.
Since the length of concatenation is additive: $|uv| = |u| + |v| = 0$
This implies $|u| = 0$ and $|v| = 0$, so $u = \varepsilon$ and $v = \varepsilon$.
Therefore, $\varepsilon \in L$. ✓
**Option 3: $LLL = \Sigma^*$**
We have $LLL = (LL)L = \Sigma^* L$.
Since we proved $\varepsilon \in L$:
- $\Sigma^* \subseteq \Sigma^* L$ (any word $w \in \Sigma^*$ can be written as $w \cdot \varepsilon$ with $\varepsilon \in L$)
- $\Sigma^* L \subseteq \Sigma^* \Sigma^* = \Sigma^*$ (since $L \subseteq \Sigma^*$)
Therefore, $\Sigma^* L = \Sigma^*$, which means $LLL = \Sigma^*$. ✓
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L \subseteq \Sigma^*$ regulär. Welche der folgenden Sprachen sind regulär?
<options>
<option id="1">$\{u^R v \mid u, v \in L\}$</option>
<option id="2">$\{u^R u \mid u \in L\}$</option>
<option id="3">$\{uv \mid u, v \in L \land |u| = |v|\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine whether these constructions preserve regularity when $L$ is regular.
**Option 1: $\{u^R v \mid u, v \in L\}$**
This can be rewritten as $L^R \cdot L$ (the concatenation of the reversal of $L$ with $L$).
Since regular languages are closed under:
- Reversal: $L^R$ is regular when $L$ is regular
- Concatenation: $L^R \cdot L$ is regular when both $L^R$ and $L$ are regular
Therefore, this language is always regular when $L$ is regular. ✓
**Option 2: $\{u^R u \mid u \in L\}$**
Let me test with a specific regular language. Consider $L = a^*b^*$.
For any $u = a^i b^j \in L$:
- $u^R = b^j a^i$
- $u^R u = b^j a^{2i} b^j$
So $\{u^R u \mid u \in L\} = \{b^j a^{2i} b^j \mid i,j \geq 0\}$.
Using the pumping lemma: For the string $w = b^p a^{2p} b^p$ (where $p$ is the pumping length), we must have $w = xyz$ with $|xy| \leq p$ and $|y| > 0$. Since $|xy| \leq p$, we have $y = b^k$ for some $k > 0$. But then $xy^0z = b^{p-k} a^{2p} b^p$ would need to match the pattern $b^j a^{2i} b^j$, requiring $p-k = p$, which is impossible since $k > 0$.
This language is not regular, so option 2 doesn't preserve regularity. ✗
**Option 3: $\{uv \mid u, v \in L \land |u| = |v|\}$**
Consider $L = a^* \cup b^*$ (regular).
The resulting language includes:
- $a^n a^n = a^{2n}$ (when both $u,v \in a^*$)
- $b^n b^n = b^{2n}$ (when both $u,v \in b^*$)
- $a^n b^n$ (when $u \in a^*$, $v \in b^*$)
- $b^n a^n$ (when $u \in b^*$, $v \in a^*$)
Since this includes $\{a^n b^n \mid n \geq 0\}$, which is the classic non-regular language, option 3 doesn't preserve regularity. ✗
<option id="1">1</option>
<option id="2">0</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Welche der folgenden kontextfreien Grammatiken sind mehrdeutig?
<options>
<option id="1">$S \rightarrow SS \mid a$</option>
<option id="2">$S \rightarrow Sa \mid Sb \mid \varepsilon$</option>
<option id="3">$S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each grammar, I need to check if any string can be derived in multiple ways (has multiple parse trees).
**Option 1: $S \rightarrow SS \mid a$**
Consider the string $aaa$:
- Parse tree 1: $S \rightarrow SS$ where left $S \rightarrow a$ and right $S \rightarrow SS$ (which gives $aa$)
- Parse tree 2: $S \rightarrow SS$ where left $S \rightarrow SS$ (which gives $aa$) and right $S \rightarrow a$
These represent different ways to associate the concatenation: $(a)(aa)$ vs $(aa)(a)$.
This grammar is ambiguous. ✓
**Option 2: $S \rightarrow Sa \mid Sb \mid \varepsilon$**
This left-recursive grammar generates $\{a,b\}^*$.
For any string, we must build it from right to left:
- Start with $S \rightarrow \varepsilon$
- For each character from right to left, apply the corresponding rule
For example, for $ab$: $S \Rightarrow Sb \Rightarrow Sab \Rightarrow ab$
There's only one way to derive any string because we must process characters in a specific order (right to left) with no choices.
This grammar is unambiguous. ✗
**Option 3: $S \rightarrow TT\quad T \rightarrow aT \mid bT \mid a \mid b$**
$T$ generates all non-empty strings over $\{a,b\}$, so $S$ generates concatenations of two non-empty strings.
Consider the string $aaa$:
- Parse tree 1: Left $T$ derives $a$, right $T$ derives $aa$
- Parse tree 2: Left $T$ derives $aa$, right $T$ derives $a$
The string can be split as $a \cdot aa$ or $aa \cdot a$, giving different parse trees.
This grammar is ambiguous. ✓
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem e (2.0 points)
Sei $A \subseteq \Sigma^*$ regulär und $B \subseteq \Sigma^*$ kontextfrei. Welche der folgenden Sprachen sind kontextfrei?
<options>
<option id="1">$A \cup \overline{B}$</option>
<option id="2">$\overline{A} \cup B$</option>
<option id="3">$AB$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each option, I need to determine which constructions always produce context-free languages when $A$ is regular and $B$ is context-free.
**Option 1: $A \cup \overline{B}$**
The key issue here is $\overline{B}$, the complement of $B$.
Context-free languages are NOT closed under complement. Since $B$ is context-free, $\overline{B}$ might not be context-free. Even though $A$ is regular (and thus context-free), the union $A \cup \overline{B}$ might not be context-free if $\overline{B}$ isn't context-free.
This is not always context-free. ✗
**Option 2: $\overline{A} \cup B$**
Let me analyze each component:
- $A$ is regular
- Regular languages ARE closed under complement, so $\overline{A}$ is regular
- Every regular language is context-free, so $\overline{A}$ is context-free
- $B$ is context-free by assumption
- Context-free languages ARE closed under union
Therefore, $\overline{A} \cup B$ is the union of two context-free languages, which is always context-free. ✓
**Option 3: $AB$**
Analyzing the concatenation:
- $A$ is regular, which means it's also context-free
- $B$ is context-free by assumption
- Context-free languages ARE closed under concatenation
Therefore, $AB$ is the concatenation of two context-free languages, which is always context-free. ✓
<option id="1">0</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem f (3.0 points)
Geben Sie reguläre Ausdrücke $X$, $Y$, $Z$ über $\Sigma$ an, sodass die folgenden Gleichungen erfüllt sind.
$X \equiv a^*b^*aX \mid ab$
$Y \equiv (b\mid a)a^*Y \mid bbY \mid \epsilon$
$Z \equiv a^*(a \mid b)Z$
<answer-template id="1">
$X=?$
$Y=?$
$Z=?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at each equation, I'll solve them using Arden's lemma and algebraic manipulation.
**For X:**
$X \equiv a^*b^*aX \mid ab$
This has the form $X = RX | S$ where $R = a^*b^*a$ and $S = ab$.
Since $R = a^*b^*a$ requires at least one 'a' at the end, $\varepsilon \notin R$.
By Arden's lemma: $X = SR^* = ab(a^*b^*a)^*$
**For Y:**
$Y \equiv (b\mid a)a^*Y \mid bbY \mid \epsilon$
Rewriting: $Y = ((b|a)a^* | bb)Y | \varepsilon$
Let $R = (b|a)a^* | bb$. Since $\varepsilon \notin R$, by Arden's lemma:
$Y = \varepsilon \cdot R^* = ((b|a)a^* | bb)^*$
**For Z:**
$Z \equiv a^*(a \mid b)Z$
This equation has the form $Z = RZ$ with $R = a^*(a|b)$ and no base case.
Since $R$ always produces at least one character and there's no non-recursive alternative, any string in $Z$ would require infinite prepending, which is impossible in $\Sigma^*$.
Therefore, $Z = \emptyset$.
<answer id="1">
$X=ab(a^*b^*a)^*$
$Y=((b|a)a^* | bb)^*$
$Z=\emptyset$
</answer>
user:
## subproblem g (3.0 points)
Ein NFA $(Q,\Sigma,\delta,q_0,F)$ heißt *reversibel*, falls für alle Zustände $q_1, q_2 \in Q$ und für alle Zeichen $x \in \Sigma$ gilt: Falls $q_2 \in \delta(q_1,x)$, so $q_1 \in \delta(q_2,x)$. Mit anderen Worten: Falls man von $q_1$ mit $x$ in $q_2$ übergehen kann, so kann man auch von $q_2$ mit $x$ in $q_1$ übergehen.
Gibt es einen reversiblen NFA $N$ über $\Sigma$ mit $L(N) = L((aa)^*(bb)^*)$? Falls ja, geben Sie einen solchen NFA an; falls nein, beweisen Sie es.
<options>
<option id="1">Wahr, reversibler NFA</option>
<option id="2">Falsch, Beweis</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let me think about this problem. We need to determine if there exists a reversible NFA for the language $L((aa)^*(bb)^*)$. First, let me understand what the language $L((aa)^*(bb)^*)$ contains: - It consists of all strings of the form: even number of a's followed by even number of b's - Examples: $\varepsilon$, $aa$, $bb$, $aabb$, $aaaa$, $bbbb$, $aaaabb$, $aabbbb$, etc. Now, what does it mean for an NFA to be reversible? - If there's a transition from $q_1$ to $q_2$ on character $x$, then there must also be a transition from $q_2$ to $q_1$ on the same character $x$. - This means the transition graph is symmetric with respect to each character. Let me try to construct a reversible NFA for this language. Actually, let me think about this more carefully. A reversible NFA has a very specific structure - for each character, the transition graph forms an undirected graph (since if there's an edge from $q_1$ to $q_2$ labeled $x$, there must be an edge from $q_2$ to $q_1$ labeled $x$). Let me try to build one: - We need to accept strings in $(aa)^*(bb)^*$ - The NFA needs to track whether we've seen an even or odd number of a's, and then whether we've seen an even or odd number of b's Let me try a simple approach: - State $q_0$: initial state (even number of a's, no b's yet) - State $q_1$: odd number of a's - State $q_2$: even number of a's, odd number of b's - State $q_3$: even number of a's, even number of b's The symmetry requirement creates a fundamental contradiction. In this language, the transition between a's and b's must be unidirectional - once we start reading b's, we can't go back to reading a's. However, a reversible NFA demands bidirectional transitions for each character, which breaks the language's strict structure. This means a reversible NFA cannot exist for this specific language. The one-way nature of the state transitions prevents creating a symmetric transition graph that still accepts the language. I see the bidirectional transition rule for the NFA. Each character transition must work both ways between states, ensuring symmetrical movement. This means for every state transition on a specific character, the reverse transition must also exist. I'm developing a state machine with specific constraints about tracking a's and b's. The states represent different configurations of character counts, creating a precise tracking mechanism for string validation. The state transitions will carefully map out how characters can move between states, maintaining strict rules about character order and count. I realize the challenge involves understanding state transitions for a reversible NFA accepting $(aa)^*(bb)^*$. The key constraint is maintaining an undirected transition graph while enforcing strict language rules about a's and b's. From $q_1$, the odd number of a's creates a fundamental problem for state transitions. This suggests the NFA design requires careful state management to prevent mixing a and b sequences. The language demands strict separation between a and b sequences, which conflicts with the reversibility requirement of symmetric state transitions. In a reversible NFA, the path can be traced backwards using the same transitions. For the string $bb$, we can move from an accepting state $p_2$ back to the initial state $q_0$ through intermediate states $p_1$ using $b$ transitions. Similarly, for $aa$, we can trace a path from an accepting state $r_2$ back to $q_0$ through $r_1$ using $a$ transitions, demonstrating the bidirectional nature of state movements. The challenge emerges when considering $aabb$, where we need to ensure both $r_2$ and $s_2$ are accepting states while maintaining reversible transitions between $r_2$ and $s_1$. The interconnected state relationships reveal complex constraints on the NFA's structure. By tracing the path through $a$ and $b$ transitions, we discover a critical cycle between $r_2$ and $s_1$ that suggests intricate state connectivity requirements for accepting the string. To explore this systematically, I'll construct a specific reversible NFA with carefully defined states and transitions that capture the complex state interactions. The goal is to understand how reversible state transitions can create unique acceptance patterns. The new NFA design introduces multiple states with strategic reversible connections, allowing exploration of how character transitions enable movement between states while maintaining the reversibility constraint. I recognize a key challenge: ensuring that state transitions maintain bidirectional consistency, particularly when multiple potential destination states exist for a single character transition. The language's structure demands precise state management, where transitions between a and b sequences must be carefully controlled. Symmetry requirements for reversible NFAs create complex constraints that might fundamentally prevent representing this specific language pattern. The critical test case of $aabb$ versus $abba$ reveals the intricate state transition rules needed to distinguish valid and invalid sequences. I'll continue the thought about the string $abba$ and explore the transitions systematically. The reversibility constraints suggest we need to carefully map out possible state transitions, particularly for the character $b$ from state $q_1$. The minimal DFA tracking $aa^*(bb)^*$ reveals a complex state tracking mechanism involving the count of $a$'s and $b$'s. This requires a careful examination of how states connect and what constraints exist for reversible transitions. The key challenge is determining valid transitions that maintain both the language's structure and the reversibility property. We'll need to investigate each potential state change methodically. The reversibility constraint creates a fundamental challenge for accepting $(aa)^*(bb)^*$ strings. The key problem emerges when attempting to construct paths that preserve the language's strict character sequence requirements while maintaining bidirectional transition capabilities. The proposed approach reveals a critical tension between the reversible NFA's structural constraints and the language's specific pattern demands. Each potential transition must be carefully examined to ensure it doesn't inadvertently introduce invalid string sequences. The initial strategy of exploring reversible state transitions highlights the complexity of designing an automaton that can precisely capture the language's unique characteristics. The state transitions reveal a nuanced pattern of accepting states and movement between $q_0$, $q_a$, and $q_{aa}$ when processing a's. The reversibility constraint ensures symmetric state transitions, allowing movement between states while maintaining the even/odd count of characters. The key observation is the flexibility in state transitions, particularly for $\delta(q_a, a)$, which can lead to multiple possible states. For the $aabb$ sequence, we need a strategic path through states that allows transitioning through $q_{aa}$ and $q_b$ while maintaining the ability to reach an accepting configuration. By introducing multiple transition possibilities from $q_b$, including $q_0$, $q_{aa}$, and $q_{bb}$, we create a flexible mechanism for state traversal that preserves the reversibility constraint. The approach involves carefully designing state transitions to accommodate different string scenarios while ensuring acceptance of specific input sequences. Tracing through example strings reveals promising patterns: $\varepsilon$, $aa$, $bb$, and $aabb$ are successfully processed, reaching accepting states through well-defined transitions. The current challenge involves handling mixed character sequences like $ab$, where transition rules remain undefined. The core language constraint requires an even count of $a$'s preceding an even count of $b$'s, with a strict rule preventing $a$'s after $b$'s. This structural requirement complicates reversible NFA design. The fundamental question emerges: can a reversible NFA authentically represent this regular language? Examining string paths reveals critical symmetry challenges. Paths for $aa$, $bb$, and $aabb$ create complex transition constraints that seem to violate reversibility principles. The fundamental problem emerges from an inherent directional requirement where $a$'s must precede $b$'s, which conflicts with the symmetric nature of reversible NFAs. This asymmetry suggests fundamental incompatibility with the reversible NFA structure. A contradiction appears imminent when attempting to construct a reversible NFA for this language, with transition paths revealing fundamental structural limitations. I'm exploring a new construction for a reversible NFA that tracks state parity. The states represent different parities of $a$ and $b$ transitions, with careful reversible transitions between them. The goal is to design a machine that can recognize a specific language pattern while maintaining reversibility constraints. The construction involves creating states that track the count of symbol transitions, ensuring each state can be uniquely reached and departed. I'll define transitions that allow precise tracking of symbol occurrences while preserving the reversibility property. I trace the state transitions, noting the paths through $q_2$ and $q_3$ are accepting. The $aabb$ and $bb$ sequences reach accepting states. However, the $aaba$ sequence reveals an undefined transition from $q_2$ when encountering the symbol $a$. This undefined transition creates an ambiguity in the state machine's behavior, potentially preventing a complete characterization of the automaton's accepted language. The $baa$ and $aba$ sequences similarly expose undefined transitions at critical points. By strategically leaving certain state transitions undefined, the NFA can systematically reject specific input sequences, effectively constraining the accepted language through intentional transition gaps. The state transition rules require careful balancing between reversibility and acceptance conditions, particularly when defining $\delta(q_1, a)$ to simultaneously satisfy multiple constraints. By considering the possible paths for $aa$ and $aaaa$, we can see the transitions must allow reaching both $q_0$ and $q_3$ from $q_1$ on symbol $a$, ensuring the NFA can explore multiple accepting configurations. The key challenge is constructing transition rules that maintain the desired non-deterministic behavior while preserving the fundamental acceptance criteria. I see a potential problem with the NFA's state transitions. The complexity increases when examining multiple $a$ sequences, and the state $q_3$ seems to have ambiguous transitions that could break the intended $(aa)^*(bb)^*$ pattern. The non-deterministic nature of the transitions makes it challenging to guarantee the exact language acceptance. The multiple paths through $q_0$ and $q_1$ create uncertainty about whether the automaton strictly follows the desired language constraints. Specifically, the ability to move between states with both $a$ and $b$ transitions complicates the precise characterization of accepted strings. I see the challenge with defining state transitions that correctly capture the $(aa)^*(bb)^*$ language. The goal is to ensure we can read consecutive $a$'s, then consecutive $b$'s, without mixing them. By leaving some transitions undefined, we're actually creating a precise mechanism to reject invalid strings like $aabaa$. This approach strategically prevents transitioning between $a$ and $b$ sections of the string, which matches the language's constraints. The state machine needs careful design to enforce these language rules, particularly around how transitions between states handle different symbol sequences. I'll check if the NFA accepts $(aa)^*(bb)^*$ by tracing some paths: The empty string is accepted at $q_0$. Sequences of $a$'s can alternate between $q_1$ and $q_3$ states, which works for the $(aa)^*$ part. I'll continue exploring the $bb$ transitions to see how the pattern completes. For the $bb$ sequence, I need to trace the remaining path from where the previous thinking left off. I'll complete the partial transition for $aaaabb$ and then summarize the string rejections: $aaaabb$: $q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{a} q_1 \xrightarrow{a} q_3 \xrightarrow{b} q_2 \xrightarrow{b} q_3$ (accepting). ✓ The automaton systematically rejects strings that don't follow the $(aa)^*(bb)^*$ pattern by blocking invalid transitions between states. Specific invalid sequences like $ab$ and $ba$ are immediately rejected due to undefined state transitions. I'm carefully tracing the NFA's behavior for different input sequences. The machine seems to have complex transitions when reading even and odd numbers of $a$'s from the initial state. I'll systematically explore the possible paths, focusing on how the states change and which are accepting. For even-length $a$ sequences starting from $q_0$, multiple accepting paths exist. The machine can transition through different states while maintaining acceptance. The key observation is the flexibility in reaching accepting states during these transitions. I notice an incomplete analysis for odd-length $a$ sequences, which requires further investigation to understand the machine's complete behavior. The pattern for $b$ sequences appears similar, with even-length inputs allowing multiple accepting paths and odd-length inputs leading to non-accepting states. For combined $a$ and $b$ sequences, the machine's behavior depends on the input's structure. Even numbers of $a$'s followed by even numbers of $b$'s result in acceptance, while any odd-length subsequence causes rejection. The state transitions reveal a systematic approach to handling different input combinations, ensuring precise language recognition through strategic state movements. Specific scenarios demonstrate the machine's rejection mechanisms for irregular input patterns. The problem emerges when $bbaa$ is incorrectly accepted, revealing a critical flaw in the state transition logic. Tracing the path shows multiple accepting states are reached despite the input violating the intended language constraints. This invalidates the current non-deterministic finite automaton design, exposing fundamental issues in state transitions and acceptance criteria. The challenge lies in constructing a reversible NFA for this language. The core difficulty stems from the asymmetric requirement that $a$'s must precede $b$'s. A reversible NFA's symmetric transition structure fundamentally conflicts with this unidirectional constraint. Examining key strings reveals the complexity. Each accepted string - $\varepsilon$, $aa$, $bb$, and $aabb$ - demands precise path tracking through the NFA's states. The reversibility requirement further complicates state transitions, making a definitive solution elusive. The potential paths through $q_0$ and subsequent states highlight the intricate navigation needed to maintain both language acceptance and reversibility constraints. If $r_2$ is accepting but has a path through $b$ states that returns to a state with $a$-transitions, the language acceptance becomes problematic. The fundamental issue emerges when the initial state $q_0$ remains reachable after reading $b$'s and retains $a$-transitions, potentially allowing $a$'s to appear after $b$'s. This challenges the goal of creating a deterministic finite automaton that strictly separates $a$ and $b$ sequences. The challenge requires finding a state configuration that prevents mixing $a$ and $b$ symbols while maintaining the desired language properties. A potential approach might involve carefully designing state transitions to enforce strict symbol separation. I'm carefully designing an NFA with states tracking $a$ and $b$ counts. The states will represent different parity scenarios: initial state, odd/even $a$ counts, and odd/even $b$ counts after $a$'s. Some states will be accepting to capture specific language conditions. The goal is a precise state machine capturing the desired pattern. The key challenge emerges when considering reversibility. Returning to the initial state during a valid path could inadvertently accept unintended strings, potentially breaking the language's strict $(aa)^*(bb)^*$ structure. By examining the transition from $s_1$ to $s_2$, the reversibility constraint creates a problematic scenario where multiple state transitions become possible, risking uncontrolled string acceptance. The key observation is that reading $bb$ allows returning to $q_0$, which then enables reading $aa$ and reaching an accepting state. This means strings like $bbaa$ would be incorrectly accepted, violating the language's intended structure. The proof demonstrates that no reversible NFA can correctly recognize $(aa)^*(bb)^*$, fundamentally challenging the construction of such an automaton. By assuming a reversible NFA exists, we can trace paths through $a$ and $b$ transitions that reveal an inherent contradiction in the language's recognition. The reversibility conditions create a complex state transition network where each state must allow backward transitions, exposing fundamental structural limitations in representing $(aa)^*(bb)^*$. These state transition properties demonstrate why such a language cannot be recognized by a reversible NFA, highlighting deep constraints in finite automata design. The specific path $q_0 \xrightarrow{b} r_1 \xrightarrow{b} q_0 \xrightarrow{a} p_1 \xrightarrow{a} p_2$ reveals a critical contradiction, proving the language's inherent complexity beyond simple reversible automata.
Answer
Looking at this problem, I need to determine whether a reversible NFA can recognize the language $L((aa)^*(bb)^*)$. Let me first understand what reversibility means: if there's a transition from state $q_1$ to $q_2$ on character $x$, then there must also be a transition from $q_2$ to $q_1$ on the same character $x$. This creates a symmetric transition relation for each character. The language $(aa)^*(bb)^*$ consists of an even number of $a$'s followed by an even number of $b$'s. The crucial property is that $b$'s must come after $a$'s - we cannot have $a$'s after any $b$'s. Let me prove that no reversible NFA exists for this language: **Proof by contradiction:** Assume there exists a reversible NFA $N = (Q, \Sigma, \delta, q_0, F)$ with $L(N) = (aa)^*(bb)^*$. Since $aa \in L(N)$, there exists an accepting path: $$q_0 \xrightarrow{a} p_1 \xrightarrow{a} p_2$$ where $p_2 \in F$. Since $bb \in L(N)$, there exists an accepting path: $$q_0 \xrightarrow{b} r_1 \xrightarrow{b} r_2$$ where $r_2 \in F$. By the reversibility property: - Since $p_1 \in \delta(q_0, a)$, we must have $q_0 \in \delta(p_1, a)$ - Since $r_1 \in \delta(q_0, b)$, we must have $q_0 \in \delta(r_1, b)$ - Since $r_2 \in \delta(r_1, b)$, we must have $r_1 \in \delta(r_2, b)$ This means $\delta(r_1, b) \supseteq \{q_0, r_2\}$. Now consider the path: $$q_0 \xrightarrow{b} r_1 \xrightarrow{b} q_0 \xrightarrow{a} p_1 \xrightarrow{a} p_2$$ This path corresponds to the string $bbaa$ and ends in the accepting state $p_2$. Therefore, $bbaa \in L(N)$. But $bbaa \notin (aa)^*(bb)^*$ since in the language $(aa)^*(bb)^*$, all $a$'s must precede all $b$'s. This is a contradiction. Therefore, no reversible NFA exists for $(aa)^*(bb)^*$. <option id="1">0</option> <option id="2">1</option> <answer id="3"> **Beweis:** Angenommen, es existiert ein reversibler NFA $N = (Q, \Sigma, \delta, q_0, F)$ mit $L(N) = (aa)^*(bb)^*$. Da $aa \in L(N)$, existiert ein akzeptierender Pfad $q_0 \xrightarrow{a} p_1 \xrightarrow{a} p_2$ mit $p_2 \in F$. Da $bb \in L(N)$, existiert ein akzeptierender Pfad $q_0 \xrightarrow{b} r_1 \xrightarrow{b} r_2$ mit $r_2 \in F$. Aus der Reversibilität folgt: - Da $p_1 \in \delta(q_0, a)$, gilt $q_0 \in \delta(p_1, a)$ - Da $r_1 \in \delta(q_0, b)$, gilt $q_0 \in \delta(r_1, b)$ - Da $r_2 \in \delta(r_1, b)$, gilt $r_1 \in \delta(r_2, b)$ Somit gilt $\delta(r_1, b) \supseteq \{q_0, r_2\}$. Betrachte den Pfad: $q_0 \xrightarrow{b} r_1 \xrightarrow{b} q_0 \xrightarrow{a} p_1 \xrightarrow{a} p_2$ Dieser Pfad entspricht dem Wort $bbaa$ und endet im akzeptierenden Zustand $p_2$. Also gilt $bbaa \in L(N)$. Aber $bbaa \notin (aa)^*(bb)^*$, da in $(aa)^*(bb)^*$ alle $a$'s vor allen $b$'s kommen müssen. **Widerspruch!** Daher existiert kein reversibler NFA für $(aa)^*(bb)^*$. </answer>
Ein NFA heißt reversibel, falls für alle Zustände und für alle Zeichen gilt: Falls , so . Mit anderen Worten: Falls man von mit in übergehen kann, so kann man auch von mit in übergehen. Gibt es einen reversiblen NFA über mit ? Falls ja, geben Sie einen solchen NFA an; falls nein, beweisen Sie es.
☐Wahr, reversibler NFA☒Falsch, Beweis
Beweis: Angenommen, es existiert ein reversibler NFA mit . Da , existiert ein akzeptierender Pfad mit . Da , existiert ein akzeptierender Pfad mit . Aus der Reversibilität folgt: - Da , gilt - Da , gilt - Da , gilt Somit gilt . Betrachte den Pfad: Dieser Pfad entspricht dem Wort und endet im akzeptierenden Zustand . Also gilt . Aber , da in alle 's vor allen 's kommen müssen. Widerspruch! Daher existiert kein reversibler NFA für .
Exercise 2: DFA-Algorithmen
Subproblem a (6.0/6.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: DFA-Algorithmen
## subproblem a (6.0 points)
Wir betrachten den folgenden NFA $N$ über dem Alphabet $\Sigma=\{a,b\}$:
Zustände: 0, 1, 2, 3
Startzustand: 0
Finalzustände: 0, 2, 3
Transitionen:
0, b -> 0
0, b -> 1
1, b -> 1
1, b -> 2
2, a -> 3
2, b -> 3
3, a -> 1
3, a -> 2
Sei $M$ der DFA, den man erhält, wenn man $N$ mithilfe des Verfahrens aus der Vorlesung (Potenzmengenkonstruktion) zu einem DFA konvertiert. Tragen Sie $M$ in untere Schablone ein, indem Sie (1) die Transitionen beschriften, (2) die Finalzustände markieren, und (3) in der Tabelle rechts für jeden Zustand von $M$ die korrespondierende Menge an Zuständen aus $N$ eintragen.
Zustände: q0, q1, q2, q3, q4, q5, q6, q7
Startzustand: q0
Finalzustände: ?
Transitionen:
q0 -> q1
q0 -> q4
q1 -> q2
q1 -> q4
q2 -> q3
q2 -> q5
q3 -> q3
q3 -> q7
q7 -> q7
q7 -> q7
q5 -> q4
q5 -> q6
q6 -> q5
q6 -> q7
q4 -> q4
q4 -> q4
Zustandstabelle:
q0:
q1:
q2:
q3:
q4:
q5:
q6:
q7:
<answer-template id="1">
Finalzustände: ?
Transitionen:
???
Zustandstabelle:
q0: ?
q1: ?
q2: ?
q3: ?
q4: ?
q5: ?
q6: ?
q7: ?
</answer-template>
<example>
Finalzustände: q0, q1, q2
Transitionen:
q0, b -> q1
q0, a -> q4
...
Zustandstabelle:
q0: 0, 1
q1: \emptyset
q2: 0, 1, 2
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me work through the Powerset Construction for the given NFA. First, let me understand the NFA N: - States: 0, 1, 2, 3 - Start state: 0 - Final states: 0, 2, 3 - Transitions: - 0, b -> 0 - 0, b -> 1 - 1, b -> 1 - 1, b -> 2 - 2, a -> 3 - 2, b -> 3 - 3, a -> 1 - 3, a -> 2 Now, I need to construct the DFA M using the powerset construction. Starting with the start state of the DFA: - The start state is {0} Let me compute the transitions: From {0}: - On 'a': No transitions from state 0 on 'a', so we get ∅ - On 'b': From 0 on 'b' we can go to {0, 1} From ∅: - On 'a': ∅ - On 'b': ∅ From {0, 1}: - On 'a': No transitions from 0 or 1 on 'a', so we get ∅ - On 'b': From 0 on 'b' we get {0, 1}, from 1 on 'b' we get {1, 2} Combined: {0, 1, 2} From {0, 1, 2}: - On 'a': From 2 on 'a' we get {3} - On 'b': From 0 on 'b' we get {0, 1}, from 1 on 'b' we get {1, 2}, from 2 on 'b' we get {3} Combined: {0, 1, 2, 3} I continue tracking state transitions, noting how different NFA states combine in the powerset construction. The process involves systematically exploring all possible state combinations when moving through the alphabet. For the 'b' transition from the current state set, I see multiple source states generating different destination states. From 0, I reach {0, 1}, while 1 leads to {1, 2}, and 2 transitions to {3}. These paths merge into a comprehensive state combination. The transitions reveal complex interconnections between states, demonstrating how non-deterministic automata can simultaneously exist in multiple states during symbol processing. I'm tracking the state progression, noting how different initial states produce varied outcomes when the same symbol is applied. The mapping continues with: - q4: ∅ - q5: {3} - q6: {1, 2} - q7: {1, 2, 3} I'm examining the transitions systematically, focusing on how each state transforms under different input symbols. The goal is to verify the precise state changes and understand the underlying transition logic. From q2's state {0, 1, 2}, I see potential transitions on both 'a' and 'b', which will lead to different resulting state sets. The 'b' transition appears to expand the state comprehensively. From q3's expanded state {0, 1, 2, 3}, the transitions maintain complexity, with 'b' keeping the full state set and 'a' potentially reducing it. The q7 state {1, 2, 3} demonstrates stable transitions where both 'a' and 'b' inputs preserve the existing state configuration. At q5's minimal {3} state, transitions become more intricate, potentially leading to empty or reduced state sets depending on input. The q6 state with {1, 2} suggests further state transformations are imminent. Transitions between states reveal nuanced path dependencies, with specific character inputs determining precise state evolution. I identify final states by checking which DFA states contain at least one final state from the original NFA. States with 0, 2, or 3 become final in the transformed automaton. This means q0, q1, q2, q3, q5, q6, and q7 qualify as accepting states, reflecting the underlying non-deterministic machine's acceptance criteria.
Answer
Looking at the given NFA, I need to apply the powerset construction to create the corresponding DFA. Let me trace through the states systematically: First, I'll identify what subset of NFA states each DFA state represents: - Starting from the initial state {0} - Computing transitions for each discovered subset - Following the given transition structure to map states Based on the transition structure provided and the NFA transitions, I can determine: - q0 represents {0} (the start state) - q1 represents {0, 1} (reachable from {0} on 'b') - q2 represents {0, 1, 2} (reachable from {0, 1} on 'b') - q3 represents {0, 1, 2, 3} (reachable from {0, 1, 2} on 'b') - q4 represents ∅ (reachable from {0} on 'a') - q5 represents {3} (reachable from {0, 1, 2} on 'a') - q6 represents {1, 2} (reachable from {3} on 'a') - q7 represents {1, 2, 3} (reachable from {0, 1, 2, 3} on 'a') A DFA state is final if it contains at least one final state from the NFA (0, 2, or 3). <answer id="1"> Finalzustände: q0, q1, q2, q3, q5, q6, q7 Transitionen: q0, b -> q1 q0, a -> q4 q1, b -> q2 q1, a -> q4 q2, b -> q3 q2, a -> q5 q3, b -> q3 q3, a -> q7 q7, a -> q7 q7, b -> q7 q5, b -> q4 q5, a -> q6 q6, a -> q5 q6, b -> q7 q4, a -> q4 q4, b -> q4 Zustandstabelle: q0: 0 q1: 0, 1 q2: 0, 1, 2 q3: 0, 1, 2, 3 q4: \emptyset q5: 3 q6: 1, 2 q7: 1, 2, 3 </answer>
Wir betrachten den folgenden NFA über dem Alphabet : Zustände: 0, 1, 2, 3 Startzustand: 0 Finalzustände: 0, 2, 3 Transitionen: 0, b -> 0 0, b -> 1 1, b -> 1 1, b -> 2 2, a -> 3 2, b -> 3 3, a -> 1 3, a -> 2 Sei der DFA, den man erhält, wenn man mithilfe des Verfahrens aus der Vorlesung (Potenzmengenkonstruktion) zu einem DFA konvertiert. Tragen Sie in untere Schablone ein, indem Sie (1) die Transitionen beschriften, (2) die Finalzustände markieren, und (3) in der Tabelle rechts für jeden Zustand von die korrespondierende Menge an Zuständen aus eintragen. Zustände: q0, q1, q2, q3, q4, q5, q6, q7 Startzustand: q0 Finalzustände: ? Transitionen: q0 -> q1 q0 -> q4 q1 -> q2 q1 -> q4 q2 -> q3 q2 -> q5 q3 -> q3 q3 -> q7 q7 -> q7 q7 -> q7 q5 -> q4 q5 -> q6 q6 -> q5 q6 -> q7 q4 -> q4 q4 -> q4 Zustandstabelle: q0: q1: q2: q3: q4: q5: q6: q7:
Finalzustände: q0, q1, q2, q3, q5, q6, q7 Transitionen: q0, b -> q1 q0, a -> q4 q1, b -> q2 q1, a -> q4 q2, b -> q3 q2, a -> q5 q3, b -> q3 q3, a -> q7 q7, a -> q7 q7, b -> q7 q5, b -> q4 q5, a -> q6 q6, a -> q5 q6, b -> q7 q4, a -> q4 q4, b -> q4 Zustandstabelle: q0: 0 q1: 0, 1 q2: 0, 1, 2 q3: 0, 1, 2, 3 q4: \emptyset q5: 3 q6: 1, 2 q7: 1, 2, 3
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: DFA-Algorithmen
## subproblem a (6.0 points)
Wir betrachten den folgenden NFA $N$ über dem Alphabet $\Sigma=\{a,b\}$:
Zustände: 0, 1, 2, 3
Startzustand: 0
Finalzustände: 0, 2, 3
Transitionen:
0, b -> 0
0, b -> 1
1, b -> 1
1, b -> 2
2, a -> 3
2, b -> 3
3, a -> 1
3, a -> 2
Sei $M$ der DFA, den man erhält, wenn man $N$ mithilfe des Verfahrens aus der Vorlesung (Potenzmengenkonstruktion) zu einem DFA konvertiert. Tragen Sie $M$ in untere Schablone ein, indem Sie (1) die Transitionen beschriften, (2) die Finalzustände markieren, und (3) in der Tabelle rechts für jeden Zustand von $M$ die korrespondierende Menge an Zuständen aus $N$ eintragen.
Zustände: q0, q1, q2, q3, q4, q5, q6, q7
Startzustand: q0
Finalzustände: ?
Transitionen:
q0 -> q1
q0 -> q4
q1 -> q2
q1 -> q4
q2 -> q3
q2 -> q5
q3 -> q3
q3 -> q7
q7 -> q7
q7 -> q7
q5 -> q4
q5 -> q6
q6 -> q5
q6 -> q7
q4 -> q4
q4 -> q4
Zustandstabelle:
q0:
q1:
q2:
q3:
q4:
q5:
q6:
q7:
<answer-template id="1">
Finalzustände: ?
Transitionen:
???
Zustandstabelle:
q0: ?
q1: ?
q2: ?
q3: ?
q4: ?
q5: ?
q6: ?
q7: ?
</answer-template>
<example>
Finalzustände: q0, q1, q2
Transitionen:
q0, b -> q1
q0, a -> q4
...
Zustandstabelle:
q0: 0, 1
q1: \emptyset
q2: 0, 1, 2
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the given NFA, I need to apply the powerset construction to create the corresponding DFA.
Let me trace through the states systematically:
First, I'll identify what subset of NFA states each DFA state represents:
- Starting from the initial state {0}
- Computing transitions for each discovered subset
- Following the given transition structure to map states
Based on the transition structure provided and the NFA transitions, I can determine:
- q0 represents {0} (the start state)
- q1 represents {0, 1} (reachable from {0} on 'b')
- q2 represents {0, 1, 2} (reachable from {0, 1} on 'b')
- q3 represents {0, 1, 2, 3} (reachable from {0, 1, 2} on 'b')
- q4 represents ∅ (reachable from {0} on 'a')
- q5 represents {3} (reachable from {0, 1, 2} on 'a')
- q6 represents {1, 2} (reachable from {3} on 'a')
- q7 represents {1, 2, 3} (reachable from {0, 1, 2, 3} on 'a')
A DFA state is final if it contains at least one final state from the NFA (0, 2, or 3).
<answer id="1">
Finalzustände: q0, q1, q2, q3, q5, q6, q7
Transitionen:
q0, b -> q1
q0, a -> q4
q1, b -> q2
q1, a -> q4
q2, b -> q3
q2, a -> q5
q3, b -> q3
q3, a -> q7
q7, a -> q7
q7, b -> q7
q5, b -> q4
q5, a -> q6
q6, a -> q5
q6, b -> q7
q4, a -> q4
q4, b -> q4
Zustandstabelle:
q0: 0
q1: 0, 1
q2: 0, 1, 2
q3: 0, 1, 2, 3
q4: \emptyset
q5: 3
q6: 1, 2
q7: 1, 2, 3
</answer>
user:
## subproblem b (1.0 points)
Ist M minimal? Begründen Sie Ihre Antwort kurz.
<options>
<option id="1">Ja</option>
<option id="2">Nein</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
To determine if M is minimal, I need to check if any states are equivalent (i.e., can be merged). Two states are equivalent if: 1. They are both final or both non-final 2. For each input symbol, they transition to equivalent states Let me analyze the states: - Final states: q0, q1, q2, q3, q5, q6, q7 - Non-final states: q4 First partition based on final/non-final: - Group 1 (final): {q0, q1, q2, q3, q5, q6, q7} - Group 2 (non-final): {q4} Now I need to refine the partition by checking transitions: For the final states, let me check their transitions: - q0: a→q4(non-final), b→q1(final) - q1: a→q4(non-final), b→q2(final) - q2: a→q5(final), b→q3(final) - q3: a→q7(final), b→q3(final) - q5: a→q6(final), b→q4(non-final) - q6: a→q5(final), b→q7(final) - q7: a→q7(final), b→q7(final) Looking at transitions to non-final states: - q0, q1 both go to q4 on 'a' (non-final) - q5 goes to q4 on 'b' (non-final) - q2, q3, q6, q7 don't go to any non-final states So we can refine: - States that go to non-final on 'a': {q0, q1} - States that go to non-final on 'b': {q5} - States that never go to non-final: {q2, q3, q6, q7} I'll investigate the equivalence of states within these groups. The transitions reveal subtle differences between states that initially seemed similar. Specifically, q0 and q1 have distinct transition behaviors, which means they cannot be merged. For the group {q2, q3, q6, q7}, the transitions show interesting patterns of final and non-final state movements. Some states have self-loops, while others transition to different states, indicating potential non-equivalence. The initial partition suggests a broad separation, but further refinement will be needed to precisely determine state equivalence. Analyzing the 'b' transitions reveals nuanced differences in how states move, particularly noting the transitions to final and non-final states that could distinguish their behavior. The current state partition shows distinct groupings emerging, with states like q0 and q1 being differentiated through their transition characteristics. The refinement process systematically explores how states transform under different input symbols, gradually revealing their unique properties. Focusing on the {q2, q3, q6, q7} group, the 'a' transitions start to expose internal variations, with states moving to different target groups and potentially revealing further distinctions. The analysis carefully tracks state transitions, checking equivalence by examining how each state responds to input symbols and identifying potential splits in the current grouping. I'm tracking how states q3 and q7 behave on different inputs, confirming they remain in the same equivalence class through systematic transition checks. The key observation is their consistent behavior across 'a' and 'b' inputs, which preserves their group membership. The process involves methodically verifying state transitions and ensuring states maintain their initial grouping characteristics under different input conditions.
Answer
To determine if M is minimal, I need to check if any states are equivalent and can be merged. Let me apply the state minimization algorithm by finding equivalent states: First, I partition states into final and non-final: - Final states: {q0, q1, q2, q3, q5, q6, q7} - Non-final states: {q4} Now I refine the partition by checking transitions: Looking at transitions on 'a' from final states: - q0, q1 → q4 (non-final) - q2, q3, q5, q6, q7 → final states This splits the final states into groups based on their behavior. After applying the full minimization algorithm, I find that: - States q2 and q6 are equivalent (both transition to q5 on 'a' and to equivalent states on 'b') - States q3 and q7 are equivalent (both have self-loops with equivalent behavior) Since there exist equivalent states that can be merged, M is not minimal. <option id="1">0</option> <option id="2">1</option> <answer id="3"> M ist **nicht minimal**. Die Zustände q2 und q6 sind äquivalent, da sie beide auf 'a' nach q5 gehen und auf 'b' zu äquivalenten Zuständen (q3 bzw. q7) übergehen. Ebenso sind q3 und q7 äquivalent, da beide auf 'a' nach q7 gehen und auf 'b' Selbstschleifen haben (q3→q3 bzw. q7→q7). Diese Paare von äquivalenten Zuständen können jeweils zu einem Zustand verschmolzen werden, wodurch ein minimaler DFA mit 6 statt 8 Zuständen entsteht. </answer>
Ist M minimal? Begründen Sie Ihre Antwort kurz.
☐Ja☒Nein
M ist nicht minimal. Die Zustände q2 und q6 sind äquivalent, da sie beide auf 'a' nach q5 gehen und auf 'b' zu äquivalenten Zuständen (q3 bzw. q7) übergehen. Ebenso sind q3 und q7 äquivalent, da beide auf 'a' nach q7 gehen und auf 'b' Selbstschleifen haben (q3→q3 bzw. q7→q7). Diese Paare von äquivalenten Zuständen können jeweils zu einem Zustand verschmolzen werden, wodurch ein minimaler DFA mit 6 statt 8 Zuständen entsteht.
Subproblem c (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: DFA-Algorithmen
## subproblem a (6.0 points)
Wir betrachten den folgenden NFA $N$ über dem Alphabet $\Sigma=\{a,b\}$:
Zustände: 0, 1, 2, 3
Startzustand: 0
Finalzustände: 0, 2, 3
Transitionen:
0, b -> 0
0, b -> 1
1, b -> 1
1, b -> 2
2, a -> 3
2, b -> 3
3, a -> 1
3, a -> 2
Sei $M$ der DFA, den man erhält, wenn man $N$ mithilfe des Verfahrens aus der Vorlesung (Potenzmengenkonstruktion) zu einem DFA konvertiert. Tragen Sie $M$ in untere Schablone ein, indem Sie (1) die Transitionen beschriften, (2) die Finalzustände markieren, und (3) in der Tabelle rechts für jeden Zustand von $M$ die korrespondierende Menge an Zuständen aus $N$ eintragen.
Zustände: q0, q1, q2, q3, q4, q5, q6, q7
Startzustand: q0
Finalzustände: ?
Transitionen:
q0 -> q1
q0 -> q4
q1 -> q2
q1 -> q4
q2 -> q3
q2 -> q5
q3 -> q3
q3 -> q7
q7 -> q7
q7 -> q7
q5 -> q4
q5 -> q6
q6 -> q5
q6 -> q7
q4 -> q4
q4 -> q4
Zustandstabelle:
q0:
q1:
q2:
q3:
q4:
q5:
q6:
q7:
<answer-template id="1">
Finalzustände: ?
Transitionen:
???
Zustandstabelle:
q0: ?
q1: ?
q2: ?
q3: ?
q4: ?
q5: ?
q6: ?
q7: ?
</answer-template>
<example>
Finalzustände: q0, q1, q2
Transitionen:
q0, b -> q1
q0, a -> q4
...
Zustandstabelle:
q0: 0, 1
q1: \emptyset
q2: 0, 1, 2
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the given NFA, I need to apply the powerset construction to create the corresponding DFA.
Let me trace through the states systematically:
First, I'll identify what subset of NFA states each DFA state represents:
- Starting from the initial state {0}
- Computing transitions for each discovered subset
- Following the given transition structure to map states
Based on the transition structure provided and the NFA transitions, I can determine:
- q0 represents {0} (the start state)
- q1 represents {0, 1} (reachable from {0} on 'b')
- q2 represents {0, 1, 2} (reachable from {0, 1} on 'b')
- q3 represents {0, 1, 2, 3} (reachable from {0, 1, 2} on 'b')
- q4 represents ∅ (reachable from {0} on 'a')
- q5 represents {3} (reachable from {0, 1, 2} on 'a')
- q6 represents {1, 2} (reachable from {3} on 'a')
- q7 represents {1, 2, 3} (reachable from {0, 1, 2, 3} on 'a')
A DFA state is final if it contains at least one final state from the NFA (0, 2, or 3).
<answer id="1">
Finalzustände: q0, q1, q2, q3, q5, q6, q7
Transitionen:
q0, b -> q1
q0, a -> q4
q1, b -> q2
q1, a -> q4
q2, b -> q3
q2, a -> q5
q3, b -> q3
q3, a -> q7
q7, a -> q7
q7, b -> q7
q5, b -> q4
q5, a -> q6
q6, a -> q5
q6, b -> q7
q4, a -> q4
q4, b -> q4
Zustandstabelle:
q0: 0
q1: 0, 1
q2: 0, 1, 2
q3: 0, 1, 2, 3
q4: \emptyset
q5: 3
q6: 1, 2
q7: 1, 2, 3
</answer>
user:
## subproblem b (1.0 points)
Ist M minimal? Begründen Sie Ihre Antwort kurz.
<options>
<option id="1">Ja</option>
<option id="2">Nein</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:To determine if M is minimal, I need to check if any states are equivalent and can be merged.
Let me apply the state minimization algorithm by finding equivalent states:
First, I partition states into final and non-final:
- Final states: {q0, q1, q2, q3, q5, q6, q7}
- Non-final states: {q4}
Now I refine the partition by checking transitions:
Looking at transitions on 'a' from final states:
- q0, q1 → q4 (non-final)
- q2, q3, q5, q6, q7 → final states
This splits the final states into groups based on their behavior.
After applying the full minimization algorithm, I find that:
- States q2 and q6 are equivalent (both transition to q5 on 'a' and to equivalent states on 'b')
- States q3 and q7 are equivalent (both have self-loops with equivalent behavior)
Since there exist equivalent states that can be merged, M is not minimal.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
M ist **nicht minimal**. Die Zustände q2 und q6 sind äquivalent, da sie beide auf 'a' nach q5 gehen und auf 'b' zu äquivalenten Zuständen (q3 bzw. q7) übergehen. Ebenso sind q3 und q7 äquivalent, da beide auf 'a' nach q7 gehen und auf 'b' Selbstschleifen haben (q3→q3 bzw. q7→q7). Diese Paare von äquivalenten Zuständen können jeweils zu einem Zustand verschmolzen werden, wodurch ein minimaler DFA mit 6 statt 8 Zuständen entsteht.
</answer>
user:
## subproblem c (4.0 points)
Im Folgenden sind zwei DFAs $M_1$ und $M_2$ angegeben. Berechnen Sie nach dem Algorithmus aus der Vorlesung (Produktkonstruktion) einen DFA $M$ mit $L(M)=L(M_1)\cap L(M_2)$ und tragen Sie das Ergebnis unten ein. Konstruieren Sie nur die erreichbaren Zustände.
M_1:
Zustände: 0, 1, 2
Startzustand: 0
Finalzustände: 1, 2
Transitionen:
0, a -> 1
0, b -> 0
1, a -> 2
1, b -> 2
2, a -> 2
2, b -> 2
M_2:
Zustände: 0, 1, 2
Startzustand: 0
Finalzustände: 1, 2
Transitionen:
0, a -> 2
0, b -> 0
1, a -> 2
1, b -> 0
2, a -> 1
2, b -> 2
<answer-template id="1">
Zustände: ?
Startzustand: ?
Finalzustände: ?
Transitionen:
???
</answer-template>
<example>
Zustände: (0, 0), (0, 1), (1, 1)
Startzustand: (0, 0)
Finalzustände: (0, 0), (0, 1)
Transitionen:
(0, 0), a -> (0, 0)
(0, 0), b -> (0, 1)
(0, 1), a -> (1, 1)
(0, 1), b -> (0, 0)
(1, 1), a -> (1, 1)
(1, 1), b -> (0, 1)
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
For the product construction to compute $L(M_1) \cap L(M_2)$, I need to: 1. Start from the initial state (0, 0) (the pair of initial states from M_1 and M_2) 2. Build transitions for each reachable state 3. A state (p, q) is final if both p is final in M_1 AND q is final in M_2 Let me trace through this: Starting state: (0, 0) From (0, 0): - On 'a': M_1 goes 0→1, M_2 goes 0→2, so (0, 0) →a→ (1, 2) - On 'b': M_1 goes 0→0, M_2 goes 0→0, so (0, 0) →b→ (0, 0) From (1, 2): - On 'a': M_1 goes 1→2, M_2 goes 2→1, so (1, 2) →a→ (2, 1) - On 'b': M_1 goes 1→2, M_2 goes 2→2, so (1, 2) →b→ (2, 2) From (2, 1): - On 'a': M_1 goes 2→2, M_2 goes 1→2, so (2, 1) →a→ (2, 2) - On 'b': M_1 goes 2→2, M_2 goes 1→0, so (2, 1) →b→ (2, 0) From (2, 2): - On 'a': M_1 goes 2→2, M_2 goes 2→1, so (2, 2) →a→ (2, 1) - On 'b': M_1 goes 2→2, M_2 goes 2→2, so (2, 2) →b→ (2, 2) From (2, 0): - On 'a': M_1 goes 2→2, M_2 goes 0→2, so (2, 0) →a→ (2, 2) - On 'b': M_1 goes 2→2, M_2 goes 0→0, so (2, 0) →b→ (2, 0) I've systematically explored the state transitions, tracking how each state changes under different input symbols. The reachable states include (0, 0), (1, 2), (2, 1), (2, 2), and (2, 0). I'll determine their final state status by checking the individual machine states. Analyzing the final states reveals interesting patterns: some states are final when both machines reach their respective final configurations, while others fall short due to one machine not being in a final state. The key final states emerge as (1, 2), (2, 1), and (2, 2), representing successful synchronization of both machines.
Answer
To construct the DFA M with L(M) = L(M₁) ∩ L(M₂), I'll use the product construction algorithm. Starting from the initial state (0, 0) and computing only reachable states: From (0, 0): - On 'a': (0, 0) → (1, 2) [since 0→1 in M₁ and 0→2 in M₂] - On 'b': (0, 0) → (0, 0) [since 0→0 in M₁ and 0→0 in M₂] From (1, 2): - On 'a': (1, 2) → (2, 1) [since 1→2 in M₁ and 2→1 in M₂] - On 'b': (1, 2) → (2, 2) [since 1→2 in M₁ and 2→2 in M₂] From (2, 1): - On 'a': (2, 1) → (2, 2) [since 2→2 in M₁ and 1→2 in M₂] - On 'b': (2, 1) → (2, 0) [since 2→2 in M₁ and 1→0 in M₂] From (2, 2): - On 'a': (2, 2) → (2, 1) [since 2→2 in M₁ and 2→1 in M₂] - On 'b': (2, 2) → (2, 2) [since 2→2 in M₁ and 2→2 in M₂] From (2, 0): - On 'a': (2, 0) → (2, 2) [since 2→2 in M₁ and 0→2 in M₂] - On 'b': (2, 0) → (2, 0) [since 2→2 in M₁ and 0→0 in M₂] A state (p, q) is final if both p is final in M₁ AND q is final in M₂. <answer id="1"> Zustände: (0, 0), (1, 2), (2, 1), (2, 2), (2, 0) Startzustand: (0, 0) Finalzustände: (1, 2), (2, 1), (2, 2) Transitionen: (0, 0), a -> (1, 2) (0, 0), b -> (0, 0) (1, 2), a -> (2, 1) (1, 2), b -> (2, 2) (2, 1), a -> (2, 2) (2, 1), b -> (2, 0) (2, 2), a -> (2, 1) (2, 2), b -> (2, 2) (2, 0), a -> (2, 2) (2, 0), b -> (2, 0) </answer>
Im Folgenden sind zwei DFAs und angegeben. Berechnen Sie nach dem Algorithmus aus der Vorlesung (Produktkonstruktion) einen DFA mit und tragen Sie das Ergebnis unten ein. Konstruieren Sie nur die erreichbaren Zustände. M_1: Zustände: 0, 1, 2 Startzustand: 0 Finalzustände: 1, 2 Transitionen: 0, a -> 1 0, b -> 0 1, a -> 2 1, b -> 2 2, a -> 2 2, b -> 2 M_2: Zustände: 0, 1, 2 Startzustand: 0 Finalzustände: 1, 2 Transitionen: 0, a -> 2 0, b -> 0 1, a -> 2 1, b -> 0 2, a -> 1 2, b -> 2
Zustände: (0, 0), (1, 2), (2, 1), (2, 2), (2, 0) Startzustand: (0, 0) Finalzustände: (1, 2), (2, 1), (2, 2) Transitionen: (0, 0), a -> (1, 2) (0, 0), b -> (0, 0) (1, 2), a -> (2, 1) (1, 2), b -> (2, 2) (2, 1), a -> (2, 2) (2, 1), b -> (2, 0) (2, 2), a -> (2, 1) (2, 2), b -> (2, 2) (2, 0), a -> (2, 2) (2, 0), b -> (2, 0)
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: DFA-Algorithmen
## subproblem a (6.0 points)
Wir betrachten den folgenden NFA $N$ über dem Alphabet $\Sigma=\{a,b\}$:
Zustände: 0, 1, 2, 3
Startzustand: 0
Finalzustände: 0, 2, 3
Transitionen:
0, b -> 0
0, b -> 1
1, b -> 1
1, b -> 2
2, a -> 3
2, b -> 3
3, a -> 1
3, a -> 2
Sei $M$ der DFA, den man erhält, wenn man $N$ mithilfe des Verfahrens aus der Vorlesung (Potenzmengenkonstruktion) zu einem DFA konvertiert. Tragen Sie $M$ in untere Schablone ein, indem Sie (1) die Transitionen beschriften, (2) die Finalzustände markieren, und (3) in der Tabelle rechts für jeden Zustand von $M$ die korrespondierende Menge an Zuständen aus $N$ eintragen.
Zustände: q0, q1, q2, q3, q4, q5, q6, q7
Startzustand: q0
Finalzustände: ?
Transitionen:
q0 -> q1
q0 -> q4
q1 -> q2
q1 -> q4
q2 -> q3
q2 -> q5
q3 -> q3
q3 -> q7
q7 -> q7
q7 -> q7
q5 -> q4
q5 -> q6
q6 -> q5
q6 -> q7
q4 -> q4
q4 -> q4
Zustandstabelle:
q0:
q1:
q2:
q3:
q4:
q5:
q6:
q7:
<answer-template id="1">
Finalzustände: ?
Transitionen:
???
Zustandstabelle:
q0: ?
q1: ?
q2: ?
q3: ?
q4: ?
q5: ?
q6: ?
q7: ?
</answer-template>
<example>
Finalzustände: q0, q1, q2
Transitionen:
q0, b -> q1
q0, a -> q4
...
Zustandstabelle:
q0: 0, 1
q1: \emptyset
q2: 0, 1, 2
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the given NFA, I need to apply the powerset construction to create the corresponding DFA.
Let me trace through the states systematically:
First, I'll identify what subset of NFA states each DFA state represents:
- Starting from the initial state {0}
- Computing transitions for each discovered subset
- Following the given transition structure to map states
Based on the transition structure provided and the NFA transitions, I can determine:
- q0 represents {0} (the start state)
- q1 represents {0, 1} (reachable from {0} on 'b')
- q2 represents {0, 1, 2} (reachable from {0, 1} on 'b')
- q3 represents {0, 1, 2, 3} (reachable from {0, 1, 2} on 'b')
- q4 represents ∅ (reachable from {0} on 'a')
- q5 represents {3} (reachable from {0, 1, 2} on 'a')
- q6 represents {1, 2} (reachable from {3} on 'a')
- q7 represents {1, 2, 3} (reachable from {0, 1, 2, 3} on 'a')
A DFA state is final if it contains at least one final state from the NFA (0, 2, or 3).
<answer id="1">
Finalzustände: q0, q1, q2, q3, q5, q6, q7
Transitionen:
q0, b -> q1
q0, a -> q4
q1, b -> q2
q1, a -> q4
q2, b -> q3
q2, a -> q5
q3, b -> q3
q3, a -> q7
q7, a -> q7
q7, b -> q7
q5, b -> q4
q5, a -> q6
q6, a -> q5
q6, b -> q7
q4, a -> q4
q4, b -> q4
Zustandstabelle:
q0: 0
q1: 0, 1
q2: 0, 1, 2
q3: 0, 1, 2, 3
q4: \emptyset
q5: 3
q6: 1, 2
q7: 1, 2, 3
</answer>
user:
## subproblem b (1.0 points)
Ist M minimal? Begründen Sie Ihre Antwort kurz.
<options>
<option id="1">Ja</option>
<option id="2">Nein</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:To determine if M is minimal, I need to check if any states are equivalent and can be merged.
Let me apply the state minimization algorithm by finding equivalent states:
First, I partition states into final and non-final:
- Final states: {q0, q1, q2, q3, q5, q6, q7}
- Non-final states: {q4}
Now I refine the partition by checking transitions:
Looking at transitions on 'a' from final states:
- q0, q1 → q4 (non-final)
- q2, q3, q5, q6, q7 → final states
This splits the final states into groups based on their behavior.
After applying the full minimization algorithm, I find that:
- States q2 and q6 are equivalent (both transition to q5 on 'a' and to equivalent states on 'b')
- States q3 and q7 are equivalent (both have self-loops with equivalent behavior)
Since there exist equivalent states that can be merged, M is not minimal.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
M ist **nicht minimal**. Die Zustände q2 und q6 sind äquivalent, da sie beide auf 'a' nach q5 gehen und auf 'b' zu äquivalenten Zuständen (q3 bzw. q7) übergehen. Ebenso sind q3 und q7 äquivalent, da beide auf 'a' nach q7 gehen und auf 'b' Selbstschleifen haben (q3→q3 bzw. q7→q7). Diese Paare von äquivalenten Zuständen können jeweils zu einem Zustand verschmolzen werden, wodurch ein minimaler DFA mit 6 statt 8 Zuständen entsteht.
</answer>
user:
## subproblem c (4.0 points)
Im Folgenden sind zwei DFAs $M_1$ und $M_2$ angegeben. Berechnen Sie nach dem Algorithmus aus der Vorlesung (Produktkonstruktion) einen DFA $M$ mit $L(M)=L(M_1)\cap L(M_2)$ und tragen Sie das Ergebnis unten ein. Konstruieren Sie nur die erreichbaren Zustände.
M_1:
Zustände: 0, 1, 2
Startzustand: 0
Finalzustände: 1, 2
Transitionen:
0, a -> 1
0, b -> 0
1, a -> 2
1, b -> 2
2, a -> 2
2, b -> 2
M_2:
Zustände: 0, 1, 2
Startzustand: 0
Finalzustände: 1, 2
Transitionen:
0, a -> 2
0, b -> 0
1, a -> 2
1, b -> 0
2, a -> 1
2, b -> 2
<answer-template id="1">
Zustände: ?
Startzustand: ?
Finalzustände: ?
Transitionen:
???
</answer-template>
<example>
Zustände: (0, 0), (0, 1), (1, 1)
Startzustand: (0, 0)
Finalzustände: (0, 0), (0, 1)
Transitionen:
(0, 0), a -> (0, 0)
(0, 0), b -> (0, 1)
(0, 1), a -> (1, 1)
(0, 1), b -> (0, 0)
(1, 1), a -> (1, 1)
(1, 1), b -> (0, 1)
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:To construct the DFA M with L(M) = L(M₁) ∩ L(M₂), I'll use the product construction algorithm.
Starting from the initial state (0, 0) and computing only reachable states:
From (0, 0):
- On 'a': (0, 0) → (1, 2) [since 0→1 in M₁ and 0→2 in M₂]
- On 'b': (0, 0) → (0, 0) [since 0→0 in M₁ and 0→0 in M₂]
From (1, 2):
- On 'a': (1, 2) → (2, 1) [since 1→2 in M₁ and 2→1 in M₂]
- On 'b': (1, 2) → (2, 2) [since 1→2 in M₁ and 2→2 in M₂]
From (2, 1):
- On 'a': (2, 1) → (2, 2) [since 2→2 in M₁ and 1→2 in M₂]
- On 'b': (2, 1) → (2, 0) [since 2→2 in M₁ and 1→0 in M₂]
From (2, 2):
- On 'a': (2, 2) → (2, 1) [since 2→2 in M₁ and 2→1 in M₂]
- On 'b': (2, 2) → (2, 2) [since 2→2 in M₁ and 2→2 in M₂]
From (2, 0):
- On 'a': (2, 0) → (2, 2) [since 2→2 in M₁ and 0→2 in M₂]
- On 'b': (2, 0) → (2, 0) [since 2→2 in M₁ and 0→0 in M₂]
A state (p, q) is final if both p is final in M₁ AND q is final in M₂.
<answer id="1">
Zustände: (0, 0), (1, 2), (2, 1), (2, 2), (2, 0)
Startzustand: (0, 0)
Finalzustände: (1, 2), (2, 1), (2, 2)
Transitionen:
(0, 0), a -> (1, 2)
(0, 0), b -> (0, 0)
(1, 2), a -> (2, 1)
(1, 2), b -> (2, 2)
(2, 1), a -> (2, 2)
(2, 1), b -> (2, 0)
(2, 2), a -> (2, 1)
(2, 2), b -> (2, 2)
(2, 0), a -> (2, 2)
(2, 0), b -> (2, 0)
</answer>
user:
## subproblem d (2.0 points)
Geben Sie jeweils ein kürzestes Wort in $L(M_1)\cap L(M_2)$, $L(M_1)\setminus L(M_2)$ und $L(M_2)\setminus L(M_1)$ an, oder $\emptyset$, falls kein solches Wort existiert.
*Hinweis:* Verwenden Sie Ihr Ergebnis aus c).
<answer-template id="1">
$L(M_1)\cap L(M_2)$: $?$
$L(M_1)\setminus L(M_2)$: $?$
$L(M_2)\setminus L(M_1)$: $?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me analyze the DFAs M₁ and M₂ to find words in the requested sets. First, let me understand what words are accepted by each DFA: For M₁: - Start: 0 - Finals: 1, 2 - From 0: a→1, b→0 - From 1: a→2, b→2 - From 2: a→2, b→2 So M₁ accepts any word that contains at least one 'a' (since we need to reach state 1 or 2). For M₂: - Start: 0 - Finals: 1, 2 - From 0: a→2, b→0 - From 1: a→2, b→0 - From 2: a→1, b→2 M₂ accepts words that reach states 1 or 2. From my product construction in part c), the final states are (1,2), (2,1), (2,2), which means both components must be final states. For L(M₁) ∩ L(M₂): Looking at the product automaton from part c): - Start at (0,0) - Finals: (1,2), (2,1), (2,2) - Shortest path to a final state: (0,0) --a--> (1,2) So "a" is in L(M₁) ∩ L(M₂). For L(M₁) \ L(M₂): I need a word accepted by M₁ but not by M₂. - In M₁, "ab" goes: 0→1→2 (accepted) - In M₂, "ab" goes: 0→2→2 (accepted) So "ab" is not in L(M₁) \ L(M₂). Let me try "abb": I see the word reaches final states in both machines, continuing my systematic approach to find a distinguishing word. For "aab", the path reveals an interesting asymmetry: M₁ reaches a final state while M₂ does not. This suggests the machines have different language acceptance criteria. To find a word in L(M₂) \ L(M₁), I'll explore paths without 'a' in M₂, since M₁ requires at least one 'a' for acceptance. Analyzing M₂'s behavior shows it accepts words reaching state 1, not just those with 'a's. This nuanced acceptance pattern creates distinct language characteristics. Starting from state 0 requires an 'a' transition, which fundamentally constrains initial word formation. Both machines share this initial structural requirement, suggesting potential language overlap. The systematic exploration of word transitions reveals critical acceptance patterns that demand careful verification through specific word tracing. Comparing "a", "aa", "ab", and more complex sequences exposes nuanced differences in state progression and final state acceptance between M₁ and M₂. The key observation is that "aab" reveals a critical distinction: M₁ accepts this word, while M₂ does not. This suggests fundamental variations in state transition rules and acceptance criteria. I'm exploring how each machine handles state transitions, particularly focusing on paths involving multiple 'a' and 'b' symbols, to understand their unique language recognition patterns. The complexity emerges from subtle differences in state machine behaviors, especially around transitions from states 0, 1, and 2 when encountering different input symbols. Tracing specific sequences reveals nuanced acceptance patterns, particularly with combinations of 'a' and 'b' that create unique state transitions. Some sequences are accepted by both machines, while others reveal distinct acceptance criteria. The key insight involves carefully mapping state changes and understanding how each machine interprets sequential inputs differently. Shortest common accepted word is "a", demonstrating a fundamental overlap between machine behaviors. I'm investigating words that reveal differences between M₁ and M₂, systematically exploring two-symbol and three-symbol combinations. The goal is finding a minimal distinguishing example that M₁ accepts but M₂ rejects. Preliminary analysis suggests "aab" might be the shortest such word, requiring careful verification of state transitions.
Answer
Looking at the DFAs and using the product automaton from part c): For **L(M₁) ∩ L(M₂)**: From the product automaton, the shortest path from start state (0,0) to a final state is: (0,0) --a--> (1,2). So "a" is the shortest word in the intersection. For **L(M₁) \ L(M₂)**: I need a word accepted by M₁ but not M₂. Analyzing M₁: it accepts any word containing at least one 'a' (once we reach state 1 via 'a', we stay in final states). For M₂, not all words with 'a' are accepted. Testing "aab": - In M₁: 0→1→2→2 (final) ✓ - In M₂: 0→2→1→0 (non-final) ✗ So "aab" is in L(M₁) \ L(M₂). For **L(M₂) \ L(M₁)**: Since M₁ accepts any word with at least one 'a', and M₂ requires at least one 'a' to leave the initial non-final state 0, any word accepted by M₂ must contain an 'a' and thus is also accepted by M₁. Therefore L(M₂) ⊆ L(M₁), making this set empty. <answer id="1"> $L(M_1)\cap L(M_2)$: $a$ $L(M_1)\setminus L(M_2)$: $aab$ $L(M_2)\setminus L(M_1)$: $\emptyset$ </answer>
Geben Sie jeweils ein kürzestes Wort in , und an, oder , falls kein solches Wort existiert. Hinweis: Verwenden Sie Ihr Ergebnis aus c).
: : :
Subproblem e (5.0/5.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: DFA-Algorithmen
## subproblem a (6.0 points)
Wir betrachten den folgenden NFA $N$ über dem Alphabet $\Sigma=\{a,b\}$:
Zustände: 0, 1, 2, 3
Startzustand: 0
Finalzustände: 0, 2, 3
Transitionen:
0, b -> 0
0, b -> 1
1, b -> 1
1, b -> 2
2, a -> 3
2, b -> 3
3, a -> 1
3, a -> 2
Sei $M$ der DFA, den man erhält, wenn man $N$ mithilfe des Verfahrens aus der Vorlesung (Potenzmengenkonstruktion) zu einem DFA konvertiert. Tragen Sie $M$ in untere Schablone ein, indem Sie (1) die Transitionen beschriften, (2) die Finalzustände markieren, und (3) in der Tabelle rechts für jeden Zustand von $M$ die korrespondierende Menge an Zuständen aus $N$ eintragen.
Zustände: q0, q1, q2, q3, q4, q5, q6, q7
Startzustand: q0
Finalzustände: ?
Transitionen:
q0 -> q1
q0 -> q4
q1 -> q2
q1 -> q4
q2 -> q3
q2 -> q5
q3 -> q3
q3 -> q7
q7 -> q7
q7 -> q7
q5 -> q4
q5 -> q6
q6 -> q5
q6 -> q7
q4 -> q4
q4 -> q4
Zustandstabelle:
q0:
q1:
q2:
q3:
q4:
q5:
q6:
q7:
<answer-template id="1">
Finalzustände: ?
Transitionen:
???
Zustandstabelle:
q0: ?
q1: ?
q2: ?
q3: ?
q4: ?
q5: ?
q6: ?
q7: ?
</answer-template>
<example>
Finalzustände: q0, q1, q2
Transitionen:
q0, b -> q1
q0, a -> q4
...
Zustandstabelle:
q0: 0, 1
q1: \emptyset
q2: 0, 1, 2
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the given NFA, I need to apply the powerset construction to create the corresponding DFA.
Let me trace through the states systematically:
First, I'll identify what subset of NFA states each DFA state represents:
- Starting from the initial state {0}
- Computing transitions for each discovered subset
- Following the given transition structure to map states
Based on the transition structure provided and the NFA transitions, I can determine:
- q0 represents {0} (the start state)
- q1 represents {0, 1} (reachable from {0} on 'b')
- q2 represents {0, 1, 2} (reachable from {0, 1} on 'b')
- q3 represents {0, 1, 2, 3} (reachable from {0, 1, 2} on 'b')
- q4 represents ∅ (reachable from {0} on 'a')
- q5 represents {3} (reachable from {0, 1, 2} on 'a')
- q6 represents {1, 2} (reachable from {3} on 'a')
- q7 represents {1, 2, 3} (reachable from {0, 1, 2, 3} on 'a')
A DFA state is final if it contains at least one final state from the NFA (0, 2, or 3).
<answer id="1">
Finalzustände: q0, q1, q2, q3, q5, q6, q7
Transitionen:
q0, b -> q1
q0, a -> q4
q1, b -> q2
q1, a -> q4
q2, b -> q3
q2, a -> q5
q3, b -> q3
q3, a -> q7
q7, a -> q7
q7, b -> q7
q5, b -> q4
q5, a -> q6
q6, a -> q5
q6, b -> q7
q4, a -> q4
q4, b -> q4
Zustandstabelle:
q0: 0
q1: 0, 1
q2: 0, 1, 2
q3: 0, 1, 2, 3
q4: \emptyset
q5: 3
q6: 1, 2
q7: 1, 2, 3
</answer>
user:
## subproblem b (1.0 points)
Ist M minimal? Begründen Sie Ihre Antwort kurz.
<options>
<option id="1">Ja</option>
<option id="2">Nein</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:To determine if M is minimal, I need to check if any states are equivalent and can be merged.
Let me apply the state minimization algorithm by finding equivalent states:
First, I partition states into final and non-final:
- Final states: {q0, q1, q2, q3, q5, q6, q7}
- Non-final states: {q4}
Now I refine the partition by checking transitions:
Looking at transitions on 'a' from final states:
- q0, q1 → q4 (non-final)
- q2, q3, q5, q6, q7 → final states
This splits the final states into groups based on their behavior.
After applying the full minimization algorithm, I find that:
- States q2 and q6 are equivalent (both transition to q5 on 'a' and to equivalent states on 'b')
- States q3 and q7 are equivalent (both have self-loops with equivalent behavior)
Since there exist equivalent states that can be merged, M is not minimal.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
M ist **nicht minimal**. Die Zustände q2 und q6 sind äquivalent, da sie beide auf 'a' nach q5 gehen und auf 'b' zu äquivalenten Zuständen (q3 bzw. q7) übergehen. Ebenso sind q3 und q7 äquivalent, da beide auf 'a' nach q7 gehen und auf 'b' Selbstschleifen haben (q3→q3 bzw. q7→q7). Diese Paare von äquivalenten Zuständen können jeweils zu einem Zustand verschmolzen werden, wodurch ein minimaler DFA mit 6 statt 8 Zuständen entsteht.
</answer>
user:
## subproblem c (4.0 points)
Im Folgenden sind zwei DFAs $M_1$ und $M_2$ angegeben. Berechnen Sie nach dem Algorithmus aus der Vorlesung (Produktkonstruktion) einen DFA $M$ mit $L(M)=L(M_1)\cap L(M_2)$ und tragen Sie das Ergebnis unten ein. Konstruieren Sie nur die erreichbaren Zustände.
M_1:
Zustände: 0, 1, 2
Startzustand: 0
Finalzustände: 1, 2
Transitionen:
0, a -> 1
0, b -> 0
1, a -> 2
1, b -> 2
2, a -> 2
2, b -> 2
M_2:
Zustände: 0, 1, 2
Startzustand: 0
Finalzustände: 1, 2
Transitionen:
0, a -> 2
0, b -> 0
1, a -> 2
1, b -> 0
2, a -> 1
2, b -> 2
<answer-template id="1">
Zustände: ?
Startzustand: ?
Finalzustände: ?
Transitionen:
???
</answer-template>
<example>
Zustände: (0, 0), (0, 1), (1, 1)
Startzustand: (0, 0)
Finalzustände: (0, 0), (0, 1)
Transitionen:
(0, 0), a -> (0, 0)
(0, 0), b -> (0, 1)
(0, 1), a -> (1, 1)
(0, 1), b -> (0, 0)
(1, 1), a -> (1, 1)
(1, 1), b -> (0, 1)
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:To construct the DFA M with L(M) = L(M₁) ∩ L(M₂), I'll use the product construction algorithm.
Starting from the initial state (0, 0) and computing only reachable states:
From (0, 0):
- On 'a': (0, 0) → (1, 2) [since 0→1 in M₁ and 0→2 in M₂]
- On 'b': (0, 0) → (0, 0) [since 0→0 in M₁ and 0→0 in M₂]
From (1, 2):
- On 'a': (1, 2) → (2, 1) [since 1→2 in M₁ and 2→1 in M₂]
- On 'b': (1, 2) → (2, 2) [since 1→2 in M₁ and 2→2 in M₂]
From (2, 1):
- On 'a': (2, 1) → (2, 2) [since 2→2 in M₁ and 1→2 in M₂]
- On 'b': (2, 1) → (2, 0) [since 2→2 in M₁ and 1→0 in M₂]
From (2, 2):
- On 'a': (2, 2) → (2, 1) [since 2→2 in M₁ and 2→1 in M₂]
- On 'b': (2, 2) → (2, 2) [since 2→2 in M₁ and 2→2 in M₂]
From (2, 0):
- On 'a': (2, 0) → (2, 2) [since 2→2 in M₁ and 0→2 in M₂]
- On 'b': (2, 0) → (2, 0) [since 2→2 in M₁ and 0→0 in M₂]
A state (p, q) is final if both p is final in M₁ AND q is final in M₂.
<answer id="1">
Zustände: (0, 0), (1, 2), (2, 1), (2, 2), (2, 0)
Startzustand: (0, 0)
Finalzustände: (1, 2), (2, 1), (2, 2)
Transitionen:
(0, 0), a -> (1, 2)
(0, 0), b -> (0, 0)
(1, 2), a -> (2, 1)
(1, 2), b -> (2, 2)
(2, 1), a -> (2, 2)
(2, 1), b -> (2, 0)
(2, 2), a -> (2, 1)
(2, 2), b -> (2, 2)
(2, 0), a -> (2, 2)
(2, 0), b -> (2, 0)
</answer>
user:
## subproblem d (2.0 points)
Geben Sie jeweils ein kürzestes Wort in $L(M_1)\cap L(M_2)$, $L(M_1)\setminus L(M_2)$ und $L(M_2)\setminus L(M_1)$ an, oder $\emptyset$, falls kein solches Wort existiert.
*Hinweis:* Verwenden Sie Ihr Ergebnis aus c).
<answer-template id="1">
$L(M_1)\cap L(M_2)$: $?$
$L(M_1)\setminus L(M_2)$: $?$
$L(M_2)\setminus L(M_1)$: $?$
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the DFAs and using the product automaton from part c):
For **L(M₁) ∩ L(M₂)**:
From the product automaton, the shortest path from start state (0,0) to a final state is: (0,0) --a--> (1,2). So "a" is the shortest word in the intersection.
For **L(M₁) \ L(M₂)**:
I need a word accepted by M₁ but not M₂. Analyzing M₁: it accepts any word containing at least one 'a' (once we reach state 1 via 'a', we stay in final states). For M₂, not all words with 'a' are accepted. Testing "aab":
- In M₁: 0→1→2→2 (final) ✓
- In M₂: 0→2→1→0 (non-final) ✗
So "aab" is in L(M₁) \ L(M₂).
For **L(M₂) \ L(M₁)**:
Since M₁ accepts any word with at least one 'a', and M₂ requires at least one 'a' to leave the initial non-final state 0, any word accepted by M₂ must contain an 'a' and thus is also accepted by M₁. Therefore L(M₂) ⊆ L(M₁), making this set empty.
<answer id="1">
$L(M_1)\cap L(M_2)$: $a$
$L(M_1)\setminus L(M_2)$: $aab$
$L(M_2)\setminus L(M_1)$: $\emptyset$
</answer>
user:
## subproblem e (5.0 points)
Sei $L\subseteq\{a,b,c\}^*$ eine Sprache. Wir definieren die Sprache $R_{c}(L)\subseteq\{a,b\}^*$ als die Menge der Wörter, die man erhält, wenn man aus jedem Wort von $L$ jedes Zeichen $c$ löscht.
Zum Beispiel gilt $R_{c}(\{ba, bca, cc, ca\})=\{ba,\varepsilon,a\}$.
Sei $M$ ein DFA mit $n$ Zuständen. Wählen Sie eine Funktion $f:\N\rightarrow\N$, sodass es einen DFA $M'$ für $R_{c}(L(M))$ mit höchstens $f(n)$ Zuständen gibt **und** beschreiben Sie einen Algorithmus, um $M'$ zu berechnen uns argumentieren Sie, wieso $M'$ höchstens $f(n)$ Zustände hat.
<answer-template id="1">
Ihre Wahl: $f(n):=?$
Begründung:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me think about this problem. We have a DFA $M$ with $n$ states that recognizes a language $L \subseteq \{a,b,c\}^*$. We want to find a DFA $M'$ that recognizes $R_c(L)$, where $R_c(L)$ is the language obtained by deleting all occurrences of $c$ from every word in $L$. One approach is to use an NFA construction first, then convert to DFA. From the DFA $M$, we can construct an NFA $N$ that recognizes $R_c(L(M))$ as follows: - Keep all states from $M$ - Keep all transitions on $a$ and $b$ - For each transition on $c$, replace it with an $\varepsilon$-transition This gives us an NFA with $\varepsilon$-transitions. We can then remove $\varepsilon$-transitions using the standard algorithm, which doesn't increase the number of states. Finally, we convert the NFA to a DFA using the powerset construction. The key observation is that the NFA has the same $n$ states as the original DFA. When we convert it to a DFA using the powerset construction, we could potentially get up to $2^n$ states. So $f(n) = 2^n$ would be a valid choice. Let me describe the algorithm more precisely: 1. Start with DFA $M = (Q, \{a,b,c\}, \delta, q_0, F)$ with $n$ states 2. Construct NFA $N = (Q, \{a,b\}, \delta', q_0, F)$ where: - For each transition $\delta(q, a) = q'$ where $a \in \{a,b\}$, add $(q, a, q')$ to $\delta'$ - For each transition $\delta(q, c) = q'$, add $(q, \varepsilon, q')$ to $\delta'$ 3. Remove $\varepsilon$-transitions using the standard algorithm (computing $\varepsilon$-closure) 4. Convert the resulting NFA to a DFA using the powerset construction I realize the $\varepsilon$-transition process requires careful handling. The $\varepsilon$-closure computation will propagate states when $c$ transitions occur, potentially creating more complex state relationships. This means the state space might grow in ways not immediately obvious from the initial construction. The transformation involves carefully tracking how $\varepsilon$-transitions modify the reachable states, ensuring we capture all possible paths after removing $c$ symbols.
Answer
<answer id="1"> Ihre Wahl: $f(n):=2^n$ Begründung: **Algorithmus zur Konstruktion von $M'$:** Gegeben sei ein DFA $M = (Q, \{a,b,c\}, \delta, q_0, F)$ mit $n$ Zuständen. 1. **Konstruiere einen NFA mit $\varepsilon$-Transitionen:** Erstelle einen NFA $N = (Q, \{a,b\}, \delta', q_0, F)$ mit: - Denselben Zuständen wie $M$ - Für jede Transition $\delta(q, a) = q'$ mit $a \in \{a,b\}$: füge $(q, a, q')$ zu $\delta'$ hinzu - Für jede Transition $\delta(q, c) = q'$: füge $(q, \varepsilon, q')$ zu $\delta'$ hinzu 2. **Entferne $\varepsilon$-Transitionen:** Berechne für jeden Zustand $q$ die $\varepsilon$-Hülle $\varepsilon\text{-closure}(q)$. Erstelle einen NFA ohne $\varepsilon$-Transitionen, indem für jede Transition $(q, a, p)$ mit $a \in \{a,b\}$ und jeden Zustand $r \in \varepsilon\text{-closure}(p)$ eine Transition $(q, a, r)$ hinzugefügt wird. Die Finalzustände sind alle Zustände $q$, deren $\varepsilon$-Hülle mindestens einen ursprünglichen Finalzustand enthält. 3. **Potenzmengenkonstruktion:** Konvertiere den resultierenden NFA zu einem DFA $M'$ mittels Potenzmengenkonstruktion. **Begründung für die Schranke $f(n) = 2^n$:** Der konstruierte NFA hat dieselben $n$ Zustände wie der ursprüngliche DFA $M$. Bei der Potenzmengenkonstruktion entspricht jeder Zustand des resultierenden DFA einer Teilmenge der NFA-Zustände. Da es maximal $2^n$ verschiedene Teilmengen von $n$ Zuständen gibt, hat der resultierende DFA $M'$ höchstens $2^n$ Zustände. Die Korrektheit folgt daraus, dass ein Wort $w \in \{a,b\}^*$ genau dann von $M'$ akzeptiert wird, wenn es ein Wort $v \in \{a,b,c\}^*$ gibt mit $w = R_c(v)$ und $v \in L(M)$. </answer>
Sei eine Sprache. Wir definieren die Sprache als die Menge der Wörter, die man erhält, wenn man aus jedem Wort von jedes Zeichen löscht. Zum Beispiel gilt . Sei ein DFA mit Zuständen. Wählen Sie eine Funktion , sodass es einen DFA für mit höchstens Zuständen gibt und beschreiben Sie einen Algorithmus, um zu berechnen uns argumentieren Sie, wieso höchstens Zustände hat.
Ihre Wahl: Begründung: Algorithmus zur Konstruktion von : Gegeben sei ein DFA mit Zuständen. 1. Konstruiere einen NFA mit -Transitionen: Erstelle einen NFA mit: - Denselben Zuständen wie - Für jede Transition mit : füge zu hinzu - Für jede Transition : füge zu hinzu 2. Entferne -Transitionen: Berechne für jeden Zustand die -Hülle . Erstelle einen NFA ohne -Transitionen, indem für jede Transition mit und jeden Zustand eine Transition hinzugefügt wird. Die Finalzustände sind alle Zustände , deren -Hülle mindestens einen ursprünglichen Finalzustand enthält. 3. Potenzmengenkonstruktion: Konvertiere den resultierenden NFA zu einem DFA mittels Potenzmengenkonstruktion. Begründung für die Schranke : Der konstruierte NFA hat dieselben Zustände wie der ursprüngliche DFA . Bei der Potenzmengenkonstruktion entspricht jeder Zustand des resultierenden DFA einer Teilmenge der NFA-Zustände. Da es maximal verschiedene Teilmengen von Zuständen gibt, hat der resultierende DFA höchstens Zustände. Die Korrektheit folgt daraus, dass ein Wort genau dann von akzeptiert wird, wenn es ein Wort gibt mit und .
Exercise 3: Rekursive Funktionen
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus höchstens eine Null an einer beliebigen Stelle hinzufügt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Rekursive Funktionen
Sei $\Sigma:=\{0,1\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $N(L)$ die Sprache, die man erhält, wenn man den Wörtern aus $L$ **höchstens eine** Null an einer beliebigen Stelle hinzufügt. Formal definieren wir
\[N(L):= \{vxw \mid v,w\in \Sigma^*\wedge x\in \{0,\varepsilon\}\wedge vw\in L\}\]
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $N(\{01, 0\})$ explizit auf:
<answer-template id="1">
$N(\{01, 0\})=\{?\}$
</answer-template>
<example>
$N(\{01, 0\})=\{\varepsilon, 0, 01\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me understand the problem. We have $\Sigma = \{0, 1\}$, and for a language $L \subseteq \Sigma^*$, we define $N(L)$ as the language obtained by adding at most one zero at any position in the words from $L$. The formal definition is: $N(L) := \{vxw \mid v,w \in \Sigma^* \wedge x \in \{0, \varepsilon\} \wedge vw \in L\}$ So for a word $vw \in L$, we can: 1. Not add any zero (when $x = \varepsilon$), giving us $vw$ 2. Add one zero at any position by choosing appropriate $v$ and $w$ such that $vw$ is the original word, and inserting $x = 0$ between them Now I need to find $N(\{01, 0\})$. The language $L = \{01, 0\}$ contains two words: "01" and "0". For the word "01": - We can add a 0 at the beginning: "001" - We can add a 0 between 0 and 1: "001" (same as above) - We can add a 0 at the end: "010" - We can not add any 0: "01" Wait, let me be more careful. If $vw = 01$, then: - $v = \varepsilon, w = 01$: we get $\varepsilon \cdot x \cdot 01$, which gives "01" (if $x = \varepsilon$) or "001" (if $x = 0$) - $v = 0, w = 1$: we get $0 \cdot x \cdot 1$, which gives "01" (if $x = \varepsilon$) or "001" (if $x = 0$) - $v = 01, w = \varepsilon$: we get $01 \cdot x \cdot \varepsilon$, which gives "01" (if $x = \varepsilon$) or "010" (if $x = 0$) So from "01" we can get: "01", "001", "010" For the word "0": - $v = \varepsilon, w = 0$: we get $\varepsilon \cdot x \cdot 0$, which gives "0" (if $x = \varepsilon$) or "00" (if $x = 0$) I'll continue analyzing the possible variations for the word "0" to complete the $N(L)$ calculation. The set includes multiple ways to insert characters, revealing the language's generation possibilities through different insertion points and empty string combinations. When $v = 0, w = 1$, inserting $x = 0$ produces $001$, confirming the pattern. By systematically exploring insertion locations for zero, we derive the complete set of words. The final collection represents all valid transformations, ordered lexicographically to ensure clarity and completeness. Methodically examining each original word reveals the systematic process of zero insertion, generating new valid strings while preserving the underlying structure.
Answer
Looking at the definition of $N(L)$, I need to find all words that can be formed by taking words from $L = \{01, 0\}$ and adding at most one zero at any position. For the word **01** from $L$: - I can split it as $v = \varepsilon, w = 01$ and insert: - $x = \varepsilon$: gives $01$ - $x = 0$: gives $001$ - I can split it as $v = 0, w = 1$ and insert: - $x = \varepsilon$: gives $01$ - $x = 0$: gives $001$ - I can split it as $v = 01, w = \varepsilon$ and insert: - $x = \varepsilon$: gives $01$ - $x = 0$: gives $010$ From "01" I get: $\{01, 001, 010\}$ For the word **0** from $L$: - I can split it as $v = \varepsilon, w = 0$ and insert: - $x = \varepsilon$: gives $0$ - $x = 0$: gives $00$ - I can split it as $v = 0, w = \varepsilon$ and insert: - $x = \varepsilon$: gives $0$ - $x = 0$: gives $00$ From "0" I get: $\{0, 00\}$ Therefore, combining all possibilities: <answer id="1"> $N(\{01, 0\})=\{0, 00, 01, 001, 010\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (6.0/6.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Rekursive Funktionen
Sei $\Sigma:=\{0,1\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $N(L)$ die Sprache, die man erhält, wenn man den Wörtern aus $L$ **höchstens eine** Null an einer beliebigen Stelle hinzufügt. Formal definieren wir
\[N(L):= \{vxw \mid v,w\in \Sigma^*\wedge x\in \{0,\varepsilon\}\wedge vw\in L\}\]
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $N(\{01, 0\})$ explizit auf:
<answer-template id="1">
$N(\{01, 0\})=\{?\}$
</answer-template>
<example>
$N(\{01, 0\})=\{\varepsilon, 0, 01\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the definition of $N(L)$, I need to find all words that can be formed by taking words from $L = \{01, 0\}$ and adding at most one zero at any position.
For the word **01** from $L$:
- I can split it as $v = \varepsilon, w = 01$ and insert:
- $x = \varepsilon$: gives $01$
- $x = 0$: gives $001$
- I can split it as $v = 0, w = 1$ and insert:
- $x = \varepsilon$: gives $01$
- $x = 0$: gives $001$
- I can split it as $v = 01, w = \varepsilon$ and insert:
- $x = \varepsilon$: gives $01$
- $x = 0$: gives $010$
From "01" I get: $\{01, 001, 010\}$
For the word **0** from $L$:
- I can split it as $v = \varepsilon, w = 0$ and insert:
- $x = \varepsilon$: gives $0$
- $x = 0$: gives $00$
- I can split it as $v = 0, w = \varepsilon$ and insert:
- $x = \varepsilon$: gives $0$
- $x = 0$: gives $00$
From "0" I get: $\{0, 00\}$
Therefore, combining all possibilities:
<answer id="1">
$N(\{01, 0\})=\{0, 00, 01, 001, 010\}$
</answer>
user:
## subproblem b (6.0 points)
Geben Sie eine rekursive Funktion $\Null$ an, sodass $\Null(r)$ ein regulärer Ausdruck mit $L(\Null(r)) = N(L(r))$ ist, für jeden regulären Ausdruck $r$. Im Folgenden sind $r,r_1,r_2$ reguläre Ausdrücke, und $a\in \Sigma$.
<answer-template id="1">
$\Null(\emptyset) := ?$
$\Null(\epsilon) := ?$
$\Null(a) := ?$
$\Null(r_1 \mid r_2) := ?$
$\Null(r_1 r_2) := ?$
$\Null(r^*) := ?$
</answer-template>
<example>
$\Null(\emptyset) := \epsilon$
...
$\Null(r_1 \mid r_2) := \Null(r_1) \Null(r_2)$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
I need to define a recursive function $\Null$ that transforms a regular expression $r$ into a new regular expression such that $L(\Null(r)) = N(L(r))$. Recall that $N(L) = \{vxw \mid v,w\in \Sigma^*\wedge x\in \{0,\varepsilon\}\wedge vw\in L\}$. This means for any word in $L$, we can insert at most one 0 at any position to get a word in $N(L)$. Let me think about each case: 1. $\Null(\emptyset)$: - $L(\emptyset) = \emptyset$ - $N(\emptyset) = \emptyset$ (no words to add zeros to) - So $\Null(\emptyset) = \emptyset$ 2. $\Null(\varepsilon)$: - $L(\varepsilon) = \{\varepsilon\}$ - $N(\{\varepsilon\}) = \{vxw \mid v,w\in \Sigma^*\wedge x\in \{0,\varepsilon\}\wedge vw = \varepsilon\}$ - Since $vw = \varepsilon$, we must have $v = w = \varepsilon$ - So we can have $x = \varepsilon$ giving $\varepsilon$, or $x = 0$ giving $0$ - Therefore $N(\{\varepsilon\}) = \{\varepsilon, 0\}$ - $\Null(\varepsilon) = \varepsilon \mid 0$ 3. $\Null(a)$ where $a \in \Sigma = \{0,1\}$: - If $a = 0$: $L(0) = \{0\}$ - $N(\{0\}) = \{vxw \mid vw = 0\}$ - Possible splits: $v=\varepsilon, w=0$ or $v=0, w=\varepsilon$ - With $x \in \{0, \varepsilon\}$, we get $\{0, 00\}$ - So $\Null(0) = 0 \mid 00$ - If $a = 1$: $L(1) = \{1\}$ - $N(\{1\}) = \{vxw \mid v$ would continue the analysis for the case of $a = 1$, examining how to insert a zero into the word $1$. - Splitting possibilities emerge: either zero before or after the symbol - Generating variations like $1, 01, 10$ through different zero placements - Characterizing $\Null(1)$ as containing these zero-inserted forms - A generalized approach emerges for symbol insertion across the alphabet - Zero can be strategically positioned before or after any given symbol - Creating new word variations through systematic zero insertion For concatenated expressions: - Union operation applies to language sets - Null sets combine through union mechanism - Concatenated null sets follow predictable combination rules Exploring concatenation's null language behavior reveals systematic transformation patterns, where zero insertion and set union create new linguistic representations. I'll insert 0 between $w_1$ and $w_2$, creating words from $L(r_1) \cdot \{0\} \cdot L(r_2)$. Without inserting 0, we get words from $L(r_1) \cdot L(r_2)$. The set of words $N(L(r_1 r_2))$ combines inserting 0 in the first part or second part, avoiding double-counting. The key is adding at most one 0 across different word positions. By carefully considering word construction, we can generate all possible variations without redundancy. The process involves strategic 0 placement to capture unique word formations. The key operations involve: - Inserting 0 in different language segments - Exploring combinations that preserve original language structures - Identifying unique word generation strategies The union of these approaches ensures comprehensive word coverage while maintaining the original language's fundamental properties. I'll split the word at different points, inserting 0 or nothing: - Splitting within the first word gives $v_1 x v_2$ where $v_1 v_2$ belongs to $L(r_1)$, generating words in $N(L(r_1)) \cdot L(r_2)$ - Splitting within the second word produces $w_1 v_1 x v_2$ with $v_1 v_2$ in $L(r_2)$, creating words in $L(r_1) \cdot N(L(r_2))$ - Splitting between words yields $w_1 x w_2$, which when $x$ is empty, simply returns the original concatenated word $w_1 w_2$ The complete neighborhood set includes these variations, potentially inserting 0 or no symbol between language elements. Examining $L(r_1) = \{a\}$ and $L(r_2) = \{b\}$ reveals multiple insertion possibilities. The neighborhood generation involves systematically exploring where zero can be inserted relative to existing language symbols. By applying the neighborhood construction rules, we generate combinations like $ab$, $0ab$, $a0b$, and $ab0$, capturing all potential zero insertions around the original language elements. The formula systematically explores neighborhood generation by considering insertions at different positions within language concatenations. $\Null(r_1 r_2)$ involves three key scenarios: inserting null from $r_1$, inserting null from $r_2$, and adding a zero between $r_1$ and $r_2$. These cases capture distinct language variations without redundancy. The union operation naturally manages potential duplicates, ensuring comprehensive coverage of null language possibilities. For $\Null(r^*)$, the language involves sequences of words from $L(r)$ with strategic zero insertions. We can construct these sequences by carefully placing zeros within or between word components, exploring multiple insertion strategies that preserve the underlying language structure. The key observation involves two primary scenarios: either the word is empty or it consists of concatenated words from $L(r)$ with potential zero modifications. By systematically examining zero insertion possibilities within word components, we can characterize the null language's composition. The recursive definition emerges through multiple zero insertion strategies: within initial word segments, between word segments, and through empty word considerations. This leads to a complex recursive relationship capturing the null language's structure. The challenge now involves solving this recursive formulation to precisely define $N(L(r^*))$ without falling into infinite recursion. The key insight reveals two fundamental word generation mechanisms: preserving original $L(r^*)$ words and strategically inserting a single zero across different word positions. This approach systematically explores zero placement while maintaining the underlying language structure. Specifically, zero insertion occurs either between concatenated words or within individual words from the language. The process involves three critical scenarios: - Preserving original language words - Inserting zero between word boundaries - Inserting zero within a specific word's context The comprehensive representation captures these variations through a precise set-theoretic formulation, elegantly mapping the language's transformation under zero insertion. Exploring a concrete example with $r = a$ reveals the nuanced behavior of this language modification, highlighting the intricate patterns of zero insertion across different word structures. The pattern emerges as words with zero inserted at various positions, generating sequences like $a^i 0 a^j$ for all non-negative indices. This suggests a more complex relationship between the original language and its zero-insertion variant. The key observation is the comprehensive coverage: including the original language and all possible zero-insertion configurations, which can be elegantly represented as $a^* \mid a^* 0 a^*$. However, this formulation introduces potential complexity with multiple zero placements, requiring a more nuanced approach to capturing the precise zero-insertion mechanism. The key insight involves three critical zero-insertion scenarios for $r^*$: at the beginning, end, between instances, and within a single instance. The recursive nature of $r^*$ suggests a comprehensive representation that accounts for these variations. Examining the language structure more carefully reveals a fundamental relationship between zero insertion and the Kleene star's inherent properties, particularly how nullability propagates through repeated language compositions. The recursive equation elegantly captures these complex interactions, demonstrating how zero can be systematically introduced across different language transformations. By rearranging the terms, we see a pattern emerging where $X$ represents a sophisticated composition of language elements, incorporating zero and repeated language structures. The approach reveals how zero placement creates nuanced language variations within the recursive framework. Exploring zero insertion strategies shows two primary mechanisms: prefixing and suffixing, which fundamentally alter the language's structural characteristics while maintaining core transformation rules. The investigation reveals multiple insertion techniques: - Prefix zero placement - Suffix zero placement - Interstitial zero insertion between language elements - Zero insertion within individual language components - Preserving original language structure without zero modification The complexity lies in precisely constraining zero insertion to occur exactly once, avoiding multiple zero proliferation while maintaining the language's fundamental recursive properties. A potential elegant solution emerges: representing zero insertion through a concise alternation between the original language and a modified language containing a single zero. The proposed formulation $\Null(r^*) = r^* \mid r^* 0 r^*$ captures this constraint efficiently, allowing zero insertion between language elements while preventing excessive zero multiplication. By examining the $a$ example, we see this approach generates comprehensive word sets - including empty strings, pure letter sequences, and sequences with strategically placed zeros. Considering a more complex pattern like $ab$, the null set generation becomes intricate. We systematically explore zero insertions at different word positions: starting with empty strings, then single concatenated terms, and progressively more complex combinations. Each iteration introduces zeros at strategic locations while preserving the original word's fundamental structure. The null set generation follows a methodical pattern, systematically expanding from minimal representations to increasingly complex word constructions, always maintaining the core linguistic pattern's integrity. Critically, the challenge lies in capturing all potential zero insertion scenarios, especially those embedded within word instances, not just at boundaries. This requires a nuanced approach that tracks zero placement across multiple word segments. The solution involves three key zero insertion strategies: inserting between word segments, within a single word segment where nullability permits, and leveraging the recursive nature of the star operation. By combining these methods through a union operation, we can comprehensively model zero insertion without redundancy. The proposed formula elegantly handles complex zero placement by recursively exploring different insertion possibilities across the language's word structure. Critically, the definition ensures that all original language words are preserved while systematically expanding the language through strategic zero insertions. By examining the specific example of $r = ab$, I can trace how null language generation works through recursive decomposition. The process involves systematically exploring insertion possibilities at different word positions, revealing complex language transformations. The key observation is how null language generation creates variations by strategically inserting zeros, maintaining original word structures while expanding linguistic possibilities. For instance, when $i = 1$ and $j = 0$, the language generation produces new word combinations like $abab \mid ab0ab \mid aba0b \mid abab0$, demonstrating intricate pattern generation. The zero insertion process reveals fascinating structural relationships between original words and their null language representations, showing how simple rules can generate complex linguistic variations. Exploring these transformations suggests a systematic approach to understanding language generation through strategic zero insertions and repetitive pattern constructions. The key insights involve two primary mechanisms for zero insertion: - Inserting zero between existing language instances - Inserting zero within language instances This leads to a comprehensive representation capturing multiple zero placement strategies, ensuring complete coverage of possible language transformations while maintaining the original structural integrity. The approach elegantly handles different scenarios from empty sets to single character languages, demonstrating a flexible zero insertion framework. Specific zero insertion patterns emerge across different regular expression constructs, systematically exploring insertion possibilities at each linguistic structure's boundaries and internal regions.
Answer
Looking at the definition of $N(L)$, I need to construct a recursive function that adds at most one zero at any position to words in the language. Let me work through each case: **Base cases:** - For $\emptyset$: Since there are no words in $L(\emptyset)$, there are no words to add zeros to, so $N(\emptyset) = \emptyset$. - For $\varepsilon$: The language contains only the empty word. We can either not add a zero (giving $\varepsilon$) or add a zero (giving $0$). So $N(\{\varepsilon\}) = \{\varepsilon, 0\}$. - For $a \in \Sigma$: We can insert zero before $a$ (giving $0a$), after $a$ (giving $a0$), or not at all (giving $a$). **Recursive cases:** - For union $r_1 \mid r_2$: Since $L(r_1 \mid r_2) = L(r_1) \cup L(r_2)$, we have $N(L(r_1) \cup L(r_2)) = N(L(r_1)) \cup N(L(r_2))$. - For concatenation $r_1 r_2$: We can insert the zero within the first part, within the second part, or between them. This gives us $N(L(r_1)) \cdot L(r_2) \cup L(r_1) \cdot N(L(r_2)) \cup L(r_1) \cdot \{0\} \cdot L(r_2)$. - For Kleene star $r^*$: We can insert the zero between any two repetitions of $r$ (giving $r^* 0 r^*$) or within one repetition of $r$ (giving $r^* \Null(r) r^*$). <answer id="1"> $\Null(\emptyset) := \emptyset$ $\Null(\epsilon) := \epsilon \mid 0$ $\Null(a) := a \mid 0a \mid a0$ $\Null(r_1 \mid r_2) := \Null(r_1) \mid \Null(r_2)$ $\Null(r_1 r_2) := \Null(r_1) r_2 \mid r_1 \Null(r_2) \mid r_1 0 r_2$ $\Null(r^*) := r^* 0 r^* \mid r^* \Null(r) r^*$ </answer>
Geben Sie eine rekursive Funktion an, sodass ein regulärer Ausdruck mit ist, für jeden regulären Ausdruck . Im Folgenden sind reguläre Ausdrücke, und .
Subproblem c (6.0/6.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Rekursive Funktionen
Sei $\Sigma:=\{0,1\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $N(L)$ die Sprache, die man erhält, wenn man den Wörtern aus $L$ **höchstens eine** Null an einer beliebigen Stelle hinzufügt. Formal definieren wir
\[N(L):= \{vxw \mid v,w\in \Sigma^*\wedge x\in \{0,\varepsilon\}\wedge vw\in L\}\]
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $N(\{01, 0\})$ explizit auf:
<answer-template id="1">
$N(\{01, 0\})=\{?\}$
</answer-template>
<example>
$N(\{01, 0\})=\{\varepsilon, 0, 01\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the definition of $N(L)$, I need to find all words that can be formed by taking words from $L = \{01, 0\}$ and adding at most one zero at any position.
For the word **01** from $L$:
- I can split it as $v = \varepsilon, w = 01$ and insert:
- $x = \varepsilon$: gives $01$
- $x = 0$: gives $001$
- I can split it as $v = 0, w = 1$ and insert:
- $x = \varepsilon$: gives $01$
- $x = 0$: gives $001$
- I can split it as $v = 01, w = \varepsilon$ and insert:
- $x = \varepsilon$: gives $01$
- $x = 0$: gives $010$
From "01" I get: $\{01, 001, 010\}$
For the word **0** from $L$:
- I can split it as $v = \varepsilon, w = 0$ and insert:
- $x = \varepsilon$: gives $0$
- $x = 0$: gives $00$
- I can split it as $v = 0, w = \varepsilon$ and insert:
- $x = \varepsilon$: gives $0$
- $x = 0$: gives $00$
From "0" I get: $\{0, 00\}$
Therefore, combining all possibilities:
<answer id="1">
$N(\{01, 0\})=\{0, 00, 01, 001, 010\}$
</answer>
user:
## subproblem b (6.0 points)
Geben Sie eine rekursive Funktion $\Null$ an, sodass $\Null(r)$ ein regulärer Ausdruck mit $L(\Null(r)) = N(L(r))$ ist, für jeden regulären Ausdruck $r$. Im Folgenden sind $r,r_1,r_2$ reguläre Ausdrücke, und $a\in \Sigma$.
<answer-template id="1">
$\Null(\emptyset) := ?$
$\Null(\epsilon) := ?$
$\Null(a) := ?$
$\Null(r_1 \mid r_2) := ?$
$\Null(r_1 r_2) := ?$
$\Null(r^*) := ?$
</answer-template>
<example>
$\Null(\emptyset) := \epsilon$
...
$\Null(r_1 \mid r_2) := \Null(r_1) \Null(r_2)$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the definition of $N(L)$, I need to construct a recursive function that adds at most one zero at any position to words in the language.
Let me work through each case:
**Base cases:**
- For $\emptyset$: Since there are no words in $L(\emptyset)$, there are no words to add zeros to, so $N(\emptyset) = \emptyset$.
- For $\varepsilon$: The language contains only the empty word. We can either not add a zero (giving $\varepsilon$) or add a zero (giving $0$). So $N(\{\varepsilon\}) = \{\varepsilon, 0\}$.
- For $a \in \Sigma$: We can insert zero before $a$ (giving $0a$), after $a$ (giving $a0$), or not at all (giving $a$).
**Recursive cases:**
- For union $r_1 \mid r_2$: Since $L(r_1 \mid r_2) = L(r_1) \cup L(r_2)$, we have $N(L(r_1) \cup L(r_2)) = N(L(r_1)) \cup N(L(r_2))$.
- For concatenation $r_1 r_2$: We can insert the zero within the first part, within the second part, or between them. This gives us $N(L(r_1)) \cdot L(r_2) \cup L(r_1) \cdot N(L(r_2)) \cup L(r_1) \cdot \{0\} \cdot L(r_2)$.
- For Kleene star $r^*$: We can insert the zero between any two repetitions of $r$ (giving $r^* 0 r^*$) or within one repetition of $r$ (giving $r^* \Null(r) r^*$).
<answer id="1">
$\Null(\emptyset) := \emptyset$
$\Null(\epsilon) := \epsilon \mid 0$
$\Null(a) := a \mid 0a \mid a0$
$\Null(r_1 \mid r_2) := \Null(r_1) \mid \Null(r_2)$
$\Null(r_1 r_2) := \Null(r_1) r_2 \mid r_1 \Null(r_2) \mid r_1 0 r_2$
$\Null(r^*) := r^* 0 r^* \mid r^* \Null(r) r^*$
</answer>
user:
## subproblem c (6.0 points)
Gegeben sei die folgende rekursive Funktion über dem Alphabet $\Sigma:=\{0,1\}$:
$\Cut(\emptyset) := \emptyset$
$\Cut(0) := \emptyset$
$\Cut(r_1 \mid r_2) := \Cut(r_1) \mid \Cut(r_2)$
$\Cut(r^*) := r^*\Cut(r)$
$\Cut(\epsilon) := \emptyset$
$\Cut(1) := \epsilon$
$\Cut(r_1 r_2) := \Cut(r_1)\mid r_1\Cut(r_2)$
Per struktureller Induktion über $r$ lässt sich zeigen, dass für alle $u,v\in\Sigma^*$ mit $u1v\in L(r)$ gilt, dass $u\in L(\Cut(r))$.
Vervollständigen Sie den Beweis für den Fall $r=r_1r_2$. Ergänzen Sie die Induktionshypothese(n) und führen Sie dann den Beweis. Kennzeichnen Sie Verwendungen der Induktionshypothesen im Beweis deutlich.
*Zu zeigen:* Für alle $u1v\in L(r_1r_2)$ mit $u,v\in\Sigma^*$ gilt $u\in L(\Cut(r_1r_2))$.
<answer-template id="1">
Induktionshypothese(n) für den Fall $r=r_1r_2$:
???
Beweis des Falls $r=r_1r_2$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me understand what this function $\Cut$ does. Looking at the definition, it seems like $\Cut(r)$ captures all prefixes before the first occurrence of '1' in words from $L(r)$. For the base cases: - $\Cut(\emptyset) = \emptyset$ - no words, no prefixes - $\Cut(0) = \emptyset$ - words containing only '0' have no '1', so no valid prefixes - $\Cut(\epsilon) = \emptyset$ - empty word has no '1', so no valid prefixes - $\Cut(1) = \epsilon$ - the word '1' has prefix $\epsilon$ before the '1' For the recursive cases: - $\Cut(r_1 \mid r_2) = \Cut(r_1) \mid \Cut(r_2)$ - union of prefixes from both alternatives - $\Cut(r^*) = r^*\Cut(r)$ - prefixes can come from any number of repetitions followed by a prefix from one more repetition - $\Cut(r_1 r_2) = \Cut(r_1) \mid r_1\Cut(r_2)$ - either the '1' is in the first part or in the second part Now for the proof by structural induction. We need to show that for all $u1v \in L(r_1r_2)$ with $u,v \in \Sigma^*$, we have $u \in L(\Cut(r_1r_2))$. The induction hypotheses would be: - For all $u1v \in L(r_1)$ with $u,v \in \Sigma^*$, we have $u \in L(\Cut(r_1))$ - For all $u1v \in L(r_2)$ with $u,v \in \Sigma^*$, we have $u \in L(\Cut(r_2))$ When a word $u1v$ is in $L(r_1r_2)$, it decomposes into $w_1w_2$ where $w_1$ belongs to $L(r_1)$ and $w_2$ belongs to $L(r_2)$. I'll analyze the scenarios where the '1' might appear. If the '1' occurs in $w_1$, then $w_1$ can be written as $u1v'$ with $v = v'w_2$. The induction hypothesis for $r_1$ guarantees that $u$ is in $L(\Cut(r_1))$. By the structure of $\Cut(r_1r_2)$, which equals $\Cut(r_1) \mid r_1\Cut(r_2)$, I can conclude $u$ is in $L(\Cut(r_1r_2))$. I'm carefully analyzing the decomposition of $u1v$ across $r_1$ and $r_2$, considering different possible placements of the '1' symbol. The key is understanding how the language components interact when splitting the word. The first case explores scenarios where the '1' appears within $w_1$, which requires a precise decomposition of the language components. I'll need to examine how this impacts the membership conditions for $\Cut(r_1r_2)$. In the second case, I'm tracking scenarios where the '1' resides in $w_2$, which introduces constraints on $w_1$ being composed only of '0' characters. This positioning reveals critical insights about prefix relationships and language membership. By decomposing $w_2$ into $u_21v_2$, I can establish connections between $u_2$ and language membership in $\Cut(r_2)$. The key observation emerges through carefully tracing how $u$ relates to $w_1u_2$ and subsequently to $L(r_1\Cut(r_2))$. The structural analysis demonstrates that $u$ inherits membership through precise decomposition and application of the induction hypothesis, ultimately confirming its presence in $\Cut(r_1r_2)$ via strategic manipulation of language components. Since $w_1 = u'1v'$ implies $u = u'$ and $v = v'w_2$, and $u'1v'$ is in $L(r_1)$, the induction hypothesis for $r_1$ confirms $u' \in L(\Cut(r_1))$. This means $u \in L(\Cut(r_1))$. Given $\Cut(r_1r_2) = \Cut(r_1) \mid r_1\Cut(r_2)$, we can conclude $u$ belongs to $L(\Cut(r_1r_2))$. In the second scenario, where '1' appears within $w_2$, $w_1$ contains no '1' and can be represented as $\{0\}^*$. We can decompose $w_2$ as $u_21v_2$, where $u_2$ and $v_2$ are in $\Sigma^*$. Analyzing $u1v = w_1w_2 = w_1u_21v_2$ reveals $u = w_1u_2$ and $v = v_2$. Since $u_21v_2$ is in $L(r_2)$, the induction hypothesis for $r_2$ implies $u_2 \in L(\Cut(r_2))$. Consequently, $u = w_1u_2$ is in $L(r_1\Cut(r_2))$, and $\Cut(r_1r_2) = \Cut(r_1) \mid r_1\Cut(r_2)$ confirms $u \in L(\Cut(r_1r_2))$. I'll analyze the two possible cases for the '1' in the word $u1v$, focusing on its position relative to $w_1$ and $w_2$. The '1' can be located either within $w_1$ or within $w_2$, which determines how we decompose the word. If the '1' is in $w_1$, we can represent $w_1$ as $u1v'$ with a specific relationship to the original decomposition. This positioning allows us to explore the structural constraints of the word's composition. In the first case where the '1' is within $w_1$, we can derive a specific relationship between $v$ and $w_2$ by examining the word's structure and the placement of the '1'. For the second case, when the '1' is within $w_2$, we define a prefix $u_2$ that connects $w_1$ and $w_2$ through a specific length relationship. This enables us to understand how the word can be reconstructed based on the positioning of the '1'. The key insight involves tracing how the word's components relate to the cut operation and the language recognition properties of the regular expressions. By applying the induction hypothesis to $r_2$ and examining the structure of $u_2$ and $w_2$, we can demonstrate membership in $L(r_1\Cut(r_2))$, ultimately confirming the word's presence in $L(\Cut(r_1r_2))$.
Answer
Looking at the problem, I need to prove that for the concatenation case $r = r_1r_2$, if $u1v \in L(r_1r_2)$ with $u,v \in \Sigma^*$, then $u \in L(\Cut(r_1r_2))$. <answer id="1"> Induktionshypothese(n) für den Fall $r=r_1r_2$: - **(IH1):** Für alle $u1v \in L(r_1)$ mit $u,v \in \Sigma^*$ gilt $u \in L(\Cut(r_1))$. - **(IH2):** Für alle $u1v \in L(r_2)$ mit $u,v \in \Sigma^*$ gilt $u \in L(\Cut(r_2))$. Beweis des Falls $r=r_1r_2$: Sei $u1v \in L(r_1r_2)$ mit $u,v \in \Sigma^*$ beliebig gewählt. Da $u1v \in L(r_1r_2)$, existieren Wörter $w_1 \in L(r_1)$ und $w_2 \in L(r_2)$ mit $u1v = w_1w_2$. Wir unterscheiden zwei Fälle, je nachdem wo die '1' in der Konkatenation $w_1w_2$ auftritt: **Fall 1:** Die '1' befindet sich innerhalb von $w_1$ (d.h. $|u| + 1 \leq |w_1|$). Dann können wir $w_1 = u1v'$ für ein $v' \in \Sigma^*$ schreiben, wobei $v = v'w_2$. Da $u1v' = w_1 \in L(r_1)$, folgt aus **(IH1)**, dass $u \in L(\Cut(r_1))$. Da $\Cut(r_1r_2) = \Cut(r_1) \mid r_1\Cut(r_2)$, gilt $u \in L(\Cut(r_1r_2))$. **Fall 2:** Die '1' befindet sich innerhalb von $w_2$ (d.h. $|u| + 1 > |w_1|$). Sei $u_2$ das Präfix von $w_2$ der Länge $|u| - |w_1|$, sodass $u = w_1u_2$. Dann gilt $w_2 = u_21v_2$ für ein $v_2 \in \Sigma^*$ mit $v = v_2$. Da $u_21v_2 = w_2 \in L(r_2)$, folgt aus **(IH2)**, dass $u_2 \in L(\Cut(r_2))$. Daher gilt $u = w_1u_2 \in L(r_1\Cut(r_2))$. Da $\Cut(r_1r_2) = \Cut(r_1) \mid r_1\Cut(r_2)$, gilt $u \in L(\Cut(r_1r_2))$. In beiden Fällen haben wir gezeigt, dass $u \in L(\Cut(r_1r_2))$. </answer>
Gegeben sei die folgende rekursive Funktion über dem Alphabet : Per struktureller Induktion über lässt sich zeigen, dass für alle mit gilt, dass . Vervollständigen Sie den Beweis für den Fall . Ergänzen Sie die Induktionshypothese(n) und führen Sie dann den Beweis. Kennzeichnen Sie Verwendungen der Induktionshypothesen im Beweis deutlich. Zu zeigen: Für alle mit gilt .
Induktionshypothese(n) für den Fall $r=r_1r_2$: - **(IH1):** Für alle $u1v \in L(r_1)$ mit $u,v \in \Sigma^*$ gilt $u \in L(\Cut(r_1))$. - **(IH2):** Für alle $u1v \in L(r_2)$ mit $u,v \in \Sigma^*$ gilt $u \in L(\Cut(r_2))$. Beweis des Falls $r=r_1r_2$: Sei $u1v \in L(r_1r_2)$ mit $u,v \in \Sigma^*$ beliebig gewählt. Da $u1v \in L(r_1r_2)$, existieren Wörter $w_1 \in L(r_1)$ und $w_2 \in L(r_2)$ mit $u1v = w_1w_2$. Wir unterscheiden zwei Fälle, je nachdem wo die '1' in der Konkatenation $w_1w_2$ auftritt: **Fall 1:** Die '1' befindet sich innerhalb von $w_1$ (d.h. $|u| + 1 \leq |w_1|$). Dann können wir $w_1 = u1v'$ für ein $v' \in \Sigma^*$ schreiben, wobei $v = v'w_2$. Da $u1v' = w_1 \in L(r_1)$, folgt aus **(IH1)**, dass $u \in L(\Cut(r_1))$. Da $\Cut(r_1r_2) = \Cut(r_1) \mid r_1\Cut(r_2)$, gilt $u \in L(\Cut(r_1r_2))$. **Fall 2:** Die '1' befindet sich innerhalb von $w_2$ (d.h. $|u| + 1 > |w_1|$). Sei $u_2$ das Präfix von $w_2$ der Länge $|u| - |w_1|$, sodass $u = w_1u_2$. Dann gilt $w_2 = u_21v_2$ für ein $v_2 \in \Sigma^*$ mit $v = v_2$. Da $u_21v_2 = w_2 \in L(r_2)$, folgt aus **(IH2)**, dass $u_2 \in L(\Cut(r_2))$. Daher gilt $u = w_1u_2 \in L(r_1\Cut(r_2))$. Da $\Cut(r_1r_2) = \Cut(r_1) \mid r_1\Cut(r_2)$, gilt $u \in L(\Cut(r_1r_2))$. In beiden Fällen haben wir gezeigt, dass $u \in L(\Cut(r_1r_2))$.
Exercise 4: CFG-Algorithmen
In den Teilaufgaben (a)-(d) geht es darum, eine kontextfreie Grammatik (CFG) in Chomsky-Normalform (CNF) zu konvertieren. Wir führen jeden Schritt einzeln aus, und jeweils auf einer anderen Grammatik – Sie können also die Aufgabenteile unabhängig voneinander bearbeiten. Eine CFG ist in CNF, wenn jede Produktion , mit und , folgende Bedingungen erfüllt: (1) ; Terminale dürfen nur in Produktionen der Länge 1 erzeugt werden. (2) ; jede Produktion hat höchstens Länge . (3) ; es gibt keine -Produktionen. (4) ; es gibt keine Kettenproduktionen. Achtung: Die Teilaufgaben fragen jeweils spezifisch nach dem Ergebnis, das sich durch die Ausführung des Algorithmus aus der Vorlesung ergibt, nicht nach einer beliebigen äquivalenten CFG, die den Bedingungen genügt. Details, wie etwa die Namen der Variablen oder die Reihenfolge, in der Produktionen betrachtet werden, können Sie frei wählen. Wir nennen eine -Produktion. \begin{Lemma} Zu jeder CFG kann man eine CFG konstruieren, die keine -Produktionen enthält, so dass gilt \end{Lemma} Wir erweitern induktiv zu eine Obermenge : \begin{enumerate} \item Jede Produktion aus ist in \item Sind \alert{} und \alert{} in , so füge auch \alert{} hinzu. \end{enumerate} Offensichtlich gilt : Jede neue Produktion kann von 2 alten Productionensimuliert werden. Wir definieren als ohne die -Produktionen. Denn diese sind nun überflüssig. Wir nennen eine Kettenproduktion. \begin{Lemma} Zu jeder CFG kann man eine CFG konstruieren, die keine Kettenproduktionen enthält, so dass gilt . \end{Lemma} \begin{Beweis} Wir erweitern induktiv zu eine Obermenge : \begin{enumerate} \item Jede Produktion aus ist in \item Sind \alert{} und \alert{} in mit , so füge auch \alert{} hinzu. \end{enumerate} Das Ergebnis ist ohne die (nun überflüssigen) Kettenproduktionen. \paragraph{Konstruktion einer Chomsky-Normalform} Eingabe: Eine kontextfreie Grammatik \begin{enumerate} \item Füge für jedes , das in einer rechten Seite der Länge vorkommt, ein neues Nichtterminal zu hinzu, ersetze in allen rechten Seiten der Länge durch , und füge zu hinzu. \item Ersetze jede Produktion der Form durch wobei neue Nichtterminale sind. \item Eliminiere alle -Produktionen. \item Eliminiere alle Kettenproduktionen. \end{enumerate}
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: CFG-Algorithmen
In den Teilaufgaben (a)-(d) geht es darum, eine kontextfreie Grammatik (CFG) in Chomsky-Normalform (CNF) zu konvertieren. Wir führen jeden Schritt einzeln aus, und jeweils auf einer anderen Grammatik – Sie können also die Aufgabenteile unabhängig voneinander bearbeiten.
Eine CFG $G=(V,\Sigma,P,S)$ ist in CNF, wenn jede Produktion $(X\rightarrow\alpha)\in P$, mit $X\in V$ und $\alpha\in(\Sigma\cup V)^*$, folgende Bedingungen erfüllt:
(1) $\alpha\in\Sigma\cup V^*$; Terminale dürfen nur in Produktionen der Länge 1 erzeugt werden.
(2) $|\alpha|\le2$; jede Produktion hat höchstens Länge $2$.
(3) $\alpha\ne\varepsilon$; es gibt keine $\varepsilon$-Produktionen.
(4) $\alpha\notin V$; es gibt keine Kettenproduktionen.
**Achtung:** Die Teilaufgaben fragen jeweils spezifisch nach dem Ergebnis, das sich durch die Ausführung des Algorithmus aus der Vorlesung ergibt, nicht nach einer beliebigen äquivalenten CFG, die den Bedingungen genügt. Details, wie etwa die Namen der Variablen oder die Reihenfolge, in der Produktionen betrachtet werden, können Sie frei wählen.
Wir nennen $A \rightarrow \epsilon$ eine *$\epsilon$-Produktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine $\epsilon$-Produktionen enthält, so dass gilt
$L(G') = L(G)\setminus\{\epsilon\}$
\end{Lemma}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$B \rightarrow \epsilon$} und \alert{$A \rightarrow \alpha B \beta$} in $\hat{P}$, so füge auch \alert{$A \rightarrow \alpha\beta$} hinzu.
\end{enumerate}
Offensichtlich gilt $L(\hat{G}) = L(G)$: Jede neue Produktion kann von 2 alten Productionensimuliert werden.
Wir definieren $G'$ als $\hat{G}$ ohne die $\epsilon$-Produktionen. Denn diese sind nun überflüssig.
Wir nennen $A \rightarrow B$ eine *Kettenproduktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine Kettenproduktionen enthält, so dass gilt $L(G') = L(G)$.
\end{Lemma}
\begin{Beweis}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$A \rightarrow B$} und \alert{$B \rightarrow \alpha$} in $\hat{P}$ mit $\alpha \neq A$, so füge auch \alert{$A \rightarrow \alpha$} hinzu.
\end{enumerate}
Das Ergebnis $G'$ ist $\hat{G}$ ohne die (nun überflüssigen) Kettenproduktionen.
\paragraph{Konstruktion einer Chomsky-Normalform}
Eingabe: Eine kontextfreie Grammatik $G = (V,\Sigma,P,S)$
\begin{enumerate}
\item Füge für jedes $a\in\Sigma$, das in einer rechten Seite der Länge $\geq2$ vorkommt, ein neues Nichtterminal $A_a$ zu $V$ hinzu, ersetze $a$ in allen rechten Seiten der Länge $\geq 2$ durch $A_a$, und füge $A_a\rightarrow a$ zu $P$ hinzu.
\item Ersetze jede Produktion der Form
\[A\rightarrow B_1B_2 \cdots B_k (k \geq 3)\]
durch
\[A \rightarrow B_1C_2,\ C_2 \rightarrow B_2C_3, ..., C_{k-1} \rightarrow B_{k-1}B_k \]
wobei $C_2, ..., C_{k-1}$ neue Nichtterminale sind.
\item Eliminiere alle $\epsilon$-Produktionen.
\item Eliminiere alle Kettenproduktionen.
\end{enumerate}
## subproblem a (2.0 points)
*Entfernen von Terminalen in langen Produktionen.* Die CFG $G_a$ ist gegeben durch folgende Produktionen:
$S \rightarrow aX \mid Xa \mid ab$
$X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Führen Sie den ersten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_a$ an, so dass $L(G_a) = L(G'_a)$ gilt und $G'_a$ Bedingung (1) erfüllt.
<example>
$S \rightarrow XX \mid aa \mid \varepsilon$
$X \rightarrow SX \mid X$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me work through this step by step. The first step of the algorithm says: "Füge für jedes $a\in\Sigma$, das in einer rechten Seite der Länge $\geq2$ vorkommt, ein neues Nichtterminal $A_a$ zu $V$ hinzu, ersetze $a$ in allen rechten Seiten der Länge $\geq 2$ durch $A_a$, und füge $A_a\rightarrow a$ zu $P$ hinzu." So I need to look at the original grammar $G_a$: $S \rightarrow aX \mid Xa \mid ab$ $X \rightarrow SS \mid S \mid \varepsilon \mid bXX$ First, identify terminals that appear in productions of length ≥ 2: - In $S \rightarrow aX$: terminal 'a' appears, length is 2 - In $S \rightarrow Xa$: terminal 'a' appears, length is 2 - In $S \rightarrow ab$: terminals 'a' and 'b' appear, length is 2 - In $X \rightarrow SS$: no terminals, length is 2 - In $X \rightarrow S$: no terminals (this is length 1) - In $X \rightarrow \varepsilon$: no terminals (this is length 0) - In $X \rightarrow bXX$: terminal 'b' appears, length is 3 So terminals 'a' and 'b' both appear in productions of length ≥ 2. According to the algorithm: 1. Add new nonterminals $A_a$ and $A_b$ to V 2. Replace 'a' in all right-hand sides of length ≥ 2 with $A_a$ 3. Replace 'b' in all right-hand sides of length ≥ 2 with $A_b$ 4. Add productions $A_a \rightarrow a$ and $A_b \rightarrow b$ I'll modify the grammar by systematically replacing terminals in productions of length 2 or more. The new grammar will introduce specialized nonterminals for each terminal symbol that appears in longer productions. The transformed grammar includes additional rules for $A_a$ and $A_b$, which allow direct generation of original terminals. These new productions ensure we can still generate the original symbols while maintaining the structural transformations. The resulting grammar $G'_a$ captures the original language structure with these carefully constructed productions, preparing for further verification of specific conditions. I see the terminal production for $A_b$ is valid, confirming the rule allows single-character terminal productions. The grammar maintains its structure with nonterminal combinations and single-character terminal symbols, meeting the specified constraints.
Answer
Looking at the grammar $G_a$: - $S \rightarrow aX \mid Xa \mid ab$ - $X \rightarrow SS \mid S \mid \varepsilon \mid bXX$ Step 1 of the CNF algorithm requires us to identify all terminals that appear in productions of length ≥ 2 and replace them with new nonterminals. The terminals appearing in productions of length ≥ 2 are: - Terminal 'a' appears in: $S \rightarrow aX$ (length 2), $S \rightarrow Xa$ (length 2), $S \rightarrow ab$ (length 2) - Terminal 'b' appears in: $S \rightarrow ab$ (length 2), $X \rightarrow bXX$ (length 3) Following the algorithm: 1. Add new nonterminals $A_a$ and $A_b$ to $V$ 2. Replace all occurrences of 'a' in productions of length ≥ 2 with $A_a$ 3. Replace all occurrences of 'b' in productions of length ≥ 2 with $A_b$ 4. Add productions $A_a \rightarrow a$ and $A_b \rightarrow b$ <answer id="1"> $S \rightarrow A_aX \mid XA_a \mid A_aA_b$ $X \rightarrow SS \mid S \mid \varepsilon \mid A_bXX$ $A_a \rightarrow a$ $A_b \rightarrow b$ </answer>
Entfernen von Terminalen in langen Produktionen. Die CFG ist gegeben durch folgende Produktionen: Führen Sie den ersten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG an, so dass gilt und Bedingung (1) erfüllt.
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: CFG-Algorithmen
In den Teilaufgaben (a)-(d) geht es darum, eine kontextfreie Grammatik (CFG) in Chomsky-Normalform (CNF) zu konvertieren. Wir führen jeden Schritt einzeln aus, und jeweils auf einer anderen Grammatik – Sie können also die Aufgabenteile unabhängig voneinander bearbeiten.
Eine CFG $G=(V,\Sigma,P,S)$ ist in CNF, wenn jede Produktion $(X\rightarrow\alpha)\in P$, mit $X\in V$ und $\alpha\in(\Sigma\cup V)^*$, folgende Bedingungen erfüllt:
(1) $\alpha\in\Sigma\cup V^*$; Terminale dürfen nur in Produktionen der Länge 1 erzeugt werden.
(2) $|\alpha|\le2$; jede Produktion hat höchstens Länge $2$.
(3) $\alpha\ne\varepsilon$; es gibt keine $\varepsilon$-Produktionen.
(4) $\alpha\notin V$; es gibt keine Kettenproduktionen.
**Achtung:** Die Teilaufgaben fragen jeweils spezifisch nach dem Ergebnis, das sich durch die Ausführung des Algorithmus aus der Vorlesung ergibt, nicht nach einer beliebigen äquivalenten CFG, die den Bedingungen genügt. Details, wie etwa die Namen der Variablen oder die Reihenfolge, in der Produktionen betrachtet werden, können Sie frei wählen.
Wir nennen $A \rightarrow \epsilon$ eine *$\epsilon$-Produktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine $\epsilon$-Produktionen enthält, so dass gilt
$L(G') = L(G)\setminus\{\epsilon\}$
\end{Lemma}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$B \rightarrow \epsilon$} und \alert{$A \rightarrow \alpha B \beta$} in $\hat{P}$, so füge auch \alert{$A \rightarrow \alpha\beta$} hinzu.
\end{enumerate}
Offensichtlich gilt $L(\hat{G}) = L(G)$: Jede neue Produktion kann von 2 alten Productionensimuliert werden.
Wir definieren $G'$ als $\hat{G}$ ohne die $\epsilon$-Produktionen. Denn diese sind nun überflüssig.
Wir nennen $A \rightarrow B$ eine *Kettenproduktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine Kettenproduktionen enthält, so dass gilt $L(G') = L(G)$.
\end{Lemma}
\begin{Beweis}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$A \rightarrow B$} und \alert{$B \rightarrow \alpha$} in $\hat{P}$ mit $\alpha \neq A$, so füge auch \alert{$A \rightarrow \alpha$} hinzu.
\end{enumerate}
Das Ergebnis $G'$ ist $\hat{G}$ ohne die (nun überflüssigen) Kettenproduktionen.
\paragraph{Konstruktion einer Chomsky-Normalform}
Eingabe: Eine kontextfreie Grammatik $G = (V,\Sigma,P,S)$
\begin{enumerate}
\item Füge für jedes $a\in\Sigma$, das in einer rechten Seite der Länge $\geq2$ vorkommt, ein neues Nichtterminal $A_a$ zu $V$ hinzu, ersetze $a$ in allen rechten Seiten der Länge $\geq 2$ durch $A_a$, und füge $A_a\rightarrow a$ zu $P$ hinzu.
\item Ersetze jede Produktion der Form
\[A\rightarrow B_1B_2 \cdots B_k (k \geq 3)\]
durch
\[A \rightarrow B_1C_2,\ C_2 \rightarrow B_2C_3, ..., C_{k-1} \rightarrow B_{k-1}B_k \]
wobei $C_2, ..., C_{k-1}$ neue Nichtterminale sind.
\item Eliminiere alle $\epsilon$-Produktionen.
\item Eliminiere alle Kettenproduktionen.
\end{enumerate}
## subproblem a (2.0 points)
*Entfernen von Terminalen in langen Produktionen.* Die CFG $G_a$ ist gegeben durch folgende Produktionen:
$S \rightarrow aX \mid Xa \mid ab$
$X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Führen Sie den ersten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_a$ an, so dass $L(G_a) = L(G'_a)$ gilt und $G'_a$ Bedingung (1) erfüllt.
<example>
$S \rightarrow XX \mid aa \mid \varepsilon$
$X \rightarrow SX \mid X$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_a$:
- $S \rightarrow aX \mid Xa \mid ab$
- $X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Step 1 of the CNF algorithm requires us to identify all terminals that appear in productions of length ≥ 2 and replace them with new nonterminals.
The terminals appearing in productions of length ≥ 2 are:
- Terminal 'a' appears in: $S \rightarrow aX$ (length 2), $S \rightarrow Xa$ (length 2), $S \rightarrow ab$ (length 2)
- Terminal 'b' appears in: $S \rightarrow ab$ (length 2), $X \rightarrow bXX$ (length 3)
Following the algorithm:
1. Add new nonterminals $A_a$ and $A_b$ to $V$
2. Replace all occurrences of 'a' in productions of length ≥ 2 with $A_a$
3. Replace all occurrences of 'b' in productions of length ≥ 2 with $A_b$
4. Add productions $A_a \rightarrow a$ and $A_b \rightarrow b$
<answer id="1">
$S \rightarrow A_aX \mid XA_a \mid A_aA_b$
$X \rightarrow SS \mid S \mid \varepsilon \mid A_bXX$
$A_a \rightarrow a$
$A_b \rightarrow b$
</answer>
user:
## subproblem b (2.0 points)
*Entfernen langer Produktionen.* Die CFG $G_b$ ist gegeben durch die folgenden Produktionen:
$S \rightarrow A \mid BAA \mid \varepsilon$
$A \rightarrow SABB \mid a$
$B \rightarrow AS \mid b$
Führen Sie den zweiten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_b$ an, so dass $L(G_b) = L(G'_b)$ und $G'_b$ Bedingungen (1) und (2) erfüllt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
The grammar $G_b$ is: - $S \rightarrow A \mid BAA \mid \varepsilon$ - $A \rightarrow SABB \mid a$ - $B \rightarrow AS \mid b$ Step 2 of the CNF algorithm is to replace productions of length ≥ 3 with multiple productions of length 2, introducing new nonterminals. Let me identify productions of length ≥ 3: - $S \rightarrow BAA$ (length 3) - $A \rightarrow SABB$ (length 4) For $S \rightarrow BAA$ (length 3): - Replace with: $S \rightarrow BC_1$ and $C_1 \rightarrow AA$ where $C_1$ is a new nonterminal For $A \rightarrow SABB$ (length 4): - Replace with: $A \rightarrow SC_2$, $C_2 \rightarrow AC_3$, $C_3 \rightarrow BB$ where $C_2, C_3$ are new nonterminals So the resulting grammar $G'_b$ would be: - $S \rightarrow A \mid BC_1 \mid \varepsilon$ - $C_1 \rightarrow AA$ - $A \rightarrow SC_2 \mid a$ - $C_2 \rightarrow AC_3$ - $C_3 \rightarrow BB$ - $B \rightarrow AS \mid b$ Let me double-check this follows the algorithm correctly: - For a production $A \rightarrow B_1B_2...B_k$ with $k \geq 3$, we replace it with: - $A \rightarrow B_1C_2$ - $C_2 \rightarrow B_2C_3$ - $C_3 \rightarrow B_3C_4$ - Continuing this pattern until the last two symbols I'll continue breaking down the production $S \rightarrow BAA$ systematically, creating intermediate nonterminals to ensure each production has at most two symbols. The key transformation involves replacing $C_1 \rightarrow AA$ with the specific production $C_2 \rightarrow AA$, which matches the general pattern of generating symbol sequences through intermediate nonterminals.
Answer
Looking at the grammar $G_b$: - $S \rightarrow A \mid BAA \mid \varepsilon$ - $A \rightarrow SABB \mid a$ - $B \rightarrow AS \mid b$ Step 2 of the CNF algorithm requires us to replace all productions of length ≥ 3 with multiple productions of length 2 by introducing new nonterminals. Productions of length ≥ 3: - $S \rightarrow BAA$ (length 3) - $A \rightarrow SABB$ (length 4) For $S \rightarrow BAA$ (k=3): - Replace with: $S \rightarrow BC_1$ and $C_1 \rightarrow AA$ For $A \rightarrow SABB$ (k=4): - Replace with: $A \rightarrow SC_2$, $C_2 \rightarrow AC_3$, and $C_3 \rightarrow BB$ <answer id="1"> $S \rightarrow A \mid BC_1 \mid \varepsilon$ $A \rightarrow SC_2 \mid a$ $B \rightarrow AS \mid b$ $C_1 \rightarrow AA$ $C_2 \rightarrow AC_3$ $C_3 \rightarrow BB$ </answer>
Entfernen langer Produktionen. Die CFG ist gegeben durch die folgenden Produktionen: Führen Sie den zweiten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG an, so dass und Bedingungen (1) und (2) erfüllt.
Subproblem c (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: CFG-Algorithmen
In den Teilaufgaben (a)-(d) geht es darum, eine kontextfreie Grammatik (CFG) in Chomsky-Normalform (CNF) zu konvertieren. Wir führen jeden Schritt einzeln aus, und jeweils auf einer anderen Grammatik – Sie können also die Aufgabenteile unabhängig voneinander bearbeiten.
Eine CFG $G=(V,\Sigma,P,S)$ ist in CNF, wenn jede Produktion $(X\rightarrow\alpha)\in P$, mit $X\in V$ und $\alpha\in(\Sigma\cup V)^*$, folgende Bedingungen erfüllt:
(1) $\alpha\in\Sigma\cup V^*$; Terminale dürfen nur in Produktionen der Länge 1 erzeugt werden.
(2) $|\alpha|\le2$; jede Produktion hat höchstens Länge $2$.
(3) $\alpha\ne\varepsilon$; es gibt keine $\varepsilon$-Produktionen.
(4) $\alpha\notin V$; es gibt keine Kettenproduktionen.
**Achtung:** Die Teilaufgaben fragen jeweils spezifisch nach dem Ergebnis, das sich durch die Ausführung des Algorithmus aus der Vorlesung ergibt, nicht nach einer beliebigen äquivalenten CFG, die den Bedingungen genügt. Details, wie etwa die Namen der Variablen oder die Reihenfolge, in der Produktionen betrachtet werden, können Sie frei wählen.
Wir nennen $A \rightarrow \epsilon$ eine *$\epsilon$-Produktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine $\epsilon$-Produktionen enthält, so dass gilt
$L(G') = L(G)\setminus\{\epsilon\}$
\end{Lemma}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$B \rightarrow \epsilon$} und \alert{$A \rightarrow \alpha B \beta$} in $\hat{P}$, so füge auch \alert{$A \rightarrow \alpha\beta$} hinzu.
\end{enumerate}
Offensichtlich gilt $L(\hat{G}) = L(G)$: Jede neue Produktion kann von 2 alten Productionensimuliert werden.
Wir definieren $G'$ als $\hat{G}$ ohne die $\epsilon$-Produktionen. Denn diese sind nun überflüssig.
Wir nennen $A \rightarrow B$ eine *Kettenproduktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine Kettenproduktionen enthält, so dass gilt $L(G') = L(G)$.
\end{Lemma}
\begin{Beweis}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$A \rightarrow B$} und \alert{$B \rightarrow \alpha$} in $\hat{P}$ mit $\alpha \neq A$, so füge auch \alert{$A \rightarrow \alpha$} hinzu.
\end{enumerate}
Das Ergebnis $G'$ ist $\hat{G}$ ohne die (nun überflüssigen) Kettenproduktionen.
\paragraph{Konstruktion einer Chomsky-Normalform}
Eingabe: Eine kontextfreie Grammatik $G = (V,\Sigma,P,S)$
\begin{enumerate}
\item Füge für jedes $a\in\Sigma$, das in einer rechten Seite der Länge $\geq2$ vorkommt, ein neues Nichtterminal $A_a$ zu $V$ hinzu, ersetze $a$ in allen rechten Seiten der Länge $\geq 2$ durch $A_a$, und füge $A_a\rightarrow a$ zu $P$ hinzu.
\item Ersetze jede Produktion der Form
\[A\rightarrow B_1B_2 \cdots B_k (k \geq 3)\]
durch
\[A \rightarrow B_1C_2,\ C_2 \rightarrow B_2C_3, ..., C_{k-1} \rightarrow B_{k-1}B_k \]
wobei $C_2, ..., C_{k-1}$ neue Nichtterminale sind.
\item Eliminiere alle $\epsilon$-Produktionen.
\item Eliminiere alle Kettenproduktionen.
\end{enumerate}
## subproblem a (2.0 points)
*Entfernen von Terminalen in langen Produktionen.* Die CFG $G_a$ ist gegeben durch folgende Produktionen:
$S \rightarrow aX \mid Xa \mid ab$
$X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Führen Sie den ersten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_a$ an, so dass $L(G_a) = L(G'_a)$ gilt und $G'_a$ Bedingung (1) erfüllt.
<example>
$S \rightarrow XX \mid aa \mid \varepsilon$
$X \rightarrow SX \mid X$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_a$:
- $S \rightarrow aX \mid Xa \mid ab$
- $X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Step 1 of the CNF algorithm requires us to identify all terminals that appear in productions of length ≥ 2 and replace them with new nonterminals.
The terminals appearing in productions of length ≥ 2 are:
- Terminal 'a' appears in: $S \rightarrow aX$ (length 2), $S \rightarrow Xa$ (length 2), $S \rightarrow ab$ (length 2)
- Terminal 'b' appears in: $S \rightarrow ab$ (length 2), $X \rightarrow bXX$ (length 3)
Following the algorithm:
1. Add new nonterminals $A_a$ and $A_b$ to $V$
2. Replace all occurrences of 'a' in productions of length ≥ 2 with $A_a$
3. Replace all occurrences of 'b' in productions of length ≥ 2 with $A_b$
4. Add productions $A_a \rightarrow a$ and $A_b \rightarrow b$
<answer id="1">
$S \rightarrow A_aX \mid XA_a \mid A_aA_b$
$X \rightarrow SS \mid S \mid \varepsilon \mid A_bXX$
$A_a \rightarrow a$
$A_b \rightarrow b$
</answer>
user:
## subproblem b (2.0 points)
*Entfernen langer Produktionen.* Die CFG $G_b$ ist gegeben durch die folgenden Produktionen:
$S \rightarrow A \mid BAA \mid \varepsilon$
$A \rightarrow SABB \mid a$
$B \rightarrow AS \mid b$
Führen Sie den zweiten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_b$ an, so dass $L(G_b) = L(G'_b)$ und $G'_b$ Bedingungen (1) und (2) erfüllt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_b$:
- $S \rightarrow A \mid BAA \mid \varepsilon$
- $A \rightarrow SABB \mid a$
- $B \rightarrow AS \mid b$
Step 2 of the CNF algorithm requires us to replace all productions of length ≥ 3 with multiple productions of length 2 by introducing new nonterminals.
Productions of length ≥ 3:
- $S \rightarrow BAA$ (length 3)
- $A \rightarrow SABB$ (length 4)
For $S \rightarrow BAA$ (k=3):
- Replace with: $S \rightarrow BC_1$ and $C_1 \rightarrow AA$
For $A \rightarrow SABB$ (k=4):
- Replace with: $A \rightarrow SC_2$, $C_2 \rightarrow AC_3$, and $C_3 \rightarrow BB$
<answer id="1">
$S \rightarrow A \mid BC_1 \mid \varepsilon$
$A \rightarrow SC_2 \mid a$
$B \rightarrow AS \mid b$
$C_1 \rightarrow AA$
$C_2 \rightarrow AC_3$
$C_3 \rightarrow BB$
</answer>
user:
## subproblem c (3.0 points)
*Entfernen von $\varepsilon$-Produktionen.* Die CFG $G_c$ ist gegeben durch folgende Produktionen:
$S \rightarrow AB \mid DE$
$A \rightarrow AB \mid a \mid \varepsilon$
$B \rightarrow b \mid BB \mid D$
$C \rightarrow A \mid c$
$D \rightarrow BC \mid BS$
$E \rightarrow SS \mid CA$
Führen Sie den dritten Schritt des Algorithmus zur Überführung in CNF aus. Geben Sie die Produktionen einer CFG $G'_c$ an, so dass $L(G_c) = L(G'_c)$ und $G'_c$ Bedingungen (1), (2) und (3) erfüllt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Looking at the grammar $G_c$: - $S \rightarrow AB \mid DE$ - $A \rightarrow AB \mid a \mid \varepsilon$ - $B \rightarrow b \mid BB \mid D$ - $C \rightarrow A \mid c$ - $D \rightarrow BC \mid BS$ - $E \rightarrow SS \mid CA$ Step 3 is to eliminate all $\varepsilon$-productions. The only $\varepsilon$-production is $A \rightarrow \varepsilon$. According to the algorithm from the lecture: 1. Start with all productions in $P$ to form $\hat{P}$ 2. If $B \rightarrow \varepsilon$ and $A \rightarrow \alpha B \beta$ are in $\hat{P}$, add $A \rightarrow \alpha\beta$ to $\hat{P}$ So I need to find all productions that have $A$ on the right-hand side and create new productions by removing $A$. Productions containing $A$: - $S \rightarrow AB$: Since $A \rightarrow \varepsilon$, add $S \rightarrow B$ - $A \rightarrow AB$: Since $A \rightarrow \varepsilon$, add $A \rightarrow B$ - $C \rightarrow A$: Since $A \rightarrow \varepsilon$, add $C \rightarrow \varepsilon$ - $E \rightarrow CA$: Since $A \rightarrow \varepsilon$, add $E \rightarrow C$ Now we have a new $\varepsilon$-production: $C \rightarrow \varepsilon$ We need to continue the process for $C \rightarrow \varepsilon$: Productions containing $C$: - $D \rightarrow BC$: Since $C \rightarrow \varepsilon$, add $D \rightarrow B$ - $E \rightarrow CA$: Since $C \rightarrow \varepsilon$, add $E \rightarrow A$ I'll systematically identify variables that can derive $\varepsilon$. $A$ directly derives $\varepsilon$, and $C$ derives $\varepsilon$ through $A$. I'll carefully examine other variables to see if they can also derive the empty string. For $S$, the productions show complexity. $S \rightarrow AB$ allows $A$ to be $\varepsilon$, but $B$ cannot. $S \rightarrow DE$ requires checking $D$ and $E$'s capabilities. $B$ has no $\varepsilon$-deriving paths. $D$ cannot derive $\varepsilon$ despite $C$ being able to do so. I'll continue investigating $E$'s potential. $E$ can derive $\varepsilon$ through its $CA$ production, since both $C$ and $A$ can generate $\varepsilon$. This means $A$, $C$, and $E$ are the variables capable of generating the empty string. The algorithm demands careful tracing of each production's $\varepsilon$-derivation potential, systematically examining how each variable might generate an empty string through its defined transformations. When $A$ can derive $\varepsilon$, several productions transform: $S$ becomes $B$, $A$ reduces to $B$, $C$ becomes $\varepsilon$, and $E$ simplifies to $C$. Similarly, when $C$ derives $\varepsilon$, $D$ reduces to $B$ and $E$ transforms to $A$. Analyzing $E \rightarrow CA$, I discover multiple scenarios: if $C \rightarrow \varepsilon$, $E$ becomes $A$; if $A \rightarrow \varepsilon$, $E$ becomes $C$; when both $C$ and $A$ derive $\varepsilon$, $E$ itself becomes $\varepsilon$. Consequently, $E \rightarrow \varepsilon$ emerges, causing $S \rightarrow DE$ to simplify to $S \rightarrow D$. The updated productions now exclude $\varepsilon$-transitions, transforming the grammar by removing empty productions. Key changes include eliminating nullable symbols and adjusting derivation rules to maintain the original language structure. Specifically, productions like $A$ and $C$ lose their $\varepsilon$ options, while $E$ gets pruned to essential non-empty derivations. This process systematically removes empty transitions while preserving the fundamental grammatical relationships. I'll trace the nullable variable identification carefully, noting how each symbol potentially becomes nullable through recursive derivation paths. Key nullable variables emerge through cascading derivations: $A$ directly derives $\varepsilon$, which then propagates through $C$ and $E$ via productions allowing complete elimination. The process systematically expands potential $\varepsilon$-productions by examining each variable's derivation potential, revealing interconnected nullability across the grammar's production rules. Resulting expanded grammar $\hat{P}$ captures these alternative derivations, showing how nullable variables enable multiple production paths through strategic symbol removal. Key modifications include eliminating $\varepsilon$ productions while preserving core grammatical structure. Productions now reflect combinations of symbols that can generate non-empty strings, maintaining the original grammar's fundamental derivation capabilities. The updated set of productions demonstrates how grammatical transformations preserve underlying language generation potential through systematic symbol manipulation.
Answer
Looking at the grammar $G_c$: - $S \rightarrow AB \mid DE$ - $A \rightarrow AB \mid a \mid \varepsilon$ - $B \rightarrow b \mid BB \mid D$ - $C \rightarrow A \mid c$ - $D \rightarrow BC \mid BS$ - $E \rightarrow SS \mid CA$ Step 3 eliminates all $\varepsilon$-productions using the algorithm from the lecture. First, I identify all nullable variables (those that can derive $\varepsilon$): - $A$ is nullable directly: $A \rightarrow \varepsilon$ - $C$ is nullable: $C \rightarrow A$ and $A$ is nullable - $E$ is nullable: $E \rightarrow CA$ and both $C$ and $A$ are nullable Now I extend $P$ to $\hat{P}$ by adding new productions: For productions containing nullable variable $A$: - $S \rightarrow AB$: add $S \rightarrow B$ (removing $A$) - $A \rightarrow AB$: add $A \rightarrow B$ (removing the first $A$) - $C \rightarrow A$: add $C \rightarrow \varepsilon$ (removing $A$) - $E \rightarrow CA$: add $E \rightarrow C$ (removing $A$) For productions containing nullable variable $C$: - $D \rightarrow BC$: add $D \rightarrow B$ (removing $C$) - $E \rightarrow CA$: add $E \rightarrow A$ (removing $C$) For productions containing nullable variable $E$: - $S \rightarrow DE$: add $S \rightarrow D$ (removing $E$) Since $E \rightarrow CA$ and both $C$ and $A$ are nullable, we also add $E \rightarrow \varepsilon$. Finally, remove all $\varepsilon$-productions from $\hat{P}$ to get $G'_c$: <answer id="1"> $S \rightarrow AB \mid DE \mid B \mid D$ $A \rightarrow AB \mid a \mid B$ $B \rightarrow b \mid BB \mid D$ $C \rightarrow A \mid c$ $D \rightarrow BC \mid BS \mid B$ $E \rightarrow SS \mid CA \mid C \mid A$ </answer>
Entfernen von -Produktionen. Die CFG ist gegeben durch folgende Produktionen: Führen Sie den dritten Schritt des Algorithmus zur Überführung in CNF aus. Geben Sie die Produktionen einer CFG an, so dass und Bedingungen (1), (2) und (3) erfüllt.
Subproblem d (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: CFG-Algorithmen
In den Teilaufgaben (a)-(d) geht es darum, eine kontextfreie Grammatik (CFG) in Chomsky-Normalform (CNF) zu konvertieren. Wir führen jeden Schritt einzeln aus, und jeweils auf einer anderen Grammatik – Sie können also die Aufgabenteile unabhängig voneinander bearbeiten.
Eine CFG $G=(V,\Sigma,P,S)$ ist in CNF, wenn jede Produktion $(X\rightarrow\alpha)\in P$, mit $X\in V$ und $\alpha\in(\Sigma\cup V)^*$, folgende Bedingungen erfüllt:
(1) $\alpha\in\Sigma\cup V^*$; Terminale dürfen nur in Produktionen der Länge 1 erzeugt werden.
(2) $|\alpha|\le2$; jede Produktion hat höchstens Länge $2$.
(3) $\alpha\ne\varepsilon$; es gibt keine $\varepsilon$-Produktionen.
(4) $\alpha\notin V$; es gibt keine Kettenproduktionen.
**Achtung:** Die Teilaufgaben fragen jeweils spezifisch nach dem Ergebnis, das sich durch die Ausführung des Algorithmus aus der Vorlesung ergibt, nicht nach einer beliebigen äquivalenten CFG, die den Bedingungen genügt. Details, wie etwa die Namen der Variablen oder die Reihenfolge, in der Produktionen betrachtet werden, können Sie frei wählen.
Wir nennen $A \rightarrow \epsilon$ eine *$\epsilon$-Produktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine $\epsilon$-Produktionen enthält, so dass gilt
$L(G') = L(G)\setminus\{\epsilon\}$
\end{Lemma}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$B \rightarrow \epsilon$} und \alert{$A \rightarrow \alpha B \beta$} in $\hat{P}$, so füge auch \alert{$A \rightarrow \alpha\beta$} hinzu.
\end{enumerate}
Offensichtlich gilt $L(\hat{G}) = L(G)$: Jede neue Produktion kann von 2 alten Productionensimuliert werden.
Wir definieren $G'$ als $\hat{G}$ ohne die $\epsilon$-Produktionen. Denn diese sind nun überflüssig.
Wir nennen $A \rightarrow B$ eine *Kettenproduktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine Kettenproduktionen enthält, so dass gilt $L(G') = L(G)$.
\end{Lemma}
\begin{Beweis}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$A \rightarrow B$} und \alert{$B \rightarrow \alpha$} in $\hat{P}$ mit $\alpha \neq A$, so füge auch \alert{$A \rightarrow \alpha$} hinzu.
\end{enumerate}
Das Ergebnis $G'$ ist $\hat{G}$ ohne die (nun überflüssigen) Kettenproduktionen.
\paragraph{Konstruktion einer Chomsky-Normalform}
Eingabe: Eine kontextfreie Grammatik $G = (V,\Sigma,P,S)$
\begin{enumerate}
\item Füge für jedes $a\in\Sigma$, das in einer rechten Seite der Länge $\geq2$ vorkommt, ein neues Nichtterminal $A_a$ zu $V$ hinzu, ersetze $a$ in allen rechten Seiten der Länge $\geq 2$ durch $A_a$, und füge $A_a\rightarrow a$ zu $P$ hinzu.
\item Ersetze jede Produktion der Form
\[A\rightarrow B_1B_2 \cdots B_k (k \geq 3)\]
durch
\[A \rightarrow B_1C_2,\ C_2 \rightarrow B_2C_3, ..., C_{k-1} \rightarrow B_{k-1}B_k \]
wobei $C_2, ..., C_{k-1}$ neue Nichtterminale sind.
\item Eliminiere alle $\epsilon$-Produktionen.
\item Eliminiere alle Kettenproduktionen.
\end{enumerate}
## subproblem a (2.0 points)
*Entfernen von Terminalen in langen Produktionen.* Die CFG $G_a$ ist gegeben durch folgende Produktionen:
$S \rightarrow aX \mid Xa \mid ab$
$X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Führen Sie den ersten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_a$ an, so dass $L(G_a) = L(G'_a)$ gilt und $G'_a$ Bedingung (1) erfüllt.
<example>
$S \rightarrow XX \mid aa \mid \varepsilon$
$X \rightarrow SX \mid X$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_a$:
- $S \rightarrow aX \mid Xa \mid ab$
- $X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Step 1 of the CNF algorithm requires us to identify all terminals that appear in productions of length ≥ 2 and replace them with new nonterminals.
The terminals appearing in productions of length ≥ 2 are:
- Terminal 'a' appears in: $S \rightarrow aX$ (length 2), $S \rightarrow Xa$ (length 2), $S \rightarrow ab$ (length 2)
- Terminal 'b' appears in: $S \rightarrow ab$ (length 2), $X \rightarrow bXX$ (length 3)
Following the algorithm:
1. Add new nonterminals $A_a$ and $A_b$ to $V$
2. Replace all occurrences of 'a' in productions of length ≥ 2 with $A_a$
3. Replace all occurrences of 'b' in productions of length ≥ 2 with $A_b$
4. Add productions $A_a \rightarrow a$ and $A_b \rightarrow b$
<answer id="1">
$S \rightarrow A_aX \mid XA_a \mid A_aA_b$
$X \rightarrow SS \mid S \mid \varepsilon \mid A_bXX$
$A_a \rightarrow a$
$A_b \rightarrow b$
</answer>
user:
## subproblem b (2.0 points)
*Entfernen langer Produktionen.* Die CFG $G_b$ ist gegeben durch die folgenden Produktionen:
$S \rightarrow A \mid BAA \mid \varepsilon$
$A \rightarrow SABB \mid a$
$B \rightarrow AS \mid b$
Führen Sie den zweiten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_b$ an, so dass $L(G_b) = L(G'_b)$ und $G'_b$ Bedingungen (1) und (2) erfüllt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_b$:
- $S \rightarrow A \mid BAA \mid \varepsilon$
- $A \rightarrow SABB \mid a$
- $B \rightarrow AS \mid b$
Step 2 of the CNF algorithm requires us to replace all productions of length ≥ 3 with multiple productions of length 2 by introducing new nonterminals.
Productions of length ≥ 3:
- $S \rightarrow BAA$ (length 3)
- $A \rightarrow SABB$ (length 4)
For $S \rightarrow BAA$ (k=3):
- Replace with: $S \rightarrow BC_1$ and $C_1 \rightarrow AA$
For $A \rightarrow SABB$ (k=4):
- Replace with: $A \rightarrow SC_2$, $C_2 \rightarrow AC_3$, and $C_3 \rightarrow BB$
<answer id="1">
$S \rightarrow A \mid BC_1 \mid \varepsilon$
$A \rightarrow SC_2 \mid a$
$B \rightarrow AS \mid b$
$C_1 \rightarrow AA$
$C_2 \rightarrow AC_3$
$C_3 \rightarrow BB$
</answer>
user:
## subproblem c (3.0 points)
*Entfernen von $\varepsilon$-Produktionen.* Die CFG $G_c$ ist gegeben durch folgende Produktionen:
$S \rightarrow AB \mid DE$
$A \rightarrow AB \mid a \mid \varepsilon$
$B \rightarrow b \mid BB \mid D$
$C \rightarrow A \mid c$
$D \rightarrow BC \mid BS$
$E \rightarrow SS \mid CA$
Führen Sie den dritten Schritt des Algorithmus zur Überführung in CNF aus. Geben Sie die Produktionen einer CFG $G'_c$ an, so dass $L(G_c) = L(G'_c)$ und $G'_c$ Bedingungen (1), (2) und (3) erfüllt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_c$:
- $S \rightarrow AB \mid DE$
- $A \rightarrow AB \mid a \mid \varepsilon$
- $B \rightarrow b \mid BB \mid D$
- $C \rightarrow A \mid c$
- $D \rightarrow BC \mid BS$
- $E \rightarrow SS \mid CA$
Step 3 eliminates all $\varepsilon$-productions using the algorithm from the lecture.
First, I identify all nullable variables (those that can derive $\varepsilon$):
- $A$ is nullable directly: $A \rightarrow \varepsilon$
- $C$ is nullable: $C \rightarrow A$ and $A$ is nullable
- $E$ is nullable: $E \rightarrow CA$ and both $C$ and $A$ are nullable
Now I extend $P$ to $\hat{P}$ by adding new productions:
For productions containing nullable variable $A$:
- $S \rightarrow AB$: add $S \rightarrow B$ (removing $A$)
- $A \rightarrow AB$: add $A \rightarrow B$ (removing the first $A$)
- $C \rightarrow A$: add $C \rightarrow \varepsilon$ (removing $A$)
- $E \rightarrow CA$: add $E \rightarrow C$ (removing $A$)
For productions containing nullable variable $C$:
- $D \rightarrow BC$: add $D \rightarrow B$ (removing $C$)
- $E \rightarrow CA$: add $E \rightarrow A$ (removing $C$)
For productions containing nullable variable $E$:
- $S \rightarrow DE$: add $S \rightarrow D$ (removing $E$)
Since $E \rightarrow CA$ and both $C$ and $A$ are nullable, we also add $E \rightarrow \varepsilon$.
Finally, remove all $\varepsilon$-productions from $\hat{P}$ to get $G'_c$:
<answer id="1">
$S \rightarrow AB \mid DE \mid B \mid D$
$A \rightarrow AB \mid a \mid B$
$B \rightarrow b \mid BB \mid D$
$C \rightarrow A \mid c$
$D \rightarrow BC \mid BS \mid B$
$E \rightarrow SS \mid CA \mid C \mid A$
</answer>
user:
## subproblem d (3.0 points)
*Entfernen von Kettenproduktionen.* Die CFG $G_d$ ist gegeben durch die Produktionen:
$S \rightarrow a \mid BA \mid B$
$A \rightarrow a \mid AA$
$B \rightarrow b \mid SC \mid A$
$C \rightarrow B \mid SS$
Führen Sie den vierten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_d$ in CNF an, so dass $L(G_d) = L(G'_d)$ gilt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Looking at the grammar $G_d$: - $S \rightarrow a \mid BA \mid B$ - $A \rightarrow a \mid AA$ - $B \rightarrow b \mid SC \mid A$ - $C \rightarrow B \mid SS$ Step 4 eliminates all chain productions (productions of the form $X \rightarrow Y$ where $X, Y$ are nonterminals). The chain productions are: - $S \rightarrow B$ - $B \rightarrow A$ - $C \rightarrow B$ Following the algorithm from the lecture, we extend $P$ to $\hat{P}$ by: 1. Include all productions from $P$ 2. For chain productions $A \rightarrow B$ and $B \rightarrow \alpha$ in $\hat{P}$ with $\alpha \neq A$, add $A \rightarrow \alpha$ Let me trace through this systematically: Starting with chain $S \rightarrow B$: - $B \rightarrow b$: add $S \rightarrow b$ - $B \rightarrow SC$: add $S \rightarrow SC$ - $B \rightarrow A$: add $S \rightarrow A$ (new chain) Now we have a new chain $S \rightarrow A$: - $A \rightarrow a$: add $S \rightarrow a$ (already exists) - $A \rightarrow AA$: add $S \rightarrow AA$ Starting with chain $B \rightarrow A$: - $A \rightarrow a$: add $B \rightarrow a$ - $A \rightarrow AA$: add $B \rightarrow AA$ Starting with chain $C \rightarrow B$: - $B \rightarrow b$: add $C \rightarrow b$ - $B \rightarrow SC$: add $C \rightarrow SC$ - $B \rightarrow A$: add $C \rightarrow A$ (new chain) - $B \rightarrow a$: add $C \rightarrow a$ - $B \rightarrow AA$: add $C \rightarrow AA$ I recognize the need for a more systematic approach to chain elimination, carefully tracking the derivations to avoid redundancy or missed productions. I'll methodically trace chain productions between variables $S$, $B$, and $C$, identifying reachable variables and their potential productions. The key is understanding how each variable can transform through chain rules, ensuring comprehensive yet precise derivation tracking. For each variable, I'll map out its chain connections and potential non-chain productions, systematically expanding the grammar's transformation possibilities. By propagating non-chain productions through reachable variables, I'll generate new potential derivation paths, enriching the original grammar's expressive power while maintaining its fundamental structure. The process involves carefully examining each variable's chain connections and strategically incorporating non-chain productions from reachable variables, creating a more comprehensive grammatical representation. The resulting grammar $G'_d$ successfully eliminates chain productions while preserving the original language's generative capabilities, meeting Chomsky Normal Form requirements through systematic transformation.
Answer
Looking at the grammar $G_d$: - $S \rightarrow a \mid BA \mid B$ - $A \rightarrow a \mid AA$ - $B \rightarrow b \mid SC \mid A$ - $C \rightarrow B \mid SS$ Step 4 eliminates all chain productions (productions of the form $X \rightarrow Y$ where both are nonterminals). The chain productions are: - $S \rightarrow B$ - $B \rightarrow A$ - $C \rightarrow B$ Following the algorithm from the lecture, I first determine which variables are reachable through chains: - $S$ can reach: $B$ (directly), $A$ (via $S \rightarrow B \rightarrow A$) - $B$ can reach: $A$ (directly) - $C$ can reach: $B$ (directly), $A$ (via $C \rightarrow B \rightarrow A$) Now I add productions according to the algorithm: For $S$: - From $B$'s non-chain productions: add $S \rightarrow b$ and $S \rightarrow SC$ - From $A$'s non-chain productions: $S \rightarrow a$ (already exists) and add $S \rightarrow AA$ For $B$: - From $A$'s non-chain productions: add $B \rightarrow a$ and $B \rightarrow AA$ For $C$: - From $B$'s non-chain productions: add $C \rightarrow b$ and $C \rightarrow SC$ - From $A$'s non-chain productions: add $C \rightarrow a$ and $C \rightarrow AA$ Finally, remove all chain productions to get $G'_d$: <answer id="1"> $S \rightarrow a \mid BA \mid b \mid SC \mid AA$ $A \rightarrow a \mid AA$ $B \rightarrow b \mid SC \mid a \mid AA$ $C \rightarrow SS \mid b \mid SC \mid a \mid AA$ </answer>
Entfernen von Kettenproduktionen. Die CFG ist gegeben durch die Produktionen: Führen Sie den vierten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG in CNF an, so dass gilt.
Subproblem e (2.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: CFG-Algorithmen
In den Teilaufgaben (a)-(d) geht es darum, eine kontextfreie Grammatik (CFG) in Chomsky-Normalform (CNF) zu konvertieren. Wir führen jeden Schritt einzeln aus, und jeweils auf einer anderen Grammatik – Sie können also die Aufgabenteile unabhängig voneinander bearbeiten.
Eine CFG $G=(V,\Sigma,P,S)$ ist in CNF, wenn jede Produktion $(X\rightarrow\alpha)\in P$, mit $X\in V$ und $\alpha\in(\Sigma\cup V)^*$, folgende Bedingungen erfüllt:
(1) $\alpha\in\Sigma\cup V^*$; Terminale dürfen nur in Produktionen der Länge 1 erzeugt werden.
(2) $|\alpha|\le2$; jede Produktion hat höchstens Länge $2$.
(3) $\alpha\ne\varepsilon$; es gibt keine $\varepsilon$-Produktionen.
(4) $\alpha\notin V$; es gibt keine Kettenproduktionen.
**Achtung:** Die Teilaufgaben fragen jeweils spezifisch nach dem Ergebnis, das sich durch die Ausführung des Algorithmus aus der Vorlesung ergibt, nicht nach einer beliebigen äquivalenten CFG, die den Bedingungen genügt. Details, wie etwa die Namen der Variablen oder die Reihenfolge, in der Produktionen betrachtet werden, können Sie frei wählen.
Wir nennen $A \rightarrow \epsilon$ eine *$\epsilon$-Produktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine $\epsilon$-Produktionen enthält, so dass gilt
$L(G') = L(G)\setminus\{\epsilon\}$
\end{Lemma}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$B \rightarrow \epsilon$} und \alert{$A \rightarrow \alpha B \beta$} in $\hat{P}$, so füge auch \alert{$A \rightarrow \alpha\beta$} hinzu.
\end{enumerate}
Offensichtlich gilt $L(\hat{G}) = L(G)$: Jede neue Produktion kann von 2 alten Productionensimuliert werden.
Wir definieren $G'$ als $\hat{G}$ ohne die $\epsilon$-Produktionen. Denn diese sind nun überflüssig.
Wir nennen $A \rightarrow B$ eine *Kettenproduktion*.
\begin{Lemma}
Zu jeder CFG $G = (V,\Sigma,P,S)$ kann man eine CFG $G'$ konstruieren, die keine Kettenproduktionen enthält, so dass gilt $L(G') = L(G)$.
\end{Lemma}
\begin{Beweis}
Wir erweitern $P$ induktiv zu eine Obermenge $\hat{P}$:
\begin{enumerate}
\item Jede Produktion aus $P$ ist in $\hat{P}$
\item Sind \alert{$A \rightarrow B$} und \alert{$B \rightarrow \alpha$} in $\hat{P}$ mit $\alpha \neq A$, so füge auch \alert{$A \rightarrow \alpha$} hinzu.
\end{enumerate}
Das Ergebnis $G'$ ist $\hat{G}$ ohne die (nun überflüssigen) Kettenproduktionen.
\paragraph{Konstruktion einer Chomsky-Normalform}
Eingabe: Eine kontextfreie Grammatik $G = (V,\Sigma,P,S)$
\begin{enumerate}
\item Füge für jedes $a\in\Sigma$, das in einer rechten Seite der Länge $\geq2$ vorkommt, ein neues Nichtterminal $A_a$ zu $V$ hinzu, ersetze $a$ in allen rechten Seiten der Länge $\geq 2$ durch $A_a$, und füge $A_a\rightarrow a$ zu $P$ hinzu.
\item Ersetze jede Produktion der Form
\[A\rightarrow B_1B_2 \cdots B_k (k \geq 3)\]
durch
\[A \rightarrow B_1C_2,\ C_2 \rightarrow B_2C_3, ..., C_{k-1} \rightarrow B_{k-1}B_k \]
wobei $C_2, ..., C_{k-1}$ neue Nichtterminale sind.
\item Eliminiere alle $\epsilon$-Produktionen.
\item Eliminiere alle Kettenproduktionen.
\end{enumerate}
## subproblem a (2.0 points)
*Entfernen von Terminalen in langen Produktionen.* Die CFG $G_a$ ist gegeben durch folgende Produktionen:
$S \rightarrow aX \mid Xa \mid ab$
$X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Führen Sie den ersten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_a$ an, so dass $L(G_a) = L(G'_a)$ gilt und $G'_a$ Bedingung (1) erfüllt.
<example>
$S \rightarrow XX \mid aa \mid \varepsilon$
$X \rightarrow SX \mid X$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_a$:
- $S \rightarrow aX \mid Xa \mid ab$
- $X \rightarrow SS \mid S \mid \varepsilon \mid bXX$
Step 1 of the CNF algorithm requires us to identify all terminals that appear in productions of length ≥ 2 and replace them with new nonterminals.
The terminals appearing in productions of length ≥ 2 are:
- Terminal 'a' appears in: $S \rightarrow aX$ (length 2), $S \rightarrow Xa$ (length 2), $S \rightarrow ab$ (length 2)
- Terminal 'b' appears in: $S \rightarrow ab$ (length 2), $X \rightarrow bXX$ (length 3)
Following the algorithm:
1. Add new nonterminals $A_a$ and $A_b$ to $V$
2. Replace all occurrences of 'a' in productions of length ≥ 2 with $A_a$
3. Replace all occurrences of 'b' in productions of length ≥ 2 with $A_b$
4. Add productions $A_a \rightarrow a$ and $A_b \rightarrow b$
<answer id="1">
$S \rightarrow A_aX \mid XA_a \mid A_aA_b$
$X \rightarrow SS \mid S \mid \varepsilon \mid A_bXX$
$A_a \rightarrow a$
$A_b \rightarrow b$
</answer>
user:
## subproblem b (2.0 points)
*Entfernen langer Produktionen.* Die CFG $G_b$ ist gegeben durch die folgenden Produktionen:
$S \rightarrow A \mid BAA \mid \varepsilon$
$A \rightarrow SABB \mid a$
$B \rightarrow AS \mid b$
Führen Sie den zweiten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_b$ an, so dass $L(G_b) = L(G'_b)$ und $G'_b$ Bedingungen (1) und (2) erfüllt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_b$:
- $S \rightarrow A \mid BAA \mid \varepsilon$
- $A \rightarrow SABB \mid a$
- $B \rightarrow AS \mid b$
Step 2 of the CNF algorithm requires us to replace all productions of length ≥ 3 with multiple productions of length 2 by introducing new nonterminals.
Productions of length ≥ 3:
- $S \rightarrow BAA$ (length 3)
- $A \rightarrow SABB$ (length 4)
For $S \rightarrow BAA$ (k=3):
- Replace with: $S \rightarrow BC_1$ and $C_1 \rightarrow AA$
For $A \rightarrow SABB$ (k=4):
- Replace with: $A \rightarrow SC_2$, $C_2 \rightarrow AC_3$, and $C_3 \rightarrow BB$
<answer id="1">
$S \rightarrow A \mid BC_1 \mid \varepsilon$
$A \rightarrow SC_2 \mid a$
$B \rightarrow AS \mid b$
$C_1 \rightarrow AA$
$C_2 \rightarrow AC_3$
$C_3 \rightarrow BB$
</answer>
user:
## subproblem c (3.0 points)
*Entfernen von $\varepsilon$-Produktionen.* Die CFG $G_c$ ist gegeben durch folgende Produktionen:
$S \rightarrow AB \mid DE$
$A \rightarrow AB \mid a \mid \varepsilon$
$B \rightarrow b \mid BB \mid D$
$C \rightarrow A \mid c$
$D \rightarrow BC \mid BS$
$E \rightarrow SS \mid CA$
Führen Sie den dritten Schritt des Algorithmus zur Überführung in CNF aus. Geben Sie die Produktionen einer CFG $G'_c$ an, so dass $L(G_c) = L(G'_c)$ und $G'_c$ Bedingungen (1), (2) und (3) erfüllt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_c$:
- $S \rightarrow AB \mid DE$
- $A \rightarrow AB \mid a \mid \varepsilon$
- $B \rightarrow b \mid BB \mid D$
- $C \rightarrow A \mid c$
- $D \rightarrow BC \mid BS$
- $E \rightarrow SS \mid CA$
Step 3 eliminates all $\varepsilon$-productions using the algorithm from the lecture.
First, I identify all nullable variables (those that can derive $\varepsilon$):
- $A$ is nullable directly: $A \rightarrow \varepsilon$
- $C$ is nullable: $C \rightarrow A$ and $A$ is nullable
- $E$ is nullable: $E \rightarrow CA$ and both $C$ and $A$ are nullable
Now I extend $P$ to $\hat{P}$ by adding new productions:
For productions containing nullable variable $A$:
- $S \rightarrow AB$: add $S \rightarrow B$ (removing $A$)
- $A \rightarrow AB$: add $A \rightarrow B$ (removing the first $A$)
- $C \rightarrow A$: add $C \rightarrow \varepsilon$ (removing $A$)
- $E \rightarrow CA$: add $E \rightarrow C$ (removing $A$)
For productions containing nullable variable $C$:
- $D \rightarrow BC$: add $D \rightarrow B$ (removing $C$)
- $E \rightarrow CA$: add $E \rightarrow A$ (removing $C$)
For productions containing nullable variable $E$:
- $S \rightarrow DE$: add $S \rightarrow D$ (removing $E$)
Since $E \rightarrow CA$ and both $C$ and $A$ are nullable, we also add $E \rightarrow \varepsilon$.
Finally, remove all $\varepsilon$-productions from $\hat{P}$ to get $G'_c$:
<answer id="1">
$S \rightarrow AB \mid DE \mid B \mid D$
$A \rightarrow AB \mid a \mid B$
$B \rightarrow b \mid BB \mid D$
$C \rightarrow A \mid c$
$D \rightarrow BC \mid BS \mid B$
$E \rightarrow SS \mid CA \mid C \mid A$
</answer>
user:
## subproblem d (3.0 points)
*Entfernen von Kettenproduktionen.* Die CFG $G_d$ ist gegeben durch die Produktionen:
$S \rightarrow a \mid BA \mid B$
$A \rightarrow a \mid AA$
$B \rightarrow b \mid SC \mid A$
$C \rightarrow B \mid SS$
Führen Sie den vierten Schritt des Algorithmus zur Überführung in CNF aus und geben Sie die Produktionen einer CFG $G'_d$ in CNF an, so dass $L(G_d) = L(G'_d)$ gilt.
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at the grammar $G_d$:
- $S \rightarrow a \mid BA \mid B$
- $A \rightarrow a \mid AA$
- $B \rightarrow b \mid SC \mid A$
- $C \rightarrow B \mid SS$
Step 4 eliminates all chain productions (productions of the form $X \rightarrow Y$ where both are nonterminals).
The chain productions are:
- $S \rightarrow B$
- $B \rightarrow A$
- $C \rightarrow B$
Following the algorithm from the lecture, I first determine which variables are reachable through chains:
- $S$ can reach: $B$ (directly), $A$ (via $S \rightarrow B \rightarrow A$)
- $B$ can reach: $A$ (directly)
- $C$ can reach: $B$ (directly), $A$ (via $C \rightarrow B \rightarrow A$)
Now I add productions according to the algorithm:
For $S$:
- From $B$'s non-chain productions: add $S \rightarrow b$ and $S \rightarrow SC$
- From $A$'s non-chain productions: $S \rightarrow a$ (already exists) and add $S \rightarrow AA$
For $B$:
- From $A$'s non-chain productions: add $B \rightarrow a$ and $B \rightarrow AA$
For $C$:
- From $B$'s non-chain productions: add $C \rightarrow b$ and $C \rightarrow SC$
- From $A$'s non-chain productions: add $C \rightarrow a$ and $C \rightarrow AA$
Finally, remove all chain productions to get $G'_d$:
<answer id="1">
$S \rightarrow a \mid BA \mid b \mid SC \mid AA$
$A \rightarrow a \mid AA$
$B \rightarrow b \mid SC \mid a \mid AA$
$C \rightarrow SS \mid b \mid SC \mid a \mid AA$
</answer>
user:
## subproblem e (3.0 points)
Die CFG $G$ ist gegeben durch die Produktionen:
$S \rightarrow AB\mid C$
$A \to aA \mid AS$
$B \to bS$
$C \to aCb \mid \varepsilon$
Geben Sie die erzeugenden, erreichbaren und nützlichen Nichtterminale von $G$ an.
<answer-template id="1">
Erzeugend: $?$
Erreichbar: $?$
Nützlich: $?$
</answer-template>
<example>
Erzeugend: $S$
Erreichbar: $S, A, B$
Nützlich: $S$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me analyze the grammar $G$: - $S \rightarrow AB \mid C$ - $A \rightarrow aA \mid AS$ - $B \rightarrow bS$ - $C \rightarrow aCb \mid \varepsilon$ **Erzeugend (Generating):** A nonterminal is generating if it can derive a string of terminals. Let me check each nonterminal: - $C$: Can derive $\varepsilon$ (which is a terminal string), so $C$ is generating. - $B$: $B \rightarrow bS$. For $B$ to be generating, $S$ must be generating. - $A$: $A \rightarrow aA \mid AS$. Both productions have $A$ on the right side. There's no way to eliminate $A$ completely. So $A$ cannot derive a terminal string. $A$ is not generating. - $S$: $S \rightarrow AB \mid C$. Since $C$ is generating, $S$ can derive terminal strings through $C$. So $S$ is generating. Wait, let me reconsider $B$. $B \rightarrow bS$. If $S$ is generating, then $B$ can derive $b$ followed by a terminal string, so $B$ would be generating. Let me be more systematic. I'll compute the generating nonterminals iteratively: - Initially: $C$ is generating (because $C \rightarrow \varepsilon$) - Since $C$ is generating and $S \rightarrow C$, $S$ is generating - Since $S$ is generating and $B \rightarrow bS$, $B$ is generating - For $A$: $A \rightarrow aA \mid AS$. Both productions contain $A$ on the right side. There's no base case that produces only terminals. Indeed, $A$ remains non-generating. The generating nonterminals are $S, B, C$, which can all produce terminal strings through different mechanisms. **Erreichbar (Reachable):** A nonterminal is reachable if it can be derived from the start symbol $S$. I'll systematically trace reachability from the start symbol. $S$ is inherently reachable as the start symbol. From its productions, $A$, $B$, and $C$ become reachable. No additional nonterminals emerge from further tracing the productions. The complete set of reachable nonterminals includes $S, A, B, C$. Intersecting this with generating nonterminals yields $S, B, C$ as useful nonterminals.
Answer
Looking at the grammar $G$: - $S \rightarrow AB \mid C$ - $A \rightarrow aA \mid AS$ - $B \rightarrow bS$ - $C \rightarrow aCb \mid \varepsilon$ **Erzeugend (Generating):** A nonterminal is generating if it can derive a string of terminals. Computing iteratively: - $C$ is generating: $C \rightarrow \varepsilon$ (derives the empty string) - $S$ is generating: $S \rightarrow C$ and $C$ is generating - $B$ is generating: $B \rightarrow bS$ and $S$ is generating (can derive $b$ followed by a terminal string) - $A$ is not generating: both productions $A \rightarrow aA \mid AS$ contain $A$ on the right side with no base case **Erreichbar (Reachable):** A nonterminal is reachable if it can be derived from the start symbol. Starting from $S$: - $S$ is reachable (start symbol) - From $S \rightarrow AB$: both $A$ and $B$ are reachable - From $S \rightarrow C$: $C$ is reachable **Nützlich (Useful):** A nonterminal is useful if it is both generating and reachable. The intersection of generating and reachable nonterminals. <answer id="1"> Erzeugend: $S, B, C$ Erreichbar: $S, A, B, C$ Nützlich: $S, B, C$ </answer>
Die CFG ist gegeben durch die Produktionen: Geben Sie die erzeugenden, erreichbaren und nützlichen Nichtterminale von an.
Erzeugend: Erreichbar: Nützlich:
2: mismatch
Exercise 5: Verlorene Buchsten
Sei . Für eine Sprache bezeichnet die Sprache, die man erhält, wenn man den Wörtern aus genau einmal das Wort an einer beliebigen Stelle entfernt. Formal definieren wir
Subproblem a (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me work through this step by step. We have $\Sigma = \{a,b\}$ and $\Del(L)$ is defined as the language obtained by removing exactly one occurrence of the substring $ab$ from words in $L$. Formally: $\Del(L) = \{vw \mid v,w \in \Sigma^* \wedge vabw \in L\}$ We need to find $\Del(\{abbaba, baa, ab, a, b\})$. Let me go through each word in the original language: 1. **Word: $abbaba$** - We need to find all ways to remove one occurrence of $ab$ from this word. - The word is $abbaba$ = $a \cdot b \cdot b \cdot a \cdot b \cdot a$ - Looking for $ab$ patterns: - Position 0-1: $ab$ (removing this gives $baba$) - Position 2-3: $ba$ (not $ab$) - Position 3-4: $ab$ (removing this gives $abba$) - Position 4-5: $ba$ (not $ab$) - So from $abbaba$, we can get: $baba$ and $abba$ 2. **Word: $baa$** - Looking for $ab$ patterns in $baa$: - There is no $ab$ substring in $baa$ - So this word contributes nothing to $\Del(L)$ 3. **Word: $ab$** - The entire word is $ab$ - Removing $ab$ from $ab$ gives the empty word $\varepsilon$ - So from $ab$, we get: $\varepsilon$ 4. **Word: $a$** - There is no $ab$ substring in $a$ (it's just a single letter) - So this word contributes nothing to $\Del(L)$ 5. **Word: $b$** - There is no $ab$ substring in $b$ (it's just a single letter) - So this word contributes nothing to $\Del(L)$ I'll continue carefully examining the first word $abbaba$. The substring $ab$ appears in multiple positions, creating different resulting words when removed. Specifically, I can extract $ab$ from two distinct locations: - At positions 0-1, removing $ab$ leaves $baba$ - At positions 3-4, removing $ab$ gives $abba$ These observations confirm the deletion language contains $\baba$ and $abba$ as valid results. I'll verify the unique elements systematically, ensuring no duplicates exist. The set includes the empty string $\varepsilon$, plus the two derived words $baba$ and $abba$. Each element is distinct in length and composition. Arranging these in lexicographic order with $\varepsilon$ first yields the final set $\{\varepsilon, baba, abba\}$.
Answer
Looking at each word in the given language $\{abbaba, baa, ab, a, b\}$: 1. **Word $abbaba$**: We can remove $ab$ from two positions: - Remove $ab$ from position 0-1: $abbaba = (ab)baba \rightarrow baba$ - Remove $ab$ from position 3-4: $abbaba = abb(ab)a \rightarrow abba$ 2. **Word $baa$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$ 3. **Word $ab$**: Removing $ab$ gives the empty word $\varepsilon$ 4. **Word $a$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$ 5. **Word $b$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$ Therefore: <answer id="1"> $\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$ </answer>
Listen Sie alle Wörter der Sprache explizit auf:
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at each word in the given language $\{abbaba, baa, ab, a, b\}$:
1. **Word $abbaba$**: We can remove $ab$ from two positions:
- Remove $ab$ from position 0-1: $abbaba = (ab)baba \rightarrow baba$
- Remove $ab$ from position 3-4: $abbaba = abb(ab)a \rightarrow abba$
2. **Word $baa$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
3. **Word $ab$**: Removing $ab$ gives the empty word $\varepsilon$
4. **Word $a$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
5. **Word $b$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
Therefore:
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let me think about this carefully. $\Del(L)$ removes exactly one occurrence of $ab$ from words in $L$. $\Del(\Del(L))$ would remove one $ab$ from words in $L$, then remove another $ab$ from the result. $\DelTwo(L)$ removes exactly two occurrences of $ab$ from words in $L$. The question is whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$. Let me think of a counterexample. Consider the word $abab$. If we apply $\Del$ once to get $\Del(\{abab\})$: - We can remove the first $ab$ to get $ab$ - We can remove the second $ab$ to get $ab$ So $\Del(\{abab\}) = \{ab\}$ Now applying $\Del$ again: $\Del(\Del(\{abab\})) = \Del(\{ab\}) = \{\varepsilon\}$ Now let's compute $\DelTwo(\{abab\})$: This removes two occurrences of $ab$ from $abab$. Since $abab$ contains exactly two occurrences of $ab$ (overlapping at position 'b'), we get the empty string. So $\DelTwo(\{abab\}) = \{\varepsilon\}$ Wait, that's equal. Let me reconsider. Actually, let me be more careful. The word $abab$ can be written as: - $(\varepsilon) ab (ab)$ where we remove the first $ab$ at position 0-1 - $(ab) ab (\varepsilon)$ where we remove the second $ab$ at position 2-3 Wait, I need to be more careful about what "removing $ab$" means. Let me reconsider with a different example. Consider $L = \{ababab\}$. When removing $ab$ from $ababab$, I have multiple options: - Removing from the start gives $abab$ - Removing from the middle gives $abab$ - Removing from the end gives $abab$ Interestingly, in this case, $\Del(\{ababab\})$ results in $\{abab\}$ regardless of which $ab$ I remove first. This suggests the removal might not depend on the specific position of $ab$. When I apply deletion again to $abab$, I can again remove $ab$ from two positions: - Removing from the start yields $ab$ - Removing from the end also yields $ab$ So $\Del(\Del(\{ababab\})) = \{ab\}$ For $\DelTwo(\{ababab\})$, I'm exploring ways to remove two $ab$ occurrences systematically. I can decompose $ababab$ into different segments where $ab$ appears, considering various removal strategies that preserve the underlying structure. By systematically removing $ab$ from different positions, I consistently arrive at $\{ab\}$ as the result. This suggests a pattern where repeated deletions converge to the same minimal representation. I explore two removal strategies: sequential single-character deletions and two-symbol deletions. In both cases, the language reduces to $\{ab\}$ through strategic $ab$ removal. The process reveals an intriguing transformation where complex strings progressively simplify to a fundamental pattern. Each removal step strategically eliminates $ab$ segments, ultimately distilling the language to its core structure. However, a critical observation emerges: single $ab$ removal might paradoxically generate new $ab$ instances. Using $aabb$ as an example, removing the initial $ab$ unexpectedly produces another $ab$, challenging the assumed equivalence of removal methods. This discovery suggests removal operations aren't uniformly predictable, introducing subtle complexity in substring elimination strategies. Comparing $\Del$ and $\DelTwo$ for $\{aabb\}$ reveals divergent behaviors: sequential single removals yield $\{\varepsilon\}$, while simultaneous two-$ab$ removal produces $\emptyset$. This discrepancy definitively invalidates the original hypothesis.
Answer
Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$. Let me analyze what each operation does: - $\Del(\Del(L))$: Removes one occurrence of $ab$ from words in $L$, then removes one occurrence of $ab$ from the resulting words - $\DelTwo(L)$: Removes exactly two occurrences of $ab$ from words in $L$ that contain at least two such occurrences The key insight is that these operations can differ when removing one $ab$ creates a new $ab$ substring that wasn't originally present as a separate occurrence. **Counterexample:** Let $L = \{aabb\}$ First, let's compute $\Del(\Del(L))$: - $\Del(\{aabb\})$: The word $aabb$ contains one occurrence of $ab$ at positions 1-2. Removing it gives: $aabb = a(ab)b \rightarrow ab$ - So $\Del(\{aabb\}) = \{ab\}$ - $\Del(\Del(\{aabb\})) = \Del(\{ab\})$: Removing $ab$ from $ab$ gives $\varepsilon$ - Therefore $\Del(\Del(\{aabb\})) = \{\varepsilon\}$ Now let's compute $\DelTwo(L)$: - $\DelTwo(\{aabb\})$ requires words with at least two occurrences of $ab$ as substrings - The word $aabb$ contains only ONE occurrence of $ab$ (at positions 1-2) - Therefore $\DelTwo(\{aabb\}) = \emptyset$ Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, we have found a counterexample. The statement is **false**. <option id="1">0</option> <option id="2">1</option> <answer id="3"> **Counterexample:** Consider the finite language $L = \{aabb\}$. The word $aabb$ contains exactly one occurrence of the substring $ab$ (at positions 1-2). Computing $\Del(\Del(L))$: - $\Del(\{aabb\}) = \{ab\}$ (removing the $ab$ from $a\underline{ab}b$ gives $ab$) - $\Del(\{ab\}) = \{\varepsilon\}$ (removing $ab$ from $ab$ gives the empty word) - Therefore: $\Del(\Del(\{aabb\})) = \{\varepsilon\}$ Computing $\DelTwo(L)$: - $\DelTwo(L)$ consists of words obtained by removing exactly two occurrences of $ab$ from words in $L$ - Since $aabb$ contains only one occurrence of $ab$, we cannot remove two occurrences - Therefore: $\DelTwo(\{aabb\}) = \emptyset$ Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, the statement is false. </answer>
Wir definieren . Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede endliche Sprache gilt .
☐Wahr☒Falsch
Counterexample: Consider the finite language . The word contains exactly one occurrence of the substring (at positions 1-2). Computing : - (removing the from gives ) - (removing from gives the empty word) - Therefore: Computing : - consists of words obtained by removing exactly two occurrences of from words in - Since contains only one occurrence of , we cannot remove two occurrences - Therefore: Since , the statement is false.
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at each word in the given language $\{abbaba, baa, ab, a, b\}$:
1. **Word $abbaba$**: We can remove $ab$ from two positions:
- Remove $ab$ from position 0-1: $abbaba = (ab)baba \rightarrow baba$
- Remove $ab$ from position 3-4: $abbaba = abb(ab)a \rightarrow abba$
2. **Word $baa$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
3. **Word $ab$**: Removing $ab$ gives the empty word $\varepsilon$
4. **Word $a$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
5. **Word $b$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
Therefore:
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$.
Let me analyze what each operation does:
- $\Del(\Del(L))$: Removes one occurrence of $ab$ from words in $L$, then removes one occurrence of $ab$ from the resulting words
- $\DelTwo(L)$: Removes exactly two occurrences of $ab$ from words in $L$ that contain at least two such occurrences
The key insight is that these operations can differ when removing one $ab$ creates a new $ab$ substring that wasn't originally present as a separate occurrence.
**Counterexample:** Let $L = \{aabb\}$
First, let's compute $\Del(\Del(L))$:
- $\Del(\{aabb\})$: The word $aabb$ contains one occurrence of $ab$ at positions 1-2. Removing it gives: $aabb = a(ab)b \rightarrow ab$
- So $\Del(\{aabb\}) = \{ab\}$
- $\Del(\Del(\{aabb\})) = \Del(\{ab\})$: Removing $ab$ from $ab$ gives $\varepsilon$
- Therefore $\Del(\Del(\{aabb\})) = \{\varepsilon\}$
Now let's compute $\DelTwo(L)$:
- $\DelTwo(\{aabb\})$ requires words with at least two occurrences of $ab$ as substrings
- The word $aabb$ contains only ONE occurrence of $ab$ (at positions 1-2)
- Therefore $\DelTwo(\{aabb\}) = \emptyset$
Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, we have found a counterexample.
The statement is **false**.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
**Counterexample:** Consider the finite language $L = \{aabb\}$.
The word $aabb$ contains exactly one occurrence of the substring $ab$ (at positions 1-2).
Computing $\Del(\Del(L))$:
- $\Del(\{aabb\}) = \{ab\}$ (removing the $ab$ from $a\underline{ab}b$ gives $ab$)
- $\Del(\{ab\}) = \{\varepsilon\}$ (removing $ab$ from $ab$ gives the empty word)
- Therefore: $\Del(\Del(\{aabb\})) = \{\varepsilon\}$
Computing $\DelTwo(L)$:
- $\DelTwo(L)$ consists of words obtained by removing exactly two occurrences of $ab$ from words in $L$
- Since $aabb$ contains only one occurrence of $ab$, we cannot remove two occurrences
- Therefore: $\DelTwo(\{aabb\}) = \emptyset$
Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, the statement is false.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me understand what we need to do: 1. We have a CFG $G=(V,\Sigma,P,S)$ in Chomsky Normal Form (CNF) 2. We want to construct $G'=(V',\Sigma,P',S')$ such that $L(G')=\Del(L(G))$ 3. We're given $V' = V \cup \{X_{ab} \mid X \in V\} \cup \{X_a \mid X \in V\} \cup \{X_b \mid X \in V\}$ We need to define $P'$ and $S'$ such that: 1. $L_{G'}(X) = L_G(X)$ for all $X \in V$ 2. $L_{G'}(X_{ab}) = \Del(L_G(X))$ for all $X \in V$ 3. $L_{G'}(X_a) = \{w \in \Sigma^* \mid wa \in L_G(X)\}$ for all $X \in V$ 4. $L_{G'}(X_b) = \{w \in \Sigma^* \mid bw \in L_G(X)\}$ for all $X \in V$ Since $G$ is in CNF, its productions are of the form: - $X \rightarrow YZ$ (binary productions) - $X \rightarrow a$ where $a \in \Sigma$ (terminal productions) Let me think about each type of nonterminal: For $X \in V$: We want $L_{G'}(X) = L_G(X)$, so we should keep all original productions. For $X_{ab}$: We want $L_{G'}(X_{ab}) = \Del(L_G(X))$. This means words derivable from $X_{ab}$ are words from $L_G(X)$ with one occurrence of $ab$ removed. I'll focus on constructing productions for $X_a$ and $X_b$ that capture words with specific positioning of $a$ and $b$. The goal is to create rules that allow generating words that, when modified with $a$ or $b$, belong to the original language of $X$. This requires carefully designing production rules that track word contexts around specific symbols. For original productions $X \rightarrow YZ$, I'll preserve the core structure while introducing mechanisms to handle $a$ and $b$ placements. This involves creating new productions that strategically remove or redistribute $a$ and $b$ across the derivation. The key strategy involves two main approaches: removing $ab$ from either the $Y$ or $Z$ part of the production, and handling cases where $ab$ spans across both nonterminals. This ensures comprehensive coverage of language transformations while maintaining the original grammatical structure. For $X_a$ and $X_b$ cases, I'll focus on specific conditions: when the last or first symbol must derive from specific parts of the original production, and handling direct terminal derivations that can result in the empty string. The goal is to systematically expand the production rules to capture all possible ways $a$ and $b$ can be positioned within the original grammatical framework, ensuring a robust transformation mechanism. Key transformations involve: - Preserving original productions - Creating new rules that track symbol positions - Allowing potential empty string derivations - Maintaining the structural integrity of the original grammar For productions involving concatenation, multiple variations are generated: - Tracking first and second symbol positions - Enabling partial symbol substitutions - Ensuring language preservation through strategic rule modifications The start symbol transformation ensures the derived grammar captures the deletion language, fundamentally expanding the grammatical representation to track symbol interactions more precisely. The approach systematically explores different positional derivations while maintaining the core language characteristics of the original grammar. I'll derive a clear set of grammar transformation rules for handling terminal and non-terminal productions, focusing on the systematic approach for creating $G'$ from $G$. For each non-terminal production $X \rightarrow YZ$, I'll generate four corresponding productions in $G'$: - A direct copy of the original production - A version tracking both $a$ and $b$ simultaneously - Separate productions tracking $a$ and $b$ independently - A mixed tracking production For terminal productions, I'll carefully construct rules that preserve the original derivation semantics while allowing tracking of specific symbol occurrences. The key is maintaining a systematic mapping between the original grammar $G$ and the transformed grammar $G'$, ensuring equivalent language recognition capabilities. We retain the production $X \rightarrow b$ and explore its implications. For $X_b$, we find a word $w$ where $bw$ belongs to $L_G(X)$, and since $L_G(X)$ contains $b$, we determine $w$ must be $\varepsilon$. Examining $X_a$, we seek words $w$ such that $wa \in L_G(X)$, but with $L_G(X)$ containing $b$, this condition becomes impossible. Investigating $X_{ab}$, we aim to match $\Del(L_G(X))$ with $\Del(\{b\})$, noting that $b$ does not contain $ab$, leading to an empty derivative set. The production transformation follows a systematic approach, generating new productions for each original rule. We create variants that capture different letter combinations and contexts, ensuring comprehensive coverage of the original grammar's language properties. The process involves generating multiple production rules for terminal and non-terminal symbols, strategically expanding the grammar's representational capabilities while maintaining the core structural integrity of the original productions.
Answer
Looking at this problem, I need to construct a grammar $G'$ where: - Nonterminals $X$ generate the same language as in $G$ - Nonterminals $X_{ab}$ generate words from $L_G(X)$ with one $ab$ removed - Nonterminals $X_a$ generate words that, when followed by $a$, give words in $L_G(X)$ - Nonterminals $X_b$ generate words that, when preceded by $b$, give words in $L_G(X)$ Since we want $L(G') = \Del(L(G))$, the start symbol should be $S_{ab}$. For the productions, I need to consider how CNF productions transform: 1. For binary productions $X \rightarrow YZ$: - The substring $ab$ could be removed from the $Y$ part, the $Z$ part, or span across both - For $X_a$: the trailing $a$ must come from $Z$ - For $X_b$: the leading $b$ must come from $Y$ 2. For terminal productions: - $X_a$ derives $\varepsilon$ if $X$ derives $a$ (since $\varepsilon \cdot a = a$) - $X_b$ derives $\varepsilon$ if $X$ derives $b$ (since $b \cdot \varepsilon = b$) <answer id="1"> Startsymbol $S' := S_{ab}$ Produktionen $P'$: Für jede Produktion $X \rightarrow YZ \in P$: - $X \rightarrow YZ$ - $X_{ab} \rightarrow Y_{ab}Z$ - $X_{ab} \rightarrow YZ_{ab}$ - $X_{ab} \rightarrow Y_a Z_b$ - $X_a \rightarrow YZ_a$ - $X_b \rightarrow Y_b Z$ Für jede Produktion $X \rightarrow a \in P$: - $X \rightarrow a$ - $X_a \rightarrow \varepsilon$ Für jede Produktion $X \rightarrow b \in P$: - $X \rightarrow b$ - $X_b \rightarrow \varepsilon$ </answer>
Sei eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik konstruieren, sodass gilt. Hierzu setzen wir wobei für alle . Definieren Sie nun und , sodass 1. 2. 3. 4. für alle gilt. Geben Sie die Produktionen präzise an; vermeiden Sie unstrukturierten Fließtext. Hinweis: ist in CNF, hat also keine -Produktionen. muss nicht in CNF sein.
Startsymbol Produktionen : Für jede Produktion : - - - - - - Für jede Produktion : - - Für jede Produktion : - -
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Verlorene Buchsten
Sei $\Sigma:=\{a,b\}$. Für eine Sprache $L\subseteq\Sigma^*$ bezeichnet $\Del(L)$ die Sprache,
die man erhält, wenn man den Wörtern aus $L$ **genau einmal** das Wort $ab$ an einer beliebigen Stelle entfernt. Formal definieren wir
$\Del(L):= \{vw \mid v,w\in \Sigma^* \wedge vabw\in L\}$
## subproblem a (1.0 points)
Listen Sie alle Wörter der Sprache $\Del(\{abbaba,baa,ab,a,b\})$ explizit auf:
<answer-template id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{?\}$
</answer-template>
<example>
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, ab, bbab\}$
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at each word in the given language $\{abbaba, baa, ab, a, b\}$:
1. **Word $abbaba$**: We can remove $ab$ from two positions:
- Remove $ab$ from position 0-1: $abbaba = (ab)baba \rightarrow baba$
- Remove $ab$ from position 3-4: $abbaba = abb(ab)a \rightarrow abba$
2. **Word $baa$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
3. **Word $ab$**: Removing $ab$ gives the empty word $\varepsilon$
4. **Word $a$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
5. **Word $b$**: Contains no substring $ab$, so contributes nothing to $\Del(L)$
Therefore:
<answer id="1">
$\Del(\{abbaba,baa,ab,a,b\}) = \{\varepsilon, abba, baba\}$
</answer>
user:
## subproblem b (2.0 points)
Wir definieren $\DelTwo(L):=\{uvw \mid u,v,w\in \Sigma^* \wedge u ab v ab w\in L \}$. Zeigen Sie oder widerlegen Sie mit einem Gegenbeispiel: Für jede **endliche** Sprache $L\subseteq\Sigma^*$ gilt
$\Del(\Del(L))=\DelTwo(L)$.
<options>
<option id="1">Wahr</option>
<option id="2">Falsch</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether $\Del(\Del(L)) = \DelTwo(L)$ for every finite language $L$.
Let me analyze what each operation does:
- $\Del(\Del(L))$: Removes one occurrence of $ab$ from words in $L$, then removes one occurrence of $ab$ from the resulting words
- $\DelTwo(L)$: Removes exactly two occurrences of $ab$ from words in $L$ that contain at least two such occurrences
The key insight is that these operations can differ when removing one $ab$ creates a new $ab$ substring that wasn't originally present as a separate occurrence.
**Counterexample:** Let $L = \{aabb\}$
First, let's compute $\Del(\Del(L))$:
- $\Del(\{aabb\})$: The word $aabb$ contains one occurrence of $ab$ at positions 1-2. Removing it gives: $aabb = a(ab)b \rightarrow ab$
- So $\Del(\{aabb\}) = \{ab\}$
- $\Del(\Del(\{aabb\})) = \Del(\{ab\})$: Removing $ab$ from $ab$ gives $\varepsilon$
- Therefore $\Del(\Del(\{aabb\})) = \{\varepsilon\}$
Now let's compute $\DelTwo(L)$:
- $\DelTwo(\{aabb\})$ requires words with at least two occurrences of $ab$ as substrings
- The word $aabb$ contains only ONE occurrence of $ab$ (at positions 1-2)
- Therefore $\DelTwo(\{aabb\}) = \emptyset$
Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, we have found a counterexample.
The statement is **false**.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
**Counterexample:** Consider the finite language $L = \{aabb\}$.
The word $aabb$ contains exactly one occurrence of the substring $ab$ (at positions 1-2).
Computing $\Del(\Del(L))$:
- $\Del(\{aabb\}) = \{ab\}$ (removing the $ab$ from $a\underline{ab}b$ gives $ab$)
- $\Del(\{ab\}) = \{\varepsilon\}$ (removing $ab$ from $ab$ gives the empty word)
- Therefore: $\Del(\Del(\{aabb\})) = \{\varepsilon\}$
Computing $\DelTwo(L)$:
- $\DelTwo(L)$ consists of words obtained by removing exactly two occurrences of $ab$ from words in $L$
- Since $aabb$ contains only one occurrence of $ab$, we cannot remove two occurrences
- Therefore: $\DelTwo(\{aabb\}) = \emptyset$
Since $\Del(\Del(\{aabb\})) = \{\varepsilon\} \neq \emptyset = \DelTwo(\{aabb\})$, the statement is false.
</answer>
user:
## subproblem c (7.0 points)
Sei $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik in Chomsky-Normalform. Wir möchten eine kontextfreie Grammatik $G'=(V',\Sigma,P',S')$ konstruieren, sodass $L(G')=\Del(L(G))$ gilt. Hierzu setzen wir
$V':= V\cup \{X_{ab}\mid X\in V\}\cup \{X_a\mid X\in V\}\cup \{X_b\mid X\in V\}$
wobei $X_{ab},X_a,X_b\notin V$ für alle $X\in V$. Definieren Sie nun $P'$ und $S'$, sodass
1. $L_{G'}(X)=L_G(X)$
2. $L_{G'}(X_{ab})=\Del(L_G(X))$
3. $L_{G'}(X_{a})=\{w\in\Sigma^*\mid wa\in L_G(X)\}$
4. $L_{G'}(X_{b})=\{w\in\Sigma^*\mid bw\in L_G(X)\}$
für alle $X\in V$ gilt. Geben Sie die Produktionen $P'$ präzise an; vermeiden Sie unstrukturierten Fließtext.
*Hinweis:* $G$ ist in CNF, hat also keine $\varepsilon$-Produktionen. $G'$ muss nicht in CNF sein.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
???
</answer-template>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
assistant:Looking at this problem, I need to construct a grammar $G'$ where:
- Nonterminals $X$ generate the same language as in $G$
- Nonterminals $X_{ab}$ generate words from $L_G(X)$ with one $ab$ removed
- Nonterminals $X_a$ generate words that, when followed by $a$, give words in $L_G(X)$
- Nonterminals $X_b$ generate words that, when preceded by $b$, give words in $L_G(X)$
Since we want $L(G') = \Del(L(G))$, the start symbol should be $S_{ab}$.
For the productions, I need to consider how CNF productions transform:
1. For binary productions $X \rightarrow YZ$:
- The substring $ab$ could be removed from the $Y$ part, the $Z$ part, or span across both
- For $X_a$: the trailing $a$ must come from $Z$
- For $X_b$: the leading $b$ must come from $Y$
2. For terminal productions:
- $X_a$ derives $\varepsilon$ if $X$ derives $a$ (since $\varepsilon \cdot a = a$)
- $X_b$ derives $\varepsilon$ if $X$ derives $b$ (since $b \cdot \varepsilon = b$)
<answer id="1">
Startsymbol $S' := S_{ab}$
Produktionen $P'$:
Für jede Produktion $X \rightarrow YZ \in P$:
- $X \rightarrow YZ$
- $X_{ab} \rightarrow Y_{ab}Z$
- $X_{ab} \rightarrow YZ_{ab}$
- $X_{ab} \rightarrow Y_a Z_b$
- $X_a \rightarrow YZ_a$
- $X_b \rightarrow Y_b Z$
Für jede Produktion $X \rightarrow a \in P$:
- $X \rightarrow a$
- $X_a \rightarrow \varepsilon$
Für jede Produktion $X \rightarrow b \in P$:
- $X \rightarrow b$
- $X_b \rightarrow \varepsilon$
</answer>
user:
## subproblem d (2.0 points)
Wenden Sie Ihre Konstruktion auf das Beispiel $G:=(\{S,A\},\{a,b\},P,S)$ an, wobei $P$ gegeben ist durch:
$S\to SA\mid a\qquad A\to a\mid b$
*Hinweis:* Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
<answer-template id="1">
Startsymbol $S':=?$
Produktionen $P'$:
$S\rightarrow ?$
$S_{ab}\rightarrow ?$
$S_a\rightarrow ?$
$S_b\rightarrow ?$
$A\rightarrow ?$
$A_{ab}\rightarrow ?$
$A_a\rightarrow ?$
$A_b\rightarrow ?$
</answer-template>
<example>
Startsymbol $S':=S$
Produktionen $P'$:
$S\rightarrow SS\mid AA\mid a"$
$S_{ab}\rightarrow S_{ab}A\mid\varepsilon$
...
</example>
### answer format
Give your answer in the following format:
<answer id="1">
...
</answer>
Thoughts
Let me apply the construction from part c to the given grammar. Given grammar: - $G = (\{S,A\}, \{a,b\}, P, S)$ - $P$: $S \to SA \mid a$ and $A \to a \mid b$ First, the start symbol should be $S' = S_{ab}$ as we determined in part c. Now let me apply the construction rules: For production $S \to SA$: - $S \to SA$ (keep original) - $S_{ab} \to S_{ab}A$ (remove $ab$ from $S$ part) - $S_{ab} \to SA_{ab}$ (remove $ab$ from $A$ part) - $S_{ab} \to S_a A_b$ (remove $ab$ spanning across) - $S_a \to SA_a$ ($a$ comes from $A$) - $S_b \to S_b A$ ($b$ comes from $S$) For production $S \to a$: - $S \to a$ (keep original) - $S_a \to \varepsilon$ (since $S \to a$) For production $A \to a$: - $A \to a$ (keep original) - $A_a \to \varepsilon$ (since $A \to a$) For production $A \to b$: - $A \to b$ (keep original) - $A_b \to \varepsilon$ (since $A \to b$) Now let me organize all productions: $S \to SA \mid a$ $S_{ab} \to S_{ab}A \mid SA_{ab} \mid S_a A_b$ $S_a \to SA_a \mid \varepsilon$ $S_b \to S_b A$ $A \to a \mid b$ $A_{ab} \to$ (no productions since $A$ doesn't have binary productions) $A_a \to \varepsilon$ $A_b \to \varepsilon$ I'll continue analyzing the grammar's productions for the $A$ symbol. The $A_{ab}$ has no productions because $A$ lacks binary productions. The $A_a$ and $A_b$ productions reduce to $\varepsilon$, indicating empty derivations for single-letter cases.
Answer
Looking at the given grammar, I need to apply the construction from part c. Given: - $S \to SA \mid a$ - $A \to a \mid b$ Applying the construction rules: For $S \to SA$ (binary production): - Keep original: $S \to SA$ - Remove $ab$ from left part: $S_{ab} \to S_{ab}A$ - Remove $ab$ from right part: $S_{ab} \to SA_{ab}$ - Remove $ab$ spanning across: $S_{ab} \to S_a A_b$ - For $S_a$: $S_a \to SA_a$ - For $S_b$: $S_b \to S_b A$ For $S \to a$ (terminal production): - Keep original: $S \to a$ - Since $S \to a$: $S_a \to \varepsilon$ For $A \to a$ (terminal production): - Keep original: $A \to a$ - Since $A \to a$: $A_a \to \varepsilon$ For $A \to b$ (terminal production): - Keep original: $A \to b$ - Since $A \to b$: $A_b \to \varepsilon$ <answer id="1"> Startsymbol $S':=S_{ab}$ Produktionen $P'$: $S\rightarrow SA\mid a$ $S_{ab}\rightarrow S_{ab}A\mid SA_{ab}\mid S_a A_b$ $S_a\rightarrow SA_a\mid\varepsilon$ $S_b\rightarrow S_b A$ $A\rightarrow a\mid b$ $A_{ab}\rightarrow $ $A_a\rightarrow \varepsilon$ $A_b\rightarrow \varepsilon$ </answer>
Wenden Sie Ihre Konstruktion auf das Beispiel an, wobei gegeben ist durch: Hinweis: Falls ein Nichtterminal nicht auf der linken Seite einer Produktion vorkommt, lassen Sie das entsprechende Feld leer.
Startsymbol Produktionen :
0 mistakes
Exercise 6: Quiz: Berechenbarkeit und Komplexität
Teilaufgaben (a-e): Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
Es ist immer mindestens eine Antwortmöglichkeit richtig.
In dieser Aufgabe verwenden wir durchgehend das Alphabet .
Subproblem a (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{0, 1\}$.
## subproblem a (2.0 points)
Sei $L$ eine kontextfreie Sprache. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist entscheidbar</option>
<option id="2">$\overline{L}$ ist entscheidbar</option>
<option id="3">$L$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let me think about this question. We have a context-free language $L$ over the alphabet $\Sigma = \{0, 1\}$. Let me recall the properties of context-free languages: - Context-free languages can be recognized by pushdown automata - The class of context-free languages is a proper subset of decidable languages - Every context-free language is decidable Let me check each option: Option 1: "$L$ ist entscheidbar" (L is decidable) This is TRUE. Every context-free language is decidable. We can construct a deterministic pushdown automaton (or use the CYK algorithm) to decide membership in polynomial time. Context-free languages are a subset of decidable languages. Option 2: "$\overline{L}$ ist entscheidbar" (The complement of L is decidable) If $L$ is decidable, then $\overline{L}$ is also decidable. Since we just established that context-free languages are decidable, their complements are also decidable. This is TRUE. Option 3: "$L$ ist semi-entscheidbar" (L is semi-decidable) If a language is decidable, it is also semi-decidable (recursively enumerable). Since context-free languages are decidable, they are certainly semi-decidable. This is TRUE. So all three statements are true.
Answer
Looking at the properties of context-free languages: For a context-free language $L$: - Context-free languages are decidable (there exist algorithms like CYK that can decide membership in polynomial time) - If a language is decidable, its complement is also decidable - Every decidable language is also semi-decidable (recursively enumerable) Therefore: <option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Sei eine kontextfreie Sprache. Welche Aussagen sind wahr?
☒ ist entscheidbar☒ ist entscheidbar☒ ist semi-entscheidbar
Subproblem b (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{0, 1\}$.
## subproblem a (2.0 points)
Sei $L$ eine kontextfreie Sprache. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist entscheidbar</option>
<option id="2">$\overline{L}$ ist entscheidbar</option>
<option id="3">$L$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at the properties of context-free languages:
For a context-free language $L$:
- Context-free languages are decidable (there exist algorithms like CYK that can decide membership in polynomial time)
- If a language is decidable, its complement is also decidable
- Every decidable language is also semi-decidable (recursively enumerable)
Therefore:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Seien $L_1,L_2\subseteq\Sigma^*$ entscheidbare Sprachen. Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$L_1\cap L_2$</option>
<option id="2">$L_1\setminus L_2$</option>
<option id="3">$L_1L_2$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let's analyze each option for decidable languages $L_1$ and $L_2$. Since $L_1$ and $L_2$ are decidable, there exist Turing machines $M_1$ and $M_2$ that decide them respectively. 1. $L_1 \cap L_2$: To decide if $w \in L_1 \cap L_2$, we can: - Run $M_1$ on $w$. If it rejects, reject. - Run $M_2$ on $w$. If it rejects, reject. - If both accept, accept. This gives us a decider for $L_1 \cap L_2$, so it's decidable. 2. $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$: Since $L_2$ is decidable, $\overline{L_2}$ is also decidable (we can just flip the accept/reject states). Then $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$ is the intersection of two decidable languages, which we just showed is decidable. 3. $L_1L_2$ (concatenation): To decide if $w \in L_1L_2$, we need to check if there exists a split $w = xy$ where $x \in L_1$ and $y \in L_2$. Since there are only finitely many ways to split $w$ (at most $|w| + 1$ ways), we can: - For each possible split $w = xy$: - Check if $x \in L_1$ (using $M_1$) - Check if $y \in L_2$ (using $M_2$) - If both are true, accept - If no split works, reject This gives us a decider for $L_1L_2$, so it's decidable. I can confirm that all three language operations remain decidable under these conditions.
Answer
Looking at operations on decidable languages: Since $L_1$ and $L_2$ are decidable, there exist Turing machines that decide them. 1. **$L_1 \cap L_2$ (intersection)**: We can decide this by running the deciders for both $L_1$ and $L_2$ on input $w$ and accepting only if both accept. This is decidable. 2. **$L_1 \setminus L_2$ (set difference)**: This equals $L_1 \cap \overline{L_2}$. Since decidable languages are closed under complement, $\overline{L_2}$ is decidable. Then by closure under intersection, $L_1 \setminus L_2$ is decidable. 3. **$L_1L_2$ (concatenation)**: For input $w$, we can check all possible ways to split $w = xy$ (finitely many). For each split, we check if $x \in L_1$ and $y \in L_2$. If any split works, we accept; otherwise reject. This is decidable. <option id="1">1</option> <option id="2">1</option> <option id="3">1</option>
Seien entscheidbare Sprachen. Welche der folgenden Sprachen sind entscheidbar?
☒☒☒
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{0, 1\}$.
## subproblem a (2.0 points)
Sei $L$ eine kontextfreie Sprache. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist entscheidbar</option>
<option id="2">$\overline{L}$ ist entscheidbar</option>
<option id="3">$L$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at the properties of context-free languages:
For a context-free language $L$:
- Context-free languages are decidable (there exist algorithms like CYK that can decide membership in polynomial time)
- If a language is decidable, its complement is also decidable
- Every decidable language is also semi-decidable (recursively enumerable)
Therefore:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Seien $L_1,L_2\subseteq\Sigma^*$ entscheidbare Sprachen. Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$L_1\cap L_2$</option>
<option id="2">$L_1\setminus L_2$</option>
<option id="3">$L_1L_2$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at operations on decidable languages:
Since $L_1$ and $L_2$ are decidable, there exist Turing machines that decide them.
1. **$L_1 \cap L_2$ (intersection)**: We can decide this by running the deciders for both $L_1$ and $L_2$ on input $w$ and accepting only if both accept. This is decidable.
2. **$L_1 \setminus L_2$ (set difference)**: This equals $L_1 \cap \overline{L_2}$. Since decidable languages are closed under complement, $\overline{L_2}$ is decidable. Then by closure under intersection, $L_1 \setminus L_2$ is decidable.
3. **$L_1L_2$ (concatenation)**: For input $w$, we can check all possible ways to split $w = xy$ (finitely many). For each split, we check if $x \in L_1$ and $y \in L_2$. If any split works, we accept; otherwise reject. This is decidable.
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0\}^*$ unentscheidbar. Welche der folgenden Funktionen $f:\N\rightarrow\N$ sind berechenbar?
<options>
<option id="1">$f(n):=|L\cap \Sigma^n|$</option>
<option id="2">$f(n):=\min\{k\in\N: 0^k\in L\}$</option>
<option id="3">$f(n):=1$, falls $0^n\in L$, sonst $f(n):=0$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let's analyze each function: 1. $f(n):=|L\cap \Sigma^n|$ Since $L \subseteq \{0\}^*$, and $\Sigma = \{0,1\}$, we have $\Sigma^n = \{0,1\}^n$. $L \cap \Sigma^n$ consists of all strings in $L$ of length exactly $n$. Since $L \subseteq \{0\}^*$, the only string of length $n$ in $\{0\}^*$ is $0^n$. So $L \cap \Sigma^n$ is either $\{0^n\}$ (if $0^n \in L$) or $\emptyset$ (if $0^n \notin L$). Therefore $|L \cap \Sigma^n|$ is 1 if $0^n \in L$, and 0 otherwise. If this function were computable, we could decide whether $0^n \in L$ for any $n$, which would make $L$ decidable. But $L$ is undecidable. So this function is not computable. 2. $f(n):=\min\{k\in\N: 0^k\in L\}$ This function doesn't depend on $n$ at all. It's asking for the smallest $k$ such that $0^k \in L$. If $L$ is empty, this minimum doesn't exist. If $L$ is non-empty, this is a constant function that returns the same value for all $n$. Actually, wait. Let me reconsider. If $L$ is empty, then the set $\{k \in \N : 0^k \in L\}$ is empty, so the minimum doesn't exist. When $L$ contains at least one string, the function becomes a constant mapping. For any input $n$, it returns the smallest index where $0^k$ appears in $L$. However, determining this minimum would require an exhaustive search through all possible strings, which is impossible for an undecidable language. The fundamental challenge lies in the function's definition: an empty language renders the function undefined, while a non-empty language creates a constant function. Enumerating potential strings to find the first occurrence becomes computationally intractable. The core issue emerges from the inability to definitively determine membership in an undecidable language. Even with semi-decidability, the enumeration process presents significant computational barriers. Unary languages might seem promising, but the underlying complexity prevents straightforward algorithmic resolution. I'm struck by the intricate constraints preventing a simple computational approach to identifying the minimum string in such a language. The theoretical limitations fundamentally obstruct a direct algorithmic solution. The characteristic function reveals a deeper computational impossibility. By attempting to construct a function that identifies language membership, we inadvertently expose the fundamental undecidability of the problem. This function's non-computability directly stems from the language's inherent undecidable nature. Examining the function more precisely, it depends not on input complexity but on the language's fundamental properties. When the language is empty, the function lacks definition. Conversely, a non-empty language introduces a minimum element through the well-ordering principle, creating a subtle computational challenge. The core issue emerges in determining this minimum: while a constant function seems straightforward, identifying the specific constant becomes problematic. Checking membership requires examining each potential string systematically, but the language's undecidability prevents reliable computation. This reveals a fundamental limitation - the function's theoretical existence contrasts sharply with its practical uncomputable nature. Even parallel checking strategies fail, as an empty language would prevent conclusive determination. The semi-decidability constraint means we could potentially never confirm the function's precise value. The computational challenge stems from the inherent uncertainty surrounding language membership, rendering the function fundamentally non-computable. The function's definition requires careful interpretation, especially when considering edge cases like an empty language set. Determining a consistent mapping becomes problematic when no valid elements exist. Critically, the function must produce a natural number for every input, which introduces additional complexity when the underlying language contains no elements. The requirement of returning a well-defined natural number constrains potential solution strategies. When the language is non-empty, the function becomes constant, which technically satisfies computability criteria. However, true computability depends on our ability to actually determine the constant value, not just its theoretical existence. The core challenge emerges from the undecidability of the language subset, which fundamentally limits our capacity to construct a reliably computable function. For the first option examining $f(n) = |L \cap \Sigma^n|$, the function's behavior hinges critically on whether $0^n$ belongs to the language. The result will be either a singleton set containing $0^n$ or an empty set, depending on $L$'s specific membership conditions. The characteristic function reveals fundamental undecidability. By defining $f(n)$ as 1 when $0^n \in L$ and 0 otherwise, we create a function that directly reflects $L$'s membership properties. However, since $L$ remains undecidable, this function cannot be computed. For the second option involving $\min\{k \in \N : 0^k \in L\}$, the function seeks the smallest natural number where a specific string exists in the language. This approach attempts to identify a minimal representative element, though its computability depends on $L$'s precise structure. The constant function $f(n) = m$ emerges if $L$ contains elements. While constant functions are inherently computable, determining the actual value of $m$ presents significant challenges given $L$'s undecidable nature. The problem centers on understanding computability within an undecidable language, examining how different functional representations interact with fundamental computational limitations. Analyzing the characteristic function reveals a critical insight: computing $f(n)$ would effectively solve the language's decidability problem. Since $L$ remains undecidable, the function mapping $0^n$ membership cannot be algorithmically determined. This means both Option 1 and Option 3 fundamentally cannot be computed, as their very definition would resolve $L$'s decidability - an impossibility by construction. The constant function approach (Option 2) introduces an intriguing alternative. When $L$ is non-empty, the function becomes a straightforward, computable mapping to the minimal string length satisfying membership. However, the empty set scenario introduces computational ambiguity, rendering the function undefined. The underlying question now centers on whether an undecidable language can exist within the singleton set $\{0\}$, which would further complicate the function's computability. By constructing $L$ as the set of zero strings corresponding to Turing machines halting on empty input, we reveal a potential mechanism for encoding undecidability within this seemingly constrained domain. The function $f(n)$ emerges as a deterministic mapping that identifies the first machine index halting on empty input. This yields a constant function computable for all $n$, effectively resolving the computational complexity challenge. The key insight lies in transforming the halting problem's essence into a unary-encoded language subset, demonstrating how fundamental computational limitations persist even in restricted settings. While the precise value of $m$ remains abstract, its existence guarantees computability through a trivial Turing machine that consistently outputs this predetermined index. The function's computability hinges on the specific language $L$, with a straightforward machine capable of emitting the minimal index where $0^k$ belongs to $L$. This constant output mechanism ensures computational feasibility, independent of the input's specific value. However, the nuanced interpretation requires examining how different undecidable languages might impact function computability across multiple options. The challenge lies in determining whether a consistent computational strategy exists across all potential undecidable languages $L \subseteq \{0\}^*$. Analyzing the first option reveals a fundamental limitation: the cardinality of $L$ intersected with strings of a specific length directly relates to $L$'s decidability, rendering the function inherently non-computable for undecidable languages. The second option presents an intriguing constant function approach. By identifying the minimal string length in $L$, the function becomes a fixed value across all input lengths. This suggests computability, assuming the language is non-empty - a condition guaranteed for undecidable languages. The third option mirrors the first in computational complexity, creating a characteristic function that cannot be effectively determined for undecidable sets. I need to carefully verify the computational properties of these functions, particularly focusing on the constant function's theoretical computability. The function appears constant, which suggests computability. However, the underlying complexity involves an undecidable language $L$. While a Turing machine could theoretically compute this constant value, the challenge lies in effectively determining the minimum $k$ where $0^k \in L$. The function's computability depends on whether we can systematically find this specific $k$ given an undecidable language. The key observation is that computability hinges on the existence of a Turing machine that consistently outputs the same value, regardless of input. Even if we cannot explicitly construct this machine, its theoretical possibility satisfies the definition of computability. The function remains computable as long as a deterministic mechanism exists to generate the constant output. For undecidable languages, the function remains well-defined and computable, with the critical condition being that the language cannot be empty. The minimal element can always be determined for non-empty sets, ensuring the function's computational nature. The final assessment confirms two options as non-computable and one as computable, with a systematic approach to evaluating each function's computational properties. However, a key insight emerges regarding the function's definition. The function $f(n)$ appears constant across all inputs, which raises questions about its intended purpose and potential typographical error in the original specification. I conclude the problem with a straightforward solution, selecting specific options based on the constant function interpretation. The computational nature of this function remains consistent with the given constraints.
Answer
Looking at each function for an undecidable language $L \subseteq \{0\}^*$: **Option 1: $f(n) := |L \cap \Sigma^n|$** Since $L \subseteq \{0\}^*$ and $\Sigma^n = \{0,1\}^n$, the only string of length $n$ that could be in $L$ is $0^n$. Therefore: - $|L \cap \Sigma^n| = 1$ if $0^n \in L$ - $|L \cap \Sigma^n| = 0$ if $0^n \notin L$ This is the characteristic function of $L$. If this were computable, we could decide $L$, contradicting that $L$ is undecidable. **Option 2: $f(n) := \min\{k \in \N : 0^k \in L\}$** This function doesn't depend on $n$ - it always returns the same value (the smallest $k$ such that $0^k \in L$). Since $L$ is undecidable and $\emptyset$ is decidable, we know $L \neq \emptyset$, so this minimum exists. The function is therefore a constant function $f(n) = c$ for some fixed $c \in \N$. All constant functions are computable. **Option 3: $f(n) := 1$ if $0^n \in L$, else $f(n) := 0$** This is explicitly the characteristic function of $L$. If this were computable, we could decide $L$ by computing $f(n)$ for input $0^n$, contradicting that $L$ is undecidable. <option id="1">0</option> <option id="2">1</option> <option id="3">0</option>
Sei unentscheidbar. Welche der folgenden Funktionen sind berechenbar?
☐☒☐, falls , sonst
Subproblem d (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{0, 1\}$.
## subproblem a (2.0 points)
Sei $L$ eine kontextfreie Sprache. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist entscheidbar</option>
<option id="2">$\overline{L}$ ist entscheidbar</option>
<option id="3">$L$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at the properties of context-free languages:
For a context-free language $L$:
- Context-free languages are decidable (there exist algorithms like CYK that can decide membership in polynomial time)
- If a language is decidable, its complement is also decidable
- Every decidable language is also semi-decidable (recursively enumerable)
Therefore:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Seien $L_1,L_2\subseteq\Sigma^*$ entscheidbare Sprachen. Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$L_1\cap L_2$</option>
<option id="2">$L_1\setminus L_2$</option>
<option id="3">$L_1L_2$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at operations on decidable languages:
Since $L_1$ and $L_2$ are decidable, there exist Turing machines that decide them.
1. **$L_1 \cap L_2$ (intersection)**: We can decide this by running the deciders for both $L_1$ and $L_2$ on input $w$ and accepting only if both accept. This is decidable.
2. **$L_1 \setminus L_2$ (set difference)**: This equals $L_1 \cap \overline{L_2}$. Since decidable languages are closed under complement, $\overline{L_2}$ is decidable. Then by closure under intersection, $L_1 \setminus L_2$ is decidable.
3. **$L_1L_2$ (concatenation)**: For input $w$, we can check all possible ways to split $w = xy$ (finitely many). For each split, we check if $x \in L_1$ and $y \in L_2$. If any split works, we accept; otherwise reject. This is decidable.
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0\}^*$ unentscheidbar. Welche der folgenden Funktionen $f:\N\rightarrow\N$ sind berechenbar?
<options>
<option id="1">$f(n):=|L\cap \Sigma^n|$</option>
<option id="2">$f(n):=\min\{k\in\N: 0^k\in L\}$</option>
<option id="3">$f(n):=1$, falls $0^n\in L$, sonst $f(n):=0$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each function for an undecidable language $L \subseteq \{0\}^*$:
**Option 1: $f(n) := |L \cap \Sigma^n|$**
Since $L \subseteq \{0\}^*$ and $\Sigma^n = \{0,1\}^n$, the only string of length $n$ that could be in $L$ is $0^n$. Therefore:
- $|L \cap \Sigma^n| = 1$ if $0^n \in L$
- $|L \cap \Sigma^n| = 0$ if $0^n \notin L$
This is the characteristic function of $L$. If this were computable, we could decide $L$, contradicting that $L$ is undecidable.
**Option 2: $f(n) := \min\{k \in \N : 0^k \in L\}$**
This function doesn't depend on $n$ - it always returns the same value (the smallest $k$ such that $0^k \in L$). Since $L$ is undecidable and $\emptyset$ is decidable, we know $L \neq \emptyset$, so this minimum exists. The function is therefore a constant function $f(n) = c$ for some fixed $c \in \N$. All constant functions are computable.
**Option 3: $f(n) := 1$ if $0^n \in L$, else $f(n) := 0$**
This is explicitly the characteristic function of $L$. If this were computable, we could decide $L$ by computing $f(n)$ for input $0^n$, contradicting that $L$ is undecidable.
<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Seien $A,B\subseteq\Sigma^*$ Sprachen mit $A\le_p\SAT\le_p B$. Welche Aussagen sind wahr?
<options>
<option id="1">$A\in\NP$</option>
<option id="2">$B\in\NP$</option>
<option id="3">$B$ ist NP-hart</option>
<option id="4">$A\le_p B$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
Thoughts
Let's analyze each option given that $A \le_p \text{SAT} \le_p B$. We know that: - SAT is NP-complete (it's in NP and is NP-hard) - $\le_p$ is transitive Option 1: $A \in \text{NP}$ Since $A \le_p \text{SAT}$ and SAT is in NP, we have that $A \in \text{NP}$. This is because NP is closed under polynomial-time reductions. So this is TRUE. Option 2: $B \in \text{NP}$ Just because SAT $\le_p B$ doesn't mean $B \in \text{NP}$. For example, B could be an undecidable problem or a problem in a higher complexity class. The reduction only goes one way - from SAT to B. So this is FALSE. Option 3: $B$ is NP-hard Since SAT is NP-complete, it is NP-hard. This means that every problem in NP reduces to SAT in polynomial time. Since SAT $\le_p B$ and $\le_p$ is transitive, for any problem $L \in \text{NP}$, we have $L \le_p \text{SAT} \le_p B$, so $L \le_p B$. Therefore, B is NP-hard. So this is TRUE. Option 4: $A \le_p B$ By transitivity of $\le_p$, since $A \le_p \text{SAT}$ and $\text{SAT} \le_p B$, we have $A \le_p B$. So this is TRUE.
Answer
Looking at the relationships given $A \le_p \text{SAT} \le_p B$: **Option 1: $A \in \text{NP}$** Since $A \le_p \text{SAT}$ and SAT is in NP, and NP is closed under polynomial-time reductions, we have $A \in \text{NP}$. TRUE. **Option 2: $B \in \text{NP}$** The fact that SAT $\le_p B$ doesn't imply $B \in \text{NP}$. For example, $B$ could be an undecidable problem or in a higher complexity class. The reduction only goes from SAT to B, not the other way. FALSE. **Option 3: $B$ is NP-hard** SAT is NP-complete, so every problem in NP reduces to SAT. Since SAT $\le_p B$ and $\le_p$ is transitive, every problem in NP also reduces to $B$ in polynomial time. Therefore, $B$ is NP-hard. TRUE. **Option 4: $A \le_p B$** By transitivity of polynomial-time reductions: $A \le_p \text{SAT}$ and $\text{SAT} \le_p B$ implies $A \le_p B$. TRUE. <option id="1">1</option> <option id="2">0</option> <option id="3">1</option> <option id="4">1</option>
Seien Sprachen mit . Welche Aussagen sind wahr?
☒☐☒ ist NP-hart☒
Subproblem e (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{0, 1\}$.
## subproblem a (2.0 points)
Sei $L$ eine kontextfreie Sprache. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist entscheidbar</option>
<option id="2">$\overline{L}$ ist entscheidbar</option>
<option id="3">$L$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at the properties of context-free languages:
For a context-free language $L$:
- Context-free languages are decidable (there exist algorithms like CYK that can decide membership in polynomial time)
- If a language is decidable, its complement is also decidable
- Every decidable language is also semi-decidable (recursively enumerable)
Therefore:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Seien $L_1,L_2\subseteq\Sigma^*$ entscheidbare Sprachen. Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$L_1\cap L_2$</option>
<option id="2">$L_1\setminus L_2$</option>
<option id="3">$L_1L_2$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at operations on decidable languages:
Since $L_1$ and $L_2$ are decidable, there exist Turing machines that decide them.
1. **$L_1 \cap L_2$ (intersection)**: We can decide this by running the deciders for both $L_1$ and $L_2$ on input $w$ and accepting only if both accept. This is decidable.
2. **$L_1 \setminus L_2$ (set difference)**: This equals $L_1 \cap \overline{L_2}$. Since decidable languages are closed under complement, $\overline{L_2}$ is decidable. Then by closure under intersection, $L_1 \setminus L_2$ is decidable.
3. **$L_1L_2$ (concatenation)**: For input $w$, we can check all possible ways to split $w = xy$ (finitely many). For each split, we check if $x \in L_1$ and $y \in L_2$. If any split works, we accept; otherwise reject. This is decidable.
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0\}^*$ unentscheidbar. Welche der folgenden Funktionen $f:\N\rightarrow\N$ sind berechenbar?
<options>
<option id="1">$f(n):=|L\cap \Sigma^n|$</option>
<option id="2">$f(n):=\min\{k\in\N: 0^k\in L\}$</option>
<option id="3">$f(n):=1$, falls $0^n\in L$, sonst $f(n):=0$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each function for an undecidable language $L \subseteq \{0\}^*$:
**Option 1: $f(n) := |L \cap \Sigma^n|$**
Since $L \subseteq \{0\}^*$ and $\Sigma^n = \{0,1\}^n$, the only string of length $n$ that could be in $L$ is $0^n$. Therefore:
- $|L \cap \Sigma^n| = 1$ if $0^n \in L$
- $|L \cap \Sigma^n| = 0$ if $0^n \notin L$
This is the characteristic function of $L$. If this were computable, we could decide $L$, contradicting that $L$ is undecidable.
**Option 2: $f(n) := \min\{k \in \N : 0^k \in L\}$**
This function doesn't depend on $n$ - it always returns the same value (the smallest $k$ such that $0^k \in L$). Since $L$ is undecidable and $\emptyset$ is decidable, we know $L \neq \emptyset$, so this minimum exists. The function is therefore a constant function $f(n) = c$ for some fixed $c \in \N$. All constant functions are computable.
**Option 3: $f(n) := 1$ if $0^n \in L$, else $f(n) := 0$**
This is explicitly the characteristic function of $L$. If this were computable, we could decide $L$ by computing $f(n)$ for input $0^n$, contradicting that $L$ is undecidable.
<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Seien $A,B\subseteq\Sigma^*$ Sprachen mit $A\le_p\SAT\le_p B$. Welche Aussagen sind wahr?
<options>
<option id="1">$A\in\NP$</option>
<option id="2">$B\in\NP$</option>
<option id="3">$B$ ist NP-hart</option>
<option id="4">$A\le_p B$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:Looking at the relationships given $A \le_p \text{SAT} \le_p B$:
**Option 1: $A \in \text{NP}$**
Since $A \le_p \text{SAT}$ and SAT is in NP, and NP is closed under polynomial-time reductions, we have $A \in \text{NP}$. TRUE.
**Option 2: $B \in \text{NP}$**
The fact that SAT $\le_p B$ doesn't imply $B \in \text{NP}$. For example, $B$ could be an undecidable problem or in a higher complexity class. The reduction only goes from SAT to B, not the other way. FALSE.
**Option 3: $B$ is NP-hard**
SAT is NP-complete, so every problem in NP reduces to SAT. Since SAT $\le_p B$ and $\le_p$ is transitive, every problem in NP also reduces to $B$ in polynomial time. Therefore, $B$ is NP-hard. TRUE.
**Option 4: $A \le_p B$**
By transitivity of polynomial-time reductions: $A \le_p \text{SAT}$ and $\text{SAT} \le_p B$ implies $A \le_p B$. TRUE.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">1</option>
user:
## subproblem e (2.0 points)
Sei $L\subseteq \Sigma^*\{\#\}\Sigma^*$ eine Sprache, sodass $L\in\P$; $L$ enthält also Wörter der Form $u\#v$, mit $u,v\in\Sigma^*$. Welche der folgenden Sprachen sind in $\NP$?
<options>
<option id="1">$L$</option>
<option id="2">$\{u\mid\exists v\in\Sigma^*:u\#v\in L\}$</option>
<option id="3">$\{u\mid\exists v\in\Sigma^*:u\#v\in L\wedge |u|=|v|\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
Thoughts
Let's analyze each option: Given: $L \subseteq \Sigma^*\{\#\}\Sigma^*$ and $L \in \P$ Option 1: $L$ Since $L \in \P$ and $\P \subseteq \NP$, we have $L \in \NP$. TRUE. Option 2: $\{u \mid \exists v \in \Sigma^*: u\#v \in L\}$ This is the language of all $u$ such that there exists some $v$ with $u\#v \in L$. To show this is in NP: Given $u$, a certificate would be a string $v$ such that $u\#v \in L$. The verifier would check if $u\#v \in L$, which can be done in polynomial time since $L \in \P$. The certificate $v$ could be exponentially long though... Actually, wait. For this to be in NP, we need: - A polynomial-size certificate - A polynomial-time verifier The issue is that $v$ could be arbitrarily long. However, the definition of NP requires that if $u$ is in the language, there exists a certificate of polynomial size in $|u|$ that can be verified in polynomial time. So the question is: if $u$ is in the language $\{u \mid \exists v \in \Sigma^*: u\#v \in L\}$, does there necessarily exist a $v$ of polynomial size in $|u|$ such that $u\#v \in L$? Not necessarily! The $v$ that makes $u\#v \in L$ could be exponentially long in $|u|$. So this language is in NP only if we can guarantee that if there exists any $v$ such that $u\#v \in L$, then there exists such a $v$ with $|v| \leq p(|u|)$ for some polynomial $p$. time. However, the certificate's length might exceed polynomial bounds. I need to carefully consider whether a polynomial-size certificate always exists for every $u$ in this language. The verification process depends on $L$ being in $\P$, but the certificate length remains uncertain. The standard NP definition requires a polynomial-bounded certificate, which seems challenging given the potential exponential growth of $v$. This suggests the language might not be straightforwardly in NP. The core issue is finding a polynomial-size certificate for membership. While $v$ could be a natural candidate, its length isn't constrained, preventing a guaranteed polynomial representation. This fundamental limitation complicates the NP membership proof. The problem involves an existential projection of a polynomial-time decidable language, which doesn't automatically guarantee NP membership. The complexity arises from the potential unbounded nature of the witness $v$. Introducing a length constraint changes the landscape. By requiring $|u| = |v|$, we ensure the certificate's size remains polynomial relative to the input. This linear-sized constraint allows efficient verification, potentially resolving the previous complexity challenge. The standard NP definition provides crucial clarity. A language belongs to NP if a polynomial-time Turing machine can verify membership using a certificate bounded by a polynomial function of the input length. This nuanced definition allows flexible certificate generation while maintaining computational tractability. For the second option, the potential certificate lacks size constraints. Without guaranteeing a polynomial-length verification path, this language might not qualify for NP membership. The unbounded nature of potential certificates prevents straightforward verification. The third option introduces an intriguing constraint by requiring certificate length to match input length. This restriction ensures polynomial boundedness, potentially enabling efficient verification and NP classification. Reconsidering the second option reveals a fundamental challenge: determining existence requires an exhaustive search across potentially infinite certificate spaces. While membership in the base language can be polynomial, finding a valid certificate becomes computationally complex. The core issue centers on verification complexity - NP demands polynomial-time certificate validation, which becomes problematic with unrestricted search spaces. To definitively classify the language, we must rigorously examine the verification conditions, ensuring any potential certificate remains bounded within polynomial constraints relative to the input size. The critical challenge emerges from potential certificate lengths. While a certificate exists proving membership, its length could exponentially exceed polynomial limits, fundamentally disqualifying the language from NP membership. No straightforward polynomial-time verification mechanism guarantees a short enough certificate to satisfy NP's strict complexity requirements. The inherent variability in certificate length prevents establishing a consistent polynomial bound. Systematically examining the options reveals a clear pattern: Option 1 holds true due to P's inclusion in NP, Option 2 fails due to unbounded certificate complexity, and Option 3 remains to be analyzed. The exponential potential of verification strings undermines the language's NP classification, rendering the proposed construction fundamentally incompatible with polynomial-time verification constraints. Critically, Option 3's length-matching requirement provides a crucial constraint, enabling polynomial-bounded certificate verification and ensuring the language's membership in NP. The final assessment confirms the initial reasoning: Options 1 and 3 are valid, while Option 2 cannot satisfy NP's fundamental verification requirements.
Answer
Looking at each language and whether it's in NP: **Option 1: $L$** Since $L \in \mathsf{P}$ and $\mathsf{P} \subseteq \mathsf{NP}$, we have $L \in \mathsf{NP}$. TRUE. **Option 2: $\{u \mid \exists v \in \Sigma^*: u\#v \in L\}$** This language consists of all $u$ such that there exists some $v$ with $u\#v \in L$. For this to be in NP, we need a polynomial-size certificate. The natural certificate would be $v$, but $v$ could be arbitrarily long (not bounded by any polynomial in $|u|$). Since NP requires certificates to be polynomially bounded in the input size, this language is not necessarily in NP. FALSE. **Option 3: $\{u \mid \exists v \in \Sigma^*: u\#v \in L \wedge |u| = |v|\}$** Here we have the additional constraint $|u| = |v|$. This means the certificate $v$ has exactly the same length as the input $u$, so it's polynomially bounded (actually linearly bounded). The verifier checks whether $|u| = |v|$ and whether $u\#v \in L$, both of which can be done in polynomial time since $L \in \mathsf{P}$. Therefore, this language is in NP. TRUE. <option id="1">1</option> <option id="2">0</option> <option id="3">1</option>
Sei eine Sprache, sodass ; enthält also Wörter der Form , mit . Welche der folgenden Sprachen sind in ?
☒☐☒
Subproblem f (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Quiz: Berechenbarkeit und Komplexität
**Teilaufgaben (a-e):** Für diese Fragen ist eine Begründung nicht gefordert. Sie erhalten die Punkte auf eine Teilaufgabe genau dann, wenn Sie alle Antwortmöglichkeiten korrekt angekreuzt haben.
**Es ist immer mindestens eine Antwortmöglichkeit richtig.**
In dieser Aufgabe verwenden wir durchgehend das Alphabet $\Sigma := \{0, 1\}$.
## subproblem a (2.0 points)
Sei $L$ eine kontextfreie Sprache. Welche Aussagen sind wahr?
<options>
<option id="1">$L$ ist entscheidbar</option>
<option id="2">$\overline{L}$ ist entscheidbar</option>
<option id="3">$L$ ist semi-entscheidbar</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at the properties of context-free languages:
For a context-free language $L$:
- Context-free languages are decidable (there exist algorithms like CYK that can decide membership in polynomial time)
- If a language is decidable, its complement is also decidable
- Every decidable language is also semi-decidable (recursively enumerable)
Therefore:
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem b (2.0 points)
Seien $L_1,L_2\subseteq\Sigma^*$ entscheidbare Sprachen. Welche der folgenden Sprachen sind entscheidbar?
<options>
<option id="1">$L_1\cap L_2$</option>
<option id="2">$L_1\setminus L_2$</option>
<option id="3">$L_1L_2$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at operations on decidable languages:
Since $L_1$ and $L_2$ are decidable, there exist Turing machines that decide them.
1. **$L_1 \cap L_2$ (intersection)**: We can decide this by running the deciders for both $L_1$ and $L_2$ on input $w$ and accepting only if both accept. This is decidable.
2. **$L_1 \setminus L_2$ (set difference)**: This equals $L_1 \cap \overline{L_2}$. Since decidable languages are closed under complement, $\overline{L_2}$ is decidable. Then by closure under intersection, $L_1 \setminus L_2$ is decidable.
3. **$L_1L_2$ (concatenation)**: For input $w$, we can check all possible ways to split $w = xy$ (finitely many). For each split, we check if $x \in L_1$ and $y \in L_2$. If any split works, we accept; otherwise reject. This is decidable.
<option id="1">1</option>
<option id="2">1</option>
<option id="3">1</option>
user:
## subproblem c (2.0 points)
Sei $L\subseteq\{0\}^*$ unentscheidbar. Welche der folgenden Funktionen $f:\N\rightarrow\N$ sind berechenbar?
<options>
<option id="1">$f(n):=|L\cap \Sigma^n|$</option>
<option id="2">$f(n):=\min\{k\in\N: 0^k\in L\}$</option>
<option id="3">$f(n):=1$, falls $0^n\in L$, sonst $f(n):=0$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each function for an undecidable language $L \subseteq \{0\}^*$:
**Option 1: $f(n) := |L \cap \Sigma^n|$**
Since $L \subseteq \{0\}^*$ and $\Sigma^n = \{0,1\}^n$, the only string of length $n$ that could be in $L$ is $0^n$. Therefore:
- $|L \cap \Sigma^n| = 1$ if $0^n \in L$
- $|L \cap \Sigma^n| = 0$ if $0^n \notin L$
This is the characteristic function of $L$. If this were computable, we could decide $L$, contradicting that $L$ is undecidable.
**Option 2: $f(n) := \min\{k \in \N : 0^k \in L\}$**
This function doesn't depend on $n$ - it always returns the same value (the smallest $k$ such that $0^k \in L$). Since $L$ is undecidable and $\emptyset$ is decidable, we know $L \neq \emptyset$, so this minimum exists. The function is therefore a constant function $f(n) = c$ for some fixed $c \in \N$. All constant functions are computable.
**Option 3: $f(n) := 1$ if $0^n \in L$, else $f(n) := 0$**
This is explicitly the characteristic function of $L$. If this were computable, we could decide $L$ by computing $f(n)$ for input $0^n$, contradicting that $L$ is undecidable.
<option id="1">0</option>
<option id="2">1</option>
<option id="3">0</option>
user:
## subproblem d (2.0 points)
Seien $A,B\subseteq\Sigma^*$ Sprachen mit $A\le_p\SAT\le_p B$. Welche Aussagen sind wahr?
<options>
<option id="1">$A\in\NP$</option>
<option id="2">$B\in\NP$</option>
<option id="3">$B$ ist NP-hart</option>
<option id="4">$A\le_p B$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<option id="4">0 or 1</option>
assistant:Looking at the relationships given $A \le_p \text{SAT} \le_p B$:
**Option 1: $A \in \text{NP}$**
Since $A \le_p \text{SAT}$ and SAT is in NP, and NP is closed under polynomial-time reductions, we have $A \in \text{NP}$. TRUE.
**Option 2: $B \in \text{NP}$**
The fact that SAT $\le_p B$ doesn't imply $B \in \text{NP}$. For example, $B$ could be an undecidable problem or in a higher complexity class. The reduction only goes from SAT to B, not the other way. FALSE.
**Option 3: $B$ is NP-hard**
SAT is NP-complete, so every problem in NP reduces to SAT. Since SAT $\le_p B$ and $\le_p$ is transitive, every problem in NP also reduces to $B$ in polynomial time. Therefore, $B$ is NP-hard. TRUE.
**Option 4: $A \le_p B$**
By transitivity of polynomial-time reductions: $A \le_p \text{SAT}$ and $\text{SAT} \le_p B$ implies $A \le_p B$. TRUE.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
<option id="4">1</option>
user:
## subproblem e (2.0 points)
Sei $L\subseteq \Sigma^*\{\#\}\Sigma^*$ eine Sprache, sodass $L\in\P$; $L$ enthält also Wörter der Form $u\#v$, mit $u,v\in\Sigma^*$. Welche der folgenden Sprachen sind in $\NP$?
<options>
<option id="1">$L$</option>
<option id="2">$\{u\mid\exists v\in\Sigma^*:u\#v\in L\}$</option>
<option id="3">$\{u\mid\exists v\in\Sigma^*:u\#v\in L\wedge |u|=|v|\}$</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
assistant:Looking at each language and whether it's in NP:
**Option 1: $L$**
Since $L \in \mathsf{P}$ and $\mathsf{P} \subseteq \mathsf{NP}$, we have $L \in \mathsf{NP}$. TRUE.
**Option 2: $\{u \mid \exists v \in \Sigma^*: u\#v \in L\}$**
This language consists of all $u$ such that there exists some $v$ with $u\#v \in L$. For this to be in NP, we need a polynomial-size certificate. The natural certificate would be $v$, but $v$ could be arbitrarily long (not bounded by any polynomial in $|u|$). Since NP requires certificates to be polynomially bounded in the input size, this language is not necessarily in NP. FALSE.
**Option 3: $\{u \mid \exists v \in \Sigma^*: u\#v \in L \wedge |u| = |v|\}$**
Here we have the additional constraint $|u| = |v|$. This means the certificate $v$ has exactly the same length as the input $u$, so it's polynomially bounded (actually linearly bounded). The verifier checks whether $|u| = |v|$ and whether $u\#v \in L$, both of which can be done in polynomial time since $L \in \mathsf{P}$. Therefore, this language is in NP. TRUE.
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
user:
## subproblem f (4.0 points)
Sei $L\in\NP$. Zeigen oder widerlegen Sie: $L^*\in\NP$.
<options>
<option id="1">Ja, Beweis:</option>
<option id="2">Nein, Gegenbeispiel:</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let's think about this problem. We have $L \in \mathsf{NP}$ and we want to determine whether $L^* \in \mathsf{NP}$. Recall that $L^* = \{\epsilon\} \cup L \cup L^2 \cup L^3 \cup \ldots$ where $L^k$ denotes concatenation of $k$ strings from $L$. For a word $w \in L^*$, we need to show that there exists a polynomial-size certificate that can be verified in polynomial time. If $w \in L^*$, then $w$ can be written as $w = w_1 w_2 \ldots w_k$ where each $w_i \in L$. The natural certificate would be: 1. The decomposition of $w$ into $w_1, w_2, \ldots, w_k$ 2. For each $w_i$, a certificate showing that $w_i \in L$ (since $L \in \mathsf{NP}$) Let's think about the size of this certificate: - The number $k$ of words in the decomposition could be at most $|w|$ (in the worst case, each $w_i$ has length 1) - We need to specify where to split $w$, which takes $O(k \log |w|) = O(|w| \log |w|)$ bits - For each $w_i$, since $L \in \mathsf{NP}$, there exists a certificate of polynomial size in $|w_i|$, say bounded by $|w_i|^c$ for some constant $c$ - The total size of all certificates is at most $\sum_{i=1}^k |w_i|^c \leq k \cdot |w|^c \leq |w|^{c+1}$ - The total certificate size is polynomial in $|w|$ I can verify the certificate by: 1. Checking that $w$ is correctly decomposed into $w_1, w_2, \ldots, w_k$ 2. Verifying each $w_i$ belongs to $L$ using its individual certificate This verification process runs in polynomial time, which means $L^*$ is indeed in $\mathsf{NP}$. The key insight is that we can systematically break down the problem by guessing a valid decomposition and leveraging the NP property of the original language $L$.
Answer
<option id="1">1</option> <option id="2">0</option> <answer id="3"> Sei $L \in \mathsf{NP}$ mit Verifizierer $V$ und Zertifikatslänge polynomial beschränkt durch $p(n)$ für Eingaben der Länge $n$. Wir zeigen $L^* \in \mathsf{NP}$ durch Angabe eines Verifizierers: **Zertifikat für $w \in L^*$:** - Eine Zerlegung $w = w_1 w_2 \ldots w_k$ mit $w_i \in L$ für alle $i$ - Für jedes $w_i$ ein Zertifikat $c_i$ mit $|c_i| \leq p(|w_i|)$, das bezeugt, dass $w_i \in L$ **Verifizierer für $L^*$:** Bei Eingabe $w$ und Zertifikat $(w_1, \ldots, w_k, c_1, \ldots, c_k)$: 1. Prüfe ob $w = w_1 w_2 \ldots w_k$ 2. Für jedes $i \in \{1, \ldots, k\}$: Prüfe ob $V(w_i, c_i) = 1$ 3. Akzeptiere genau dann, wenn alle Prüfungen erfolgreich sind **Polynomialität:** - Es gilt $k \leq |w|$ und $|w_i| \leq |w|$ für alle $i$ - Die Gesamtlänge des Zertifikats ist $O(|w| \cdot p(|w|))$, also polynomial in $|w|$ - Die Laufzeit ist polynomial, da wir höchstens $|w|$ mal den Verifizierer $V$ aufrufen Daher gilt $L^* \in \mathsf{NP}$. </answer>
Sei . Zeigen oder widerlegen Sie: .
☒Ja, Beweis:☐Nein, Gegenbeispiel:
Sei mit Verifizierer und Zertifikatslänge polynomial beschränkt durch für Eingaben der Länge . Wir zeigen durch Angabe eines Verifizierers: Zertifikat für : - Eine Zerlegung mit für alle - Für jedes ein Zertifikat mit , das bezeugt, dass Verifizierer für : Bei Eingabe und Zertifikat : 1. Prüfe ob 2. Für jedes : Prüfe ob 3. Akzeptiere genau dann, wenn alle Prüfungen erfolgreich sind Polynomialität: - Es gilt und für alle - Die Gesamtlänge des Zertifikats ist , also polynomial in - Die Laufzeit ist polynomial, da wir höchstens mal den Verifizierer aufrufen Daher gilt .
Exercise 7: Reduktion
Nehmen Sie an. Entscheiden Sie unter dieser Annahme, welche der folgenden Aussagen gelten. Die Aussagen sind von der Gestalt „“ für Entscheidungsprobleme . Wenn die Aussage gilt, dann müssen Sie (1) eine präzise definierte Reduktionsfunktion angeben und (2) die Reduktionsfunktion auf die gegebene Instanz von Problem anwenden. Die Korrektheit der Reduktion müssen Sie nur skizzieren. Wenn die Aussage nicht gilt, dann müssen Sie dies beweisen.
Subproblem a (4.0/4.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Reduktion
Nehmen Sie $\P\ne\NP$ an. Entscheiden Sie unter dieser Annahme, welche der folgenden Aussagen gelten. Die Aussagen sind von der Gestalt „$A\le_p B$“ für Entscheidungsprobleme $A, B$. Wenn die Aussage gilt, dann müssen Sie (1) eine präzise definierte Reduktionsfunktion angeben **und** (2) die Reduktionsfunktion auf die gegebene Instanz von Problem $A$ anwenden. Die Korrektheit der Reduktion müssen Sie nur skizzieren. Wenn die Aussage nicht gilt, dann müssen Sie dies beweisen.
## subproblem a (4.0 points)
Sei $G=(V, E)$ ein ungerichteter Graph. Ein Hamilton-Pfad von $G$ ist eine Permutation $v_1,\dotsc,v_n$ der Knoten von $V$ mit $\{v_i, v_{i+1}\} \in E$ für jedes $i \in \{1, ..., n-1\}$. Ein Hamilton-Kreis von $G$ ist ein Hamilton-Pfad von $G$, der zusätzlich $\{v_n, v_1\} \in E$ erfüllt.
Sei HAMILTON-PFAD das Entscheidungsproblem, ob ein gegebener ungerichteter Graph einen Hamilton-Pfad hat. Sei HAMILTON-KREIS das Entscheidungsproblem, ob ein gegebener ungerichteter Graph einen Hamilton-Kreis hat.
**Aussage:** HAMILTON-PFAD $\le_p$ HAMILTON-KREIS
**Falls die Aussage gilt:** Wenden Sie Ihre Reduktion auf folgende Instanz von HAMILTON-PFAD an.
Knoten: A, B, C, D, E
Kanten:
A -- B
A -- C
B -- C
C -- D
C -- E
D -- E
<options>
<option id="1">Die Aussage gilt</option>
<option id="2">Die Aussage gilt nicht</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Okay, so I need to decide whether HAMILTON-PFAD $\le_p$ HAMILTON-KREIS (Hamilton Path reduces to Hamilton Cycle) under the assumption that P ≠ NP. Let me think about this. We need to show that we can reduce the Hamilton Path problem to the Hamilton Cycle problem. This means we need to find a polynomial-time computable function that transforms any instance of Hamilton Path into an instance of Hamilton Cycle such that: - If the original graph has a Hamilton Path, then the transformed graph has a Hamilton Cycle - If the original graph doesn't have a Hamilton Path, then the transformed graph doesn't have a Hamilton Cycle Let me think about a reduction. Given a graph G = (V, E) for which we want to decide if it has a Hamilton Path: 1. Create a new graph G' = (V', E') where: - V' = V ∪ {x} (add a new vertex x) - E' = E ∪ {(x, v) | v ∈ V} (connect x to all vertices in V) Wait, this doesn't work because if G has a Hamilton Path from u to v, then in G' we'd have a cycle going through all vertices of V and then back to x, but that would mean x appears twice. Let me think differently. Actually, the standard reduction is: 1. Given G = (V, E), create G' = (V', E') where: - V' = V ∪ {s} (add a new vertex s) - E' = E ∪ {(s, v) | v ∈ V} (connect s to every vertex in V) Hmm, this still doesn't work correctly. Actually, I think the correct reduction is: 1. Given G = (V, E), create G' = (V', E') where: - V' = V ∪ {x} (add one new vertex) - E' = E ∪ {(x, v) | v ∈ V} (connect the new vertex to all original vertices) I see how this reduction works. By adding a new vertex x connected to all original vertices, we can transform a Hamilton Path into a Hamilton Cycle. If the original graph has a Hamilton Path from v₁ to vₙ, we can create a cycle by including x at the start and end. This ensures we can convert a path problem into a cycle problem efficiently. The key insight is using the new vertex x to bridge the gap between a path and a cycle, allowing a polynomial-time transformation between the two graph problems. The reduction involves creating a new graph G' by adding a vertex x connected to all original vertices. This ensures the Hamilton Cycle in G' translates to a Hamilton Path in the original graph G. For the specific example, I've constructed G' by adding x and connecting it to A, B, C, D, and E while preserving the original graph's edge structure. The new graph maintains the original connectivity and introduces the additional vertex needed for the transformation.
Answer
Looking at this problem, I need to determine whether HAMILTON-PFAD $\le_p$ HAMILTON-KREIS holds, and if so, provide a reduction. The statement **does hold**. Here's my reduction: **Reduction function f:** Given an instance of HAMILTON-PFAD with graph $G = (V, E)$, construct a new graph $G' = (V', E')$ where: - $V' = V \cup \{x\}$ (add one new vertex $x$ not in $V$) - $E' = E \cup \{\{x, v\} \mid v \in V\}$ (add edges from $x$ to all original vertices) **Correctness sketch:** - If $G$ has a Hamilton Path $v_1, v_2, \ldots, v_n$, then $G'$ has a Hamilton Cycle: $x, v_1, v_2, \ldots, v_n, x$. This works because the path edges exist in $E \subseteq E'$, and we added edges $\{x, v_1\}$ and $\{x, v_n\}$. - If $G'$ has a Hamilton Cycle, it must include $x$. Since $x$ is only connected to vertices in $V$, removing $x$ from the cycle leaves a Hamilton Path in $G$. **Applying the reduction to the given instance:** Original graph $G$: - Vertices: A, B, C, D, E - Edges: A--B, A--C, B--C, C--D, C--E, D--E Transformed graph $G'$: - **Vertices:** A, B, C, D, E, x - **Edges:** - Original edges: A--B, A--C, B--C, C--D, C--E, D--E - New edges: x--A, x--B, x--C, x--D, x--E <option id="1">1</option> <option id="2">0</option> <answer id="3"> **Reduktionsfunktion:** Gegeben ein Graph $G = (V, E)$, konstruiere $G' = (V', E')$ mit: - $V' = V \cup \{x\}$ (füge einen neuen Knoten $x \notin V$ hinzu) - $E' = E \cup \{\{x, v\} \mid v \in V\}$ (verbinde $x$ mit allen ursprünglichen Knoten) **Anwendung auf die gegebene Instanz:** Der transformierte Graph $G'$ hat: - **Knoten:** A, B, C, D, E, x - **Kanten:** A--B, A--C, B--C, C--D, C--E, D--E, x--A, x--B, x--C, x--D, x--E **Korrektheitsskizze:** $G$ hat einen Hamilton-Pfad $\Leftrightarrow$ $G'$ hat einen Hamilton-Kreis, da: - Vorwärts: Ein Hamilton-Pfad $v_1, \ldots, v_n$ in $G$ wird zu einem Hamilton-Kreis $x, v_1, \ldots, v_n, x$ in $G'$ - Rückwärts: Jeder Hamilton-Kreis in $G'$ muss $x$ enthalten, und das Entfernen von $x$ liefert einen Hamilton-Pfad in $G$ </answer>
Sei ein ungerichteter Graph. Ein Hamilton-Pfad von ist eine Permutation der Knoten von mit für jedes . Ein Hamilton-Kreis von ist ein Hamilton-Pfad von , der zusätzlich erfüllt. Sei HAMILTON-PFAD das Entscheidungsproblem, ob ein gegebener ungerichteter Graph einen Hamilton-Pfad hat. Sei HAMILTON-KREIS das Entscheidungsproblem, ob ein gegebener ungerichteter Graph einen Hamilton-Kreis hat. Aussage: HAMILTON-PFAD HAMILTON-KREIS Falls die Aussage gilt: Wenden Sie Ihre Reduktion auf folgende Instanz von HAMILTON-PFAD an. Knoten: A, B, C, D, E Kanten: A -- B A -- C B -- C C -- D C -- E D -- E
☒Die Aussage gilt☐Die Aussage gilt nicht
Reduktionsfunktion: Gegeben ein Graph , konstruiere mit: - (füge einen neuen Knoten hinzu) - (verbinde mit allen ursprünglichen Knoten) Anwendung auf die gegebene Instanz: Der transformierte Graph hat: - Knoten: A, B, C, D, E, x - Kanten: A--B, A--C, B--C, C--D, C--E, D--E, x--A, x--B, x--C, x--D, x--E Korrektheitsskizze: hat einen Hamilton-Pfad hat einen Hamilton-Kreis, da: - Vorwärts: Ein Hamilton-Pfad in wird zu einem Hamilton-Kreis in - Rückwärts: Jeder Hamilton-Kreis in muss enthalten, und das Entfernen von liefert einen Hamilton-Pfad in
Subproblem b (3.0/3.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Reduktion
Nehmen Sie $\P\ne\NP$ an. Entscheiden Sie unter dieser Annahme, welche der folgenden Aussagen gelten. Die Aussagen sind von der Gestalt „$A\le_p B$“ für Entscheidungsprobleme $A, B$. Wenn die Aussage gilt, dann müssen Sie (1) eine präzise definierte Reduktionsfunktion angeben **und** (2) die Reduktionsfunktion auf die gegebene Instanz von Problem $A$ anwenden. Die Korrektheit der Reduktion müssen Sie nur skizzieren. Wenn die Aussage nicht gilt, dann müssen Sie dies beweisen.
## subproblem a (4.0 points)
Sei $G=(V, E)$ ein ungerichteter Graph. Ein Hamilton-Pfad von $G$ ist eine Permutation $v_1,\dotsc,v_n$ der Knoten von $V$ mit $\{v_i, v_{i+1}\} \in E$ für jedes $i \in \{1, ..., n-1\}$. Ein Hamilton-Kreis von $G$ ist ein Hamilton-Pfad von $G$, der zusätzlich $\{v_n, v_1\} \in E$ erfüllt.
Sei HAMILTON-PFAD das Entscheidungsproblem, ob ein gegebener ungerichteter Graph einen Hamilton-Pfad hat. Sei HAMILTON-KREIS das Entscheidungsproblem, ob ein gegebener ungerichteter Graph einen Hamilton-Kreis hat.
**Aussage:** HAMILTON-PFAD $\le_p$ HAMILTON-KREIS
**Falls die Aussage gilt:** Wenden Sie Ihre Reduktion auf folgende Instanz von HAMILTON-PFAD an.
Knoten: A, B, C, D, E
Kanten:
A -- B
A -- C
B -- C
C -- D
C -- E
D -- E
<options>
<option id="1">Die Aussage gilt</option>
<option id="2">Die Aussage gilt nicht</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether HAMILTON-PFAD $\le_p$ HAMILTON-KREIS holds, and if so, provide a reduction.
The statement **does hold**. Here's my reduction:
**Reduction function f:**
Given an instance of HAMILTON-PFAD with graph $G = (V, E)$, construct a new graph $G' = (V', E')$ where:
- $V' = V \cup \{x\}$ (add one new vertex $x$ not in $V$)
- $E' = E \cup \{\{x, v\} \mid v \in V\}$ (add edges from $x$ to all original vertices)
**Correctness sketch:**
- If $G$ has a Hamilton Path $v_1, v_2, \ldots, v_n$, then $G'$ has a Hamilton Cycle: $x, v_1, v_2, \ldots, v_n, x$. This works because the path edges exist in $E \subseteq E'$, and we added edges $\{x, v_1\}$ and $\{x, v_n\}$.
- If $G'$ has a Hamilton Cycle, it must include $x$. Since $x$ is only connected to vertices in $V$, removing $x$ from the cycle leaves a Hamilton Path in $G$.
**Applying the reduction to the given instance:**
Original graph $G$:
- Vertices: A, B, C, D, E
- Edges: A--B, A--C, B--C, C--D, C--E, D--E
Transformed graph $G'$:
- **Vertices:** A, B, C, D, E, x
- **Edges:**
- Original edges: A--B, A--C, B--C, C--D, C--E, D--E
- New edges: x--A, x--B, x--C, x--D, x--E
<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
**Reduktionsfunktion:** Gegeben ein Graph $G = (V, E)$, konstruiere $G' = (V', E')$ mit:
- $V' = V \cup \{x\}$ (füge einen neuen Knoten $x \notin V$ hinzu)
- $E' = E \cup \{\{x, v\} \mid v \in V\}$ (verbinde $x$ mit allen ursprünglichen Knoten)
**Anwendung auf die gegebene Instanz:**
Der transformierte Graph $G'$ hat:
- **Knoten:** A, B, C, D, E, x
- **Kanten:** A--B, A--C, B--C, C--D, C--E, D--E, x--A, x--B, x--C, x--D, x--E
**Korrektheitsskizze:**
$G$ hat einen Hamilton-Pfad $\Leftrightarrow$ $G'$ hat einen Hamilton-Kreis, da:
- Vorwärts: Ein Hamilton-Pfad $v_1, \ldots, v_n$ in $G$ wird zu einem Hamilton-Kreis $x, v_1, \ldots, v_n, x$ in $G'$
- Rückwärts: Jeder Hamilton-Kreis in $G'$ muss $x$ enthalten, und das Entfernen von $x$ liefert einen Hamilton-Pfad in $G$
</answer>
user:
## subproblem b (3.0 points)
Sei CFG-LEERHEIT das Entscheidungsproblem, ob eine gegebene kontextfreie Grammatik $G$ kein Wort erzeugt, also ob $L(G)=\emptyset$ gilt.
**Aussage:** 3KNF-SAT $\leq_p$ CFG-LEERHEIT
**Falls die Aussage gilt:** Wenden Sie Ihre Reduktion auf folgende Instanz von 3KNF-SAT an.
$(x_1\vee\neg x_2\vee x_3)\wedge(\neg x_1\vee x_2\vee x_3)$
<options>
<option id="1">Die Aussage gilt</option>
<option id="2">Die Aussage gilt nicht</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
Let me think about this problem. We need to determine whether 3KNF-SAT $\leq_p$ CFG-LEERHEIT (CFG-EMPTINESS). First, let me recall what we know: - 3KNF-SAT is NP-complete - CFG-LEERHEIT (checking if a context-free grammar generates the empty language) is decidable in polynomial time The problem CFG-LEERHEIT asks: Given a context-free grammar G, is L(G) = ∅? This can be solved in polynomial time by: 1. Computing which non-terminals are productive (can derive a terminal string) 2. Checking if the start symbol is productive The algorithm works as follows: - Mark all terminals as productive - Repeatedly mark non-terminals as productive if they have a production rule where all symbols on the right-hand side are productive - L(G) = ∅ if and only if the start symbol is not productive Since CFG-LEERHEIT is in P and 3KNF-SAT is NP-complete, and we assume P ≠ NP, we cannot have 3KNF-SAT $\leq_p$ CFG-LEERHEIT. If such a reduction existed, it would imply 3KNF-SAT ∈ P, which would mean P = NP, contradicting our assumption. Therefore, the statement does NOT hold. Let me write a proof: **Beweis:** CFG-LEERHEIT ist in P, da es einen Polynomialzeit-Algorithmus gibt, der prüft, ob eine kontextfreie Grammatik die leere Sprache erzeugt (durch Berechnung der produktiven Nichtterminale). 3KNF-SAT ist NP-vollständig. Angenommen, es gäbe eine Polynomialzeit-Reduktion 3KNF-SAT $\leq_p$ CFG-LEERHEIT. Dann könnten wir 3KNF-SAT in Polynomialzeit lösen: If we could reduce 3KNF-SAT to CFG-LEERHEIT, we'd transform a 3-CNF formula into a context-free grammar such that the formula is satisfiable if and only if the grammar is non-empty. By checking the grammar's language emptiness in polynomial time, we'd effectively solve 3KNF-SAT in polynomial time. This would contradict the NP-completeness of 3KNF-SAT, implying P = NP.
Answer
Looking at this problem, I need to determine whether 3KNF-SAT $\leq_p$ CFG-LEERHEIT holds under the assumption P ≠ NP. Let me analyze the complexity of these problems: **CFG-LEERHEIT** is in P because we can determine whether a context-free grammar generates the empty language in polynomial time using the following algorithm: 1. Mark which non-terminals are productive (can derive terminal strings) 2. A non-terminal is productive if it has a production rule where all symbols on the right side are already marked as productive (terminals are productive by default) 3. L(G) = ∅ if and only if the start symbol is not productive **3KNF-SAT** is NP-complete. Now, if 3KNF-SAT $\leq_p$ CFG-LEERHEIT were true, we could solve 3KNF-SAT in polynomial time: 1. Apply the polynomial-time reduction to transform the 3KNF formula into a CFG 2. Solve CFG-LEERHEIT in polynomial time 3. Use the result to determine satisfiability This would imply 3KNF-SAT ∈ P, which means P = NP, contradicting our assumption that P ≠ NP. Therefore, the statement **does not hold**. <option id="1">0</option> <option id="2">1</option> <answer id="3"> **Beweis, dass die Aussage nicht gilt:** CFG-LEERHEIT ist in P, da es einen Polynomialzeit-Algorithmus gibt, der die produktiven Nichtterminale einer kontextfreien Grammatik berechnet und prüft, ob das Startsymbol produktiv ist. Eine Grammatik erzeugt genau dann die leere Sprache, wenn ihr Startsymbol nicht produktiv ist. 3KNF-SAT ist NP-vollständig. **Annahme:** Es gäbe eine Polynomialzeit-Reduktion 3KNF-SAT $\leq_p$ CFG-LEERHEIT. **Folgerung:** Dann könnten wir 3KNF-SAT in Polynomialzeit lösen: - Gegeben eine 3KNF-Formel φ, wende die Reduktion an und erhalte eine CFG G - Teste in Polynomialzeit, ob L(G) = ∅ - Dies liefert die Antwort für die Erfüllbarkeit von φ Das würde bedeuten 3KNF-SAT ∈ P, also P = NP, was unserer Annahme P ≠ NP widerspricht. **Konklusion:** Die Reduktion 3KNF-SAT $\leq_p$ CFG-LEERHEIT kann unter der Annahme P ≠ NP nicht existieren. </answer>
Sei CFG-LEERHEIT das Entscheidungsproblem, ob eine gegebene kontextfreie Grammatik kein Wort erzeugt, also ob gilt. Aussage: 3KNF-SAT CFG-LEERHEIT Falls die Aussage gilt: Wenden Sie Ihre Reduktion auf folgende Instanz von 3KNF-SAT an.
☐Die Aussage gilt☒Die Aussage gilt nicht
Beweis, dass die Aussage nicht gilt: CFG-LEERHEIT ist in P, da es einen Polynomialzeit-Algorithmus gibt, der die produktiven Nichtterminale einer kontextfreien Grammatik berechnet und prüft, ob das Startsymbol produktiv ist. Eine Grammatik erzeugt genau dann die leere Sprache, wenn ihr Startsymbol nicht produktiv ist. 3KNF-SAT ist NP-vollständig. Annahme: Es gäbe eine Polynomialzeit-Reduktion 3KNF-SAT CFG-LEERHEIT. Folgerung: Dann könnten wir 3KNF-SAT in Polynomialzeit lösen: - Gegeben eine 3KNF-Formel φ, wende die Reduktion an und erhalte eine CFG G - Teste in Polynomialzeit, ob L(G) = ∅ - Dies liefert die Antwort für die Erfüllbarkeit von φ Das würde bedeuten 3KNF-SAT ∈ P, also P = NP, was unserer Annahme P ≠ NP widerspricht. Konklusion: Die Reduktion 3KNF-SAT CFG-LEERHEIT kann unter der Annahme P ≠ NP nicht existieren.
Subproblem c (7.0/7.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Reduktion
Nehmen Sie $\P\ne\NP$ an. Entscheiden Sie unter dieser Annahme, welche der folgenden Aussagen gelten. Die Aussagen sind von der Gestalt „$A\le_p B$“ für Entscheidungsprobleme $A, B$. Wenn die Aussage gilt, dann müssen Sie (1) eine präzise definierte Reduktionsfunktion angeben **und** (2) die Reduktionsfunktion auf die gegebene Instanz von Problem $A$ anwenden. Die Korrektheit der Reduktion müssen Sie nur skizzieren. Wenn die Aussage nicht gilt, dann müssen Sie dies beweisen.
## subproblem a (4.0 points)
Sei $G=(V, E)$ ein ungerichteter Graph. Ein Hamilton-Pfad von $G$ ist eine Permutation $v_1,\dotsc,v_n$ der Knoten von $V$ mit $\{v_i, v_{i+1}\} \in E$ für jedes $i \in \{1, ..., n-1\}$. Ein Hamilton-Kreis von $G$ ist ein Hamilton-Pfad von $G$, der zusätzlich $\{v_n, v_1\} \in E$ erfüllt.
Sei HAMILTON-PFAD das Entscheidungsproblem, ob ein gegebener ungerichteter Graph einen Hamilton-Pfad hat. Sei HAMILTON-KREIS das Entscheidungsproblem, ob ein gegebener ungerichteter Graph einen Hamilton-Kreis hat.
**Aussage:** HAMILTON-PFAD $\le_p$ HAMILTON-KREIS
**Falls die Aussage gilt:** Wenden Sie Ihre Reduktion auf folgende Instanz von HAMILTON-PFAD an.
Knoten: A, B, C, D, E
Kanten:
A -- B
A -- C
B -- C
C -- D
C -- E
D -- E
<options>
<option id="1">Die Aussage gilt</option>
<option id="2">Die Aussage gilt nicht</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether HAMILTON-PFAD $\le_p$ HAMILTON-KREIS holds, and if so, provide a reduction.
The statement **does hold**. Here's my reduction:
**Reduction function f:**
Given an instance of HAMILTON-PFAD with graph $G = (V, E)$, construct a new graph $G' = (V', E')$ where:
- $V' = V \cup \{x\}$ (add one new vertex $x$ not in $V$)
- $E' = E \cup \{\{x, v\} \mid v \in V\}$ (add edges from $x$ to all original vertices)
**Correctness sketch:**
- If $G$ has a Hamilton Path $v_1, v_2, \ldots, v_n$, then $G'$ has a Hamilton Cycle: $x, v_1, v_2, \ldots, v_n, x$. This works because the path edges exist in $E \subseteq E'$, and we added edges $\{x, v_1\}$ and $\{x, v_n\}$.
- If $G'$ has a Hamilton Cycle, it must include $x$. Since $x$ is only connected to vertices in $V$, removing $x$ from the cycle leaves a Hamilton Path in $G$.
**Applying the reduction to the given instance:**
Original graph $G$:
- Vertices: A, B, C, D, E
- Edges: A--B, A--C, B--C, C--D, C--E, D--E
Transformed graph $G'$:
- **Vertices:** A, B, C, D, E, x
- **Edges:**
- Original edges: A--B, A--C, B--C, C--D, C--E, D--E
- New edges: x--A, x--B, x--C, x--D, x--E
<option id="1">1</option>
<option id="2">0</option>
<answer id="3">
**Reduktionsfunktion:** Gegeben ein Graph $G = (V, E)$, konstruiere $G' = (V', E')$ mit:
- $V' = V \cup \{x\}$ (füge einen neuen Knoten $x \notin V$ hinzu)
- $E' = E \cup \{\{x, v\} \mid v \in V\}$ (verbinde $x$ mit allen ursprünglichen Knoten)
**Anwendung auf die gegebene Instanz:**
Der transformierte Graph $G'$ hat:
- **Knoten:** A, B, C, D, E, x
- **Kanten:** A--B, A--C, B--C, C--D, C--E, D--E, x--A, x--B, x--C, x--D, x--E
**Korrektheitsskizze:**
$G$ hat einen Hamilton-Pfad $\Leftrightarrow$ $G'$ hat einen Hamilton-Kreis, da:
- Vorwärts: Ein Hamilton-Pfad $v_1, \ldots, v_n$ in $G$ wird zu einem Hamilton-Kreis $x, v_1, \ldots, v_n, x$ in $G'$
- Rückwärts: Jeder Hamilton-Kreis in $G'$ muss $x$ enthalten, und das Entfernen von $x$ liefert einen Hamilton-Pfad in $G$
</answer>
user:
## subproblem b (3.0 points)
Sei CFG-LEERHEIT das Entscheidungsproblem, ob eine gegebene kontextfreie Grammatik $G$ kein Wort erzeugt, also ob $L(G)=\emptyset$ gilt.
**Aussage:** 3KNF-SAT $\leq_p$ CFG-LEERHEIT
**Falls die Aussage gilt:** Wenden Sie Ihre Reduktion auf folgende Instanz von 3KNF-SAT an.
$(x_1\vee\neg x_2\vee x_3)\wedge(\neg x_1\vee x_2\vee x_3)$
<options>
<option id="1">Die Aussage gilt</option>
<option id="2">Die Aussage gilt nicht</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
assistant:Looking at this problem, I need to determine whether 3KNF-SAT $\leq_p$ CFG-LEERHEIT holds under the assumption P ≠ NP.
Let me analyze the complexity of these problems:
**CFG-LEERHEIT** is in P because we can determine whether a context-free grammar generates the empty language in polynomial time using the following algorithm:
1. Mark which non-terminals are productive (can derive terminal strings)
2. A non-terminal is productive if it has a production rule where all symbols on the right side are already marked as productive (terminals are productive by default)
3. L(G) = ∅ if and only if the start symbol is not productive
**3KNF-SAT** is NP-complete.
Now, if 3KNF-SAT $\leq_p$ CFG-LEERHEIT were true, we could solve 3KNF-SAT in polynomial time:
1. Apply the polynomial-time reduction to transform the 3KNF formula into a CFG
2. Solve CFG-LEERHEIT in polynomial time
3. Use the result to determine satisfiability
This would imply 3KNF-SAT ∈ P, which means P = NP, contradicting our assumption that P ≠ NP.
Therefore, the statement **does not hold**.
<option id="1">0</option>
<option id="2">1</option>
<answer id="3">
**Beweis, dass die Aussage nicht gilt:**
CFG-LEERHEIT ist in P, da es einen Polynomialzeit-Algorithmus gibt, der die produktiven Nichtterminale einer kontextfreien Grammatik berechnet und prüft, ob das Startsymbol produktiv ist. Eine Grammatik erzeugt genau dann die leere Sprache, wenn ihr Startsymbol nicht produktiv ist.
3KNF-SAT ist NP-vollständig.
**Annahme:** Es gäbe eine Polynomialzeit-Reduktion 3KNF-SAT $\leq_p$ CFG-LEERHEIT.
**Folgerung:** Dann könnten wir 3KNF-SAT in Polynomialzeit lösen:
- Gegeben eine 3KNF-Formel φ, wende die Reduktion an und erhalte eine CFG G
- Teste in Polynomialzeit, ob L(G) = ∅
- Dies liefert die Antwort für die Erfüllbarkeit von φ
Das würde bedeuten 3KNF-SAT ∈ P, also P = NP, was unserer Annahme P ≠ NP widerspricht.
**Konklusion:** Die Reduktion 3KNF-SAT $\leq_p$ CFG-LEERHEIT kann unter der Annahme P ≠ NP nicht existieren.
</answer>
user:
## subproblem c (7.0 points)
EXAKTE-ÜBERDECKUNG ist das folgende Entscheidungsproblem:
Eingabe: Eine endliche Menge $M=\{m_1, ..., m_k\}$ und eine Menge $T=\{T_1, ..., T_n\}$ von Teilmengen von $M$.
Ausgabe: Enthält $T$ eine *exakte Überdeckung* von $M$, d.h. gibt es eine Menge $S \subseteq T$, sodass jedes Element von $M$ in **genau** einer der Teilmengen in $S$ vorkommt?
**Aussage:** EXAKTE-ÜBERDECKUNG $\leq_p$ SAT
**Falls die Aussage gilt:** Wenden Sie Ihre Reduktion auf folgende Instanz von EXAKTE-ÜBERDECKUNG an.
$M\coloneqq\{1,2,3,4\}$
$T\coloneqq\{T_1,T_2,T_3,T_4,T_5\}$
wobei
$T_1\coloneqq\{1\}$,
$T_2\coloneqq\{1,3\}$,
$T_3\coloneqq\{1,2,3\}$,
$T_4\coloneqq\{2,4\}$,
$T_5\coloneqq\emptyset$.
<options>
<option id="1">Die Aussage gilt</option>
<option id="2">Die Aussage gilt nicht</option>
</options>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<answer id="3">
...
</answer>
Thoughts
I need to determine whether EXAKTE-ÜBERDECKUNG $\leq_p$ SAT holds. First, let me understand what EXAKTE-ÜBERDECKUNG is: - Input: A finite set M and a set T of subsets of M - Output: Does T contain an exact cover of M? (i.e., a subset S ⊆ T such that each element of M appears in exactly one of the subsets in S) SAT is the satisfiability problem for boolean formulas. The statement should hold because: 1. EXAKTE-ÜBERDECKUNG is NP-complete (this is a known fact) 2. SAT is NP-complete 3. All NP-complete problems are polynomial-time reducible to each other So I need to give a reduction from EXAKTE-ÜBERDECKUNG to SAT. The reduction: Given an instance of EXAKTE-ÜBERDECKUNG with M = {m₁, ..., m_k} and T = {T₁, ..., T_n}, I need to construct a boolean formula φ that is satisfiable if and only if there exists an exact cover. Variables: - For each T_i ∈ T, introduce a boolean variable x_i which is true if T_i is selected in the cover Constraints: 1. Each element m_j ∈ M must be covered exactly once. - For each m_j, it must appear in exactly one selected subset - Let I_j = {i | m_j ∈ T_i} be the indices of subsets containing m_j - We need exactly one of {x_i | i ∈ I_j} to be true The "exactly one" constraint can be expressed as: - At least one is true: ⋁_{i ∈ I_j} x_i - At most one is true: For all distinct pairs i₁, i₂ ∈ I_j: ¬(x_{i₁} ∧ x_{i₂}) which is equivalent to (¬x_{i₁} ∨ ¬x_{i₂}) I construct a boolean formula that captures the exact cover conditions. The formula ensures each element is covered precisely once by combining logical constraints on the subset selection variables. For the first element, I create a complex logical expression involving sets containing 1, enforcing mutual exclusivity and coverage requirements. The constraint ensures x₁ appears in exactly one of the selected sets. For the second element, I'm developing a similar logical constraint involving sets containing 2, which will define the coverage and mutual exclusivity conditions for those specific subsets. I continue constructing the logical formula by systematically incorporating constraints for each element, ensuring precise set selection rules. The goal is to create a comprehensive boolean expression that governs subset membership. The emerging formula progressively captures the intricate relationships between elements and their potential subset inclusions, methodically building a precise logical representation of the set selection problem. An exact cover emerges through strategic variable assignments, specifically selecting T₂ and T₄ to comprehensively yet uniquely represent the underlying set structure. I verify x₁, x₃, and x₅ are false, while x₂ and x₄ remain true. This configuration systematically satisfies the complex logical constraints across the formula's clauses. Each logical clause evaluates to true, confirming the overall formula's validity through this specific variable assignment. The truth values align precisely to meet all specified conditions.
Answer
Looking at this problem, I need to determine whether EXAKTE-ÜBERDECKUNG $\leq_p$ SAT holds. The statement **does hold**. EXAKTE-ÜBERDECKUNG is NP-complete, and SAT is NP-complete, so there exists a polynomial-time reduction between them. **Reduction function:** Given an instance of EXAKTE-ÜBERDECKUNG with set $M = \{m_1, \ldots, m_k\}$ and collection $T = \{T_1, \ldots, T_n\}$, construct a boolean formula $\phi$ as follows: 1. **Variables:** For each $T_i \in T$, create a boolean variable $x_i$ (true if $T_i$ is selected in the cover) 2. **Constraints:** For each element $m_j \in M$: - Let $I_j = \{i \mid m_j \in T_i\}$ be the indices of subsets containing $m_j$ - Add constraint: "exactly one of the subsets containing $m_j$ is selected" - This is expressed as: - At least one: $\bigvee_{i \in I_j} x_i$ - At most one: $\bigwedge_{i_1, i_2 \in I_j, i_1 < i_2} (\neg x_{i_1} \vee \neg x_{i_2})$ The formula is: $\phi = \bigwedge_{j=1}^k \left[ \left(\bigvee_{i \in I_j} x_i\right) \wedge \left(\bigwedge_{i_1, i_2 \in I_j, i_1 < i_2} (\neg x_{i_1} \vee \neg x_{i_2})\right) \right]$ **Applying to the given instance:** For element 1: $I_1 = \{1, 2, 3\}$ (contained in $T_1, T_2, T_3$) For element 2: $I_2 = \{3, 4\}$ (contained in $T_3, T_4$) For element 3: $I_3 = \{2, 3\}$ (contained in $T_2, T_3$) For element 4: $I_4 = \{4\}$ (contained in $T_4$) <option id="1">1</option> <option id="2">0</option> <answer id="3"> **Reduktionsfunktion:** Gegeben $(M, T)$ mit $M = \{m_1, \ldots, m_k\}$ und $T = \{T_1, \ldots, T_n\}$: - **Variablen:** Für jedes $T_i$ eine Variable $x_i$ (wahr gdw. $T_i$ in der Überdeckung) - **Formel:** Für jedes $m_j \in M$ mit $I_j = \{i \mid m_j \in T_i\}$: - Mindestens eine Überdeckung: $\bigvee_{i \in I_j} x_i$ - Höchstens eine Überdeckung: $\bigwedge_{i_1 < i_2, i_1,i_2 \in I_j} (\neg x_{i_1} \vee \neg x_{i_2})$ **Anwendung auf die gegebene Instanz:** Variablen: $x_1, x_2, x_3, x_4, x_5$ Für Element 1 (in $T_1, T_2, T_3$): $(x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2) \wedge (\neg x_1 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3)$ Für Element 2 (in $T_3, T_4$): $(x_3 \vee x_4) \wedge (\neg x_3 \vee \neg x_4)$ Für Element 3 (in $T_2, T_3$): $(x_2 \vee x_3) \wedge (\neg x_2 \vee \neg x_3)$ Für Element 4 (in $T_4$): $x_4$ **Resultierende Formel:** $\phi = (x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2) \wedge (\neg x_1 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3) \wedge (x_3 \vee x_4) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_2 \vee x_3) \wedge (\neg x_2 \vee \neg x_3) \wedge x_4$ **Korrektheitsskizze:** Eine exakte Überdeckung existiert gdw. $\phi$ erfüllbar ist. Die Belegung $x_i = $ wahr entspricht der Auswahl von $T_i$. </answer>
EXAKTE-ÜBERDECKUNG ist das folgende Entscheidungsproblem: Eingabe: Eine endliche Menge und eine Menge von Teilmengen von . Ausgabe: Enthält eine exakte Überdeckung von , d.h. gibt es eine Menge , sodass jedes Element von in genau einer der Teilmengen in vorkommt? Aussage: EXAKTE-ÜBERDECKUNG SAT Falls die Aussage gilt: Wenden Sie Ihre Reduktion auf folgende Instanz von EXAKTE-ÜBERDECKUNG an. wobei , , , , .
☒Die Aussage gilt☐Die Aussage gilt nicht
Reduktionsfunktion: Gegeben mit und : - Variablen: Für jedes eine Variable (wahr gdw. in der Überdeckung) - Formel: Für jedes mit : - Mindestens eine Überdeckung: - Höchstens eine Überdeckung: Anwendung auf die gegebene Instanz: Variablen: Für Element 1 (in ): Für Element 2 (in ): Für Element 3 (in ): Für Element 4 (in ): Resultierende Formel: Korrektheitsskizze: Eine exakte Überdeckung existiert gdw. erfüllbar ist. Die Belegung wahr entspricht der Auswahl von .
Exercise 8: Bonus
Mindestens eine Antwortmöglichkeit ist immer richtig.
Subproblem a (0.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b,c\}$. Welche der folgenden Sprachen sind **NICHT** regulär? Kreuzen Sie **alle** zutreffenden an. Wählen Sie anschließend **eine** solche Sprache und beweisen Sie, dass diese nicht regulär ist.
<options>
<option id="1">$\{w\in\Sigma^*:|w|_{aba}\ne|w|_{a}\}$</option>
<option id="2">$\big(\{w\in\Sigma^*:w=w^R\}\big)^*$</option>
<option id="3">$\{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$</option>
</options>
<answer-template id="4">
Beweis für Sprache ?:
???
</answer-template>
<example>
Beweis für Sprache 1:
...
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Let's analyze each language to determine if it's regular: **Option 1:** $\{w\in\Sigma^*:|w|_{aba}\ne|w|_{a}\}$ - $|w|_{aba}$ counts the number of occurrences of substring "aba" in $w$ - $|w|_a$ counts the number of occurrences of letter 'a' in $w$ - This language contains all strings where the number of "aba" substrings is not equal to the total number of 'a's Let me think about this. If $|w|_{aba} = |w|_a$, then every 'a' in the string must be part of exactly one "aba" substring. This seems very restrictive. Actually, wait. $|w|_{aba}$ counts overlapping occurrences or non-overlapping? Usually it's non-overlapping unless specified otherwise. But even with overlapping, this is a complex counting condition. This language seems to be regular actually. We can construct a DFA that tracks whether we've seen patterns that would make $|w|_{aba} \ne |w|_a$. Actually, let me reconsider... If $|w|_{aba} = |w|_a$, that means every 'a' appears exactly once in some "aba" pattern. But "ababa" has 3 'a's and could have 2 "aba" patterns (overlapping), so this would not be in the complement. Actually, I think this language might be regular. We need to track a finite amount of information about the difference between these counts. **Option 2:** $\big(\{w\in\Sigma^*:w=w^R\}\big)^*$ - The inner language is the set of palindromes over $\Sigma$ - The outer operation is Kleene star, so this is the set of strings that can be written as concatenations of palindromes - Interestingly, this generates the entire alphabet's possible strings - Single letters serve as base palindromes - Concatenating these palindromes creates a universal language I realize this language is equivalent to $\Sigma^*$, which is definitively regular. The key insight is that palindromes of single letters, when concatenated, produce all possible strings. The pattern includes $\epsilon$, individual letters, and complex palindromic combinations like $aba$, $bab$, covering the entire alphabet's potential configurations. I'll analyze the language's structure by examining its complement and key constraints. The language involves $a^ib^jc^k$ strings with specific conditions: either the number of $a$'s isn't exactly one, or the $b$ and $c$ counts match. The language breaks into two key subsets: strings with zero or multiple $a$'s, and strings where $b$ and $c$ counts are identical. This suggests potential complexity in determining regularity. I'm seeing that $L_1$ (strings without exactly one $a$) appears constructible by a deterministic finite automaton, while $L_2$ (strings with matching $b$ and $c$ counts) presents a counting challenge that typically indicates non-regularity. The union of these languages requires careful examination to determine its ultimate regular or non-regular status. When considering the language's structure, I notice two key acceptance conditions: strings with zero or multiple initial $a$'s, and strings with exactly one $a$ where $b$ and $c$ counts match. The second condition suggests potential non-regularity due to the required counting and comparison mechanism, which finite automata struggle to implement. I'll need to apply the pumping lemma to definitively demonstrate the language's non-regular nature. Assuming regularity, I'll select a specific string $w = ab^pc^p$ that satisfies the language's constraints, where $p$ represents the pumping length. I'll analyze two scenarios for the pumped substring $y$. In the first case where $y$ is the initial $a$, I can generate valid strings by pumping: $xy^0z$ and $xy^2z$ both remain in the language by satisfying the membership condition. For the second scenario involving $y$ as a substring of $b$'s, I'll examine how pumping affects the string's structure, focusing on how the pumped version maintains or potentially violates language membership. The key observation emerges when $y$ consists of initial $b$'s: the pumped version $xy^0z$ cannot satisfy the language's requirements. Specifically, when $m > 0$, the pumped string fails to meet the condition, which contradicts the pumping lemma's assumptions. This contradiction demonstrates that the language cannot be regular, revealing fundamental constraints in its structural properties. Exploring further, I notice strings like $(aba)^n$ provide interesting insights. These strings inherently demonstrate the language's complexity, showing $n$ "aba" substrings and $2n$ total 'a's, which cannot be uniformly matched. The challenge lies in ensuring each 'a' participates in precisely one "aba" substring, a condition that becomes mathematically intricate when analyzing string transformations. Investigating overlapping versus non-overlapping patterns reveals subtle nuances. The relationship between substring counts suggests potential regularity, yet the specific counting constraints might render the language non-regular. The core problem centers on establishing a consistent mapping between "aba" occurrences and individual 'a' characters, which seems to defy straightforward finite automaton representation. Shifting focus to proving non-regularity for option 3 appears more promising, as the intricate counting requirements hint at complex structural limitations.
Answer
Looking at each language: **Option 1:** $\{w\in\Sigma^*:|w|_{aba}\ne|w|_{a}\}$ This language is actually regular. The condition $|w|_{aba} = |w|_a$ (the complement) is extremely restrictive - it requires every 'a' to be part of exactly one "aba" substring, which is essentially impossible for most strings. The complement is finite or very simple, making the language regular. **Option 2:** $\big(\{w\in\Sigma^*:w=w^R\}\big)^*$ This language equals $\Sigma^*$ and is therefore regular. Since every single letter is a palindrome, any string can be written as a concatenation of single-letter palindromes. **Option 3:** $\{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$ This language is NOT regular. It includes all strings except those of the form $ab^jc^k$ where $j \ne k$. <option id="1">0</option> <option id="2">0</option> <option id="3">1</option> <answer id="4"> Beweis für Sprache 3: Angenommen, die Sprache $L = \{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$ ist regulär. Dann existiert eine Pumping-Länge $p$. Betrachte den String $w = ab^pc^p$. Es gilt $|w| = 1 + 2p \ge p$ und $w \in L$, da $i=1$ und $j=k=p$, also die Bedingung $(i\ne 1\vee j=k)$ erfüllt ist. Nach dem Pumping-Lemma kann $w = xyz$ geschrieben werden mit: 1. $|xy| \le p$ 2. $|y| > 0$ 3. Für alle $n \ge 0$ gilt $xy^nz \in L$ Da $|xy| \le p$ und der String mit $a$ beginnt gefolgt von $p$ b's, besteht $xy$ aus dem $a$ und höchstens $p-1$ b's. Da $|y| > 0$ und $y$ ein Teilstring von $xy$ ist, muss $y = b^m$ für ein $m > 0$ gelten (da wir nur ein $a$ haben und $|xy| \le p$). Dann ist $x = a$ und $z = b^{p-m}c^p$. Für $n = 0$ erhalten wir: $xy^0z = ab^{p-m}c^p$ Dieser String hat $i=1$, $j=p-m$ und $k=p$. Damit er in $L$ ist, muss $(1\ne 1\vee p-m=p)$ gelten, was zu $p-m=p$ führt. Dies ist falsch, da $m > 0$. Also ist $xy^0z \notin L$, was dem Pumping-Lemma widerspricht. Daher ist $L$ nicht regulär. </answer>
Sei . Welche der folgenden Sprachen sind NICHT regulär? Kreuzen Sie alle zutreffenden an. Wählen Sie anschließend eine solche Sprache und beweisen Sie, dass diese nicht regulär ist.
☐☐☒
Beweis für Sprache 3: Angenommen, die Sprache ist regulär. Dann existiert eine Pumping-Länge . Betrachte den String . Es gilt und , da und , also die Bedingung erfüllt ist. Nach dem Pumping-Lemma kann geschrieben werden mit: 1. 2. 3. Für alle gilt Da und der String mit beginnt gefolgt von b's, besteht aus dem und höchstens b's. Da und ein Teilstring von ist, muss für ein gelten (da wir nur ein haben und ). Dann ist und . Für erhalten wir: Dieser String hat , und . Damit er in ist, muss gelten, was zu führt. Dies ist falsch, da . Also ist , was dem Pumping-Lemma widerspricht. Daher ist nicht regulär.
Subproblem b (1.0/1.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b,c\}$. Welche der folgenden Sprachen sind **NICHT** regulär? Kreuzen Sie **alle** zutreffenden an. Wählen Sie anschließend **eine** solche Sprache und beweisen Sie, dass diese nicht regulär ist.
<options>
<option id="1">$\{w\in\Sigma^*:|w|_{aba}\ne|w|_{a}\}$</option>
<option id="2">$\big(\{w\in\Sigma^*:w=w^R\}\big)^*$</option>
<option id="3">$\{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$</option>
</options>
<answer-template id="4">
Beweis für Sprache ?:
???
</answer-template>
<example>
Beweis für Sprache 1:
...
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:Looking at each language:
**Option 1:** $\{w\in\Sigma^*:|w|_{aba}\ne|w|_{a}\}$
This language is actually regular. The condition $|w|_{aba} = |w|_a$ (the complement) is extremely restrictive - it requires every 'a' to be part of exactly one "aba" substring, which is essentially impossible for most strings. The complement is finite or very simple, making the language regular.
**Option 2:** $\big(\{w\in\Sigma^*:w=w^R\}\big)^*$
This language equals $\Sigma^*$ and is therefore regular. Since every single letter is a palindrome, any string can be written as a concatenation of single-letter palindromes.
**Option 3:** $\{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$
This language is NOT regular. It includes all strings except those of the form $ab^jc^k$ where $j \ne k$.
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<answer id="4">
Beweis für Sprache 3:
Angenommen, die Sprache $L = \{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$ ist regulär. Dann existiert eine Pumping-Länge $p$.
Betrachte den String $w = ab^pc^p$. Es gilt $|w| = 1 + 2p \ge p$ und $w \in L$, da $i=1$ und $j=k=p$, also die Bedingung $(i\ne 1\vee j=k)$ erfüllt ist.
Nach dem Pumping-Lemma kann $w = xyz$ geschrieben werden mit:
1. $|xy| \le p$
2. $|y| > 0$
3. Für alle $n \ge 0$ gilt $xy^nz \in L$
Da $|xy| \le p$ und der String mit $a$ beginnt gefolgt von $p$ b's, besteht $xy$ aus dem $a$ und höchstens $p-1$ b's.
Da $|y| > 0$ und $y$ ein Teilstring von $xy$ ist, muss $y = b^m$ für ein $m > 0$ gelten (da wir nur ein $a$ haben und $|xy| \le p$).
Dann ist $x = a$ und $z = b^{p-m}c^p$.
Für $n = 0$ erhalten wir:
$xy^0z = ab^{p-m}c^p$
Dieser String hat $i=1$, $j=p-m$ und $k=p$. Damit er in $L$ ist, muss $(1\ne 1\vee p-m=p)$ gelten, was zu $p-m=p$ führt. Dies ist falsch, da $m > 0$.
Also ist $xy^0z \notin L$, was dem Pumping-Lemma widerspricht.
Daher ist $L$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L$ gilt $L\ne L^R$ ? Geben Sie außerdem für jede Sprache $L$, die Sie gewählt haben, ein Wort $w$ an, das in genau einer der Sprachen $L,L^R$ enthalten ist.
*Hinweis*: Um das Feld leerzulassen, geben Sie - an.
<options>
<option id="1">$L(b^*a^*b)$</option>
<option id="2">$\{w\in\Sigma^*:w\ne w^R\}$</option>
<option id="3">$\{uavv:u,v\in\Sigma^*\}$</option>
</options>
<answer-template id="4">
1: $?$
2: $?$
3: $?$
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Let me analyze each language to determine if $L \ne L^R$. **Option 1:** $L(b^*a^*b)$ This language consists of strings that match the pattern $b^*a^*b$, i.e., any number of b's, followed by any number of a's, followed by exactly one b. $L^R$ would be the reverse of all strings in $L$. If $w \in L$, then $w = b^i a^j b$ for some $i,j \geq 0$. The reverse is $w^R = b a^j b^i$. So $L^R = \{ba^jb^i : i,j \geq 0\}$ which matches the pattern $ba^*b^*$. Let's check if $L = L^R$: - $aab \in L$ (with $i=0, j=2$) - The reverse is $baa$, which should be in $L^R$. Does $baa$ match $ba^*b^*$? It would need to be $b a^j b^i$ for some $i,j$. We have $baa$, so after the initial $b$, we have $aa$. This doesn't match $a^*b^*$ unless we have $a^2b^0$, which works! So $baa \in L^R$. - But wait, is $baa \in L$? It would need to match $b^*a^*b$. We have $baa$ = $b^1a^2$... but there's no final $b$. So $baa \notin L$. Therefore $L \ne L^R$. The word $baa$ is in $L^R$ but not in $L$. **Option 2:** $\{w\in\Sigma^*:w\ne w^R\}$ This is the set of all non-palindromes. If $w$ is a non-palindrome, then $w^R$ must also be a non-palindrome. Since $(w^R)^R = w$, and $w \ne w^R$, we know $w^R$ will also not equal its own reverse. Therefore, $L^R$ contains all non-palindromes, making $L = L^R$. For the language $\{uavv:u,v\in\Sigma^*\}$, I see that $L^R$ becomes $\{vvau : u,v \in \Sigma^*\}$. Checking membership, $abb$ is in $L$ with $u = \epsilon$ and $v = b$. When examining $L^R$, I find $abb$ can be represented as $au$ where $u = bb$ and $v = \epsilon$, confirming $abb$ is also in $L^R$. The next example involves $aaa$, which requires careful decomposition to verify membership in $L^R$. By analyzing the structure, $v$ must be a single character like $a$, enabling $vv = aa$ and $u = \epsilon$. This confirms $aaa \in L^R$. The subsequent example of $baa$ explores different potential splits, revealing constraints on valid decompositions that preserve the language's symmetry requirements. Critically, the decomposition reveals fundamental properties of non-palindromes, showing how reversing a non-palindromic word maintains its non-palindromic nature. By examining the relationship between $x$ and $x^R$, I recognize that every non-palindrome generates another non-palindrome through reversal, creating a symmetric set relationship. This symmetry suggests $L = L^R$, challenging my initial assumption about the language's structure. The key example of $ba$ demonstrates that some reversed strings exist outside the original language's constraints, confirming a non-trivial set difference. For the language $L = \{uavv : u,v \in \Sigma^*\}$, $aba$ satisfies membership through specific decompositions. By carefully placing the central $a$ and manipulating prefix and suffix strings, $aba$ belongs to both $L$ and $L^R$ under different transformations. Examining $aab$ reveals asymmetric language behavior. While $aab$ fails membership in $L$ due to impossible decompositions, it successfully enters $L^R$ by strategically positioning its characters. The distinct membership criteria highlight the language's intricate structural requirements. The definition emphasizes strings constructed through specific concatenation patterns involving $a$ and repeated substrings, creating complex membership conditions across original and reversed languages. By carefully examining the reversal process, the language transforms, revealing symmetric structural properties where repeated substrings and their reversals interact systematically. The notation demonstrates how string manipulations can generate intricate language specifications through strategic reversals and concatenations. Checking specific examples reveals subtle symmetries between the original and reversed language representations, showing how positioning and string components align across different transformations. The key distinction emerges in how the $a$ is positioned and the surrounding string segments are constructed, with each language definition imposing unique constraints on string composition. Systematic analysis suggests potential equivalence requires careful examination of string generation rules and structural requirements. If we choose the first $a$ at position 1, $ww = b$ is impossible due to odd length. Selecting the second $a$ at position 2 also yields $ww = ba$, which remains impossible. $baa$ belongs to $L$ but not to $L^R$. This demonstrates that $L$ and $L^R$ are different for the third option. The final conclusions confirm $L \ne L^R$, with specific counterexamples showing the language asymmetry.
Answer
Looking at each language to determine if $L \ne L^R$: **Option 1:** $L(b^*a^*b)$ - $L$ consists of strings matching $b^*a^*b$ (any number of b's, any number of a's, then exactly one b) - If $w = b^i a^j b \in L$, then $w^R = ba^jb^i$ - So $L^R = \{ba^jb^i : i,j \geq 0\}$, which matches pattern $ba^*b^*$ - Example: $ba \in L^R$ (reverse of $ab \in L$), but $ba \notin L$ (doesn't end with b) - Therefore $L \ne L^R$ ✓ **Option 2:** $\{w\in\Sigma^*:w\ne w^R\}$ - $L$ is the set of all non-palindromes - If $w$ is a non-palindrome, then $w^R$ is also a non-palindrome (If $w^R$ were a palindrome: $(w^R)^R = w^R \Rightarrow w = w^R$, contradiction) - Every non-palindrome $x$ is in $L^R$ (take $w = x^R$, which is also a non-palindrome) - Therefore $L^R$ is also the set of all non-palindromes, so $L = L^R$ ✗ **Option 3:** $\{uavv:u,v\in\Sigma^*\}$ - $L$ consists of strings with an 'a' followed by a square (string repeated twice) - $L^R = \{(uavv)^R : u,v \in \Sigma^*\} = \{v^Rv^Rau^R : u,v \in \Sigma^*\} = \{wwau : w,u \in \Sigma^*\}$ - $L$: strings where some 'a' has a square after it - $L^R$: strings where some 'a' has a square before it - Example: $baa = b \cdot a \cdot aa \in L$ (with $u=b, v=a$) - For $baa \in L^R$: need $baa = wwau$. If $a$ is at position 1: $ww=b$ (impossible - odd length). If $a$ is at position 2: $ww=ba$ (impossible - odd length) - So $baa \in L$ but $baa \notin L^R$ - Therefore $L \ne L^R$ ✓ <option id="1">1</option> <option id="2">0</option> <option id="3">1</option> <answer id="4"> 1: $ba$ 2: $-$ 3: $baa$ </answer>
Sei . Für welche der folgenden Sprachen gilt ? Geben Sie außerdem für jede Sprache , die Sie gewählt haben, ein Wort an, das in genau einer der Sprachen enthalten ist. Hinweis: Um das Feld leerzulassen, geben Sie - an.
☒☐☒
1: 2: 3:
Subproblem c (2.0/2.0P)
Prompt
system:You are an AI assistant specializing in theoretical computer science. Your task is to answer a series of exam questions, providing accurate and well-reasoned responses that demonstrate a deep understanding of theoretical computer science concepts.
# Instructions
You must follow the given answer format.
If the exercises contains yes or no questions for you to answer, there will be one <option> element for each such question. You must answer these with either 0 or 1.
For longer answers, there will be <answer> elements. If the answer must follow a specific template, a corresponding <answer-template> element defines this template, and you MUST follow it precisely when providing your <answer>, as any deviations from the template will cause your answer to be invalid. A '?' symbol indicates a place for you to insert a short text, while a '???' symbol marks places for you to insert multi-line answers. To define the precise syntax to use, an <example> element may be provided. You MUST follow this syntax. However, note that the answers in the example may not be correct answers to the question.
Some questions relate to specific lecture material. In this case, the material will be provided in <context> elements for you to reference.
## Formatting
Always follow the format of the given exercise. If you are writing longer text, you can put text in *italics* or make it **bold**. Formulas should be given as LaTeX and enclosed properly, i.e. $...$ or \[...\].
user:# Exercise: Bonus
Mindestens eine Antwortmöglichkeit ist immer richtig.
## subproblem a (2.0 points)
Sei $\Sigma := \{a,b,c\}$. Welche der folgenden Sprachen sind **NICHT** regulär? Kreuzen Sie **alle** zutreffenden an. Wählen Sie anschließend **eine** solche Sprache und beweisen Sie, dass diese nicht regulär ist.
<options>
<option id="1">$\{w\in\Sigma^*:|w|_{aba}\ne|w|_{a}\}$</option>
<option id="2">$\big(\{w\in\Sigma^*:w=w^R\}\big)^*$</option>
<option id="3">$\{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$</option>
</options>
<answer-template id="4">
Beweis für Sprache ?:
???
</answer-template>
<example>
Beweis für Sprache 1:
...
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:Looking at each language:
**Option 1:** $\{w\in\Sigma^*:|w|_{aba}\ne|w|_{a}\}$
This language is actually regular. The condition $|w|_{aba} = |w|_a$ (the complement) is extremely restrictive - it requires every 'a' to be part of exactly one "aba" substring, which is essentially impossible for most strings. The complement is finite or very simple, making the language regular.
**Option 2:** $\big(\{w\in\Sigma^*:w=w^R\}\big)^*$
This language equals $\Sigma^*$ and is therefore regular. Since every single letter is a palindrome, any string can be written as a concatenation of single-letter palindromes.
**Option 3:** $\{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$
This language is NOT regular. It includes all strings except those of the form $ab^jc^k$ where $j \ne k$.
<option id="1">0</option>
<option id="2">0</option>
<option id="3">1</option>
<answer id="4">
Beweis für Sprache 3:
Angenommen, die Sprache $L = \{a^ib^jc^k:(i\ne 1\vee j=k)\wedge i,j,k\ge0\}$ ist regulär. Dann existiert eine Pumping-Länge $p$.
Betrachte den String $w = ab^pc^p$. Es gilt $|w| = 1 + 2p \ge p$ und $w \in L$, da $i=1$ und $j=k=p$, also die Bedingung $(i\ne 1\vee j=k)$ erfüllt ist.
Nach dem Pumping-Lemma kann $w = xyz$ geschrieben werden mit:
1. $|xy| \le p$
2. $|y| > 0$
3. Für alle $n \ge 0$ gilt $xy^nz \in L$
Da $|xy| \le p$ und der String mit $a$ beginnt gefolgt von $p$ b's, besteht $xy$ aus dem $a$ und höchstens $p-1$ b's.
Da $|y| > 0$ und $y$ ein Teilstring von $xy$ ist, muss $y = b^m$ für ein $m > 0$ gelten (da wir nur ein $a$ haben und $|xy| \le p$).
Dann ist $x = a$ und $z = b^{p-m}c^p$.
Für $n = 0$ erhalten wir:
$xy^0z = ab^{p-m}c^p$
Dieser String hat $i=1$, $j=p-m$ und $k=p$. Damit er in $L$ ist, muss $(1\ne 1\vee p-m=p)$ gelten, was zu $p-m=p$ führt. Dies ist falsch, da $m > 0$.
Also ist $xy^0z \notin L$, was dem Pumping-Lemma widerspricht.
Daher ist $L$ nicht regulär.
</answer>
user:
## subproblem b (1.0 points)
Sei $\Sigma := \{a,b\}$. Für welche der folgenden Sprachen $L$ gilt $L\ne L^R$ ? Geben Sie außerdem für jede Sprache $L$, die Sie gewählt haben, ein Wort $w$ an, das in genau einer der Sprachen $L,L^R$ enthalten ist.
*Hinweis*: Um das Feld leerzulassen, geben Sie - an.
<options>
<option id="1">$L(b^*a^*b)$</option>
<option id="2">$\{w\in\Sigma^*:w\ne w^R\}$</option>
<option id="3">$\{uavv:u,v\in\Sigma^*\}$</option>
</options>
<answer-template id="4">
1: $?$
2: $?$
3: $?$
</answer-template>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
assistant:Looking at each language to determine if $L \ne L^R$:
**Option 1:** $L(b^*a^*b)$
- $L$ consists of strings matching $b^*a^*b$ (any number of b's, any number of a's, then exactly one b)
- If $w = b^i a^j b \in L$, then $w^R = ba^jb^i$
- So $L^R = \{ba^jb^i : i,j \geq 0\}$, which matches pattern $ba^*b^*$
- Example: $ba \in L^R$ (reverse of $ab \in L$), but $ba \notin L$ (doesn't end with b)
- Therefore $L \ne L^R$ ✓
**Option 2:** $\{w\in\Sigma^*:w\ne w^R\}$
- $L$ is the set of all non-palindromes
- If $w$ is a non-palindrome, then $w^R$ is also a non-palindrome
(If $w^R$ were a palindrome: $(w^R)^R = w^R \Rightarrow w = w^R$, contradiction)
- Every non-palindrome $x$ is in $L^R$ (take $w = x^R$, which is also a non-palindrome)
- Therefore $L^R$ is also the set of all non-palindromes, so $L = L^R$ ✗
**Option 3:** $\{uavv:u,v\in\Sigma^*\}$
- $L$ consists of strings with an 'a' followed by a square (string repeated twice)
- $L^R = \{(uavv)^R : u,v \in \Sigma^*\} = \{v^Rv^Rau^R : u,v \in \Sigma^*\} = \{wwau : w,u \in \Sigma^*\}$
- $L$: strings where some 'a' has a square after it
- $L^R$: strings where some 'a' has a square before it
- Example: $baa = b \cdot a \cdot aa \in L$ (with $u=b, v=a$)
- For $baa \in L^R$: need $baa = wwau$. If $a$ is at position 1: $ww=b$ (impossible - odd length). If $a$ is at position 2: $ww=ba$ (impossible - odd length)
- So $baa \in L$ but $baa \notin L^R$
- Therefore $L \ne L^R$ ✓
<option id="1">1</option>
<option id="2">0</option>
<option id="3">1</option>
<answer id="4">
1: $ba$
2: $-$
3: $baa$
</answer>
user:
## subproblem c (2.0 points)
Welche der folgenden Sprachen über $\Sigma:=\{0,1\}$ sind unentscheidbar? Kreuzen Sie **alle** zutreffenden an. Wählen Sie anschließend **eine** solche Sprache und beweisen Sie, dass sie unentscheidbar ist.
<options>
<option id="1">$\{w\in\Sigma^*:|L(M_w)|^2=25\}$</option>
<option id="2">$\{w\in\Sigma^*:|L(M_w)|^2=50\}$</option>
<option id="3">$\{w\in\Sigma^*:|L(M_w)|^2=100\}$</option>
</options>
<answer-template id="4">
Beweis für Sprache ?:
???
</answer-template>
<example>
Beweis für Sprache 1:
...
</example>
### answer format
Give your answer in the following format:
<option id="1">0 or 1</option>
<option id="2">0 or 1</option>
<option id="3">0 or 1</option>
<answer id="4">
...
</answer>
Thoughts
Let's analyze each language. Here $M_w$ represents the Turing machine encoded by string $w$, and $L(M_w)$ is the language accepted by that machine. **Option 1:** $\{w\in\Sigma^*:|L(M_w)|^2=25\}$ This means $|L(M_w)| = 5$ (since we need a non-negative integer and $5^2 = 25$). Checking if a language has exactly 5 elements is undecidable by Rice's theorem (it's a non-trivial property of the language). **Option 2:** $\{w\in\Sigma^*:|L(M_w)|^2=50\}$ For this to be true, we need $|L(M_w)|^2 = 50$, which means $|L(M_w)| = \sqrt{50} = 5\sqrt{2}$. But $|L(M_w)|$ must be a non-negative integer, and $5\sqrt{2}$ is irrational. So this language is empty - no TM can have a language with $5\sqrt{2}$ elements. The empty language is decidable (just always reject). **Option 3:** $\{w\in\Sigma^*:|L(M_w)|^2=100\}$ This means $|L(M_w)| = 10$ (since $10^2 = 100$). Like option 1, checking if a language has exactly 10 elements is undecidable by Rice's theorem. So options 1 and 3 are undecidable, option 2 is decidable (it's the empty set). Let me prove that option 1 is undecidable using Rice's theorem. Rice's theorem states that for any non-trivial property P of languages of Turing machines, the language $\{w : L(M_w) \text{ has property } P\}$ is undecidable. I'll demonstrate the non-triviality of the property by showing examples of TMs with and without exactly 5 language elements. Some machines accept precisely 5 specific strings, while others have languages of different sizes. This variation proves the property is non-trivial, making the language undecidable under Rice's theorem. A direct reduction from the halting problem would provide a more rigorous proof mechanism for this property's computational complexity.
Answer
Looking at each language where $M_w$ is the Turing machine encoded by string $w$: **Option 1:** $\{w\in\Sigma^*:|L(M_w)|^2=25\}$ This requires $|L(M_w)| = 5$. Determining if a TM accepts exactly 5 strings is undecidable by Rice's theorem. **Option 2:** $\{w\in\Sigma^*:|L(M_w)|^2=50\}$ For $|L(M_w)|^2 = 50$, we would need $|L(M_w)| = \sqrt{50} = 5\sqrt{2}$, which is irrational. Since $|L(M_w)|$ must be a non-negative integer, no TM can satisfy this condition. The language is empty and therefore decidable. **Option 3:** $\{w\in\Sigma^*:|L(M_w)|^2=100\}$ This requires $|L(M_w)| = 10$. Like option 1, this is undecidable by Rice's theorem. <option id="1">1</option> <option id="2">0</option> <option id="3">1</option> <answer id="4"> Beweis für Sprache 1: Wir zeigen, dass $L_1 = \{w\in\Sigma^*:|L(M_w)|^2=25\}$ unentscheidbar ist mittels Rice's Theorem. Die Sprache $L_1$ entspricht der Menge aller Turingmaschinen-Kodierungen, deren akzeptierte Sprache genau 5 Elemente enthält (da $|L(M_w)|^2 = 25 \Rightarrow |L(M_w)| = 5$). Nach Rice's Theorem ist jede nicht-triviale Eigenschaft von Sprachen, die von Turingmaschinen erkannt werden, unentscheidbar. Eine Eigenschaft $P$ ist nicht-trivial, wenn: 1. Es mindestens eine Turingmaschine gibt, deren Sprache die Eigenschaft $P$ hat 2. Es mindestens eine Turingmaschine gibt, deren Sprache die Eigenschaft $P$ nicht hat Für die Eigenschaft "$|L| = 5$": 1. **Existenz einer TM mit der Eigenschaft:** Konstruiere eine TM $M_1$, die genau die Strings $\{0, 1, 00, 01, 10\}$ akzeptiert. Diese TM prüft einfach, ob die Eingabe einem dieser 5 Strings entspricht und akzeptiert genau dann. Also gilt $|L(M_1)| = 5$. 2. **Existenz einer TM ohne die Eigenschaft:** Konstruiere eine TM $M_2$, die alle Strings akzeptiert (d.h. $L(M_2) = \Sigma^*$). Da $\Sigma^*$ unendlich ist, gilt $|L(M_2)| = \infty \ne 5$. Da die Eigenschaft "$|L| = 5$" nicht-trivial ist, folgt aus Rice's Theorem, dass $L_1 = \{w\in\Sigma^*:|L(M_w)|^2=25\}$ unentscheidbar ist. </answer>
Welche der folgenden Sprachen über sind unentscheidbar? Kreuzen Sie alle zutreffenden an. Wählen Sie anschließend eine solche Sprache und beweisen Sie, dass sie unentscheidbar ist.
☒☐☒
Beweis für Sprache 1: Wir zeigen, dass unentscheidbar ist mittels Rice's Theorem. Die Sprache entspricht der Menge aller Turingmaschinen-Kodierungen, deren akzeptierte Sprache genau 5 Elemente enthält (da ). Nach Rice's Theorem ist jede nicht-triviale Eigenschaft von Sprachen, die von Turingmaschinen erkannt werden, unentscheidbar. Eine Eigenschaft ist nicht-trivial, wenn: 1. Es mindestens eine Turingmaschine gibt, deren Sprache die Eigenschaft hat 2. Es mindestens eine Turingmaschine gibt, deren Sprache die Eigenschaft nicht hat Für die Eigenschaft "": 1. Existenz einer TM mit der Eigenschaft: Konstruiere eine TM , die genau die Strings akzeptiert. Diese TM prüft einfach, ob die Eingabe einem dieser 5 Strings entspricht und akzeptiert genau dann. Also gilt . 2. Existenz einer TM ohne die Eigenschaft: Konstruiere eine TM , die alle Strings akzeptiert (d.h. ). Da unendlich ist, gilt . Da die Eigenschaft "" nicht-trivial ist, folgt aus Rice's Theorem, dass unentscheidbar ist.